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Abstract

Cell identity is governed by gene expression, regulated by Transcription Factor (TF) binding at cis-

regulatory modules. Decoding the relationship between patterns of TF binding and the regulation of

cognate target genes is nontrivial, remaining a fundamental limitation in understanding cell 

decision-making mechanisms. Identification of TF physical binding that is biologically ‘neutral’ is a

current challenge. We present the ‘NetNC’ software for discovery of functionally coherent TF 

targets, applied to study gene regulation in early embryogenesis. Predicted neutral binding 

accounted for 50% to ≥80% of candidate target genes assigned from significant binding peaks. 

Novel gene functions and network modules were identified, including regulation of chromatin 

organisation and crosstalk with notch signalling. Orthologues of predicted TF targets discriminated 

breast cancer molecular subtypes and our analysis evidenced new tumour biology; for example, 

predicting networks that reshape Waddington’s landscape during EMT-like phenotype switching. 

Predicted invasion roles for SNX29, ATG3, UNK and IRX4 were validated using a tractable cell 

model. This work illuminates conserved molecular networks that regulate epithelial remodelling in 

development and disease, with potential implications for precision medicine.
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1 Introduction

Transcriptional regulatory factors (TFs) govern gene expression, which is a crucial determinant of 

phenotype. Therefore, mapping transcriptional regulatory networks is an attractive approach to gain 

understanding of the molecular mechanisms underpinning both normal biology and disease 

(Shlyueva et al, 2014; Stampfel et al, 2015; Rhee et al, 2014). TF action is controlled in multiple 

ways; including protein-protein interactions, DNA sequence affinity, 3D chromatin conformation, 

post-translational modifications and the processes required for TF delivery to the nucleus (Zabidi & 

Stark, 2016; Rhee et al, 2014; Khoueiry et al, 2017). The interplay of mechanisms influencing TF 

specificity across different biological contexts encompasses considerable complexity and genome-

scale assignment of TFs to individual genes is challenging (Shlyueva et al, 2014; Wilczynski & 

Furlong, 2010; Khoueiry et al, 2017). Indeed, much remains to be learned about the regulation of 

gene expression. For example, the relationship between enhancer sequences and the transcriptional 

activity of cognate promoters is only beginning to be understood (Khoueiry et al, 2017; Zabidi & 

Stark, 2016). Prediction of TF occupancy from DNA sequence composition alone has had only 

limited success, likely because protein interactions influence TF binding specificity (Jolma et al, 

2015; Khoueiry et al, 2017).

TF binding sites may be determined experimentally using chromatin immunoprecipitation 

followed by sequencing (ChIP-seq) or microarray (ChIP-chip). These and related methods (e.g. 

ChIP-exo, DamID) have revealed a substantial proportion of statistically significant ‘neutral’ TF 

binding, that has apparently no effect on transcription from the promoters of assigned target genes 

(Shlyueva et al, 2014; Li et al, 2008; Ozdemir et al, 2011; Biggin, 2011). Evidence suggests that 

neutral binding can arise from TF association with euchromatin; for example, the binding of 

randomly-selected TFs and genome-wide transcription levels are correlated (Cheng et al, 2012; 

Consortium, 2012; Brown & Celniker, 2015). Genomic regions that bind large numbers of TFs have

been termed Highly Occupied Target (HOT) regions (Roy et al, 2010). HOT regions are enriched 

for disease SNPs and can function as developmental enhancers (Kvon et al, 2012; Li et al, 2015). 

However, a considerable proportion of individual TF binding events at HOT regions may have little 

effect on gene expression and association with chromatin accessibility suggests non-canonical 

regulatory function such as sequestration of TFs or in 3D genome organisation (Moorman et al, 

2006; Montavon et al, 2011) as well as possible technical artefacts (Teytelman et al, 2013). A 

proportion of apparently neutral binding sites may also have more subtle functions; for example in 

combinatorial context-specific regulation and in buffering transcriptional noise (Cannavò et al, 
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2016; Stampfel et al, 2015).  Furthermore, enhancers may control the expression of genes that are 

sequence-distant but spatially close due to the 3D chromatin conformation (Moorman et al, 2006; 

Montavon et al, 2011). Current approaches to match bound TFs to candidate target genes may miss 

these distant regulatory relationships. Identification of bona fide, functional TF target genes remains

a major obstacle in understanding the regulatory networks that control cell behaviour (Biggin, 2011;

Stampfel et al, 2015; Keung et al, 2014; Brown & Celniker, 2015; Khoueiry et al, 2017).

The set of genes regulated by an individual TF typically have overlapping expression 

patterns and coherent biological function (Igual et al, 1996; Karczewski et al, 2014; MacArthur et 

al, 2009). Indeed, gene regulatory networks are organised in a hierarchical, modular structure and 

TFs frequently act upon multiple nodes of a given module (Hartwell et al, 1999; Hooper et al, 

2007). Therefore, we hypothesised that functional TF targets collectively share network properties 

that may differentiate them from neutrally bound sites. Graph theoretic analysis can reveal 

biologically meaningful gene modules, including cross-talk between canonical pathways (Ideker et 

al, 2002; Vidal et al, 2011; Jaeger et al, 2017) and conversely may enable elimination of neutrally 

bound candidate TF targets derived from statistically significant ChIP-seq or ChIP-chip peaks. For 

this purpose, we have developed a novel algorithm (NetNC) that may be applied to discover 

functional TF targets and so help to illuminate mechanisms controlling cell phenotype, for example 

to inform causality in regulatory network inference (Shlyueva et al, 2014; Wilczynski & Furlong, 

2010). NetNC analyses the connectivity between candidate TF target genes in the context of a 

functional gene network (FGN), in order to discover biologically coherent TF targets. Network 

approaches afford significant advantages for handling biological complexity, enable genome-scale 

analysis of gene function (Hu et al, 2016; Greene et al, 2015), and are not restricted to predefined 

gene groupings used by standard functional annotation tools (e.g. GSEA, DAVID) (Ideker et al, 

2002; Subramanian et al, 2005; Huang et al, 2009). FGNs seek to comprehensively represent gene 

function and provide a useful framework for analysis of noisy real-world data (Marcotte et al, 1999;

Pe’er & Hacohen, 2011). Clustering is frequently applied to a FGN in order to define a fixed 

network decomposition, as basis for identification of biological modules (Enright et al, 2002; Wang 

et al, 2011). Modules with a high proportion of genes associated with a given experimental 

condition, such as drug treatment, may define the network response and so illuminate the 

underlying biology. However, using predefined, fixed network modules may miss important 

features of the condition-specific set of genes; for example, gene products with corresponding nodes

in the FGN may be absent from the biological condition(s) analysed. Indeed, it is typical for any 
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given cell type to express only a subset of the genes encoded in its genome, hence clusters derived 

from analysis of the whole genome network may not accurately capture the biological interactions 

that occur in the context of a particular cell type or environment. Additionally, context-specific 

interactions are a common feature of biological networks, for example the varied repertoire of 

biophysical interactions in different cell types or between cell states, such as in the stages of the cell

cycle (Pawson & Nash, 2003). Therefore, modules are defined dynamically in vivo and there is 

benefit in analysis approaches that can discover condition-specific communities of interacting genes

without relying on predefined, fixed groupings. The NetNC algorithm satisfies this remit, enabling 

identification of coherent genes and modules according to the context represented by the gene list 

and a FGN, or another reference network.

We applied NetNC and a novel FGN (DroFN) to predict functional targets for multiple 

datasets that measured the binding of the Snail and Twist TFs, as well for modENCODE HOT 

regions (Roy et al, 2010). Snail and Twist have important roles in Epithelial to Mesenchymal 

Transition (EMT), a multi-staged morphogenetic programme fundamental for normal embryonic 

development that contributes to tumour progression and fibrosis (Nieto et al, 2016; Lim & Thiery, 

2012; Giampieri et al, 2009; Yu et al, 2013). Integrative analysis of the predicted functional Snail, 

Twist targets, Notch screens and human breast cancer transcriptomes gave insights into both 

developmental and cancer biology. Predicted functional TF targets from NetNC analysis with no 

previously described role in invasion were validated in vitro.

2 Results

In the subsections below we first describe a D. melanogaster functional gene network (DroFN) and 

a clustering algorithm developed for functional transcription factor target prediction (NetNC). 

NetNC performed well against other approaches in discrimination of biologically related genes 

from synthetic neutrally bound targets. Using DroFN, NetNC and our synthetic benchmark, we 

estimated the proportion of neutral binding for nine Chromatin Immunoprecipitation (ChIP) 

microarray (ChIP-chip) or pyrosequencing (ChIP-seq) datasets, drawn from five different studies 

(MacArthur et al, 2009; Ozdemir et al, 2011; Zeitlinger et al, 2007; Sandmann et al, 2007; Roy et 

al, 2010). These nine datasets are referred to as ‘TF_ALL’; please see Methods section 4.3 for 

important details about the TF_ALL datasets. NetNC predicted Snail and Twist functional targets in 

early embryogenesis, revealing clusters of regulation for multiple genes in key developmental 

processes, including chromatin remodelling, transcriptional regulation and neural development. 
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Predicted functional targets were enriched for Notch signalling modifiers and captured important 

aspects of human breast cancer biology. The DroFN network and NetNC software are made freely 

available as Additional Files associated with this manuscript.

2.1 A comprehensive D. melanogaster functional gene network (DroFN)

We developed a functional gene network (DroFN; 11,432 nodes, 787,825 edges) to provide a 

systems-wide map of D. melanogaster signalling and metabolism (Additional File 1). Evaluation of 

DroFN with time-separated blind test data derived from KEGG (TEST-NET) found good 

performance compared with the DroID (Yu et al, 2008) and GeneMania (Warde-Farley et al, 2010) 

networks (Table 1, Appendix Figure S1). The DroFN network was more highly connected than 

DroID, and had 2.6-fold higher average degree. GeneMania predicts shared Gene Ontology terms 

rather than KEGG pathway comembership, which may account for some of the performance gap 

found with GeneMania when compared to DroFN and DroID. However GeneMania performance 

on TEST-NET is similar to published values for 'Biological Process' terms (Warde-Farley et al, 

2010). The overlap between DroFN and the Drosophila proteome interaction map (DPiM 

(Guruharsha et al, 2011)) was highly significant (FET p<10-308). DroFN and DPiM had 999 genes in

common and 37.8% (2175/5747) of DroFN edges for these genes were also found in DPiM. The 

False Positive Rate for DroFN (0.047) was close to the prior for functional interaction estimated 

from KEGG (0.044); a proportion of these estimated false positives may represent bona fide 

interactions that were not annotated in KEGG. Overall, DroFN provides a useful genome-scale map

of pathway comembership in D. melanogaster.

2.2 A novel algorithm for discovery of functional transcription factor binding 

(NetNC)

Large numbers of statistically significant TF binding sites appear to be neutral (non-functional) (Li 

et al, 2008; MacArthur et al, 2009; Biggin, 2011). We developed the NetNC algorithm for genome-

scale prediction of functional TF target genes (Figure 1). In broad terms, NetNC seeks to discover 

the biological functions common to a list of genes, therefore defining groups of genes with common

function and revealing biologically defining characteristics. This general paradigm has been applied

widely, for example in network-based approaches (Schramm et al, 2010; Overton et al, 2011; Ideker

et al, 2002; Vidal et al, 2011) and in enrichment analysis (Subramanian et al, 2005; Huang et al, 

2009; Geistlinger et al, 2011).
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NetNC builds upon observations that TFs coordinately regulate multiple functionally related

targets (Igual et al, 1996; MacArthur et al, 2009; Karczewski et al, 2014) and has been calibrated 

for discovery of biologically coherent genes in noisy data. The first stage in NetNC calculates 

hypergeometric mutual clustering (HMC) p-values (Goldberg & Roth, 2003) for each pair of 

candidate TF targets (H1) that are connected in the functional gene network (FGN). Empirical 

estimation of positive False Discovery Rate (pFDR) (Storey, 2002) across H1 is enabled by deriving

HMC p-values from resampled genes (H0). Resampling to generate H0 controls for the number of 

candidate TF target genes analysed and the FGN structure. Iterative minimum cut is then computed 

on the pFDR thresholded network with a graph density stopping criterion (Ford & Fulkerson, 

1956). Connected components of the resulting graph consisting of less that three nodes are 

discarded. The approach described above is edge-centric and is termed ‘Functional Target 

Identification’ (FTI), seeking to distinguish all biologically coherent gene pairs from functionally 

unrelated targets (e.g. arising from neutral TF binding). Additionally, NetNC has a node-centric 

‘Functional Binding Target’ (FBT) mode that employs regularised Gaussian mixture modelling for 

unsupervised clustering with automatic cardinality selection (Lubbock et al, 2013). NetNC-FBT 

analyses degree-normalised Node Functional Coherence Scores (NFCS); examples of NFCS 

profiles and the fitted mixture models are visualised in Appendix Figure S2. The NetNC-FBT is 

parameter-free and so did not require calibration on training data.

The gold-standard data for NetNC development and validation took KEGG pathways to 

represent biologically coherent relationships, combined with ‘Synthetic Neutral Target Genes’ 

(SNTGs) derived by resampling from the DroFN network. A total of 17,600 datasets (Additional 

File 2, Additional File 3) were developed to contain between 5% and 80% SNTGs; therefore, the 

gold-standard data covered a wide range of possible values for the proportion of neutrally bound 

candidate TF target genes. NetNC was robust to variation in the input dataset size and %SNTGs, 

outperforming HC-PIN (Wang et al, 2011) and MCL (Enright et al, 2002) on blind test data (Figure 

2, Appendix Table S1). Previous work that evaluated nine clustering algorithms, including MCL, 

found that HC-PIN had strong performance in functional module identification (Wang et al, 2011); 

therefore we selected HC-PIN for extensive comparison against NetNC. In general, NetNC was 

more stringent, with lower False Positive Rate (FPR) and higher Matthews Correlation Coefficient 

(MCC) than HC-PIN. MCC provides a balanced measure of predictive power across the positive 

(KEGG pathway) and negative (SNTG) classes of genes in the gold standard; therefore MCC is an 

attractive approach for assessment of overall performance. NetNC-FBT typically had lowest FPR 
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and performed well on larger datasets. We saw a spread of performance values across resamples 

with identical number of pathways and %SNTG (Figure 2), which arose from expected differences 

between resamples. For example, differences in the density of the resampled SNTG genes may 

impact upon the power of NetNC to discriminate between SNTGs and KEGG pathway nodes. 

NetNC’s performance advantages were most prominent on blind test data with ≥50% SNTGs 

(Figure 2) and all nine of the TF_ALL datasets were predicted to contain ≥50% neutrally bound 

targets (Figure 3, see subsection 2.3, below). Therefore, given the performance advantage on blind 

test data with ≥50% STNGs (Figure 2), NetNC appears as the method of choice for identification of

functional TF targets from genome-scale binding data.

2.3 Estimating neutral binding for EMT transcription factors and Highly Occupied 

Target (HOT) regions

We predicted functional target genes for the Snail and Twist TFs for developmental stages around 

gastrulation in D. melanogaster. Fly embryos perform rapid nuclear divisions and transcription, 

leading the formation of the syncytial blastoderm at about 2 hours. Nuclear divisions slow during 

cellularisation of the blastoderm after 2 hours and gastrulation occurs around 3 hours (Edgar & 

Schubiger, 1986; Leptin, 1995; Campos-Ortega & Hartenstein, 1997). Using NetNC and DroFN, we

analysed Chromatin ImmunoPrecipitation (ChIP) microarray (ChIP-chip) or sequencing (ChIP-seq) 

data for overlapping time periods in early embryogenesis produced by four different laboratories 

and also the modENCODE Highly Occupied Target (HOT) regions (Ozdemir et al, 2011; 

MacArthur et al, 2009; Sandmann et al, 2007; Zeitlinger et al, 2007; Roy et al, 2010). Nine datasets

in total were studied (TF_ALL, Table 2), enabling investigation of multiple factors that are 

commonly applied in discovery of candidate TF targets - including: peak intensity threshold; 

multiple developmental time periods, multiple antibodies, different analytical platforms, and using 

transcribed genes for peak assignment. Further details of the TF_ALL datasets are given in Methods

subsection 4.3. The proportion of neutrally bound candidate target genes was estimated using a 

novel approach that calculated local FDR (lcFDR) from NetNC pFDR values, with calibration 

against the known SNTG fraction in gold standard data (NetNC-lcFDR). Local FDR estimates the 

false discovery rate at a specific score value (or range of values) in contrast to global FDR which is 

calculated using all of the values above a score threshold. We note that global pFDR was unsuitable 

for estimating the total fraction of neutral binding. For example, every TF_ALL dataset had 

pFDR=1 at the NetNC score threshold that included all candidate target genes; hence, a naïve 
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approach based on global pFDR would always give a global neutral binding estimate of 100%. 

Furthermore, lcFDR may capture differences in score profiles that are missed by global pFDR, 

illustrated in Appendix Figure S3.

NetNC-lcFDR estimates of neutral binding across TF_ALL ranged from 50% to ≥80% 

(Figure 3A, Table 2). Reassuringly, the dataset with the most stringent peak calling (twi_1-

3h_hiConf (Ozdemir et al, 2011)) had the highest (NetNC-lcFDR) or second highest (NetNC-FTI) 

predicted functional binding proportion. Target genes for regions bound during two consecutive 

developmental time periods (twi_2-6h_intersect (Sandmann et al, 2007)) also ranked highly, 

followed by HOT regions (Figure 3A, Table 2). Indeed, twi_2-6h_intersect had a significantly 

greater percentage of predicted functional targets (binomial p<4.0x10-15) with stronger gFDR and 

lcFDR profiles than either the twi_2-4h_intersect or twi_4-6h_intersect datasets from the same 

study, but where binding was during a single time period (Sandmann et al, 2007) (Figure 3). 

Therefore, predicted functional binding was enriched for regions occupied at >1 time period or by 

multiple TFs - including HOT regions, which had high functional coherence relative to the other 

datasets examined. Interestingly, a very similar proportion of functional targets was predicted by 

NetNC-lcFDR for binding sites derived from either the union or intersection of two Twist 

antibodies (NetNC-lcFDR=25-30%) from the same study (MacArthur et al, 2009), although the 

NetNC-FTI value was higher for input data representing the intersection of antibodies (30.5% 

(116/334) vs 23% (424/1848)). Substantial numbers of candidate target genes in all nine TF_ALL 

datasets passed a global FDR (gFDR) or lcFDR threshold value of 0.05 (Figure 3B, 3D). Even 

datasets with high predicted total neutral binding included candidate targets that met stringent 

NetNC FDR thresholds. For example, despite having a relatively low proportion of predicted total 

functional binding (Figure 3A) the datasets sna_2-3h_union, twi_2-3h_union respectively had the 

highest and second-highest proportion of genes passing lcFDR<0.05 (Figure 3B); these datasets 

were also highly ranked at gFDR<0.05 (Figure 3D).

ChIP peak intensity putatively correlates with functional binding, although some weak 

binding sites have been shown to be functional (Biggin, 2011; Chen et al, 2013). We found a 

significant correlation between genes’ NetNC NFCS values and ChIP peak enrichment scores in 6/8

datasets (q<0.05, HOT regions not analysed). The two datasets where no significant correlation was 

found (twi_1-3h_hiConf, twi_2-6h_intersect) were derived from protocols that enrich for functional

targets and had the lowest predicted neutral binding proportion (Figure 3A). Indeed, the median 

peak score for twi_2-6h_intersect was significantly higher than data from the same study that was 
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restricted to a single time period (twi_2-4h_intersect, q<5.0x10-56; twi_4-6h_intersect, q<4.8x10-58). 

Therefore the relationship of peak intensity with functional binding in twi_1-3h_hiConf, twi_2-

6h_intersect appears to have been eliminated by the application of protocols that enriched for 

functional targets. Functional TF targets identified by NetNC were also enriched for human 

orthologues, defined by InParanoid (Östlund et al, 2009). For example, 72% (453/628) of the 

NetNC-FBT predicted functional target genes for twi_2-3h_union had human orthologues, which 

was significantly higher than the value (50%, 616/1220) for the full dataset (p<3x10-28 binomial 

test). Genome-wide expectation for human-fly orthology was 46%, calculated with reference to the 

fly genome, which was significantly lower than the value of 72% for the twi_2-3h_union predicted 

functional targets (p<5x10-40). The enrichment for evolutionary conservation of NetNC results 

aligns with the fundamental developmental processes captured by the datasets analysed (i.e. 

gastrulation, mesoderm development) and is consistent with the predicted functional target genes 

playing roles in these processes.

NetNC-lcFDR estimates of neutral binding agreed well with the Functional Target 

Identification results (NetNC-FTI, Table 2). Indeed, neutral binding estimates from these two 

methods had median difference of only 5.5% and were significantly correlated across TF_ALL, 

despite considerable methodological differences (r=0.85, p=0.008, Appendix Figure S4). This 

concordance supports the results from both NetNC-FTI and NetNC-lcFDR.

2.4 Genome-scale functional transcription factor target networks

NetNC results offer a global representation of the mechanisms by which Snail and Twist exert 

tissue-specific regulation in early D. melanogaster embryogenesis (Figure 4, Appendix Figure S5, 

Additional File 4). NetNC-FTI results for the nine TF_ALL datasets overlapped and clusters were 

manually annotated into biologically similar groups, with reference to Gene Ontology enrichment 

and FlyBase annotations (Ashburner et al, 2000; Maere et al, 2005; Huang et al, 2009; Gramates et 

al, 2017). Eleven biological groupings were identified in at least 4/9 TF_ALL datasets, including 

developmental regulation (9/9), chromatin organisation (6/9), ion transport (6/9), mushroom body 

development (6/9), phosphatases (6/9), splicing (5/9) and regulation of translation (5/9) (Appendix 

Table S2). Very few clusters were composed entirely from genes identified only in a single dataset, 

examples included: snoRNAs/nucleolar proteins (twi_2-3h_union), transferases (HOT), defense 

response/immune response (twi_2-4h_Toll10b) and chitin metabolism (twi_2-4h_intersect) (Figure 4,

Appendix Figure S5). We investigated the robustness of NetNC-FTI to subsampled input using 
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TF_ALL (Appendix Tables S3, S4). The median overlap of network edges output by analysis of the 

complete dataset with results from node subsampling rates of 95%, 80% and 50% respectively had 

median values across TF_ALL of 91%, 84% and 77% (respective median 95% CI 83-96%, 74-94%,

37-92%). The median overlap of genes for 95%, 80%, 50% subsamples respectively, averaged 

across TF_ALL, was 89%, 81%, 75% (median 95% CI 72%-97.2%, 66%-92%, 58%-97%). Overall,

subsampling had a moderate effect on NetNC predictions and greater sensitivity was observed at 

lower subsampling rates, as expected. Some subsamples taken as input to NetNC had low overlap 

with the NetNC-FTI reference output (reference_net) for any given complete input dataset. Indeed, 

the reference_net represented between 14% to 39% of the total input gene list across the nine 

TF_ALL datasets. Subsamples that excluded a high proportion of the nodes in reference_net would 

be expected to result in weaker hypergeometric mutual clustering values for nodes that ovelapped 

with reference_net due to a reduction in common neighbours for the reference_net nodes included 

in the given subsample. Therefore, subsampling of the input gene list is expected to produce NetNC

results that have reduced overlap with reference_net; this effect is also a source of variation in 

overlap across subsamples, reflected in the 95% CI values. Also, the probability of sampling nodes 

in reference_net is lower when a smaller fraction of the complete input TF_ALL gene list is covered

by reference_net, leading to a greater subsampling-associated loss of nodes and edges. Consistent 

with this interpretation, TF_ALL datasets with the highest NetNC-FTI functional binding 

proportion (Table 2) (twi_1-3h_hiConf, twi_2-6h_intersect, HOT) were less sensitive to 

subsampling than datasets with relatively low predicted functional binding such as sna_2-4h_Toll10b 

and twi_4-6h_intersect (Appendix Tables S3, S4).

The developmental regulation cluster (DRC) encompassed key conserved morphogenetic 

pathways, for example: Notch, Wnt, Fibroblast Growth Factor (FGF). Notch signalling modifiers 

from public data (Guruharsha et al, 2012) overlapped significantly with NetNC-FTI results for each

TF_ALL dataset (q <0.05), including the DRC, chromatin organisation and mediator complex 

clusters (Figure 4, Appendix Figure S5). Notch was identified as an important control node across 

TF_ALL where it had highest betweenness centrality in the DRC for three datasets and ranked (by 

betweenness) among the top ten DRC genes for 8/9 datasets. The activation of Notch can result in 

diverse, context-specific transcriptional outputs and the mechanisms regulating this pleiotropy are 

not well understood (Guruharsha et al, 2012; Ntziachristos et al, 2014; Bray, 2016; Nowell & 

Radtke, 2017). NetNC predicted functional Snail and Twist binding to many regulatory genes in the

Notch neighbourhood, therefore providing evidence for novel factors controlling the transcriptional 
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consequences of Notch activation in cell fate decisions controlled by these TFs. This is consistent 

with previous demonstration of signalling crosstalk for Notch with twist and snail in multiple 

systems; for example in adult myogenic progenitors (Bernard et al, 2010) and hypoxia-induced 

EMT (Sahlgren et al, 2008). Wingless also frequently had high betweenness, ranking within the top 

ten DRC genes in six datasets and was highest ranked in two instances. Thirteen genes were present

in the DRC for at least seven of the TF_ALL datasets (DRC-13, Appendix Table S5), and these 

genes had established functions in the development of mesodermal derivatives such as muscle, the 

nervous system and heart (Baylies & Bate, 1996; Bernard et al, 2010; Xie et al, 2016; Bray, 2016; 

Chen et al, 1996; Lo et al, 2002; Trujillo et al, 2016). Public in situ hybridisation (ISH) data for the 

DRC-13 genes indicated their earliest expression in (presumptive) mesoderm at: stages 4-6 (wg, en,

twi, N, htl, how), stages 7-8 (rib, pyd, mbc, abd-A) and stages 9-10 (pnt) (Hammonds et al, 2013; 

Tomancak et al, 2002; Hartley et al, 1987; BDGP). The remaining two DRC-13 genes had no 

evidence for mesodermal expression (fkh) or no data available (jar). However, other studies had 

shown that fkh is essential for caudal visceral mesoderm development (Kusch & Reuter, 1999) and 

had demonstrated jar expression in the midgut mesoderm (Millo & Bownes, 2007). The above data 

are consistent with direct regulation of DRC-13 by Twist and Snail in (presumptive) mesoderm, as 

predicted by NetNC-FTI.

Chromatin organisation clusters included polycomb-group (PcG) and trithorax-group (TrxG)

genes; the most frequently identified were the Polycomb Repressive Complex 1 (PRC1) genes ph-d,

psc (Shao et al, 1999) and su(var)3-9, a histone methyltransferase that functions in gene silencing 

(Czermin et al, 2001; Schotta et al, 2002) (Appendix Table S6). Other NetNC-FTI coherent genes 

with function related to PcG/TrxG included: the PRC1 subunit ph-p (Shao et al, 1999); corto which 

physically interacts with PcG and TrxG proteins (Salvaing et al, 2003; Lopez et al, 2001); the 

TrxG-related gene lolal that is required for silencing at polycomb response elements (Mishra et al, 

2003; Quijano et al, 2016); taranis which has genetic interactions with TrxG and PcG (Schuster & 

Smith-Bolton, 2015; Calgaro et al, 2002; Fauvarque et al, 2001); TrxG genes trithorax, moira (Tie 

et al, 2014; Ingham & Whittle, 1980; Hong & Choi, 2016; Crosby et al, 1999). The gene silencing 

factor su(var)205 was also returned by NetNC-FTI in four TF_ALL datasets (Fanti et al, 1998; 

Fanti & Pimpinelli, 2008). Therefore, NetNC found direct regulation by Snail and Twist of a) PRC1

core components and other gene silencing factors, b) TrxG genes, c) modifiers of PcG, TrxG 

activity.
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Brain development clusters were found for six TF_ALL datasets, as well as members of the 

proneural achaete-scute complex and Notch signalling components (Campos-Ortega, 1993). Snail 

regulation of neural clusters is consistent with its well characterised roles in repression of 

ectodermal (neural) genes in the prospective mesoderm (Leptin, 1991; Wieschaus & Nüsslein-

Volhard, 2016; Gilmour et al, 2017). Additionally, Snail is important for neurogenesis in fly 

development and also in mammals (Ashraf & Ip, 2001; Zander et al, 2014). Therefore, binding to 

these neural functional modules could reflect potentiation of transcription to enable rapid activation 

in combination with other transcription factors as and when required within specific neural 

developmental trajectories (Sandmann et al, 2007; Nevil et al, 2017). The mushroom body is a 

prominent structure in the fly brain that is important for olfactory learning and memory (Caron et 

al, 2013). Twist is typically a transcriptional activator (Gilmour et al, 2017) although appears to 

contribute to Snail’s repressive activity (Lin et al, 2015) and Twist-related protein 1 was shown to 

directly repress Cadherin-1 in breast cancers (Vesuna et al, 2008). Our NetNC results predict novel 

Twist functions, for example in regulation of mushroom body neuroblast proliferation factors such 

as retinal homeobox, slender lobes, and taranis (Kraft et al, 2016; Orihara-Ono et al, 2005; 

Manansala et al, 2013).

2.5 Breast cancer subtype is characterised by differential expression of orthologous

Snail and Twist functional targets

Genes that participate in EMT have roles in metastasis and drug resistance across multiple cancers 

(Creighton et al, 2010; Wang et al, 2009; Nieto et al, 2016). Indeed, the NetNC-FTI Snail and Twist

targets included known drivers of tumour biology and also predicted novel cancer driver genes 

(Figure 4, Appendix Figure S5, Appendix Tables S2, S5, S6). Breast cancer intrinsic molecular 

subtypes with distinct clinical trajectories have been extensively validated and complement clinico-

pathological parameters (Sørlie et al, 2003; Cejalvo et al, 2017). These subtypes are known as 

luminal-A, luminal-B, HER2-overexpressing, normal-like and basal-like (Sørlie et al, 2003). All of 

the NetNC-FTI networks for the nine TF_ALL datasets overlapped with known cancer pathways, 

including significant enrichment for Notch modifiers (q<0.05). We hypothesised that orthologous 

genes from NetNC clusters for Snail and Twist would stratify breast cancers by intrinsic molecular 

subtype. Indeed, aberrant activation of Notch orthologues in breast cancers had been demonstrated 

and was linked with EMT-like signalling, particularly for the basal-like and claudin-low subtypes 
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(Stylianou et al, 2006; Barnawi et al, 2016; Ingthorsson et al, 2016; Zhang et al, 2017; Chen et al, 

2009).

2.5.1 Unsupervised clustering with predicted functional targets recovers breast 

cancer intrinsic subtypes

We identified 57 human orthologues (ORTHO-57) that were NetNC-FTI functional targets in ≥4 

TF_ALL datasets and were also represented within integrated gene expression microarray data for 

2999 breast tumours (BrC_2999) (Moleirinho et al, 2013). Unsupervised clustering with ORTHO-

57 stratified BrC_2999 by intrinsic molecular subtype (Figure 5). Clustering with NetNC results for

individual Twist and Snail datasets also recovered the intrinsic breast cancer subtypes (Appendix 

Figure S6). Features within the heatmap were marked according to the dendrogram structure and 

gene expression values (Figure 5). Basal-like tumours were characterised by EN1 and NOTCH1, 

aligning with previous work (feature_Bas; Figure 5) (Stylianou et al, 2006; Barnawi et al, 2016; 

Beltran et al, 2014). Interestingly, elevated ETV6 expression was also largely restricted to the basal-

like subtype. Others had reported ETV6 copy number amplifications in 21% of basal-like tumours 

and identified recurrent gene fusions with ETV6 in several cancers (Adélaïde et al, 2007; Letessier 

et al, 2005; Golub et al, 1995; Buijs et al, 1995). The Luminal A subtype (feature_LumA), shared 

gene expression characteristics with luminal B (feature_LumB2 , ERBB3, MYO6) and normal-like 

(DOCK1, ERBB3, MYO6) tumours. High BMPR1B expression was a clear defining feature of the 

luminal A subtype, in agreement with previous results demonstrating oncogenic BMP signalling in 

luminal epithelia (Chapellier et al, 2015). Others had previously shown that the BMP2 ligand may 

be pleiotropic in breast cancers and development, promoting EMT characteristics in some contexts 

(Ma et al, 2005; Ren & Dijke, 2017; Katsuno et al, 2008). Tumours with high relative BMP2 

expression were typically basal-like while luminal cancers had low BMP2; therefore, our data align 

with BMP2 upregulation as a feature of the EMT programme in basal-like cancers. The luminal B 

subtype had been established to have worse prognosis than luminal A, but more favourable 

prognosis than ESR1 negative cancers (Sørlie et al, 2001, 2003). Several genes were highly 

expressed in both feature_LumB1 and in ESR1 negative subtypes (feature_ERneg), including ECT2,

SNRPD1, SRSF2 and CBX3; our data suggest that these genes might contribute to worse survival 

outcomes for luminal B relative to luminal A cancers. Indeed, the luminal A as well as normal-like 

tumour subtypes had low expression of these genes and CBX3, ECT2 had previously been 

correlated with poor prognosis (Liang et al, 2017; Wang et al, 2018). Furthermore, SNRPD1 is a 
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component of core splicesomal small nuclear ribonucleoproteins (snRNPs) and SRSF2 is a splicing 

factor (Bermingham et al, 1995); RNA splicing was shown to be a survival factor in siRNA 

screening across multiple basal-like cancer cell lines and was suggested to have potential 

therapeutic value (Chan et al, 2017). Feature_LoExp broadly represents genes with low detection 

rates (indicated by the %P column in Figure 5) and the tumours populating feature_LoExp are a 

mixture of subtypes, but largely from a single study (Popovici et al, 2010). Notably, key EMT genes

(SNAI2, TWIST1, QKI) had highest relative expression in normal-like tumours (feature_NL, Figure 

5). Indeed, SNAI2 and TWIST1 were both assigned to the normal-like centroid. Feature_NL also 

included homeobox transcription factors (HOXA9, MEIS2) and a secreted cell migration guidance 

gene (SLIT2) (Schmid et al, 2007; Oulad‐Abdelghani et al, 1997; Borrow et al, 1996). Some genes 

had high expression in both normal-like (feature_NL) and basal-like cancers, including: the QKI 

RNA-binding protein that regulates circRNA formation in EMT (Conn et al, 2015) and the FZD1 

wnt/β-catenin receptor. Indeed, genes in feature_Bas and feature_NL clustered together in the gene 

dendogram, reflecting greater gene expression similarity to each other than to genes within features 

for the other breast cancer subtypes (Figure 5). Therefore, these data revealed concordance in gene 

expression between the normal-like and basal-like subtypes, including known EMT-related genes.

2.5.2 Integrating NetNC functional target networks and breast cancer transcriptome 

profiling

We visualised basal-like and normal-like gene annotations for orthologues in the NetNC-FTI 

networks, offering a new perspective on the molecular circuits controlling these different subtypes 

(Figure 4, Appendix Figure S5). We focussed on basal-like and normal-like cancers because they 

accounted for the large majority of genes in the datasets examined and were prominent in results 

from the centroid and heatmap analysis (Figure 5, Appendix Figure S6). Additionally, EMT had 

been shown to be important for basal-like breast cancer biology (Sarrió et al, 2008; Guen et al, 

2017) and key EMT genes were annotated to the normal-like subtype in our analysis. NetNC-FTI 

clusters that contained splicing factors and components of the ribosome were associated with the 

normal-like subtype in results for three datasets (twi_2-4h_intersect, twi-2-6h_intersect, twi_2-

3h_union); twi_2-3h_union also had communities for the proteosome and proteosome regulatory 

subunits where a high proportion of genes were annotated to the normal-like subtype. Orthologues 

in the sna_2-4h_Toll10b ‘RNA degradation and transcriptional regulation’ cluster were annotated to 

the basal-like subtype and never to the normal-like subtype; this cluster included HECA, which had 
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been reported to function as both a tumour suppressor (Makino et al, 2001; Lin et al, 2013) and an 

oncogene (Chien et al, 2006). HECA was also identified in NetNC-FTI analysis of twi_2-

4h_intersect and twi_4-6h_intersect; these two datasets had Twist binding at different, non-

contiguous sites that were both assigned to hdc, the D. melanogaster orthologue of HECA. Roles 

for hdc were identified in cell survival (Resende et al, 2013, 2017), differentiation of imaginal 

primodia (Weaver & White, 1995), RNA interference (Dorner et al, 2006), Notch signalling 

(Guruharsha et al, 2012) and tracheal branching morphogenesis - upregulated by the snail gene 

family member escargot (Steneberg et al, 1998). HECA was upregulated in basal-like relative to 

normal-like tumours (p<3.3x10-23). Taken together, these data support participation of HECA in an 

EMT-like gene expression programme in basal-like breast cancers. An ‘ion antiporter and GPCR’ 

cluster for the sna_2-4h_Toll10b dataset (Figure 4) included the Na+/H+ antiporter SLC9A6 that also 

belonged to the twi_2-4h_Toll10b ‘transmembrane transport’ cluster (Appendix Figure S5). 

Alterations in pH by Na+/H+ exchangers, particularly SLC9A1, had been shown to drive basal-like 

breast cancer progression and chemoresistance (Cardone et al, 2005; Amith & Fliegel, 2017; Stock 

et al, 2008). SLC9A6 was 1.6-fold upregulated in basal-like relative to normal-like tumours 

(p<8.4x10-71) and may drive pH dysregulation as part of an EMT-like programme in basal-like 

breast cancers. A further cluster that was specific to basal-like cancers in the twi_2-3h_union 

dataset was annotated to ‘mitochondrial translation’, an emerging area of interest for cancer therapy 

(Škrtić et al, 2011; Weinberg & Chandel, 2015). Orthologues annotated to the basal-like subtype 

were frequently located in NetNC-FTI chromatin organisation clusters. For example, the twi_2-

3h_union ‘chromatin organisation and transcriptional regulation’ cluster had six genes annotated to 

the basal-like subtype, including three Notch signalling modifiers (ash1, tara, Bap111) that were 

respectively orthologous to ASH1L, SERTAD2 and SMARCE1. The ASH1L histone 

methyltransferase was a candidate poor prognosis factor with copy number amplifications in basal-

like tumours (Liu et al, 2014); SERTAD2 was a known bromodomain interacting oncogene and 

E2F1 activator (Hsu et al, 2001; Cheong et al, 2009); SMARCE1, a core subunit of the SWI/SNF 

chromatin remodelling complex, had been shown to regulate ESR1 function and to potentiate breast 

cancer metastasis (García-Pedrero et al, 2006; Sethuraman et al, 2016). Therefore our integrative 

analysis predicted specific chromatin organisation factors downstream of Snail and Twist, 

identifying orthologous genes that may control Notch output and basal-like breast cancer 

progression.
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2.6 Novel Twist and Snail functional targets influence invasion in a breast cancer 

model of EMT

Our analysis underlined the functional relevance of novel regulators of EMT and cell invasion, 

including SNX29 (also known as RUNDC2A), ATG3, IRX4 and UNK. Therefore, we investigated 

the functional and instructive role of these genes in an established cell model of invasion by 

overexpressing SNAI1 in MCF7 cells (Dhasarathy et al, 2007). MCF7 cells are weakly invasive 

(Lacroix & Leclercq, 2004), thus the SNAI1-inducible MCF7 cell line was well suited to study 

alteration in expression of the selected genes in terms of their influence on invasion in conjunction 

with SNAI1 induction, knockdown or independently. This was achieved by the co-transfection of 

cDNAs of these genes alongside a doxycycline-inducible vector (pGoldiLox, (Peluso et al, 2017)) 

that expressed either SNAI1 cDNA or validated shRNAs against SNAI1 (Liu et al, 2013). To test for 

the instructive role of these genes, we ectopically expressed the selected NetNC functional targets in

a transwell invasion assay that contained MCF7 with or without SNAI1 cDNA,SNAI1 shRNAs, 

mCherry control or scrambled control shRNA (Figure 6).

Over-expression of IRX4 significantly increased invasion relative to controls in all 

conditions examined and IRX4 had high relative expression in a subset of basal-like breast cancers 

(Figures 5, 6). IRX4 is a homeobox transcription factor involved in cardiogenesis, marking a 

ventricular-specific progenitor cell (Nelson et al, 2016) and is also associated with prostate cancer 

risk (Xu et al, 2014). SNX29 belongs to the sorting nexin protein family that function in endosomal 

sorting and signalling (Cullen, 2008; Marat & Haucke, 2016). SNX29 is poorly characterised and 

ectopic expression significantly reduced invasion in a SNAI1-dependent manner (Figure 6). Since 

we obtained these results, SNX29 downregulation has been associated with metastasis and 

chemoresistance in ovarian carcinoma (Zhu et al, 2015), consistent with SNX29 inhibition of 

invasion driven by Snail. ATG3 is an E2-like enzyme required for autophagy and mitochondrial 

homeostasis (Oral et al, 2012; Radoshevich et al, 2010), we found that ATG3 overexpression 

significantly increased invasion. Consistent with our results, knockdown of ATG3 has been reported

to reduce invasion in hepatocellular carcinoma (Li et al, 2013). UNK is a RING finger protein 

homologous to the fly unkempt protein which binds mRNA, functions in ubiquitination and was 

upregulated in cells undergoing gastrulation (Mohler et al, 1992). Others have reported that UNK 

mRNA binding controls neuronal morphology and can induce spindle-like cell shape in fibroblasts 

(Murn et al, 2015, 2016). We found that UNK significantly increased MCF7 cell invasion in a 

manner that was additive with and independent of Snail, supporting a potential role in breast cancer 

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/455709doi: bioRxiv preprint 

https://doi.org/10.1101/455709
http://creativecommons.org/licenses/by-nc-nd/4.0/


progression. Indeed, UNK was overexpressed in cancers relative to controls in the ArrayExpress 

GeneAtlas (Parkinson et al, 2009).

3 Discussion

Our novel Network Neighbourhood Clustering (NetNC) algorithm and D. melanogaster functional 

gene network (DroFN) were applied to predict functional transcription factor binding targets from 

statistically significant ChIP-seq and ChIP-chip peak assignments during early fly development 

(TF_ALL). Seven of the nine TF_ALL datasets included developmental time periods encompassing

stage four (syncytial blastoderm, 80-130 minutes), cellularisation of the blastoderm (stage five, 130-

170 minutes) and initiation of gastrulation (stage 6, 170-180 minutes) (MacArthur et al, 2009; 

Zeitlinger et al, 2007; Ozdemir et al, 2011; Sandmann et al, 2007; Campos-Ortega & Hartenstein, 

1997). The datasets twi_2-4h_intersect, sna_2-4h_intersect, twi_2-4h_Toll10b and sna_2-4h_Toll10b 

additionally included initial germ band elongation (stage seven, 180-190 minutes) (Sandmann et al, 

2007; Zeitlinger et al, 2007; Campos-Ortega & Hartenstein, 1997); twi_2-4h_Toll10b and sna_2-

4h_Toll10b may have also included stages eight (190-220 minutes) and nine (220-260 minutes) 

(Zeitlinger et al, 2007; Campos-Ortega & Hartenstein, 1997). Twi_2-4h_intersect and sna_2-

4h_intersect were tightly staged between stages 5-7 (Sandmann et al, 2007). Additional to stages 

four, five and six, twi_1-3h_hiConf may have included the latter part of stage two (preblastoderm, 

25-65 minutes) and stage three (pole bud formation, 65-80 minutes) (Campos-Ortega & 

Hartenstein, 1997). The twi_4-6h_intersect dataset was restricted to stages eight to nine which 

included germ band elongation and segmentation of neuroblasts (Sandmann et al, 2007; Campos-

Ortega & Hartenstein, 1997). The above differences in the biological material analysed could be an 

important factor underlying variation between datasets, although there was considerable overlap in 

the functional networks predicted for TF_ALL (Figure 4, Appendix Table S2, Appendix Figure S5).

We integrated Notch screens and the expression of orthologous human breast cancer genes 

with the functional Snail, Twist targets predicted by NetNC, in order to illuminate the conserved 

molecular networks that orchestrate epithelial remodelling in development and tumour progression. 

Our analysis substantiated Snail and Twist function in regulating components of multiple core cell 

processes that govern the global composition of the transcriptome and proteome (Figure 4, 

Appendix Figure S5). These processes included transcription, chromatin organisation, RNA 

splicing, translation and protein turnover (ubiquitination). We identified a ‘Developmental 

Regulation Cluster’ (DRC) which was the major transcriptional control module identified in all nine
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TF_ALL datasets. Notch and also wingless had consistently high betweenness centrality in the 

DRC, which is a measure of a node’s influence within a network (Freeman, 1977). In this context, 

high betweenness centrality may highlight genes with key roles in determining the global network 

state, and so are important for controlling phenotype. Therefore Notch, wingless were predicted to 

be key control points regulated by Snail, Twist in the mesoderm specification network. Notch 

signalling putatively integrates with multiple canonical pathways (Guruharsha et al, 2012) including

interaction with the Wnt gene family which have many conserved roles across metazoan 

development, such as in axis specification and mesoderm patterning (reviewed in (Nusse & Clevers,

2017) and (Schubert & Holland, 2013)). Our results are complementary to qualitative dynamic 

modelling where key control nodes may not necessarily have high betweenness (Mbodj et al, 2016).

Orthologues of both Notch and wingless were previously shown to be aberrantly regulated in breast 

cancers, (for example (Stylianou et al, 2006; DiMeo et al, 2009), and we found that unsupervised 

clustering using predicted Snail and Twist functional targets stratified five intrinsic breast cancer 

subtypes (Sørlie et al, 2003) (Figure 5). While more recent studies have classified greater numbers 

of breast cancer subtypes, for example identifying ten groups (Curtis et al, 2012), the five subtypes 

employed in our analysis had been widely used, extensively validated, exhibited clear differences in

prognosis, overlapped with subgroups defined using standard clinical markers (ESR1, HER2), and 

so were associated with distinct treatment pathways (Sørlie et al, 2003; Cejalvo et al, 2017). 

Analysis of the twi_2-3h_union dataset revealed a basal-like specific cluster for ‘mitochondrial 

translation’ (MT) (Figure 4). Inhibition of MT is a therapeutic strategy for AML and mitochondrial 

metabolism is currently being explored in the context of cancer therapy (Škrtić et al, 2011; 

Weinberg & Chandel, 2015). Our results highlight MT as a potentially attractive target in basal-like 

breast cancers, aligning with previous work linking MT upregulation with deletion of RB1 and p53, 

which occurs in approximately 20% of triple negative breast cancers (Jones et al; Nik-Zainal et al, 

2016). NetNC analysis provided functional context for many Notch modifiers and proposed 

mechanisms of signalling crosstalk by predicting regulation of modifiers by Twist, Snail (Figure 4, 

Appendix Figure S5, Additional File 4). Clusters where multiple modifiers were identified may 

represent cell meso-scale units that are particularly important for Notch signalling in the context of 

mesoderm development and EMT (Additional File 4). For example, the mediator complex and 

transcription initiation subcluster for twist_union (Figure 4) had 13 nodes, of which 5 were Notch 

modifiers including orthologues of MED7, MED8, MED31. Our results show regulation of Notch 

signalling by Snail and Twist targeting of Notch transcriptional regulators, trafficking proteins, post-
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translational modifiers (e.g. ubiquitinylation) and receptor recycling (non-canonical, ligand-

independent signalling) as well as regulation of pathways that may attenuate or modify the Notch 

signal, consistent with previous studies (Guruharsha et al, 2012; Ntziachristos et al, 2014). Taranis, 

a Notch modifier in the chromatin organisation cluster, was orthologous to the SERTAD2 

bromodomain interacting oncogene (Hsu et al, 2001) which had elevated expression in a basal-like 

breast cancer cluster that contained NOTCH1 (Figure 4, Figure 5). Our integrative analysis suggests

that SERTAD2 could control the phenotypic consequences of NOTCH1 activation in basal-like 

breast cancers through a chromatin remodelling mechanism. Notch signalling modulation has been 

applied in a clinical setting, for example in treatment of Alzheimer’s disease, and is a promising 

area for cancer therapy (Shih & Wang, 2007; Ntziachristos et al, 2014; Messersmith et al, 2015; 

Takebe et al, 2015). Orthologues of Notch modifiers identified in our analysis provide a pool of 

candidates that could potentially inform development of companion diagnostics or combination 

therapies for agents targeting the notch pathway in basal-like breast cancers. In addition to Notch 

signalling, taranis also functions to stabilise the expression of engrailed in regenerating tissue 

(Schuster & Smith-Bolton, 2015). The engrailed orthologue EN1 is a survival factor in basal-like 

breast cancers (Beltran et al, 2014); SERTAD2 and EN1 were both located within the basal-like 

breast cancer cluster ‘Bas’ (Figure 5). Indeed, EN1 was the clearest single basal-like cancer 

biomarker in the data examined. Therefore, we speculate that SERTAD2 may cooperate with EN1 in

basal-like breast cancers, reflecting conservation of function between fly and human; indeed, our 

results evidence coordinated expression of these two genes as part of a gene expression programme 

controlled by EMT TFs. Regulation of EN1, SERTAD2 within an EMT programme could harmonise

previous reports of key roles for both neural-specific and EMT TFs in basal-like breast cancers 

(Beltran et al, 2014; Sarrió et al, 2008). The taranis chromatin organisation cluster also contained 

Notch modifiers ash1, Bap111, which were respectively orthologous to the ASH1L, SMARCE1 

breast cancer poor prognosis factors (Liu et al, 2014; Sethuraman et al, 2016). The notch pathway 

had been shown to drive EMT-like characteristics as well as to mediate hypoxia-induced invasion in

multiple cell lines (Sahlgren et al, 2008). Previous work had also shown that SMARCE1, a 

SWI/SNF complex member, interacted with Hypoxia Inducible Factor 1A (HIF1A) signalling and 

had significant effects on cell viability upon knockdown/ectopic expression alongside disruption of 

notch family signalling by gamma-secretase inhibition (Sethuraman et al, 2016). SMARCE1 was 

recently shown to be important in early-stage cancer invasion (Sokol et al, 2017). Aligning with 

these studies, our results evidence conserved function for SMARCE1 in (partial) EMT signalling in 
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both mesoderm development and breast cancer progression, possibly in regulation of SWI/SNF 

targeting. SWI/SNF has been shown to regulate chromatin switching in oral cancer EMT (Mohd-

Sarip et al, 2017). NetNC results showing predicted regulation of chromatin organisation genes by 

Snail, Twist also included core polycomb group (PcG) and trithorax components, suggesting novel 

crosstalk with epigenetic regulation mechanisms in specifying mesodermal cell fates. PcG genes 

have long been considered to be crucial oncofetal regulators and have become the focus of 

significant cancer drug development efforts (Sparmann & Lohuizen, 2006; Koppens & Lohuizen, 

2016). Our findings align with previous reports that gene silencing in EMT involves PcG, for 

example at Cdh1, CDKN2A (Herranz et al, 2008; Yang et al, 2010; Lamouille et al, 2014; Koppens 

& Lohuizen, 2016) and support a model where EMT TFs control the expression of their own 

coregulators; for example, Snai1 was shown to recruit polycomb repressive complex 2 members 

(Herranz et al, 2008). Overall, these NetNC results predicted components of feedback loops where 

the Snail, Twist EMT transcription factors regulate chromatin organisation genes that, in turn, may 

both reinforce and coordinate downstream stages in gene expression programmes for mesoderm 

development and cancer progression. Stages of the EMT programme had been described elsewhere,

reviewed in (Nieto et al, 2016); our results map networks that may control the remodelling of 

Waddington’s landscape - identifying crosstalk between Snail, Twist, epigenetic modifiers and 

regulation of key developmental pathways, including notch (Hemberger et al, 2009). We speculate 

that dynamic interplay between successive cohorts of TFs and chromatin organisation factors could 

be an attractive mechanism to determine progress through and the ordering of steps in (partial) 

EMTs, consistent with ‘metastable’ intermediate stages (Nieto et al, 2016).

Our work integrates datasets from D. melanogaster and human breast cancers, offering 

insight into the biology of epithelial remodelling in both systems. Indeed, the fly genome is 

relatively small and hence more tractable for network studies, while the availability of data for 

analysis (e.g. ChIP-chip, ChIP-seq, genetic screens) is enhanced by both considerable community 

resources and the relative ease of experimental manipulation (Wangler et al, 2017; Mohr et al, 

2014). The datasets sna_2-4h_Toll10b, twi_2-4h_Toll10b represent embryos formed entirely from 

mesodermal lineages (Zeitlinger et al, 2007) and, together, had significantly greater proportion of 

basal-like breast cancer genes than the combined sna_2-3h_union, twi_2-3h_union datasets 

(p<8.0x10-4). This enrichment aligned with work showing that basal-like breast cancers have EMT 

characteristics (Sarrió et al, 2008; Guen et al, 2017) and again highlighted commonalities between 

mesoderm development and breast cancers. We also presented evidence for molecular features of 
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EMT in normal-like (NL) breast cancers. Multiple EMT factors, including SNAI2 and TWIST1, had 

highest expression values in NL cancers and were assigned to the NL centroid. Previous work had 

shown enrichment of non-epithelial genes in the normal-like subtype (Sørlie et al, 2001). EMT was 

known to confer stem-like cell properties (Mani et al, 2008; DiMeo et al, 2009; Schmidt et al, 

2015) and our results were consistent with dedifferentiation or arrested differentiation due to 

activation of an EMT-like programme, forming a stem-like cell subpopulation in NL cancers. For 

example, SNAI2 had been linked with a stem-like signature in breast cancer metastasis and was 

critical for maintenance of mammary stem cells (Lawson et al, 2015; Guo et al, 2012). NetNC 

predicted targets for Twist included the proteosome, splicing and ribosomal components; 

orthologous genes for these subnetworks were largely assigned to the NL subtype in multiple 

TF_ALL datasets, suggesting potential regulation of these cell systems by TWIST1 in NL cancers. 

Some EMT genes were highly expressed in both basal-like and NL cancers, for example QKI 

(Figure 5); EMT-like signalling may therefore be a common thread connecting these two subtypes 

despite other important differences, such as hormone receptor status (Dai et al, 2015). Indeed, the 

majority of predicted Snail and Twist functional targets had orthologues that were assigned to either

basal-like or NL cancers, providing further evidence that EMT-like signalling is important in both 

subtypes. We note that cell-compositional effects, associated with a previously reported high 

proportion of stromal tissue in NL tumours (Prat & Perou, 2011), could explain the observed 

enrichment of EMT molecular characteristics in this subtype. In addition to stromal compositional 

differences in the NL subtype, as noted above, an EMT signature might reflect inhibition of 

differentiation. Indeed, NL cancers were previously shown to have high expression of stem cell 

markers (Sørlie et al, 2001; Marcato et al, 2011; Raha et al, 2014; Sieuwerts et al, 2009). Our 

results demonstrated that NetNC functional targets from fly mesoderm development capture 

clinically relevant molecular features of breast cancers and revealed novel candidate drivers of 

tumour progression. Roles in control of invasion were found for four predicted functional targets 

(UNK, SNX29, ATG3, IRX4) in ectopic expression and shRNA knockdown experiments with a Snail

inducible breast cancer cell line. Potential artefacts associated with changes in cell growth or 

proliferation are controlled within the transwell assays used, because values reflect the ratio of 

signal from cells located at either side of the matrigel barrier. These in vitro confirmatory results 

both support the novel analysis approach and evidence new function for the genes examined.

All nine of the TF_ALL datasets had high predicted NetNC-lcFDR neutral binding 

proportion (PNBP), ranging from 50% to ≥80%. These PNBP values may reflect an upper limit on 
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neutral binding because some functional targets could be missed; for example due to errors in 

assigning enhancer binding to target genes and bona fide regulation of genes that have few DroFN 

edges with other candidate ChIP-seq or ChIP-chip targets. While neutral TF binding may arise 

partly from non-specific associations of TFs with euchromatin, alternative explanations include 

dormant binding, possibly reflecting developmental lineage (Junion et al, 2012) or enhancer 

priming (Factor et al, 2014). Additionally, calibration of lcFDR values against synthetic data based 

on KEGG might influence neutral binding estimates, due to potential differences in network 

properties between TF targets and KEGG pathways; such as clustering coefficient. Candidate target 

genes that were assigned to peaks according to RNA polymerase occupancy (MacArthur et al, 

2009) had PNBP similar to or lower than datasets where RNA polymerase data was not used. 

Therefore, we found no evidence of benefit in using RNA polymerase binding data to guide peak 

matching. Candidate targets for the twi_2-4h_Toll10b, sna_2-4h_Toll10b datasets were defined using a

relatively generous peak threshold (two-fold enrichment), which may explain the high PNBP found 

for sna_2-4h_Toll10b. Twi_2-4h_Toll10b had similar PNBP to the other Twist datasets analysed, 

although application of a higher peak enrichment threshold would likely lead to a lower PNBP value

for this dataset. Indeed, twi_2-6h_intersect had the strongest peak intensity and lowest PNBP 

compared with other datasets from the same study (twi_2-4h_intersect, twi_4-6h_intersect). 

Candidate targets for twi_2-6h_intersect were continuously bound across two different time periods;

the only other member of TF_ALL that represented binding at multiple time periods was the HOT 

dataset, which also had low PNBP. Indeed, the only dataset with lower PNBP than either HOT or 

twi_2-6h_intersect was the Twist ChIP-seq ‘high-confidence’ dataset (twi_1-3h_hiConf) where the 

most stringent peak filtering protocols had been applied (Ozdemir et al, 2011). Twi_1-3h_hiConf 

was the only ChIP-seq dataset analysed in this study, however this factor alone is unlikely to 

explain the high proportion of predicted functional binding. Indeed, overlap with ChIP-chip regions 

informed classification of the ‘high-confidence’ ChIP-seq peaks taken for twi_1-3h_hiConf 

(Ozdemir et al, 2011). Our results aligned with evidence that HOT regions function in gene 

regulation, despite their depletion for known TF motifs (Kvon et al, 2012; Chen et al, 2014; Boyle 

et al, 2014) and supported the emerging picture of widespread combinatorial control involving TF-

TF interactions, cooperativity and TF redundancy (Stampfel et al, 2015; Long et al, 2016; Spitz & 

Furlong, 2012; Jolma et al, 2015; Khoueiry et al, 2017). We found similar NetNC PNBP values for 

datasets produced by taking either the intersection or the union of two independent Twist antibodies.

Hits identified by multiple antibodies may be technically more robust due to reduced off-target 
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binding (Sandmann et al, 2007). However, taking the union of candidate binding sites could 

eliminate false negatives arising from epitope steric occlusion, for example due to context-specific 

protein interactions. The similarity of PNBP values for either the intersection or the union of Twist 

antibodies suggests that, despite the higher expected technical specificity, the intersection of 

candidate targets may not enrich for functional binding sites at the 1% peak-calling FDR threshold 

applied (Sandmann et al, 2007; MacArthur et al, 2009). In general, fewer false negatives implies 

recovery of numerically more functional TF targets that therefore may produce denser clusters in 

DroFN which, in turn, could facilitate NetNC discovery of functional targets. Indeed, datasets 

representing the union of two antibodies ranked highly in terms of both the total number and 

proportion of genes recovered at lcFDR<0.05 or gFDR<0.05 (Figure 3).

NetNC may be widely useful for discovery of highly connected gene groups across multiple 

different data types. Further possible applications include: identification of differentially expressed 

pathways and macromolecular complexes from functional genomics data; illuminating common 

biology among CRISPR screen hits in order to inform prioritisation of candidates for follow-up 

work (Shalem et al, 2014); and discovery of functional coherence in chromosome conformation 

capture data (4-C, 5-C), for example in enhancer regulatory relationships (Simonis et al, 2006; 

Dostie et al, 2006). NetNC may be applied to any undirected network; including protein-protein or 

genetic interactions, telecommunications, climate and social networks. Indeed, context-specific 

effects are important for many disciplines; for example a given social event is unlikely to involve 

everyone in the social network, and regulatory changes may only apply to a subset of businesses in 

an economic model. The multiple complementary analysis modes in NetNC provide adaptability to 

extract value from real-world datasets. A parameter-free mode, NetNC-FBT, provides resilience to 

enable discovery of coherent genes with graph properties different to those of the KEGG pathways 

used in calibration of the ‘Functional Target Identification’ analysis mode (NetNC-FTI). NetNC-

FBT employs unsupervised clustering, and analyses the shape of the NFCS score distribution rather 

than absolute score values. Therefore, NetNC-FBT can separate high-scoring arbitrary subgraphs 

from disconnected or sparsely connected nodes in the input data. We note that NetNC-FBT had a 

low false positive rate on blind test data (Figure 2). On the other hand, the NetNC-FTI approach 

does not assume that the input gene list contains a large proportion of low-scoring genes and 

therefore has clear advantages for analysis of datasets that primarily contain functionally coherent 

genes. Also, NetNC-FTI gave the best overall performance for discrimination between biological 

pathways and Synthetic Neutral Target Genes (SNTGs). The NetNC software distribution includes a

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 30, 2018. ; https://doi.org/10.1101/455709doi: bioRxiv preprint 

https://doi.org/10.1101/455709
http://creativecommons.org/licenses/by-nc-nd/4.0/


conservative, empirical method for estimation of local False Discovery Rate (lcFDR) from global 

FDR values, which could be useful in a wide range of applications. For example, FDR estimation is 

fundamental for mass spectrometry proteomics (Käll et al, 2008; Blakeley et al, 2012) where target-

decoy searching approaches typically utilise a single ‘decoy’ search as the basis for fitting a null 

(H0) score distribution in order to estimate lcFDR (Blakeley et al, 2012; Käll et al, 2008; Elias & 

Gygi, 2007). However, NetNC generates H0 by resampling, which would be equivalent to having 

multiple decoy searches, which therefore enables estimation of local FDR by stepping through 

global FDR values. There might be merit in further investigation of the NetNC local FDR 

estimation strategy in the context of proteomics database searching. Evaluation on blind test data 

alongside leading clustering algorithms (MCL (Enright et al, 2002), HC-PIN (Wang et al, 2011)) 

showed that NetNC performed well overall, with particular advantages for analysis of datasets that 

had substantial synthetic neutral TF binding. Indeed, the nine TF_ALL datasets examined were 

predicted to have at least 50% neutral binding, aligning well with application of NetNC for 

discovery of functional targets in ChIP-chip and ChIP-seq data. TF binding focus networks derived 

from NetNC may also be useful in prioritising components for inclusion within regulatory network 

modelling. Software and datasets are made freely available as Additional Files associated with this 

publication.

NetNC does not require a priori definition of gene groupings, but instead dynamically 

defines clusters within the subnetwork induced in DroFN by the input gene list. Therefore, NetNC 

is complementary to techniques that employ static, predefined gene groupings such as GSEA 

(Subramanian et al, 2005), DAVID (Huang et al, 2009) and GGEA (Geistlinger et al, 2011)). For 

example, NetNC discovered functional groups for poorly characterised genes (Figure 4A, bottom 

right). Additionally, NetNC may be used for dimensionality reduction in gene-wise multiple 

hypothesis testing. One example application could be analysis of a gene list defined using a 

differential expression fold-change threshold, providing a hypothesis-generating step prior to 

evaluation of statistical significance performed on individual coherent genes or on gene clusters. 

The NetNC output would therefore identify a subset of genes, based on network coherence, for 

input into significance testing. Benjamini-Yekutieli false discovery rate control (Benjamini, 2001) 

would be appropriate due to the expected dependency of expression values from genes within 

NetNC clusters. This approach appears attractive for analysis of high-dimensional data, such as 

transcriptome profiling, where statistical power is diluted by the large number of hypotheses (genes)

tested relative to the small number of biological samples that are typically available for analysis. 
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Indeed, established functional genomics data processing workflows involve filtering to reduce 

dimensionality; for example to eliminate genes with expression values indistinguishable from the 

assay ‘background’ (Quackenbush, 2002; Trapnell et al, 2012). NetNC could be deployed as a filter 

to select coherent genes according to the prior knowledge encoded by a functional gene network 

(FGN); NetNC would therefore generate a hypothesis for candidate differentially expressed genes 

based on the biological context represented by the FGN and the assumption that gene expression 

changes occur coherently, forming network communities. Statistical evaluation of this network 

coherence property, including estimation of FDR, is available within NetNC for numerical 

thresholding. Therefore, NetNC has novel applications in distillation of knowledge from high-

dimensional data, including single-subject datasets which is an important emerging area for 

precision medicine (Vitali et al, 2017). Application of statistical and graph theoretic methods for 

quantitative evaluation of relationships between genes (nodes) in NetNC offers an alternative to the 

classical emphasis on individual genes in studying the relationship between genotype and 

phenotype (Baliga et al, 2017).

4 Materials and Methods

4.1 A High confidence, comprehensive D. melanogaster functional gene network 

(DroFN)

A Drosophila melanogaster functional network (DroFN) was developed using previously described 

methodology (Overton et al, 2011). Functional interaction probabilities, corresponding to pathway 

co-membership, were estimated by logistic regression of Bayesian probabilities from STRING v8.0 

scores (Jensen et al, 2009) and Gene Ontology (GO) coannotations (Ashburner et al, 2000), taking 

KEGG (Kanehisa et al, 2010) pathways as gold standard.

Gene pair co-annotations were derived from the GO database of March 25th 2010. The GO 

Biological Process (BP) and Cellular Component (CC) branches were read as a directed graph and 

genes added as leaf terms. The deepest term in the GO tree was selected for each gene pair, and BP 

was given precedence over CC. Training data were taken from KEGG v47, comprising 110 

pathways (TRAIN-NET). Bayesian probabilities for STRING and GO coannotation frequencies 

were derived from TRAIN-NET (Overton et al, 2011). Selection of negative pairs from TRAIN-

NET using the perl rand() function was used to generate training data with equal numbers of 
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positive and negative pairs (TRAIN-BAL), which was input for logistic regression, to derive a 

model of gene pair functional interaction probability:

p(I |GO ,STRING)=
1

1+(e−6.75+1.03 pGO+1.12 pSTRING
)

(1)

Where:

pGO is the Bayesian probability derived from Gene Ontology coannotation frequency 

pSTRING is the Bayesian probability derived from the STRING score frequency

The above model was applied to TRAIN-NET and the resulting score distribution thresholded by 

seeking a value that maximised the F-measure (van Rijsbergen, 1979) and True Positive Rate 

(TPR), while also minimising the False Positive Rate (FPR). The selected threshold value (p 

≥0.779) was applied to functional interaction probabilities for all possible gene pairs to generate the 

high-confidence network, DroFN.

For evaluation of the DroFN network, time separated test data (TEST-TS) were taken from 

KEGG v62 on 13/6/12, consisting of 14 pathways that were not in TRAIN-NET. TEST-TS was 

screened against TRAIN-NET, eliminating 34 positive and 218 negative gene pairs to generate the 

blind test dataset TEST-NET (4599 pairs). GeneMania (version of 10th August 2011) (Warde-Farley 

et al, 2010) and DROID (v2011_08) (Yu et al, 2008) were assessed against TEST-NET.

4.2 Network neighbourhood clustering (NetNC) algorithm

NetNC identifies functionally coherent nodes in a subgraph S of functional gene network G (an 

undirected graph), induced by some set of nodes of interest D; for example, candidate transcription 

factor target genes assigned from analysis of ChIP-seq data. Intuitively, we consider the proportion 

of common neighbours for nodes in S to define coherence; for example, nodes that share neighbours

have greater coherence than nodes that do not share neighbours. The NetNC workflow is 

summarised in Figure 1 and described in detail below. Two analysis modes are available a) node-

centric (parameter-free) and b) edge-centric, with two parameters. Both modes begin by assigning a 

p-value to each edge (Sij) from Hypergeometric Mutual Clustering (HMC) (Goldberg & Roth, 

2003), described in points one and two, below.
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1. A two times two contingency table is derived for each edge Sij by conditioning on the 

Boolean connectivity of nodes in S to Si and Sj. Nodes Si and Sj are not counted in the 

contingency table.

2. Exact hypergeometric p-values (Goldberg & Roth, 2003) for enrichment of the nodes in S 

that have edges to the nodes Si and Sj are calculated using Fisher's Exact Test from the 

contingency table. Therefore, a distribution of p-values (H1) is generated for all edges Sij.

3. The NetNC edge-centric mode employs positive false discovery rate (Storey, 2002) and an 

iterative minimum cut procedure (Ford & Fulkerson, 1956) to derive clusters as follows:

a) Subgraphs with the same number of nodes as S are resampled from G, application of 

steps 1 and 2 to these subgraphs generates an empirical null distribution of 

neighbourhood clustering p-values (H0). This H0 accounts for the effect of the sample 

size and the structure of G on the Sij hypergeometric p-values (pij). Each NetNC run on 

TF_ALL in this study resampled 1000 subgraphs to derive H0.

b) Each edge in S is associated with a positive false discovery rate (q) estimated over pij 

using H1 and H0. The neighbourhood clustering subgraph C is induced by edges where 

the associated q ≤ Q.

c) An iterative minimum cut procedure (Ford & Fulkerson, 1956) is applied to C until all 

components have density greater than or equal to a threshold Z. Edge weights in this 

procedure are taken as the negative log p-values from H1 .

d) As described in section 4.2.3, thresholds Q and Z were chosen to optimise the 

performance of NetNC on the 'Functional Target Identification' task using training data 

taken from KEGG. Connected components with less than three nodes are discarded, in 

line with common definitions of a 'cluster'. Remaining nodes are classified as 

functionally coherent.

4. The node-centric, parameter-free mode proceeds by calculating degree-normalised node 

functional coherence scores (NFCS) from H1, then identifies modes of the NFCS 

distribution using Gaussian Mixture Modelling (Lubbock et al, 2013):

a) The node functional coherence score (NFCS) is calculated by summation of Sij p-values 

in H1 (pij) for fixed Si, normalised by the Si  degree value in S (di):

NFCS i=−
1
d i
∑

j

log(pij) (2)
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b) Gaussian Mixture Modelling (GMM) is applied to identify structure in the NFCS 

distribution. Expectation-maximization fits a mixture of Gaussians to the distribution 

using independent mean and standard deviation parameters for each Gaussian (Dempster

et al, 1977; Lubbock et al, 2013). Models with 1..9 Gaussians are fitted and the final 

model selected using the Bayesian Information Criterion (BIC).

c) Nodes in high-scoring mode(s) are predicted to be ‘Functionally Bound Targets’ (FBTs) 

and retained. Firstly, any mode at NFCS<0.05 is excluded because this typically 

represents nodes with no edges in S (where NFCS=0). A second step eliminates the 

lowest scoring mode if >1 mode remains. Very rarely a unimodal model is returned, 

which may be due to a large non-Gaussian peak at NFCS=0 confounding model fitting; 

if necessary this is addressed by introducing a tiny Gaussian noise component (SD=0.01)

to the NFCS=0 nodes to produce NFCS_GN0. GMM is performed on NFCS_GN0 and 

nodes eliminated according to the above procedure on the resulting model. This 

procedure was developed following manual inspection of results on training data from 

KEGG pathways with 'synthetic neutral target genes' (STNGs) as nodes resampled from 

G (TRAIN-CL, described in section 2.2.1).

Therefore, NetNC can be applied to predict functional coherence using either edge-centric or node-

centric analysis modes. The edge-centric mode automatically produces a network, whereas the 

node-centric analysis does not output edges; therefore to generate networks from predicted FBT 

nodes an edge pFDR threshold may be applied, pFDR≤0.1 was selected as the default value. The 

statistical approach to estimate pFDR and local FDR are described in the sections below.

4.2.1 Estimating positive false discovery rate for hypergeometric mutual clustering 

p-values

The following procedure is employed to estimate positive False Discovery Rate (pFDR) (Storey, 

2002) in the NetNC edge-centric mode. Subgraphs with number of nodes identical to S are 

resampled from G to derive a null distribution of HMC p-values (H0) (section 4.2, above). The 

resampling approach for pFDR calculation in NetNC-FTI controls for the structure of the network 

G, including degree distribution, but does not control for the degree distribution or other network 

properties of the subgraph S induced by the input nodelist (D). In scale free and hierarchical 

networks, degree correlates with clustering coefficient; indeed, this property is typical of biological 
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networks (Yamada & Bork, 2009). Part of the rationale for NetNC assumes that differences between

the properties of G and S (for example; degree, clustering coefficient distributions) may enable 

identification of clusters within S. Therefore, it would be undesirable to control for the degree 

distribution of S during the resampling procedure for pFDR calculation because this would also 

partially control for clustering coefficient. Indeed clustering coefficient is a node-centric parameter 

that has similarity with the edge-centric Hypergeometric Clustering Coefficient (HMC) calculation 

(Goldberg & Roth, 2003) used in the NetNC algorithm to analyse S. Hence, the resampling 

procedure does not model the degree distribution of S, although the degree distribution of G is 

controlled for. Positive false discovery rate is estimated over the p-values in H1 (pij) according to 

Storey (Storey, 2002):

pFDR=E(
V
R

) , R>0 (3)

Where:

R denotes hypotheses (edges) taken as significant

V are the number of false positive results (type I error)

NetNC steps through threshold values (pα) in pij estimating V using edges in H0 with p≤pα . H0 

represents Y resamples, therefore V is calculated at each step:

V =
H 0

Y
, p≤ pα (4)

The H1 p-value distribution is assumed to include both true positives (TP) and false positives (FP); 

H0 is taken to be representative of the FP present in H1. This approach has been successfully applied

to peptide spectrum matching (Fitzgibbon et al, 2008; Sennels et al, 2009). The value of R is 

estimated by:

R=∑
p∈H1

{1 pij ≤ pα

0 otherwise
(5)
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Additionally, there is a requirement for monotonicity: 

pFDRx+1 ≥ pFDRx , px< px +1 (6)

Equation (6) represents a conservative procedure to prevent inconsistent scaling of pFDR due to 

sampling effects. For example consider the scaling of pFDR for pFDRx+1 at a pij value with 

additional edges from H1 but where no more resampled edges (i.e. from H0) were observed in the 

interval between px and px+1; before application of equation (6), the value of pFDRx+1 would be 

lower than pFDRx. The approach also requires setting a maximum on estimated pFDR, considering 

that there may be values of pα where R is less than V. We set the maximum to 1, which would 

correspond to a prediction that all edges at pij are false positives. The assumption that H1 includes 

false positives is expected to hold in the context of candidate transcription factor target genes and 

also generally across biomedical data due to the stochastic nature of biological systems (Raj & van 

Oudenaarden, 2008; Raj et al, 2010; Marusyk et al, 2012). We note that an alternative method to 

calculate R using both H1 and H0 would be less conservative than the approach presented here.

4.2.2 Estimating local false discovery rate from global false discovery rate

We developed an approach to estimate local false discovery rate (lcFDR) (Efron et al, 2001), being 

the probability that an object at a threshold (pα) is a false positive. Our approach takes global pFDR 

values as basis for lcFDR estimation. In the context of NetNC analysis using the DroFN network, a 

false positive is defined as a gene (node) without a pathway comembership relationship to any other

nodes in the nodelist D. The most significant pFDR value (pFDRmin) from NetNC was determined 

for each node Si across the edge set Sij. Therefore, pFDRmin is the pFDR value at which node Si 

would be included in a thresholded network. We formulated lcFDR for the nodes with pFDRmin 

meeting a given pα (k) as follows:

lcFDRk=
((n× pFDRk)– ((n – X )×pFDRl))

X
(7)

Where l denotes the pFDRmin closest to and smaller than k, and where at least one node has 

pFDRmin≡pFDRl. Therefore, our approach can be conceptualised as operating on ordered pFDRmin 

values. n indicates the nodes in D with pFDRmin values meeting threshold k. X represents the number
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of nodes at pα≡k. The number of false positives (FP) for nodes with pα≡k (FPk) is estimated by 

subtracting the FP for threshold l from the FP at threshold k. Thus, division of FPk by X gives local 

false discovery rate bounded by k and l (Appendix Figure S7). If we define the difference between 

pFDRk  and pFDRl:

pFDRΔ = pFDRk  - pFDRl (8)

Substituting pFDRk for (pFDRl  + pFDRΔ) into equation (7) and then simplifying gives: 

lcFDRk = ((n x pFDRΔ) / X) + pFDRl (9)

Equations (7) and (9) do not apply to the node(s) in D at the smallest possible value of pFDRmin 

because pFDRl would be undefined; instead, the value of lcFDRk is calculated as the (global) 

pFDRmin value. Indeed, global FDR and local FDR are equivalent when H1 consists of objects at a 

single pFDRmin value. Taking the mean lcFDRk across D provided an estimate of neutral binding in 

the studied ChIP-chip, ChIP-seq datasets and was calibrated against mean lcFDR values from 

datasets that had a known proportion of Synthetic Neutral Target Genes (SNTGs). Estimation of the

total proportion of neutral binding in ChIP-chip or ChIP-seq data required lcFDR rather than 

(global) pFDR and, for example, accounts for the shape of the H1 distribution. In the context of 

NetNC analysis of TF_ALL, mean lcFDR may be interpreted as the probability that any candidate 

target gene is neutrally bound in the dataset analysed; therefore providing estimation of the total 

neutral binding proportion. Computer code for calculation of lcFDR is provided within the NetNC 

distribution (Additional File 5). Estimates of SNTGs by the NetNC-FBT approach were not taken 

forward due to large 95% CI values (Appendix Figure S8).

4.2.3 NetNC benchmarking and parameter optimisation

Gold standard data for NetNC benchmarking and parameterisation were taken as pathways from 

KEGG (v62, downloaded 13/6/12) (Kanehisa et al, 2010). Training data were selected as seven 

pathways (TRAIN-CL, 184 genes) and a further eight pathways were selected as a blind test dataset

(TEST-CL, 186 genes) summarised in Appendix Table S7. For both TRAIN-CL and TEST-CL, 

pathways were selected to be disjoint and to cover a range of different biological functions. 

However, pathways with shared biology were present within each group; for example TRAIN-CL 
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included the pathways dme04330 'Notch signaling' and dme04914 'Progesterone-mediated oocyte 

maturation', which are related by notch involvement in oogenesis (López-Schier & St Johnston, 

2001; Schmitt & Nebreda, 2002). TEST-CL also included the related pathways dme04745 

'Phototransduction' and dme00600 'Sphingolipid metabolism', for example where ceramide kinase 

regulates photoreceptor homeostasis (Acharya et al, 2003; Dasgupta et al, 2009; Yonamine et al, 

2011).

Gold standard datasets were also developed in order to investigate the effect of dataset size 

and noise on NetNC performance. The inclusion of noise as resampled network nodes into the gold-

standard data was taken to model neutral TF binding (Shlyueva et al, 2014; Li et al, 2008) and 

matches expectations on data taken from biological systems in general (Raj & van Oudenaarden, 

2008; Marusyk et al, 2012). Therefore, gold standard datasets were generated by combining 

TRAIN-CL with nodes resampled from the network (G) and combining these with TRAIN-CL. The

final proportion of resampled nodes (Synthetic Neutral Target Genes, SNTGs) ranged from 5% 

through to 80% in 5% increments. Since we expected variability in the network proximity of 

SNTGs to pathway nodes (S), 100 resampled datasets were generated per %SNTG increment. 

Further gold-standard datasets were generated by taking five subsets of TRAIN-CL, from three 

through seven pathways. Resampling was applied for these datasets as described above to generate 

node lists representing five pathway sets in TRAIN-CL by sixteen %SNTG levels by l00 repeats 

(TRAIN_CL_ALL, 8000 node lists; Additional File 2). A similar procedure was applied to TEST-

CL, taking from three through eight pathways to generate data representing six pathway subsets by 

sixteen noise levels by 100 repeats (TEST-CL_ALL, 9600 node lists, Additional File 3). Data based 

on eight pathways (TEST-CL_8PW, 1600 node lists) were used for calibration of lcFDR estimates. 

Preliminary training and testing against the MCL algorithm (Enright et al, 2002) utilised a single 

subsample for 10%, 25%, 50% and 75% SNTGs (TRAIN-CL-SR, TEST-CL-SR; Additional File 6).

NetNC analysed the TRAIN-CL_ALL datasets in edge-centric mode, across a range of FDR 

(Q) and density (Z) threshold values. Performance was benchmarked on the Functional Target 

Identification (FTI) task which assessed the recovery of biological pathways and exclusion of 

SNTGs. Matthews correlation coefficient (MCC) was computed as a function of NetNC parameters 

(Q, Z). MCC is attractive because it is captures predictive power in both the positive and negative 

classes. FTI was a binary classification task for discrimination of pathway nodes from noise, 

therefore all pathway nodes were taken as as positives and SNTGs were negatives for the FTI MCC

calculation. The FTI approach therefore tests discrimination of pathway nodes from SNTGs, which 
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is particularly relevant to identification of functionally coherent candidate TF targets from ChIP-

chip or ChIP-seq peaks.

Parameter selection for NetNC on the FTI task analysed MCC values for the 100 SNTG 

resamples across five pathway subsets by sixteen SNTG levels in TRAIN-CL_ALL over the Q, Z 

values examined, respectively ranging from up to 10-7 to 0.8 and from up to 0.05 to 0.9. Data used 

for optimisation of NetNC parameters (Q, Z) are given in Additional File 7 and contour plots 

showing mean MCC across Q, Z values per %SNTG are provided in Appendix Figure S9. A ‘SNTG

specified’ parameter set was developed for situations where an estimate of the input data noise 

component is available, for example from the node-centric mode of NetNC. In this 

parameterisation, for each of the sixteen datasets with different proportions of SNTG (5% .. 80%), 

MCC values were normalized across the five pathway subsets of TRAIN-CL (from three through 

seven pathways), by setting the maximum MCC value to 1 and scaling all other MCC values 

accordingly. The normalised MCC values <0.75 were set to zero and then a mean value was 

calculated for each %SNTG value across five pathway subsets by 100 resamples in TRAIN-

CL_ALL (500 datasets per noise proportion). This approach therefore only included parameter 

values corresponding to MCC performance ≥75% of the maximum across the five TRAIN-CL 

pathway subsets. The high performing regions of these ‘summary’ contour plots sometimes had 

narrow projections or small fragments, which could lead to parameter estimates that do not 

generalise well on unseen data. Therefore, parameter values were selected as the point at the centre 

of the largest circle (in (Q, Z) space) completely contained in a region where the normalised MCC 

value was ≥0.95. This procedure yielded a parameter map: (SNTG Estimate) → (Q, Z), given in 

Appendix Table S8. NetNC parameters were also determined for analysis without any prior belief 

about the %SNTG in the input data - and therefore generalise across a wide range of %SNTG and 

dataset sizes. For this purpose, a contour plot was produced to represent the proportion of datasets 

where NetNC performed better than 75% of the maximum performance across TRAIN-CL_ALL for

the FTI task in the Q, Z parameter space. The maximum circle approach described above was 

applied to the contour plot in order to derive ‘robust’ parameter values (Q, Z), which were 

respectively 0.120, 0.306 (NetNC-FTI).

4.2.4 Performance on blind test data

We compared NetNC against leading methods, HC-PIN (Wang et al, 2011) and MCL (Enright et al,

2002) on blind test data (Figure 2, Appendix Table S1). Input, output and performance summary 
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files for HC-PIN on TEST-CL are given in Additional File 8. HC-PIN was run on the weighted 

graphs induced in DroFN by TEST-CL with default parameters (lambda = 1.0, threshold size = 3). 

MCL clusters in DroFN significantly enriched for query nodes from TEST-CL-SR were identified 

by resampling to generate a null distribution (Overton et al, 2011). Clusters with q<0.05 were taken 

as significant. MCL performance was optimised for the Functional Target Identification (FTI) task 

over the TRAIN-CL-SR datasets for MCL inflation values from 2 to 5 incrementing by 0.2. The 

best-performing MCL inflation value overall was 3.6 (Appendix Table S9).

4.2.5 Subsampling of transcription factor binding datasets and statistical testing

Robustness of NetNC performance was studied by taking 95%, 80% and 50% resamples from nine 

public transcription factor binding datasets, summarised in section 4.3 and described previously in 

detail (MacArthur et al, 2009; Zeitlinger et al, 2007; Sandmann et al, 2007; Ozdemir et al, 2011; 

Roy et al, 2010). A hundred subsamples of each of these datasets were taken at rates of 95%, 80% 

and 50%, thereby producing a total of 2700 datasets (TF_SAMPL). NetNC-FTI results across 

TF_SAMPL were used as input for calculation of median and 95% confidence intervals for the edge

and gene overlap per subsampling rate for each transcription factor dataset analysed. The NetNC 

resampling parameter (Y) was set at 100, the default value. The edge overlap was calculated as the 

proportion of edges returned by NetNC-FTI for the subsampled dataset that were also present in 

NetNC-FTI results for the full dataset (i.e. at 100%). Therefore, nine values for median overlap and 

95% CI were produced per subsampling rate for both edge and gene overlap, corresponding to the 

nine transcription factor binding datasets (Appendix Table S3). The average (median) value of these

nine median overlap values, and of the 95% CI, was calculated per subsampling rate; these average 

values are quoted in Results section 2.4. 

False discovery rate (FDR) correction of p-values was applied where appropriate and is 

indicated in this manuscript by the commonly used notation ‘q’ Benjamini-Hochberg correction was

applied (Benjamini & Hochberg, 1995) unless otherwise specified in the text. The pFDR and local 

FDR values calculated by NetNC are described in Methods sections 4.2, 4.2.1 and 4.2.2 (above).

4.3 Transcription factor binding and Notch modifier datasets

We analysed public Chromatin Immunoprecipitation (ChIP) data for the transcription factors twist 

and snail in early Drosophila melanogaster embryos. These datasets were derived using ChIP 

followed by microarray (ChIP-chip) (MacArthur et al, 2009; Zeitlinger et al, 2007; Sandmann et al,
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2007) and ChIP followed by solexa pyrosequencing (ChIP-seq) (Ozdemir et al, 2011). Additionally 

'highly occupied target' regions, reflecting multiple and complex transcription factor occupancy 

profiles, were obtained from ModEncode (Roy et al, 2010). Nine datasets were analysed in total 

(TF_ALL) and are summarised below.

The 'union' datasets (WT embryos 2-3h, mostly late stage four or early stage five) combined 

ChIP-chip peaks significant at 1% FDR for two different antibodies targeted at the same TF and 

these were assigned to the closest transcribed gene according to PolII binding data (MacArthur et 

al, 2009). Additionally, where the closest transcribed gene was absent from the DroFN network then

the nearest gene was included if it was contained in DroFN. This approach generated the datasets 

sna_2-3h_union (1158 genes) and twi_2-3h_union (1848 genes). The union of peaks derived from 

two separate antibodies maximised sensitivity and may have reduced potential false negatives 

arising from epitope steric occlusion. For the 'Toll10b' datasets, significant peaks with at least two-

fold enrichment for Twist or Snail binding were taken from ChIP-chip data on Toll10b mutant 

embryos (2-4h), which had constitutively activated Toll receptor (Zeitlinger et al, 2007; 

Stathopoulos et al, 2002); mapping to DroFN generated the datasets twi_2-4h_Toll10b (1238 genes), 

sna_2-4h_Toll10b (1488 genes). Toll10b embryos had high expression of Snail and Twist, which drove 

all cells to mesodermal fate trajectories (Zeitlinger et al, 2007). The two-fold enrichment threshold 

selected for this study reflects ‘weak’ binding, although was expected to include functional TF 

targets (Biggin, 2011). Therefore the candidate target genes for twi_2-4h_Toll10b and sna_2-

4h_Toll10b were expected to contain a significant proportion of false positives. The Highly Occupied

Target dataset included 38562 regions, of which 1855 had complexity score ≥8 and had been 

mapped to 1648 FlyBase genes according to the nearest transcription start site (Roy et al, 2010); 

677 of these genes were matched to a DroFN node (HOT). The ‘HighConf’ data took Twist ChIP-

seq binding peaks in WT embryos (1-3h) that had been reported to be ‘high confidence’ 

assignments; high confidence filtering was based on overlap with ChIP-chip regions, identification 

by two peak-calling algorithms and calibration against peak intensities for known Twist targets, 

corresponding to 832 genes (Ozdemir et al, 2011). A total of 664 of these genes were found in 

DroFN (twi_1-3h_hiConf) and represented the most stringent approach to peak calling of all the 

nine TF_ALL datasets. The intersection of ChIP-chip binding for two different Twist antibodies in 

WT embryos spanning two time periods (2-4h and 4-6h) identified a total of 1842 target genes 

(Sandmann et al, 2007) of which 1444 mapped to DroFN (Intersect_ALL). Subsets of 

Intersect_ALL identified regions bound only at 2-4 hours (twi_2-4h_intersect, 801 genes), or only 
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at 4-6 hours (twi_4-6h_intersect, 818 genes), or 'continuously bound' regions identified at both 2-4 

and 4-6 hours (twi_2-6h_intersect, 615 genes). Assigned gene targets may belong to more than one 

subset of Intersect_ALL because time-restricted binding was assessed for putative enhancer regions 

prior to gene mapping; overlap of the Intersect_ALL subsets ranged between 30.2% and 55.4%. The

Intersect_ALL datasets therefore enabled assessment of functional enhancer binding according to 

occupancy at differing time intervals and also to examine the effect of intersecting ChIPs for two 

different antibodies upon the proportion of predicted functional targets recovered. 

The Notch signalling modifiers analysed in this study were selected based on identification 

in at least two of the screens reported in (Guruharsha et al, 2012).

4.4 Breast cancer transcriptome datasets and molecular subtypes

Primary breast tumour gene expression data were downloaded from NCBI GEO 

(GSE12276, GSE21653, GSE3744, GSE5460, GSE2109, GSE1561, GSE17907, GSE2990, 

GSE7390, GSE11121, GSE16716, GSE2034, GSE1456, GSE6532, GSE3494, GSE68892 (formerly

geral-00143 from caBIG)). All datasets were Affymetrix U133A/plus 2 chips and were summarised 

with Ensembl alternative CDF (Dai et al, 2005). RMA normalisation (Irizarry et al, 2003) and 

ComBat batch correction (Johnson et al, 2007) were applied to remove dataset-specific bias as 

previously described (Sims et al, 2008; Moleirinho et al, 2013). Intrinsic molecular subtypes were 

assigned based upon the highest correlation to Sorlie centroids (Sørlie et al, 2003), applied to each 

dataset separately. Centred average linkage clustering was performed using the Cluster and 

TreeView programs (Eisen et al, 1998). Centroids were calculated for each gene based upon the 

mean expression across each of the Sorlie intrinsic subtypes (Sørlie et al, 2003). These expression 

values were squared to consider up and down regulated genes in a single analysis. Orthology to the 

DroFN network was defined using Inparanoid (Östlund et al, 2009). Differential expression was 

calculated by t-test comparing normalised (unsquared) expression values in normal-like and basal-

like tumours with false discovery rate correction (Benjamini & Hochberg, 1995).

4.5 Invasion assays for validation of genes selected from NetNC results

MCF-7 Tet-On cells were purchased from Clontech and maintained as previously described 

(Liu et al, 2013).To analyse the ability of transfected MCF7 breast cancer cells to degrade and 

invade surrounding extracellular matrix, we performed an invasion assay using the CytoSelect™ 

24-Well Cell Adhesion Assay kit. This transwell invasion assay allow the cells to invade through a 
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matrigel barrier utilising basement membrane-coated inserts according to the manufacturer's 

protocol. Briefly, MCF7 cells transfected with the constructs (Doxycycline-inducible SNAI1 cDNA 

or SNAI1 shRNA with or without candidate gene cDNA) were suspended in serum-free medium. 

SNAI1 cDNA or SNAI1 shRNA were cloned in our doxycyline-inducible pGoldiLox plasmid 

(pGoldilox-Tet-ON for cDNA and pGolidlox-tTS for shRNA expression) using validated shRNAs 

against SNAI1 (NM_005985 at  position 150 of the transcript (Liu et al, 2013)). pGoldilox has been 

used previously to induce and knock down the expression of Ets genes (Peluso et al, 2017). 

Following overnight incubation, the cells were seeded at 3.0×105 cells/well in the upper chamber 

and incubated with medium containing serum with or without doxycyline in the lower chamber for 

48 hours. Concurrently, 106 cells were treated in the same manner and grown in a six well plate to 

confirm over-expression and knockdown. mRNA was extracted from these cells and quantitative 

real-time PCR (RT-qPCR) was performed as previously described (Essafi et al, 2011); please see 

Additional File 9 for gene primers. The transwell invasion assay evaluated the ratio of CyQuant dye

signal at 480/520 nm in a plate reader of cells from the two wells and therefore controlled for 

potential proliferation effects associated with ectopic expression. We used empty vector (mCherry) 

and scrambled shRNA as controls and to control for the non-specific signal. At least three 

experimental replicates were performed for each reading.

5 Data and software availability

Software and key datasets are made freely available as Additional Files associated with this 

publication as follows:

Additional File 1: DroFN network and gold standard datasets for network inference.

Additional File 2: TRAIN_CL_ALL (NetNC training data).

Additional File 3: TEST_CL_ALL (NetNC test data).

Additional File 4: Cytoscape sessions with NetNC-FTI results for TF_ALL.

Additional File 5: NetNC software distribution.

Additional File 6: TRAIN-CL-SR and TEST-CL-SR (used for comparison with MCL algorithm).

Additional File 7: NetNC results on training data used for parameter optimisation (Q, Z).

Additional File 8: HCPIN input, output and performance summary files on TEST-CL.

Additional File 9: Primers for RT-qPCR.
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10 Figure legends

Figure 1 Overview of the NetNC algorithm. NetNC input data may be a list of candidate TF target genes 

and a reference network such as a functional gene network (top, left). However, NetNC may be applied to 

analyse any gene list, for example derived from CRISPR-Cas9 screens or differential expression analysis. 

Hypergeometric Mutual Clustering (HMC) p-values are calculated for candidate TF target genes (top, 

middle); the node numbers and colours in the HMC graph correspond directly to those given in the 

contingency table cells. HMC p-values are then employed in either i) a node-centric analysis mode (NetNC-

FBT) with Gaussian Mixture Modelling (right top) or ii) an edge-centric mode (NetNC-FTI) that involves 

empirical estimation of global False Discovery Rate (pFDR, middle) followed by iterative minimum cut with

a graph density stopping criterion (bottom). We also developed an approach to calculate local FDR (lcFDR) 

in order to predict the proportion of neutrally bound candidate target genes for the TF_ALL datasets (left). 

NetNC-FTI takes thresholds for pFDR and graph density from calibration against synthetic data based on 

KEGG pathways. NetNC-FBT is parameter-free and therefore offers flexibility for analysis of datasets with 

network properties that may differ to the synthetic data used for calibration. NetNC can produce pathway-

like clusters and also biologically coherent node lists for which edges may be taken using a standard FDR or 

Family Wise Error Rate (FWER) threshold on the HMC p-values (right).

Figure 2 Evaluation of NetNC and HC-PIN on blind test data. Performance values reflect discrimination 

of KEGG pathway nodes from Synthetic Neutral Target Genes (STNGs), shown for NetNC-FTI (orange), 

NetNC-FBT (red) and HC-PIN (green). False Positive Rate (FPR, top row) and Matthews Correlation 

Coefficient (MCC, bottom row) values are given. The data shown represents analysis of TEST-CL_ALL, 

which included subsets of three to eight pathways, shown in columns, and sixteen %STNG values were 

analysed (5% to 80%, x-axis). NetNC performed best on the data examined with typically lower FPR and 

higher MCC values. Error bars reflect 95% confidence intervals calculated from quantiles of the SNTG 

resamples (per datapoint: n=100 for NetNC, n=99 for HC-PIN). The NetNC-FBT analysis mode was the 

most stringent and had lowest FPR across the datasets examined - but also had lower MCC, particularly on 

the three or four pathway datasets. In general, MCC for NetNC and HC-PIN rose with increasing SNTG 

percentage, up to around 40%. HC-PIN performance declined at SNTG values >40% wheras NetNC 

performance remained high. At the highest %SNTG, MCC values for NetNC-FTI were around 50% to 67% 

higher than those for HC-PIN. The performance advantage for NetNC was also apparent upon inspection of 

the HC-PIN FPR profiles which rose to around 0.4 at 80% SNTGs; HC-PIN typically had significantly 

higher FPR than NetNC. There was a trend towards worse overall performance for all methods as the 

number of pathways in the dataset (and hence dataset size) increased. Indeed, NetNC-FTI maximal MCC 

values were respectively around 0.7, 0.55 for the three, eight pathway datasets. Performance advantages for 

NetNC were particularly apparent on data with ≥50% SNTGs.
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Figure 3 Neutral transcription factor binding and false discovery rate (FDR) profiles.

Panel A: Estimation of total neutral binding. Black circles show NetNC mean local FDR (lcFDR) values 

for the TEST-CL_8PW data, ranging from 5% to 80% Synthetic Neutral Target Genes (SNTGs); error bars 

represent 95% confidence intervals calculated from quantiles of the SNTG resamples (n=100 per datapoint). 

The coloured horizontal lines show mean NetNC-lcFDR values for the TF_ALL datasets. Comparison of the 

known TEST-CL_8PW %SNTG values with estimated total neutral binding values from mean NetNC-

lcFDR showed systematic overestimation of neutral binding. Cross-referencing mean NetNC-lcFDR values 

for TF_ALL with those for TEST-CL_8PW gave estimates of neutral binding between 50% and ≥80% (see 

panel key).

Panel B: Local FDR profiles. Profiles of local FDR (lcFDR) are shown for TF_ALL, line type and colour 

indicates dataset identity (see panel key). Candidate target gene index values were normalised from zero to 

one in order to enable comparison of the nine TF_All datasets. Although sna_2-3h_union and twi_2-

3h_union had high mean lcFDR (panel A, above), they also had the highest proportion and largest numbers 

of genes with lcFDR<0.05. Therefore, NetNC analysis of datasets with high overall predicted neutral binding

may recover large numbers of functionally coherent target genes.

Panel C: Global FDR profiles. Profiles of global FDR (pFDR) for are shown for TF_ALL, line type and 

colour indicates dataset identity (see panel key). Candidate target gene index values were normalised from 

zero to one in order to enable comparison of the nine TF_All datasets. Profiles of pFDR had overall trends 

similar to lcFDR profiles, which was expected considering that lcFDR was derived from pFDR. For 

example, a relatively high proportion of genes in sna_2-3h_union and twi_2-3h_union had pFDR<0.05. 

However there were also clear differences between pFDR and lcFDR profiles. For example, twi_2-

6h_intersect had the greatest proportion of genes passing pFDR threshold values between 0.01 and 0.2, in 

contrast to equivalent lcFDR values (panel B) where no single dataset dominates. pFDR profiles are 

smoother than lcFDR (panel B) because of the procedure to prevent inconsistent scaling of lcFDR (equation 

(6)).

Panel D Global FDR zoom. Profiles for global FDR (pFDR) values around 0.12 or less are shown for 

TF_ALL, line type and colour indicates dataset identity (see key). Candidate target gene index values were 

normalised from zero to one in order to enable comparison of the nine TF_All datasets. This panel enabled 

clearer visualisation of TF_ALL pFDR profiles at commonly applied threshold values, including those 

selected in NetNC parameter optimisation. The smallest pFDR values were found for the twi_4-6h_intersect 

dataset, followed by twi_2-6h_intersect and then HOT regions. Interestingly, the high-confidence dataset 

twi_1-3h_hiConf, which had the lowest predicted overall proportion of neutral binding (panel A), also had 

proportionally very few genes that met a pFDR<0.05 threshold.
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Figure 4 NetNC-FTI functional target networks for Snail and Twist. The key (bottom right) indicates 

annotations for human orthology (bold node border) and Notch screen hits (triangular nodes). Many 

orthologues were assigned to either basal-like (BL, red) or normal-like centroids (NL, green); otherwise, 

node colour indicates upregulated gene expression in NL (blue) compared to BL (orange) subtypes (q<0.05) 

or no annotation (grey). Clusters with at least four members are shown; cytoscape sessions with full NetNC-

FTI results are given in Additional File 4. In general, NetNC-FTI clusters formed recognised groupings of 

gene function, including previously characterised protein complexes.

Panel A: twi_2-3h_union. Predicted functional targets cover several areas of fundamental biochemistry 

including splicing, DNA replication, energy metabolism, translation and chromatin organisation. Regulation 

of multiple conserved processes by Twist is consistent with the extensive cell changes required during 

mesoderm development. Clusters annotated predominantly to either the normal-like or basal-like breast 

cancer subtypes include mitochondrial translation (basal-like) and the proteosome (normal-like). These 

results predict novel functions for Twist, for example in regulation of mushroom body neuroblast 

proliferation factors.

Panel B: sna_2-4h_Toll10b. These data reflect constitutive activation of the Toll receptor due to the Toll10b 

mutation, which produced uniformly high Snail expression and mesodermal fate trajectories (Zeitlinger et al,

2007). Multiple clusters of transcription factors were identified, aligning with previous studies that identified

Snail as a master transcriptional regulator (Cano et al, 2000; Nieto et al, 2016; Thiery et al, 2009). These 

clusters included the achaete-scute complex (bottom right) and polycomb group members (bottom left). 

Direct targeting of achaete-scute by Snail in prospective mesoderm is consistent with repression of 

neurectodermal fates (Leptin, 1991; Gilmour et al, 2017; Wieschaus & Nüsslein-Volhard, 2016). sna_2-

4h_Toll10b clusters were depleted in orthologues annotated to the normal-like breast cancer subtype, 

compared with NetNC-FTI results for Twist. For example, sna_2-4h_Toll10b had 4/18 clusters with two or 

more normal-like orthologous genes, significantly fewer than twi_2-3h_union (12/27, panel A; binomial 

p<0.01) and twi_ 2-4h_Toll10b (8/17, Appendix Figure S3; p<0.035). Orthologues in the clusters ‘RNA 

degradation, transcriptional regulation’; ‘axis specification’ and ‘phosphatases’ were only annotated to the 

basal-like subtype. Hdc, an orthologue of HECA discussed in the main text, is shown at the bottom left of the

‘RNA degradation, transcriptional regulation’ cluster, was annotated to the basal-like centroid (red) and was 

a Notch modifier.

Panel C: twi_2-6h_intersect. A large proportion of predicted functional targets for twi_2-6h_intersect 

belonged to the ‘developmental regulation’ NetNC-FTI cluster; regulatory factors may be enriched in this 

dataset due to the criterion for continuous binding across two developmental time windows. The 

developmental regulation cluster contained mrr, the orthologue of IRX4, which was BL upregulated (orange) 

and was investigated in follow-up experiments (Figure 6).
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Figure 5 Predicted functional transcription factor targets capture human breast cancer biology. The 

heatmap shows results of unsupervised clustering with gene expression data for 2999 primary breast tumours

and 57 orthologues of NetNC-FTI functional targets that were identified in at least four of nine TF_ALL 

datasets (ORTHO-57). Expression values were log2 transformed and mean-centred to give relative values 

across tumours (red=high, white=mean, blue=low). Intrinsic molecular subtype for each tumour is shown by 

the mosaic above the heatmap and below the dendogram, from left to right : luminal A (blue), basal-like 

(red), HER2-overexpressing (purple), luminal B (light blue) and normal-like (green). Source data identifiers 

are given to the right of the subtype mosaic. Features annotated onto the heatmap as black dashed lines 

identified genes upregulated in one or more intrinsic subtype; these features were termed ‘Bas’ (basal-like), 

‘NL’(normal-like), ‘ERneg’ (basal-like and HER2-overexpressing), ‘LumB1’(luminal B), ‘LumB2’(luminal 

B), ‘LumA’ (luminal A) and ‘LoExp’ (low expression). The table to the right of the heatmap indicates 

inclusion (grey) or absence (white) of genes in NetNC-FTI results across the TF_ALL datasets. The column 

‘#D’ gives the number of TF_ALL datasets where the gene was returned by NetNC-FTI and ‘%P’ column 

details the percentage of present calls for gene expression across the 2999 tumours. The LoExp feature 

corresponded overwhelmingly to genes with low %P values and to samples from a single dataset (Popovici 

et al, 2010). Some genes were annotated to more than one feature and reciprocal patterns of gene expression 

were found. For example, BMPR1B, ERBB3 and MYO6 were strongly upregulated in feature LumA but 

downregulated in basal-like and HER2-overexpressing cancers. Unexpectedly, feature NL (normal-like) had 

high expression of canonical EMT drivers, including SNAI2, TWIST and QKI. Some of the EMT genes in 

feature NL were also highly expressed in many basal-like tumours, while genes in feature Bas (NOTCH, 

SERTAD2) were upregulated in normal-like tumours.

Figure 6 Validation of candidate invasion genes in breast cancer cells. The fluorescence CyQuant dye 

signal from invading MCF7 cells is shown (RFU) for the transwell assay. Induction of each of the four genes

examined significantly changed MCF7 invasion when compared to controls (orange) in least one of three 

conditions: a) ectopic expression; b) ectopic expression and SNAI1 induction; c) ectopic expression with 

shRNA knockdown of SNAI1. The orthologous genes studied were: SNX29 (blue), which showed a 

significant reduction in invasion compared with the SNAI1 induction control; UNK (purple) and IRX4 (dark 

red) where invasion was significantly increased all three conditions examined; ATG3 which had significantly

higher invasion at background levels of SNAI1 (without induction or knockdown). All datapoints are n=3. 

Statistical significance in comparisons against the appropriate control experiment is indicated as follows: * 

q<0.05; *** q<5.0x10-4
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11 Tables and their legends

Network MCC FPR TPR AUC
DroFN 0.448 0.047 0.475 0.773
DROID 0.383 (max 0.385)  0.0046 0.199 0.598
GeneMania 0.133 (max 0.243) 0.121 0.274 0.582

Table 1. Evaluation of DroFN on Time Separated Blind Test Data (TEST-NET). Column 

headings: Matthews correlation coefficient (MCC), false positive rate (FPR), true positive rate 

(TPR), area under the Receiver Operator Characteristic curve (AUC). DroFN performed best on the 

data examined and had FPR close to the functional interaction prior estimated from the training data

(0.044). Values of AUC for DroFN were significantly better than DROID (p=2.13x10-11) or 

GeneMania (p=3.19x10-22).

Dataset Predicted functional targets
Name Developmental time 

period(s)

Candidate target 

genes*

NetNC-FTI NetNC-lcFDR

twi_1-3h_hiConf 1-3h 664 202 (30%) 45-50%
twi_2-6h_intersect 2-4h and 4-6h 615 241 (39%) 40-45%
twi_2-4h_intersect 2-4h only (not 4-6h) 801 182 (23%) 25-30%
twi_4-6h_intersect 4-6h only (not 2-4h) 818 126 (15%) 25-30%
HOT 0-12h+ 677 174 (26%) 35-40%
twi_2-3h_union 2-3h 1848 424 (23%) 25-30%
sna_2-3h_union 2-3h 1158 226 (20%) 25%
twi_2-4h_Toll10b 2-4h 1238 279 (23%) 30-35%
sna_2-4h_Toll10b 2-4h 1488 211 (14%) ≤20%

*values reflect the number of candidate targets that mapped to DroFN nodes

+ HOT regions were defined by analysis of multiple time periods across 41 different TFs (Roy et al, 2010).

Table 2. Predicted Functional binding for Snail, Twist and HOT candidate target genes. 

Results for NetNC are given based on 'Functional Target Identification' (NetNC-FTI) and mean 

local FDR (NetNC-lcFDR) calibrated against datasets with a known proportion of resampled 

Synthetic Neutral Target Genes (SNTG) described in Methods section 4.2.3. The above datasets 

correspond to the following developmental stages: 2-4h stages 4-9 (except ‘2-4h_intersect datasets 

which were stages 5-7 (Sandmann et al, 2007)); 2-3h stages 4-6; 1-3h stages 2-6; 4-6h stages 8-9 

(Sandmann et al, 2007); 0-12h stages 1-15; gastrulation occurs at stage 6 (Campos-Ortega & 

Hartenstein, 1997).
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