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Since the first measurements of neuronal avalanches [1], the critical brain hypothesis has gained
traction [2]. However, if the brain is critical, what is the phase transition? For several decades it
has been known that the cerebral cortex operates in a diversity of regimes [3], ranging from highly
synchronous states (e.g. slow wave sleep [4], with higher spiking variability) to desynchronized
states (e.g. alert waking [5], with lower spiking variability). Here, using independent signatures of
criticality, we show that a phase transition occurs in an intermediate value of spiking variability.
The critical exponents point to a universality class different from mean-field directed percolation
(MF-DP). Importantly, as the cortex hovers around this critical point [6], it follows a linear relation
between the avalanche exponents that encompasses previous experimental results from different
setups [7, 8] and is reproduced by a model.

It is well established that cortical activity exhibits a
rich repertoire of dynamical states [9–11]. This knowl-
edge, initially based on electroencephalographic (EEG)
recordings, later reached the spiking activity of large neu-
ronal populations, in which the variability level has been
used as a proxy of the cortical state [3, 12–14]. However,
only recently has the diversity of cortical states been sys-
tematically considered in studies of criticality [15, 16].

In the first results that fuelled the critical brain hy-
pothesis, Beggs and Plenz observed local field potential
(LFP) neuronal avalanches in vitro with power law size
distributions P (s) ∼ s−1.5. The exponent coincides with
that of a critical branching process, which has driven
significant efforts towards the idea that the brain hov-
ers around a critical point belonging to the mean-field
directed percolation (MF-DP) universality class [17].

Findings for spiking data have, however, raised some
controversy: on one hand, power law size distributions
were found during strong slow LFP oscillations, under
ketamine-xylazine [15] and isoflurane [16] anaesthesia,
but on the other hand, long-range time correlations (an-
other statistical signature of criticality [18]) were ob-
served during fast LFP oscillations in freely-behaving
rats, but not under ketamine-xylazine anaesthesia [15].
Those results lead to a conundrum, where the signatures
of a critical state might be dependent on the level of
synchronization, thus challenging the whole picture of
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directed percolation, which involves no oscillations what-
soever, and where the system goes from an absorbing to
an active state.

To further investigate this topic we quantified the
variety of cortical states in terms of the coefficient
of variation (CV) of the summed population activity
in the primary visual cortex of urethane-anaesthetized
rats [14]. We recorded a total of 1628 units (Methods,
Tables S1 and S2) in deep layers of the primary sensory
cortex of urethane-anesthetized rats (n = 8), under spon-
taneous activity, during long periods (≥ 200 min). We
employed high-count sites silicon probes (64/32 channels,
see Methods), to record spiking activity of large neuronal
populations (Fig. 1a). Given that the in vivo cortical dy-
namics crosses a wide range of states [19], the aim of this
paper is to study the signatures of criticality as a function
of the cortical state assessed by CV.

Spiking cortical activity continuously changes its vari-
ability level under urethane anesthesia as well as in
awake animals [12, 14]. The coefficient of variation (CV,
Methods) has been used as an index of population spik-
ing variability [12, 14]. We calculated CV within non-
overlapping 10s windows. In that time scale, CV typi-
cally changes rapidly [3, 12, 14, 19] (Fig. 1b). Within
each of these windows, for increasing values of CV, spik-
ing activity ranges from completely desynchronized to a
strongly synchronized state (Fig 1c). In what follows, we
sort results according to CV values and average over con-
secutive percentiles to obtain 〈CV 〉 as a representative of
a given spiking variability level (Fig. S1). Different spik-
ing correlation structures underlie those different regimes
(Fig. 1d, p � 0.01, ranksum test), in which both mean
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FIG. 1. Statistical properties of cortical dynamics along different levels of spiking variability. a, Whole rat brain
highlighting the position of the six shanks (colored dots) in the primary visual cortex (V1). Bottom right: samples of spike
waveforms. b, (left) Coefficient of variation (CV) of the spiking activity in V1 (see also Figs. S2 and S3); each point was
calculated for a 10s-long non-overlapping time period; colored marks (purple/red/green) indicate the level of spiking variability
of three representative examples (low/intermediate/high, respectively); (right) CV histogram of a single animal. The vertical
color bar is used as a reference for CV scale along the paper. c, Samples of 4s-long spiking activity across the three levels of
spiking variability depicted in b; (up) population rate smoothed by a Gaussian kernel σ = 0.1 s; (bottom) raster plot: spikes
recorded in the same shank are plotted with the same color shown in a; single/multi units (#SUA=138 and #MUA=153)
with white/gray backgrounds, respectively. d, Histogram of pairwise spiking correlation along low/intermediate/high levels
(same color as in c) where mean and standard deviation were 0.028± 0.069, 0.117± 0.115 and 0.224± 0.165, respectively (see
Methods). e, The data is divided in non-overlapping time bins, ∆t (see Methods). Population spikes preceded and followed
by silences define a spike avalanche (gray backgrounds). The number of spikes defines the avalanche size, whereas the number
of bins define its lifetime. f,g, Distributions of size and lifetime of spiking avalanches, P (S) and P (T ) respectively, during the
dynamical states described in d. Dark colored dots indicate the range to which we fitted a power-law in both cases. Black
lines show the exponents of the MF-DP universality class. h, Relative goodness-of-fit test of the size distribution according
to the Akaike Information Criterion (group data B, see Methods). Positive (negative) values indicate power-law (log-normal)
behaviour.

and standard deviation increase from the desynchronized
state to the strongly synchronized state.

By dividing each 10s window in short time bins
(∆t ∼ 2 − 4 ms), spike avalanches are defined by the
spatio-temporal spiking patterns in between silent bins
(Fig. 1e). We used the standard definition of ∆t as the
average inter-spike interval [15, 20]. Since firing rates
decrease monotonously with increasing 〈CV 〉 [21] (Fig.
S4), for each 10s window a different ∆t was calculated.
The size S and lifetime T of an avalanche are respectively
given by the total numbers of spikes and bins within each
event.

Even when bins are adjusted by firing rates, the statis-

tics of avalanche size and duration differ across the range
of 〈CV 〉 values. For instance, sampling the lower, inter-
mediate and upper third portions of the 〈CV 〉 range, the
degree to which the distributions of avalanche size and
duration can be fitted by power laws (Methods)

P (S) ∼ S−τ (1)

P (T ) ∼ T−τt (2)

vary considerably (Fig. 1f,g). In particular, the ex-
ponents τ and τt do not necessarily agree with those
originally obtained by Beggs and Plenz [20] for LFP
avalanches in cultured slices (continuous lines Fig. 1f,g).
According to the Akaike criterion (Fig. 1h, Methods),
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power laws cease to be the best fitting distribution for suf-
ficiently low 〈CV 〉 (and, if data is shuffled, for any 〈CV 〉,
Figs. S5 and S6). Subsequently we refine our analysis by
checking the consistency of scaling relations across 〈CV 〉
values.

a b
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FIG. 2. Signatures of criticality as a function of the
cortical spiking variability. a, Power-law relation between
size and lifetime of spikes avalanches across different levels of
spiking variability (same color code as Fig. 1b). b, Root-
mean squared fluctuation F of the detrended time series of
the firing rates, versus window width w, across different lev-
els of spiking variability (color code as Fig. 1b). c, Critical
exponents relation across the variability spectrum per animal.
Each symbol represents an animal. d, Group data of critical
exponents relation across the variability spectrum. In both c
and d, black (blue) corresponds to the left-hand (right-hand)
side of Eq. 4. The dashed black curve represents the rela-
tive residence time across CV values. Gray stripe represents
the critical value of 〈CV 〉∗ (1.4 ±0.2 ) where Eq. 4 holds. e,
Group data of the DFA exponent α estimated along the vari-
ability spectrum. f, Group data of the DFA exponent α as a
function of the difference between the scaling properties in d.
(c–f : group data B, similar results for group data R in Fig
S7).

The theory of critical phenomena predicts that, if
Eqs. 1 and 2 hold at a critical point, then so does

〈S〉(T ) ∼ T 1
σνz , (3)

where 1/(σνz) is a combination of critical exponents [7,
22]. Our data is clearly consistent with Eq. 3, with the
exponent 1/(σνz) depending on the spiking variability
〈CV 〉 (Fig. 2a). This scaling relation, however, is known
to hold even far from criticality [7], so it can hardly be
considered a sufficient signature in itself.

If the system is indeed critical, the scaling relation be-
tween the lifetimes and sizes of avalanches (Eq. 3) is con-
nected with the exponents governing their distributions
(Eqs. 1 and 2), namely [7]:

1− τt
1− τ

=
1

σνz
. (4)

Since both sides of the above relation can be indepen-
dently evaluated, we tested whether they equal each
other as the brain spontaneously traverses the different
levels of spiking variability. We verified that Eq. 4 clearly
holds for each animal (n = 8) and, strikingly, the cross-
ing between the left and right sides of the equation occurs
around the same 〈CV 〉 value (Fig. 2c).

Averaging over animals (Fig. 2d), we obtain a critical
value of spiking variability 〈CV 〉∗ = 1.4 ± 0.2, therefore
far from the extremes of the variability spectrum. More-
over, when we compute the residence time distribution
along this spectrum, we observe that the system spends
most of the time close to the critical region (Fig. 2d).
This is consistent with a scenario in which the uretha-
nized brain hovers around a critical point [6]. We found
similar results in a different strain (non-albino rats, Long
Evans, n = 3), using a 20% lower spatial resolution (8
sites/shank) (Methods and Figs. S6 and S7).

Another feature of systems at the critical point is self-
affinity of time series over different time scales, as as-
sessed by detrended fluctuation analysis (DFA) [18, 25].
For our data, the root-mean squared fluctuation F scales
with the length of the time window w as F ∼ wα (Meth-
ods), and α also depends on 〈CV 〉 (Figs. 2b,e).

We found α ≈ 1, indicating long-range time correla-
tions and 1/f noise, at the same critical value of 〈CV 〉
that was independently inferred by the scaling relation
Eq. 4 (Fig. 2e). There is, therefore, a remarkable conver-
gence between these two independent signatures of criti-
cality (Fig. 2f).

If the dynamics of the urethane-anaesthetized brain
indeed hovers around a critical point, then what are the
avalanche exponents at criticality? At the critical value
〈CV 〉∗, the exponents are close to their minimal values
and we obtain τ = 1.52±0.09 and τt = 1.7±0.1 (Figs. 3a
and 3b).

Note that while the value of τ coincides with the criti-
cal exponent of MF-DP [26], the value of τt does not. The
disagreement with the MF-DP universality class, regard-
less of the 〈CV 〉 value, is clearly seen when results are
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FIG. 3. Group data of correlations between exponents
governing long-range time correlations, size and life-
time distributions. a,b, Exponents of the size and life-
time distributions along the levels of variability. Gray stripe
represents the critical value of 〈CV 〉∗ (within errors) where
Eq. 4 holds. Yellow (green) stripe represents the value of 〈τ〉
(〈τt〉) compatible with 〈CV 〉∗. c, Linear relation between the
size and lifetime critical exponents across animals. We also
plot other experimental results [7, 8] and those obtained by
a model [23]. The black symbol corresponds to MF-DP val-
ues. d,e, Spread of DFA and avalanche exponents across an-
imals displaying negative correlation (r = −0.85/r = −0.86).
Similar results are obtained for M/EEG data in humans [24]
(r = −0.77/r = −0.79) and a model [23] (r = −0.82/r =
−0.78). Purple stripe represents the value of α compatible
with 〈CV 〉∗. (a–e: group data B).

parametrically plotted in the (τ, τt) plane (Fig. 3c). We
find, moreover, that other results in the literature (from
diverse experimental recordings such as the ex-vivo vi-
sual cortex of the turtle [8] and in vitro cultured slices
of the rat cortex [7]) lie close to the linear spread of the
avalanche exponents of our data (Fig. 3c).

Such a coincidence suggests a common underlying
mechanism. A similar linear trend is found in the CROS
(“CRitical OScillations” [27]) model with excitatory and

inhibitory neurons in which a transition occurs at the on-
set of collective oscillations [23, 27] (Fig. 3c). The model
successfully mimics our experimental results, in the sense
that it also presents DFA exponents close to one at crit-
icality and avalanche exponents vary continuously near
the transition [23]. This supports a scenario in which the
transition governing brain dynamics is not between ab-
sorbing and active phases, but rather between active and
oscillating phases [27–29].

Finally, it is interesting to delve deeper into the re-
lation between the DFA exponent α and the pair of
avalanche exponents τ and τt (Fig. 2f). In principle they
pertain to very different time scales [24]. Yet, as 〈CV 〉
varies, these two very different fingerprints of critical-
ity keep a negative correlation (Figs. 3d and 3e). This
result is reminiscent of those obtained by Palva et al.
for M/EEG data of human subjects [24]. Once more,
the CROS model [23] shows a reasonable agreement with
our experimental results (Fig. 3d and 3e), reinforcing the
idea of a transition at the onset of oscillations.

In conclusion, we found consistent markers of critical-
ity (scaling in avalanche statistics as well as long-range
time correlations) in the cortical activity of urethane-
anaesthetized rats. The critical point is neither at the
synchronous nor the asynchronous ends of the spectrum,
but rather at an intermediate value 〈CV 〉∗ of the coeffi-
cient of variation. Those results hold for group data, but
are also verified at each subject (n = 8).

Importantly, our results are incompatible with a DP-
like phase transition between a quiescent and an active
state, a paradigm which has been a de facto theoretical
workhorse of the field for over a decade [17]. We found a
linear relationship between τ and τt across cortical states
that encompasses results from other experimental setups
and is reproduced by the CROS model.

These results open new experimental as well as theoret-
ical avenues. On one hand, the present results can guide
further development of models for criticality in the brain.
On the other hand, it remains to be investigated whether
densely recorded activity in awake animals will yield sim-
ilar results. Moreover, the present results highlight the
relevance of intermediate levels of spiking variability for
state-dependent processing in the primary sensory cor-
tex. We propose that, if the cortex demands both modes
of operation (synchronized and desynchronized) for dif-
ferent functions [30], it might be advantageous to self-
organize near and hover over the critical point between
them.
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I. METHODS

A. Group data B

Part of this dataset was previously described [14]. We
used Wistar-Han rats (n = 5, male, 350-500 g, 3-6
months old, Charles River) in our recordings. We anaes-
thetized the animals with 1.44 g/kg of fresh urethane,
diluted at 20% in saline, in 3 injections (i.p.), 15 min
apart. In some animals a supplement has been adminis-
trated in order to reach the proper levels of anaesthesia.
We placed the rats in a stereotaxic frame and marked,
based on the Paxinos Atlas [31], the coordinates to ac-
cess V1 (Bregma: AP = -7.2, ML = 3.5). A cranial
window (2.5 mm diameter) was opened at this site. We
recorded extra-cellular voltages using a 64-channels sil-
icon probe (BuzsakiA64sp, Neuronexus) with 60 sites
along 6 shanks, 10 sites/shank with impedance of 1–3
MOhm at 1 kHz; shanks were 200 µm apart and the
area of each site was 160 µm2, disposed from the tip in a
staggered configuration, 20 µm apart (Fig. 1a). All data
from the silicon probe were sampled (30 kHz), amplified
and digitized in a single head-stage (Intan RHD2164).
We used the Klusta-Team [32, 33] software to perform
spike sorting on raw electrophysiological data, running
in two computational infrastructures (LFTC/UFPE and
NPAD/UFRN). Health monitoring of animals was per-
formed according to FELASA guidelines. All manipula-
tions were conducted in strict accordance with European
Regulations (European Union Directive 2010/63/EU).
Animal facilities and the people directly involved in an-
imal experiments were certified by the Portuguese regu-
latory entity DGAV. All the experiments were approved
by the Ethics Committee of the University of Minho
(SECVS protocol #107/2015). The experiments were
also authorized by the national competent entity DGAV
(#19074).

B. Group data R

We recorded a second dataset to test the robustness
of the results in three different ways: 1) experiments
performed in a different laboratory 2) with a different
non-albino strain and 3) fewer and less dense recording
sites. This data set used Long-Evans rats (n = 3, male,
250-360 g, 3-4 months old) in our recordings. We anaes-
thetised the animals with 1.58 g/kg of fresh urethane, di-
luted at 20% in saline, in 3 injections (i.p.), 15 min apart.
Stereotaxic positioning was performed as in group B. We
recorded extra-cellular voltages using a 32-channels sili-
con probe (BuzsakiA32, Neuronexus) with 32 sites along
4 shanks, 8 sites/shank with impedance of 1–3 MOhm
at 1 kHz; shanks were 200 µm apart and each sites area
was 160 µm2, disposed from the tip in a staggered con-
figuration, 20 µm apart. All data from the silicon probe
were sampled (24 kHz), amplified and digitized in a PZ2
TDT, that transmits to a RZ2 TDT base station. Spike

sorting was performed as in group B. Housing, surgical
and recording procedures were in strict accordance with
the CONCEA - MCTI, and was approved by the Federal
University of Pernambuco (UFPE) Committee for Ethics
in Animal Experimentation (23076.030111/2013-95 and
12/2015).

C. Coefficient of variation

We evaluate the global firing rate r(t) in a time window
∆T using the spikes of every recorded unit

r(t) =
1

∆T

∫ t+∆T

t

ρ(τ)dτ , (5)

where the neural response is ρ(t) =
∑
tk∈L δ(t− tk) and

∆T = 50 ms. The coefficient of variation CV was
calculated for each non-overlapping 10-second window
(Figs. 1b and S1)

CVi =
σi
µi

, (6)

where σ and µ are the standard deviation and mean of
the firing rate in the i-th 10-second window (Fig. S1).
Each dataset had 1080 CV values.

D. Spiking correlations

The firing rate ri(t) of the i-th spike train was cal-
culated according to Eq. 5 with ∆t = 1 ms, ri(t) ∈
{0, 1} ms−1. The time series ni(t) was obtained by the
convolution of ri(t) with a kernel h,

ni(t) = hs1,s2(t) ∗ ri(t) , (7)

where h is a Mexican-hat kernel which was obtained
by the difference between the zero-mean Gaussians with
standard deviations s1 = 100 ms and s2 = 400 ms [12].

The spiking correlation coefficient between two units i
and j is given by:

ri,j =
Cov (ni, nj)√

Var(ni)Var (nj)
, (8)

where Var and Cov are the variance and covariance, re-
spectively.

E. Critical exponents estimation

The exponents governing power-law distributions were
obtained via a Maximum Likelihood Estimator proce-
dure [34, 35]. To fit a discrete power-law distribution

f(x) =
1∑xmax

x=xmin
( 1
x )α

(
1

x

)α
, (9)
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the lower bound xmin was set to the smallest observable
(size, lifetime). For dataset B (R), the upper bound xmax
was set to 100 (40) for size distributions and 25 (15) time
bins for lifetime distributions. Next, we estimate α by
maximizing the likelihood function

L(α) =
N∏
i=1

f(xi) , (10)

where N is the number of measurements. We work with
the much more convenient log-likelihood

l(α) ≡ logL(α) =
N∑
i=1

log f(xi)

= −N log

(
xmax∑
x=xmin

(
1

x

)α)
− α

N∑
i=1

log(xi) (11)

and obtain α̂, the parameter that best fits a power-law,
by

α̂ = arg max
α

l(α) . (12)

The maximization of l(α) is obtained via a lattice search
algorithm [36].

F. Relative goodness of fit test

We used the Akaike information criterion (AIC) as a
measure of the relative quality of a given statistical model
for a data set [37]:

AIC = 2k − 2 ln(L̂) +
2k2 + 2k

N − k − 1
, (13)

where L̂, is the likelihood at its maximum, k is num-
ber of parameters and N the sample size. The lower
the AIC, the better the model fits the data. We defined
∆ = AICln−AICpl, where AICln and AICpl correspond
to the AIC of a log-normal and a power-law model, re-
spectively. Therefore, ∆ ≥ 0 (∆ ≤ 0) implies that the
power-law model is better (worse) than the log-normal
to fit the data.

G. Detrended Fluctuation Analysis.

We used detrended fluctuation analysis (DFA) to as-
sess scale-invariant long-range time correlations [15, 25].

Given a time series, z, and a width of time window, w:
(1) obtain an integrated zero-mean version from the orig-

inal time series y(k) =
∑k
i=1[z(i) − 〈z〉]; (2) divide the

whole time period in consecutive non-overlapping bins of
width w and fit the local linear trend, yw, with the least
squares methods within each bin; (3) then, the fluctua-
tion at a given time-scale w is calculated with respect to
the linear trend by

F (w) =

√√√√ 1

N

N∑
i=1

[y(i)− yw(i)]2 , (14)

where N is number of consecutive non-overlapping time
windows.

H. Computational model

We made use of the CROS model previously described
in Refs. [23, 27]. Briefly, the model consists of a two-
dimensional 300 × 300 network of excitatory (75%) and
inhibitory (25%) stochastic integrate-and-fire neurons.
Each neuron is locally connected to its neighbors within
a square of size 7 × 7 centered around it. Connectiv-
ity is controlled by two free parameters of this model,
namely the fractions of excitatory and inhibitory outgo-
ing synapses of the total number of neurons within the
local range. These parameters vary within the ranges
2 − 60% and 30 − 90%, respectively. The model has no
absorbing state because excitatory neurons receive a low
constant Poisson input. In this model each avalanche is
initiated when the activity of the network (defined as the
total sum of spike activity) crosses a threshold (defined
here as 30% of the median spike activity of the network).
The duration of an avalanche is given by the total time
in which the spike activity of the network remains above
the threshold. Detrended fluctuation analysis is calcu-
lated directly on the global network activity. The model
exhibits signatures of criticality at the onset of collec-
tive oscillations, where a peak emerges in the Fourier
spectrum of the network activity and DFA exponent ap-
proaches unity. For details of the model parameters and
implementation, see reference [23].
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