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Abstract 
 

Although electrophysiological (EEG) measures of executive functions (EF) (e.g. error 

monitoring) have been used to predict academic achievement in typically developing (TD) 

children, work investigating a link between error monitoring, and academic skills in children 

with autism spectrum disorder (ASD) is limited. In the current study, we employed traditional 

electrophysiological and advanced time-frequency methods, combined with principal 

components analyses, to extract neural activity related to error monitoring, and tested their 

relations to academic achievement in cognitively-able kindergarteners with ASD. Thirty-five 

cognitively-able kindergarteners with ASD completed academic assessments and the child-

friendly “Zoo Game” Go/No-go task at school entry. The Go/No-go task successfully elicited an 

error-related negativity (ERN) and error positivity (Pe) in children with ASD as young as 5 years 

at medio-frontal and posterior electrode sites, respectively. We also observed increased response-

related theta power during errors relative to correct trials at medio-frontal sites. Both larger Pe 

and theta power significantly predicted concurrent academic achievement after controlling for 

behavioral performance on the Zoo Game and IQ. These results suggest that the use of time 

frequency EEG analyses, combined with traditional ERP measures, may provide new 

opportunities to investigate neurobiological mechanisms of EF and academic achievement in 

young children with ASD.  

 

Keywords: executive function, autism spectrum disorder, academic achievement 

  

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/455485doi: bioRxiv preprint 

https://doi.org/10.1101/455485


Running head: NEURAL DYNAMICS OF EF IN ASD  2 
 

Recent estimates indicate that 512,000 students in the U.S. received educational services for 

autism spectrum disorder (ASD) under the Individuals with Disabilities Education Act in 2013 

(Kena et al., 2015). With increasing early awareness and intervention efforts, greater numbers of 

children with ASD make significant cognitive and behavioral gains during the toddler and 

preschool years (e.g., Dawson et al., 2010) and are able to attend kindergarten with typically 

developing (TD) peers. Yet, we have limited knowledge about factors that contribute to 

academic outcomes in cognitively-able children with ASD.  Prior work has employed behavioral 

assessment of executive function (EF; Fuster, 1997; Miyake et al., 2000) as one of the key 

predictors of academic outcomes of early literacy and math skills in TD children (Blair, 2002, 

2016; Cameron et al., 2012; McClelland, Acock, & Morrison, 2006; McClelland et al., 2007; 

Ponitz, McClelland, Matthews, & Morrison, 2009; Willoughby, Kupersmidt, & Voegler-Lee, 

2012). Children with ASD, compared to TD children, have significantly more difficulties with 

EF (Happé, Booth, Charlton, & Hughes, 2006; Konstantareas & Stewart, 2006), which may have 

cascading effects on their academic outcomes. Particular EF skills, such as “error monitoring,” 

can be assessed through the use of non-invasive neural measures, such as 

electroencephalography (EEG; Taylor, Stern, & Gehring, 2007). EF is traditionally divided into 

working memory, inhibitory control, and attention shifting; however, error monitoring has also 

been found to be an integral part of EF (Carter et al., 2000; Kramer et al., 2014), and neural 

activities related to error monitoring have been found to be critical for the development of 

academic functioning in the past (Hirsh & Inzlicht, 2010; M. Kim et al., 2016). Yet, we have 

limited knowledge about how error monitoring contributes to academic outcomes in cognitively-

able children with ASD.   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 21, 2019. ; https://doi.org/10.1101/455485doi: bioRxiv preprint 

https://doi.org/10.1101/455485


Running head: NEURAL DYNAMICS OF EF IN ASD  3 
 

Error monitoring is not easily assessed via behavioral metrics; however, EEG-based markers 

of error monitoring are well established (Cavanagh & Frank, 2014; Ullsperger, Fischer, Nigbur, 

& Endrass, 2014), based on analysis of event-related potentials (ERPs; Luck & Kappenman, 

2011) and time-frequency decompositions of the EEG signal (Cohen, 2014). When errors are 

made, ERPs derived from the EEG recording reveal more negative amplitudes over frontocentral 

scalp locations within ~100 ms of making an error, referred to as the “error-related negativity” 

(ERN; Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, & 

Donchin, 1993), along with a later emerging positivity (200-500 ms after making an error) over 

centroparietal scalp regions, known as the “error positivity” (Pe; Overbeek, Nieuwenhuis, & 

Ridderinkhof, 2005). The ERN reflects a rapid, automatic and likely unconscious aspect of error 

monitoring (Frank, Woroch, & Curran, 2005; Larson, Clayson, & Clawson, 2014; Luck & 

Kappenman, 2011), with the Pe reflecting a slower and more deliberative form of error 

monitoring that relates to decisions about what to do after an error (Gehring et al., 1993; Hajcak, 

McDonald, & Simons, 2003; Overbeek et al., 2005; Schneider, 2010; Steinhauser & Yeung, 

2010). The ERN and Pe have been shown to at least partially involve anterior cingulate cortex 

(ACC) function although much more distributed activity is also present (Agam et al., 2011; 

Buzzell et al., 2017). The ACC has been implicated in error monitoring, as well as cognitive 

control functions more generally, such as detecting response conflict and attentional control, 

enabling the brain to adapt behavior to changing task demands and environmental circumstances 

(Botvinick, Cohen, & Carter, 2004; Posner & Raichle, 1994).  

Two previous studies of a large sample of TD preschoolers successfully identified the 

presence of both an ERN and Pe using a child-friendly Go/No-Go task (Grammer, Carrasco, 

Gehring, & Morrison, 2014) and a significant association between these ERPs and academic 
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achievement (M. Kim et al., 2016). In the study by M. Kim and colleagues (2016), in TD 

preschoolers as young as 3-5 years, increased Pe amplitudes predicted math achievement, but no 

association between the ERN and academic skills was identified. In contrast, other work in adults 

has found both the ERN and Pe to be significant predictors of academic achievement (Hirsh & 

Inzlicht, 2010). Extending this work to children with ASD, the ERN and Pe have been also been 

detected in children with ASD by our group based on a preliminary sample using the same child-

friendly Go/No-Go task (S.H. Kim, Grammer, Benrey, Morrison, & Lord, 2017); similarly, other 

child-friendly tasks have been used to identify the presence of an ERN and Pe in children with 

ASD (Groen et al., 2008; Henderson et al., 2006).  

Building directly on prior work establishing the presence of response-locked ERPs 

reflective of error monitoring (i.e., ERN and Pe) in both TD and children with ASD, the current 

study seeks to explore how error monitoring relates to academic achievement in kindergarteners 

with ASD. Although other ERP components might also relate to academic achievement in 

children with ASD, studies focusing on other ERP components such as N2 and P3 in 

kindergarten and preschool ages have resulted in mixed findings, with a handful of studies 

showing that N2 and/or P3 can be elicited in preschool children (e.g., Abdul Rahman, Carroll, 

Espy, & Wiebe, 2017; Grabell, Olson, Tardif, Thompson, & Gehring, 2017), while others found 

that P3 might not be present in children younger than 8-10 years of age, and N2 might be widely 

distributed across the frontal and parietal electrodes (Buss, Dennis, Brooker, & Sippel, 2011; 

Jonkman, 2006).  Therefore, given prior work that has specifically validated the study of ERPs 

associated with error-monitoring in young children and their associations with academic 

outcomes (Grammer et al., 2014; M. Kim et al., 2016; S. H. Kim et al., 2017), the hypotheses of 

the current studies are similarly focused on the ERN and Pe. Specifically, we hypothesized that 
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an enhanced Pe observed in the posterior sites, but not ERN in the frontal sites, would predict 

better academic achievement in cognitively more-able kindergarteners with ASD.  

 As mentioned above, a complementary approach to ERP assessments of error monitoring 

involves time-frequency (TF) decompositions of the EEG signal (i.e. conversion of raw EEG 

data into a representation of how neural oscillations change over time) to quantify how power 

within particular frequency bands (i.e. the strength of neural oscillations) changes following 

errors (Cohen, 2014). Theta oscillations (~4-8 Hz) are thought to reflect activation of a neural 

system responsible for monitoring and adapting behavior in response to events like errors 

(Cavanagh & Frank, 2014). Work in adults has shown such theta oscillations can be recorded 

using EEG electrodes located over the medio-frontal cortex, and found that theta power (strength 

of these oscillations) increases in response to error commission (Cavanagh & Frank, 2014). In 

the present study, we employed the TF approach in addition to analyses of traditional ERPs, 

because the TF approach may provide a more robust measurement of neural activity associated 

with error monitoring (and performance monitoring more generally). Furthermore, TF measures 

are less susceptible to artifact and noise, providing additional advantages for analyses of data 

obtained from children (Bowers et al., 2018). Thus, analyzing time-frequency measures of error 

monitoring can also provide additional, band-specific information, which might afford improved 

statistical power in predicting academic achievement in children with ASD over approaches that 

only analyze ERPs. For example, it has recently been shown that age-related changes in theta 

power associated with performance monitoring could be identified in the absence of similar 

changes in associated ERPs (Bowers et al., 2018). However, while studying error-related theta 

band dynamics is well established in adults (e.g., Cavanagh & Frank, 2014; Harper, Malone, & 

Bernat, 2014), much less work has been conducted in children (but see DuPuis et al., 2015 for a 
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recent example). To our knowledge, work linking time-frequency measures to academic skills in 

children with ASD is non-existent. Given the previous research with adults and adolescents, we 

expected that larger theta power would be associated with better behavioral performance on EF 

tasks and academic skills in children with ASD.  

Past studies indicate that EF-related neural measures using electrophysiological methods, 

specifically measures of error monitoring, could predict academic achievement in TD children 

and adults (Hirsh & Inzlicht, 2010; M. Kim et al., 2016). However, such links have not been 

studied in cognitively-able children with ASD. The examination of how error monitoring is 

associated with concurrent academic achievement in young children with ASD has important 

implications for educational planning and treatment programming aimed at improving early 

school success and subsequent longer term outcomes in this population. Therefore, the current 

study employed a series of neural measures, including the ERN and Pe ERPs, as well as time-

frequency analyses of theta power, in an effort to better characterize the effects of error 

monitoring on academic skills in children with ASD.     

 

Method 

 

Participants 

Participants included 35 cognitively-able 4 to 5-year-old children with ASD (Mean 

age=62.3 months, SD=4.4 months; 25 males) without general cognitive delays (full-scale IQ≥85; 

Mean IQ=104.7, SD=14.2) and without moderate to severe structural language delays (i.e., child 

must be using full, complex sentences). These children were assessed at kindergarten entry 

(Summer/Fall of 2017). A previous diagnosis of ASD was required as inclusion criteria; and the 
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diagnosis of ASD was confirmed with the gold standard diagnostic measure, the Autism 

Diagnostic Observation Schedule-2 (ADOS-2; Lord et al., 2012). The ADOS-2 was carried out 

by examiners who achieved research reliability and were under the supervision of a licensed 

clinical psychologist. Comparison Scores on the ADOS diagnostic algorithms ranged from 3 to 

10 (M=7.71, SD=1.9; Gotham, Pickles, & Lord, 2009). The sample included 16 (46%) white, 4 

(11%) African American, 6 (17%) bi-racial, and 2 (6%) Asian children. The rest of the children 

were reported to be of other races (n=7, 20%). About 85% of caregivers had a bachelor’s degree 

or above (n= 30). Out of 35 children, 10 (29%) children were enrolled in general education 

classrooms; 7 (20%) were in inclusion classrooms (children with ASD are taught together with 

TD children); and 18 (51%) were in special education classrooms in schools in urban and 

suburban areas of New York. Based on parent report, twenty-eight (80.0%) children were right 

handed, 5 left (14.3%) and the rest were ambidextrous (n=2, 5.7%). No participants were taking 

medication at the time of testing.  

 

Electrophysiological Tasks and Measures 

 

EEG/ERP Task  

 

ERP/EEG patterns related to error monitoring (ERN, Pe, theta power) were measured 

based on a child-friendly Go/No-go task (“Zoo Game”; Grammer et al., 2014; Lamm et al., 2014) 

in a testing room with minimal distractions. Children were told that they are playing a game to 

help a zookeeper catch all the loose animals in the zoo except for three friendly orangutans who 

are helping the zookeeper. Children were asked to press a button as quickly as possible when 

they saw an animal (Go trials) but inhibit their responses when they saw an orangutan (No-go 
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trials). A child started the game with a practice block of 12 trials (9 animals; 3 orangutans) 

followed by 8 blocks of the task, each with 40 trials, for a total of 320 trials (240 Go and 80 No-

go trials). Each image was preceded by a fixation cross displayed for a randomized interval 

ranging from 200-300 ms. The stimuli were presented for 750 ms, followed by a blank screen for 

500 ms. Responses could be made while the stimulus was on the screen or at any point during 

the following 500 ms (Figure 1).  This task successfully elicited specific ERP components of 

interest (e.g., ERN, Pe) in a large sample of TD children as young as 3 years (Grammer et al., 

2014). Each block consisted of novel sets of animal photographs, and each set is balanced with 

respect to color, animal type, and size. Children were given performance feedback of either “Try 

to catch them even faster next time,” if no-go trial accuracy was greater or equal to 90%, or 

“Watch out for the orangutan friends,” if no-go trials accuracy was less than 90%, after each 

block of the task (not by trial). These prompts were given to the children based on the calculation 

of the error rates to ensure an adequate number of trials for stable ERP/EEG waveforms. 

Children were allowed to have “Wiggle Time” between blocks. From the Zoo Game, we 

extracted the number and percentage of error/correct trials and reaction times. 

 

[insert Figure 1] 

 

Electrophysiological recording, data reduction, and data processing 

 

Stimuli were presented on a PC laptop using E-Prime 2.0 software. Displays were viewed 

in a testing room with minimal distractions. EEG was recorded using Net Station 5.4 on a 

Macintosh laptop. A 64-channel HydroCel Geodesic sensor net (EGI) was soaked with 
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potassium-chloride electrolyte solution, placed on the participant’s head, and fitted according to 

the manufacturer’s specifications. As recommended for this system, impedances were kept 

below 50 kΩ. The EEG signal was digitized and sampled at 500 Hz via a preamplifier system 

(EGI Geodesic NA 400 System). Data was processed offline using Matlab (The Mathwoks, 

Natick, MA), the EEGLAB toolbox (Delorme & Makeig, 2004) and custom Matlab scripts partly 

based on work by Bernat and colleagues (Bernat, Williams, & Gehring, 2005). EEG data was 

digitally filtered (0.3 Hz high-pass, 50 Hz low-pass) and globally bad channels were detected and 

removed using FASTER tools (Nolan, Whelan, & Reilly, 2010). To classify a signal as 

artifactual, FASTER calculates three parameters - variance, mean correlation and Hurst exponent 

- for each channel; a channel whose data had a Z-score of ±3 for a parameter was deemed to be 

globally bad. Then, we created a copy of the original dataset, which was then filtered using a 1 

Hz high-pass filter and segmented into arbitrary 1 second epochs to identify and remove epochs 

with excessive artifact. After this, independent component analysis (ICA) was performed on this 

copied, high-pass filtered dataset; excessive artifacts were detected and removed if amplitude 

was +/- 1000 uV or if power within the 20-40hz band (after Fourier analysis) was greater than 

30dB. After performing an ICA decomposition, ICA weights were copied back to the original 

dataset; components associated with ocular or other artifacts were identified and removed. Data 

were epoched to the response markers from -1000 to 2000 ms and baseline corrected using the -

400 to -200 ms period preceding the response. Epochs with residual ocular artifact were 

identified and removed using a +/- 125 μV threshold based on the ocular channels. For all 

remaining channels, for epochs for which a given channel exhibited voltage +/-125 μV, data 

were removed and interpolated using a spherical spine interpolation, unless more than 10% of 

channels were bad within a given epoch, in which case the entire epoch was removed. Finally, 
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any channels that were marked as bad throughout the entire recording were interpolated 

(spherical spline interpolation) and an average reference was computed. Participants with less 

than 50% accuracy for Go trials were excluded from analysis (n=3 who were not included in our 

final sample of 35 children). Similarly, any additional participants with fewer than 4 error trials 

were excluded from all analyses, similar to criteria used in other studies with the same task for 

preschool-aged children (e.g., Steele et al., 2016); out of an original sample of 43 children, 8 

were not included in our final sample of 35 children. An average of 27.11 error and 138.06 

correct trials were available for analysis for participants; an iterative subsampling procedure was 

employed in order to match the effective trial counts across conditions and participants.   

 

ERP/EEG measures of inhibitory control and response monitoring 

 

ERN/Pe. For ERP analyses, data were down-sampled to 128 Hz to improve processing 

speed and conserve storage space without any loss of signal quality. ERN was quantified as 

mean amplitude at a cluster of frontocentral electrodes (Electrodes 7, 4, 54; Figure 2) during an 

approximately 100 ms window (14 samples; 109.38 ms) immediately following the response; Pe 

was quantified as mean amplitude at a cluster of centroparietal electrodes (Electrodes 34, 33, 36, 

38) during an approximately 200-500 ms post-response window (39 samples; 304.69 ms). These 

analysis locations and time windows are based on pilot work (S.H. Kim et al., 2017) and 

previous literature (Grammer et al., 2014; M. Kim et al., 2016); exact time windows reflect 

actual time resolution possible at the sampling rate used. Mean amplitudes have been found to be 

robust to increased background noise and variations in the number of trials (Acton, 2013; Luck 

& Kappenman, 2011). Further, to account for individual differences in trial counts, we employed 
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a subsampling approach, where the ERP/EEG data from a subset of trials is repeatedly selected 

(with replacement) and averaged 25 times, before being bootstrapped 100 times to yield 

estimates of condition-averaged ERPs (see Buzzell et al., 2018). The mean ERN and Pe 

amplitudes were computed on incorrect-response (No-go) trials, with the difference between 

amplitudes on error vs. correct trials (∆ERN and ∆Pe) calculated by subtracting correct-Go 

waveforms from error-No-go waveforms (error-No-go minus correct-Go).  

 

[insert Figure 2] 

 

Frontal error-related theta power. Given our focus on theta (~4-8 Hz) oscillations, we 

down-sampled the EEG data to 32 Hz in order to improve computational efficiency with no loss 

of the signals of interest (i.e. Nyquist = 16 Hz). In order to extract error-related theta power, we 

employed Cohen’s class reduced interference distributions (RIDs) to decompose time frequency 

(TF) representations of response-locked averaged power (Bernat et al., 2005), after first 

averaging/bootstrapping trials within each condition of interest to yield equal effective trial 

counts across conditions. One common approach to decomposing TF representations involves 

the use of Morlet wavelets (Cohen, 2014); however, the Cohen’s class RID approach produces a 

time-frequency surface with proven superiority in terms of both time and frequency resolution, 

as compared to other methods (Bernat et al., 2005). Additionally, in order to isolate error-related 

theta responses, we performed a principal components analysis (PCA) on the time-frequency 

surface, focusing on the period from -500 to 500 ms in the 3 hz to 12 Hz time-frequency surface, 

after first filtering out delta activity; all conditions of interest were entered into the same PCA. 

Analysis of the scree plot suggested that a 3-factor solution was the best fit to the data. Only one 
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of these factors from the medio-frontal sites reflected a post-response theta component and so 

further analyses of theta power focused exclusively on this factor. For statistical analyses, factor 

weights were back projected onto the scalp surface and mean amplitude extracted from a cluster 

of medio-frontal electrodes (Electrodes 7, 4, 54). The difference between theta power on error vs. 

correct trials (∆theta power) was calculated by subtracting correct-Go theta power from error-

No-go theta power (error-No-go minus correct-Go). Although the PCA was performed on a time-

frequency surface that spanned 3 to 12 Hz and -500 to 500 ms, the actual theta factor that was 

identified and employed in subsequent analyses was much more focal in both time and frequency, 

resembling a ~4-8 Hz band effect following the response. The PCA was run on a wider, 3-12 Hz 

range because the exact upper/lower boundaries of the “theta” band can vary across individuals 

or development. Our PCA approach identified the theta band in a data-driven manner, isolating a 

response-related cluster of time-frequency data from within the 3-12 Hz surface on which it was 

run. 

 

Behavioral Measures 

 

Academic achievement  

Academic achievement in reading (Letter-Word Identification, Passage Comprehension) and 

math (Applied Problems, Math Facts Fluency) at the beginning of kindergarten was measured 

using the Woodcock-Johnson III NU tests of achievement (WJ; Woodcock, McGrew, Mather, & 

Schrank, 2001). The Letter-Word Identification sub-test measures the word identification skills. 

Passage Comprehension measures the understanding of written text. Applied Problems measures 

the ability to analyze and solve math problems. The Math Facts Fluency sub-test measures the 
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ability to solve simple addition, subtraction and multiplication facts quickly. Standard scores 

(M=100, SD=15) from Letter-Word Identification, Passage Comprehension, and Applied 

Problems were used for analyses. For the Math Facts Fluency domain, more than 50% of 

children (n=22) did not achieve the basal for which Standard Scores might not be valid; thus, raw 

scores were used instead in analyses (See Statistical Analyses for more details).  

 

Cognitive skills 

Cognitive functioning (nonverbal and verbal IQ) was measured by the Differential 

Ability Scale (DAS; Elliott, 2007). Nonverbal IQ has been found to be more stable in children 

with ASD than verbal IQ (Bishop, Farmer, & Thurm, 2015). Therefore, NVIQ was used as an 

estimate of cognitive skills in our statistical models.  

 

Statistical Analyses 

For all behavioral analyses, response time (RT) analyses were restricted to correct trials 

and data were log-transformed prior to averaging because RT data are known to be positively 

skewed (Luce, 1986). Raw RT values are reported in the text for ease of interpretation. We also 

examined proportions of correct and error responses for Go and No-go trials, respectively. To 

confirm that ERN and theta power at the frontal sites and the Pe at the posterior sites were 

significantly larger for error vs. correct trials, t-tests were performed (one-sided). With a priori 

hypotheses based on past literature, we focused our analyses on particular sites (ERN at frontal, 

Pe at posterior). However, we also present the results from more complete 2 (site: frontal vs. 

posterior) X 2 (accuracy: error vs. correct) ANOVAs for both the ERN and Pe in the 

Supplemental Materials; additionally, based on post-hoc inspection of the ERPs, we include in 
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the Supplemental Materials further analyses of the frontal and posterior sites at an earlier time 

window (-50 to 50 ms), which is consistent with other work studying the ERN and Pe in children 

(E. Y. Kim, Iwaki, Imashioya, Uno, & Fujita, 2007; M. Kim et al., 2016). The relations between 

behavioral performance on the task (log RT and accuracy) and medio-frontal ∆ERN and 

posterior ∆Pe, as well as frontal ∆theta power were explored through Pearson r correlations. 

False-Discovery Rate (FDR) corrections were applied for multiple comparisons for the t-tests 

and correlation analyses. Additionally, we performed regression analyses to examine the effects 

of neural correlates of error monitoring (∆ERN, ∆Pe, and ∆theta power) on academic skills based 

on the WJ Letter-Word Identification, Passage Comprehension, and Applied Problems Standard 

Scores while controlling for IQ and behavioral performance to examine whether the effects of 

neural correlates go above and beyond these constructs that are highly associated with academic 

performance. For the WJ Math Facts Fluency domain for which more than 50% of children were 

not able to achieve the basal (raw score = 0), we used Tobit regression which is suitable for zero-

inflated continuous outcome variables (Long, 1997). The Tobit regression models jointly (a) the 

probability for the true outcome being less than 0 (and thus truncated to 0) via logistic regression, 

and (b) the greater than 0 outcomes as a function of the covariates, via regular regression. All 

analyses were conducted using SPSS Version 24.  

 

Results 

 

Behavioral Assessments 

 As seen in Table 1, our sample of cognitively-able children with ASD showed average 

Standard Scores for the WJ Letter-Word Identification, Passage Comprehension, and Applied 
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Problems domains (ranging from mean standard scores [m=100, SD=15] of 98-107). As 

mentioned above, 22 children were not able to achieve the basal on the Math Facts Fluency 

domain, although a few children showed very high scores; the raw scores for this domain are 

reported here. For the Zoo Game, overall mean accuracy was 69% (SD=10%), with accuracy for 

go trials at 75% (SD=11%) and accuracy for nogo trials at 52% (SD=18%). Mean reaction time 

for correct-go trials was 624 ms (SD=413 ms).   

 

Table 1. Behavioral Assessments (N=35)  
 Mean SD Range 

Woodcock Johnson Test of Achievement IV     
   Letter Word Identification Standard Scores 107.1 15.9 76 – 123 
   Passage Comprehension Standard Scores 108.0 15.8 66 – 142 
   Applied Problem Standard Scores 97.7 13.1 69 – 120 
   Math Facts Fluency Raw Scores*   2.8   6.8   0 –   27 
Zoo Game     

Overall Accuracy (%) 69% 10% 50 – 85% 
Accuracy for Go Trials (% of correct responses) 75% 11% 53 – 91% 
Accuracy for No-Go Trials (% of no responses) 52% 18% 15 – 88% 
Reaction Time (Correct-go trials; ms) 624 413 413 – 811 

*Raw scores were used in analyses because more than a half of the children did not achieve basal, 
for which standard scores are not valid. However, standard scores ranged from 77 to 152 for this 
group, with mean of 84.3 and SD of 12.1.  
 

Medio-Frontal ERN 

Figure 3A shows a negative deflection around the time of error commission (relative to 

correct responses) at frontal electrode sites. Average amplitudes for the error and correct trials, as 

well as the difference between them, can be seen in Table 2. Mean amplitude for error trials at 

the frontal sites was significantly more negative than for correct trials [t(34)= -4.55, p=0.001, 

FDR adjusted p=0.002; Table 2]. An additional 2 (site: frontal vs. posterior) X 2 (accuracy: error 

vs. correct) ANOVA is presented in the Supplemental Materials. Collectively, the pattern of 

results confirms the presence of an ERN component, consistent with prior literature (Grammer et 
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al., 2014; E. Y. Kim et al., 2007; M. Kim et al., 2016; M. Kim, Marulis, Grammer, Morrison, & 

Gehring, 2017; S. H. Kim et al., 2017). 

 

[insert Figure 3] 

 
Table 2 Mean (SD) ERN and Pe amplitudes and theta average 
power at the fronto-central and central-posterior sites.  
Fronto-central electrode sites Mean (SD) 
ERN (μV)  -1.08 (2.45) 
CRN (μV)   1.09 (2.18) 
ΔERN (μV)  -2.17 (2.83) 
PC-Weighted Error Theta Power (a.u.)   0.05 (0.04) 
PC-Weighted Correct Theta Power (a.u.)   0.03 (0.03) 
PC-Weighted Δ Theta Power (a.u.)   0.02 (0.03) 
Central-posterior electrode sites Mean (SD) 
Pe (μV)  -0.62 (  8.43) 
Pe Correct (μV)  -0.17 (  7.81) 
Δ Pe (μV)   9.56 (10.18) 
ERN, error-related negativity; CRN, correct-related negativity; PC, Principal Component;  
Pe, error positivity. a.u., arbitrary unit (PC-weighted raw power). 
 
 

Posterior Pe 

 

Examination of Figure 3B revealed the presence of the Pe at central-posterior electrode 

sites. Mean amplitude for error trials at the posterior sites was significantly more positive than 

for correct trials [t(34)= -4.55, p=0.001, FDR adjusted p=0.002; Table 2]. An additional 2 (site: 

frontal vs. posterior) X 2 (accuracy: error vs. correct) ANOVA is presented in the Supplemental 

Materials. Collectively, the pattern of results confirm the presence of a Pe component, consistent 

with prior literature (Grammer et al., 2014; E. Y. Kim et al., 2007; M. Kim et al., 2016; M. Kim 

et al., 2017; S. H. Kim et al., 2017).  
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Time Frequency PC-Weighted Theta Power 

 

Figure 4 demonstrates increased theta power (4-8 Hz) on error trials compared to correct 

trials at the medio-frontal electrode sites. Based on the mean and SD of average theta power, two 

outlier cases (+/- 2.5 SDs) were excluded from all analyses to minimize the effects of those 

scores on the correlation and regression analyses; these participants were only deemed as outliers 

for the analyses of theta, but not for the ERPs or behavior, as outlier detection and removal was 

performed separately for each dependent variable of interest. A t-test showed that theta average 

power was significantly larger for error trials (compared to correct trials) at the medio-frontal 

sites [t(1,33=-2.351, p=0.03, FDR adjusted p=0.03; Table 2]. This pattern of results for error-

related theta is consistent with prior work in adults (Cavanagh & Frank, 2014). 

 

[insert Figure 4] 

 

Associations between ERP/EEG Measures and Behavioral Performance on the Zoo Game  

  

As expected, a more negative frontal ΔERN, a larger posterior ΔPe, and increased frontal 

Δtheta average power were all significantly correlated with higher overall accuracy (although the 

association with ΔERN and overall accuracy did not survive the FDR correction; Table 3). 

Larger frontal Δtheta average power was also significantly correlated with higher go accuracy. 
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Larger posterior ΔPe was significantly correlated with longer reaction times overall and correct-

go trials in particular.  

 

 

Table 3. Correlations between ERP/EEG measures and behavioral performance on the Zoo Game  
 Frontal ΔERN 

(n=35) 
Posterior Δ Pe 
(n=35) 

Frontal Δ Theta 
Average Power 
(n=33) 

Overall accuracy -0.35*(n.s.) 0.61** 0.52**(*) 

Go accuracy -0.21 0.22 0.44* 
No-go accuracy -0.34* 0.67** 0.27 
Overall Reaction Time (log transformed) -0.26 0.53** 0.01 
Correct-go Reaction Time (log transformed) -0.31 0.56** 0.02 
Nonverbal IQ -0.35* 0.15 0.03 
* p < .05, ** p < .01; (FDR Adjusted p values reported when different from unadjusted p-values) 

 

ERP/EEG Measures as Predictors of Academic Skills 

As seen in Table 4, regression analyses showed that after controlling for overall accuracy 

on the Zoo Game and NVIQ, increased Δtheta average power significantly predicted better 

reading (WJ Passage Comprehension) and math (WJ Math Facts Fluency). R2 significantly 

improved from 0.19 to 0.3 when Δtheta average power was included in the models to predict 

Passage Comprehension (p<0.05). For Math Facts Fluency, chi-square analysis of the log-

likelihood was performed to confirm that the addition of Δtheta average power significantly 

improved the prediction of the model (p<0.001). ΔPe also significantly predicted Math Facts 

Fluency while controlling for accuracy and IQ, and the addition of ΔPe significantly improved 

the prediction of the model based on the chi-square analysis of the log-likelihood (p<0.05). ERN 

did not significantly predict any of the academic domains.  
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*2 outliers for theta average power were excluded from the analyses. n.s., not significant 

 

Discussion 

 

Studies based on behavioral assessments of EF have shown that a broad range of EF 

skills play a key role in the development of academic ability in TD children as well as in children 

with ASD (Allan, Hume, Allan, Farrington, & Lonigan, 2014; Blair, 2002, 2016; Cameron et al., 

2012; Fuster, 1997; Happé et al., 2006; McClelland et al., 2006, 2007; Miyake et al., 2000; 

Table 4. Regression of EEG/ERP measures as predictors of academic skills 
Linear Regression Model 

Outcome Variable Predictors in Model B 
Std. 

Error t Sig R2

Passage Comprehension 
 

Covariates only 0.19 
   NVIQ 0.65 0.25 2.58 0.02 
   Zoo Game Accuracy -3.76 29.30 -0.13 n.s. 
Predictor and covariates 0.30 
   NVIQ 0.72 0.24 3.02 0.01 
   Zoo Game Accuracy -41.65 32.76 -1.27 n.s. 

     ΔTheta Average Power 184.53 85.46 2.16 0.04 

Tobit Regression Model  

Outcome Variable Predictors in Model Estimate Std. Error Sig 
Log-

Likelihood
Math Facts Fluency* Covariates only    -45.82 

   NVIQ 0.46 0.31 0.14  
   Zoo Game Accuracy 3.11 29.63 n.s.  
Predictor and covariates    -39.43 
   NVIQ 0.64 0.28 n.s.  
   Zoo Game Accuracy -44.17 26.84 n.s.  

     ΔTheta Average Power 284.82 90.58 0.001  
Math Facts Fluency Covariates only    -56.06 

   NVIQ 0.42 0.31 n.s.  
   Zoo Game Accuracy 16.53 31.96 n.s.  
Predictor and covariates    -52.89 
   NVIQ 0.30 0.26 n.s.  
   Zoo Game Accuracy -11.63 29.87 n.s.  

    ΔPe 0.77 0.33 0.02  
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Morrison, Ponitz, & McClelland, 2010; Passolunghi & Costa, 2016; Ponitz et al., 2009; Raver, 

Smith-Donald, Hayes, & Jones, 2005; Wiebe, Espy, & Charak, 2008; Willoughby et al., 2012). 

Using traditional (ERP) and advanced (time-frequency) electrophysiological methods, we 

extracted neural activity related to error monitoring—a specific construct falling within EF 

reflective of one’s ability to detect and process errors while engaging in cognitive tasks—in 

cognitively-able kindergarteners with ASD. Using the child friendly Go/No-go Zoo Game, we 

were able to observe the ERN and increased theta power for error trials at medio-frontal sites and 

Pe at posterior sites in these children. Moreover, we found that a larger Pe and increased theta 

power were both associated with concurrent academic skills in these young children with ASD at 

school entry.  

Our findings on the presence of ERN and Pe in children with ASD as young as 5 years 

during a child-friendly Go/No-go task are consistent with past studies based on typically 

developing children as young as 2-3 years (Abundis-Gutiérrez, Checa, Castellanos, & Rosario 

Rueda, 2014; Barry & De Blasio, 2015; Ciesielski, Harris, & Cofer, 2004; Grammer et al., 2014) 

and in older school-aged children with ASD (Henderson et al., 2006; Kemner, Verbaten, 

Cuperus, Camfferman, & Van Engeland, 1994; Santesso et al., 2011; Sokhadze et al., 2012; 

South, Larson, Krauskopf, & Clawson, 2010; Vlamings, Jonkman, Hoeksma, van Engeland, & 

Kemner, 2008). To our knowledge, our study is one of the first to observe ERN and Pe in young 

children with ASD under 8 years and its connection to behavioral performance (accuracy rate) on 

the ERP task, building on our prior work with a smaller, independent sample (S.H. Kim et al., 

2017).  

This study is also the first to successfully employ time-frequency measures to study error 

monitoring in young children with ASD and to detect significantly increased medio-frontal theta 
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power following error (compared to correct) responses. These data from our children with ASD 

are consistent with prior work in TD adults and adolescents suggesting that increased theta 

power over medio-frontal cortex (MFC) underlies error monitoring (Cavanagh & Frank, 2014). It 

is also worth noting that increased theta power during error trials in the cognitively-able 

kindergarteners with ASD was significantly correlated with higher levels of task performance 

(accuracy rates) on the Go/No-go task. However, it remains unclear if increased accuracy rates 

(and a lower frequency of errors) are what drive increased theta power. In adults, medio-frontal 

theta power has been shown to arise, at least in part, from ACC, a cortical region that is not only 

sensitive to errors and conflict, but also to infrequent events (Brown & Braver, 2005; Wessel & 

Aron, 2017). Thus, the correlation between accuracy rates and theta power in this sample of 

young children with ASD is consistent with a broader literature on theta power and medio-frontal 

cortex more generally. The current results provide the first evidence of increased error-related 

theta power and the expected associations with error frequency, in a sample of children with 

ASD as young as 5 years. 

As hypothesized, we found a significant association between Pe (but not ERN) and math 

achievement even when NVIQ and the Go/No-Go task accuracy were controlled for, consistent 

with another study with TD preschoolers (M. Kim et al., 2016). In addition, we found that 

increased theta power, which may reflect a more domain-general response to errors, was related 

to both reading and math skills. In contrast, the Pe component has been suggested to reflect more 

deliberative and task-specific aspects of error processing (Overbeek et al., 2005; Steinhauser & 

Yeung, 2010), and increased Pe was specifically associated with math skills, but not reading. In 

addition, a past study in TD preschoolers (M. Kim et al., 2016) found that increased Pe 

significantly predicted math skills for children performing at or near grade level, but not for 
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those performing well above grade level. Critically, in our current sample of children with ASD, 

Math Facts Fluency was the domain that showed the lowest average score, with most children 

scoring in the below average to average range. In turn, it was the only domain that related to the 

Pe in our sample. These results suggest that the association between the neural correlates of error 

monitoring and academic outcomes may vary by the level of the child’s functioning as well as 

the domains of academic skills. Nevertheless, the results support the need to examine EF-related 

neural activity using complementary approaches, including ERPs and more direct measures 

based on the time-frequency approach, to predict additional variance in academic achievement 

for children with ASD, beyond behavioral performance on the Go/No-go task and IQ. 

These results have implications at both the basic and applied level. First, in our study, use 

of the child-friendly Go/No-go Zoo Game adapted from a well-validated task developed by Fox, 

McDermott and colleagues, as well as Grammer and colleagues (Grammer et al., 2014; Lamm et 

al., 2014; Troller-Renfree, Zeanah, Nelson, & Fox, 2018), enabled us to maximize the child’s 

ability to be engaged during the EEG/ERP session allowing us to more effectively examine 

error-related ERPs and time-frequency data in our sample. Second, researchers should note that 

because time-frequency analyses allow for extraction of power within specific ranges (e.g. ~4-8 

Hz for theta), combined with a PCA approach, effects of high or low frequency artifacts are 

reduced and the signal-to-noise ratio is maximized (Bernat et al., 2005). This approach appears 

to enhance our ability to observe EF-related neural dynamics that may be missed by traditional 

ERP approaches that can be highly sensitive to artifacts and noise (Luck & Kappenman, 2011). 

Thus, the use of time-frequency analyses, particularly when paired with a PCA approach, may 

provide new opportunities to investigate neurobiological mechanisms of EF-related cognitive 

processes more effectively and accurately, especially in young children and those with special 
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needs. Finally, past studies have shown that behavioral performance on EF tasks, including 

working memory and inhibitory control tasks, is significantly more impaired in children with 

ASD than in TD peers (Happé et al., 2006; Konstantareas & Stewart, 2006).  This finding has 

prompted the development of targeted interventions aimed at improving EF skills in school-age 

children (e.g., Kenworthy et al., 2014). Similarly, the results from the present study on the 

significant link between EF-related neural activity and concurrent academic outcomes in 

kindergarteners with ASD, combined with our previous work showing atypical EF-related neural 

activity in young children with ASD compared to matched typical controls (S.H. Kim et al., 

2017), point to the importance of incorporating strategies to improve error and conflict 

monitoring in early autism interventions to maximize academic outcomes.  

 

Limitations and future direction  

 

Our sample was focused on cognitively-able children with ASD with average to above 

average cognitive skills without notable structural language delays. This limits the 

generalizations of our results to children with significant language and cognitive delays. 

Moreover, math skills in this sample of children showed a wide range of variability with more 

than the half of the sample not achieving basal scores and a few children showing exceptional 

computational skills. We were able to find a statistical solution to address the issue of a zero-

inflated outcome variable; however, replications with larger, independent, and more 

representative samples with other developmentally appropriate measures will be important. 

Furthermore, studies relating the EF-related EEG/ERP measures, specifically those employing 

time-frequency methods, are still limited in young children, even for typically developing 
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samples. Therefore, a direct comparison between children with ASD and TD children matched 

on factors such as IQ, performance level on ERP/EEG tasks, and gender, will provide further 

insights into the examination of atypical neural activity related to error monitoring, or more 

broadly, to EF. 

 It will also be important for future research to examine the effects of classroom 

placements on the development of EF and academic functioning in children with ASD. This 

might require careful consideration of statistical models and research design because classroom 

placements are not random but confounded by other factors (e.g., children with lower IQ and 

language levels being placed in special education classrooms vs. more cognitively able-children 

in general education or inclusion classrooms). Moreover, even though in our study every effort 

was made to minimize the artifacts and noise during the EEG/ERP data collection, we included 

children whose accuracy level for go trials was as low as 50% in an effort to not create a biased 

sample through over-exclusion based on performance, although this was consistent with past 

ERP studies with individuals with ASD (e.g., Uzefovsky, Allison, Smith, & Baron-Cohen, 2016). 

Because the Zoo Task provides children with general feedback after each block to keep them 

engaged and motivated, future research should also explore potential differences in trial-by-trial 

feedback-related behavioral performance and neural activity between children with ASD and TD 

children. We also acknowledge that it is difficult to fully dissociate error-related effects from 

NoGo-related inhibitory processes when using a Go/NoGo task to study error monitoring, 

although by selecting incorrect NoGo trials, we chose trials without inhibition (correct 

Go/incorrect No-Go both involve a motor response and do not involve inhibition, or at least 

successful inhibition). Nevertheless, despite this limitation, we employed a child-friendly, 

engaging Go/No-Go task, since Go/No-Go tasks have been widely validated in developmental 
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research examining cognitive control across the life span (Williams, Ponesse, Schachar, Logan, 

& Tannock, 1999) and well tolerated even by young children. Finally, our focus was to examine 

the link between the EEG/ERP measures of error monitoring and concurrent academic 

achievement, however, it will be important to investigate the degree to which EEG/ERP 

measures prospectively predict future academic development. For these reasons, replication with 

a larger sample of children with ASD as well as matched TD controls using a longitudinal design 

will be important.  

 

Conclusion 

 

Our results suggest that the use of time-frequency EEG analyses, complemented by 

traditional ERP measures, may provide new opportunities to investigate neurobiological 

mechanisms of EF underlying achievement in young children with ASD.  Using advanced time-

frequency methods, we found increased response-related theta power during error relative to 

correct trials in children with ASD as young as 5 years, in addition to traditional response 

monitoring ERPs, ERN and Pe. More importantly, increased theta power and Pe predicted 

concurrent academic skills even when controlling for behavioral performance on the EF task and 

IQ. Results highlight the need to target EF even prior to school entry to maximize academic 

outcomes in children with ASD.  
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Figure Legends 
 
Figure 1. The Go/No-Go Zoo Game (Grammer et al., 2014). Children were shown the Zoo map 

at the beginning and in between blocks to show them the progress they were making on 

the game (upper half). The bottom half shows the design of the task including Go trials 

on the left (without an orangutan) and No-Go trials on the right (with an orangutan).  

Figure 2. EGI 64-Channel Sensor layout. The EGI 64 electrode HydroCel Geodesic Sensor Net 

is displayed above. Diamond electrodes indicate fronto-central recording sites for ERN 

and Theta (Electrodes 7, 4, 54) and triangle electrodes indicate centro-parietal recording 

sites for Pe (Electrodes 34, 33, 36, 38). The electrode map is used with permission from 

Electrical Geodesics, Inc. (EGI), Eugene, OR, USA. 

Figure 3. Error-related negativity (ERN) and Error Positivity (Pe). Figure 3A depicts the 

response-locked ERN at a cluster of frontocentral electrodes, where the ERN is typically 

maximal. Note that in the ERP plots the ERN is more negative (larger) on error trials (red) 

than correct trials (blue); in the topographic plot, the ERN is shown to be most negative 

over frontal regions, as depicted by in blue shading of the topo plot in this region 

(corresponding to negative values). Dotted line is for ∆ERN. Figure 3B depicts the 

response-locked Pe at a cluster of centroparietal electrodes, where the Pe is typically 

maximal. Note that the Pe is more positive (larger) on error trials. 

Figure 4. Error-related time-frequency theta power. Figure 4A depicts response-locked theta 

power after subtraction of correct from error trials and weighting by a principal 

component that captures error-related theta power. Figure 4B and 4C depict response-

locked theta power during error and correct trials respectively. Note that theta power is 

increased on error trials. Left plots: time-frequency surface plotted for a cluster of 
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frontocentral electrodes. Right plots: corresponding topographic plot of the principal 

component capturing theta power.  
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