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Abstract

Genes and genomes can evolve through interchanging genetic material, this leading to reticular
evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular
of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with
taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate
assimilation pathway is an ideal object of investigation, as previous results revealed a patchy
distribution and suggested one crucial HGT event. We studied the evolution of this pathway through
both multi-scale bioinformatic and experimental approaches. Our taxon-rich genomic screening
shows this pathway to be present in more lineages than previously proposed and that nitrate
assimilation is restricted to autotrophs and to distinct osmotrophic groups. Our phylogenies show a
pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least
seven well-supported transfers between eukaryotes. Our results, based on a larger dataset, differ
from the previously proposed transfer of a nitrate assimilation cluster from Oomycota
(Stramenopiles) to Dikarya (Fungi, Opisthokonta). We propose a complex HGT path involving at
least two cluster transfers between Stramenopiles and Opisthokonta. We also found that gene fusion
played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic
nitrate reductase, and of a novel nitrate reductase in Ichthyosporea (Opisthokonta). We show that
the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and
transcriptionally co-regulated, responding to different nitrogen sources; similarly to distant
eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of
transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the
pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in
eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history

of the nitrate assimilation pathway.
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Introduction

One of the most significant advances in evolution was the realization that lineages, either genes or
genomes, can also evolve through interchanging genetic material, this leading to reticulate
evolutionary patterns [1,2]. Reticulate evolution, and in particular horizontal gene transfer (HGT), is
widely accepted as an important mechanism in prokaryotes [3]. However, its occurrence is still
subject to controversy in eukaryotes, and its prevalence and mechanistic basis are active areas of
study [4,5]. The finding of homologous genes in distantly related lineages may suggest the
occurrence of HGT events [6]. However, taxonomically-patchy distributed genes can also be the
result of secondary losses. Hence, the most accurate methodology for HGT detection consists of

finding topological incongruences between the reconstructed phylogenetic trees and the species

phylogeny [7].

Adaptation to new environments requires metabolic remodeling, and HGT of metabolic genes
between prokaryotes occurs at a higher rate than that of informational genes [8]; which may facilitate
the recipients’ rapid adaptation [9]. Numerous metabolic pathways in eukaryotes are of bacterial
origin [6], transferred from endosymbionts [10]; and many proposed HGTs between eukaryotes also
involve metabolic genes [11-13]. Hence, patchily distributed metabolic pathways make good

candidate subjects for investigation into possible events of HGT in eukaryotes.

The eukaryotic nitrate assimilation pathway is strikingly patchily distributed [14]. The ability to use
nitrate as a nitrogen source is not essential, but valuable in nitrate-rich environments [15,16]. In order
to reduce nitrate to ammonium, a specific pathway is required, involving minimally a nitrate
transporter, a nitrate reductase and a nitrite reductase (Nitrate Assimilation Proteins, NAPS) [17]. In
eukaryotes, NAPs were characterized in plants and fungi and were later identified in other
eukaryotes, including green and red alga, diatoms and Oomycota [14,18]. A study published a
decade ago proposed that the nitrate assimilation pathway characteristic of many fungal species

originated in a stramenopiles lineage leading to Oomycota, and then was transferred as a cluster
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from Oomycota to the root of Dikarya (Fungi). The authors also hypothesized that the acquisition of
this metabolic pathway might have been an important innovation for the colonization of dry land by
this fungal group [14]. However, the absence of genomic data from many eukaryotic groups left
uncertainty surrounding this proposed HGT event as well as the degree to which HGT influenced
the evolutionary history of this pathway in eukaryotes. We therefore performed an extensive survey
of NAPs and NAP clusters in order to understand the origins and the evolution of the eukaryotic

nitrate assimilation pathway.

Our updated taxon sampling extends the presence of this ecologically-relevant pathway to many
previously unsampled lineages, showing a patchy distribution that overlaps with the distribution of
autotrophy and osmotrophy in the eukaryotic tree. The reconstructed history indicates a pervasive
role of HGT underlying this patchy distribution, with three independent bacterial transfers contributing
to the origins of the pathway and at least seven well-supported transfers of NAPs and NAP clusters
between eukaryotes. Our results do not agree with the proposed origin and transfer of a NAP cluster
from Oomycota to dikaryotic fungi. Instead, we propose that the NAP cluster was assembled in a
common ancestor of Alveolata and Stramenopiles, with Fungi vertically inheriting it from a
stramenopiles transfer to an ancestral opisthokont. We also propose a horizontal origin of the
Oomycota NAP cluster from Ichthyosporea, a group of unicellular relatives of animals. Gene fusion
was also crucial in the evolution of this pathway, underlying the origin of the canonical eukaryotic
nitrate reductase; as well as of a nitrate reductase of chimeric origins found in the NAP clusters of
two ichthyosporeans. Finally, we demonstrate that this cluster is functional in the ichthyosporean
Sphaeroforma arctica, with NAPs showing a strong co-regulation in response to environmental
nitrogen sources. The similarities of this transcriptional control with that shown for many lineages
with distinct horizontal acquisitions of the pathway indicate that this regulatory response has

convergently evolved multiple times in eukaryotes.
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Results

NAP genes in eukaryotes

The minimal metabolic pathway required to incorporate nitrate into the cell and reduce it into
ammonium includes a nitrate transporter, a nitrate reductase and a nitrite reductase (Fig 1) [18]. The
nitrate transporter NRT2 and the nitrate reductase EUKNR are involved in the first two steps of the
pathway in all the eukaryotes where this metabolism has been studied. For the third and last step of
the pathway, two nitrite reductases have been characterized in eukaryotes: a chloroplastic
ferredoxin-dependent enzyme (Fd-NIR, characterized in land plants and green algae); and a

cytoplasmic NAD(P)H dependent cytosolic enzyme (NAD[P]H-NIR, characterized in fungi).

We screened NAP genes in a taxon sampling designed to cover the broadest possible eukaryotic
diversity (Fig 2). Among the 60 taxa with at least one NAP gene detected, 47 have the complete
pathway (i.e. the transporter, the nitrate reductase and one of the two nitrite reductases; see
Supplementary Fig 1 and Supplementary Table 1. All supplementary tables are in Supplementary

File 2; supplementary files are accessible in https://figshare.com/s/d11b23d7928009e2d508). The

distribution of NAP genes across eukaryotes is highly correlated, as it would be expected for genes
involved in the same pathway (Supplementary Fig 2A). However, considering only taxa with at least
one NAP gene, the two nitrite reductases, NAD(P)H-nir and Fd-nir, show an almost completely anti-
correlated distribution (Supplementary Fig 2B). Fd-nir is restricted to autotrophic lineages (including
facultative autotrophs), as expected for a chloroplastic enzyme [19]. In contrast, NAD(P)H-nir is
mostly distributed along heterotrophs, except for the myzozoans Symbiodinium minutum and Vitrella
brassicaformis, in which the Fd-nir is absent; and four Ochrophyta species, in which both nitrite

reductases are present.

The widespread and patchy distribution of NAP genes is correlated with the distribution of different
nutrient acquisition strategies within the eukaryotic tree (Supplementary Fig 2C). We found NAP

genes in all the sampled autotrophs (see green circles in Fig 2). This includes taxa from groups
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whose plastid originated from a cyanobacterial endosymbiont (primary plastids): Glaucophyta,
Rhodophyta and Chloroplastida; as well as algal groups whose plastid originated from an eukaryotic
endosymbiont (complex plastids): Haptophyta, Cryptophyta, Chlorarachniophyta, S. minutum, V.
brassicaformis and Ochrophyta [20]. Among heterotrophs, we found the complete pathway in Fungi
and Oomycota, as reported in previous studies, but also in Teretosporea and Labyrinthulea. These
groups are phylogenetically distant but share many analogous cellular and ecological features
related to their proposed convergent evolution towards an osmotrophic lifestyle [21] (Fungal-like
osmotrophs, see brown circles in Fig 2). We did not find the entire nitrate assimilation pathway in

any of the phagotrophic lineages sampled (Supplementary Fig 2C).

The distinct origins of NAP genes in eukaryotes

Previous studies proposed a bacterial origin for the transporter and the two nitrite reductases [14].
However, which particular bacterial group(s) were the possible donors of these three NAP genes
was not determined. We investigated the origin of Fd-nir, NAD(P)H-nir and nrt2 in eukaryotes using

a comprehensive and taxonomically representative prokaryotic dataset.

The bacterial donors of Fd-nir, NAD(P)H-nir and nrt2

The reconstructed phylogenies of these three NAPs with prokaryotic homologs show in all cases a
well-supported monophyletic clade that includes eukaryotic sequences branching distantly to
archaeal ones (Fig 3). These suggest that each NAP descends from a single eukaryotic acquisition,
and also that they were not vertically inherited from Archaea, but horizontally transferred from

Bacteria to eukaryotes.

Our phylogeny supports that the eukaryotic nitrite reductase Fd-NIR descends from Cyanobacteria,
as was previously suggested based on sequence-similarity analyses [22] (100% UFboot; Fig 3 and
Supplementary Fig 3). Because of its cyanobacterial origin and given that Fd-NIR activity has been
located in the chloroplast, it is tempting to propose that Fd-nir was transferred to eukaryotes from

the cyanobacterial endosymbiont from which all the primary plastids originated. However, not all the
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proteins of plastidic activity originated from this organelle [23], so it remains unclear whether Fd-nir
originated from the endosymbiont or not. If Fd-nir is of plastidic origin, we would then expect a similar
phylogenetic position of the eukaryotic Fd-NIR in relation to Cyanobacteria than in the phylogenies
of the photosystem Il subunit Il and the ribosomal protein L1; two genes of bona fide plastidic origin
(encoded in the plastid genome of Cyanophora paradoxa [24]). The branching pattern of eukaryotic
sequences in Fd-NIR and the two plastidic genes phylogenies suggest an early-branching
cyanobacterial lineage as the donor in all cases (Supplementary Figs 3, 4 and 5). Notwithstanding
whether plastids originated from an early or a deep cyanobacterial lineage [24,25], we interpret the
similar phylogenetic relationships between eukaryotes and Cyanobacteria in all our phylogenies as
moderate support for a plastidic origin for Fd-nir. In all the sampled taxa we found Fd-nir in genomic
sequences corresponding to the nuclear genome. This indicates that Fd-nir would have been
transferred to the nucleus before the divergence of all primary algal lineages, as indeed occurred

with many proteins of plastidic activity [10].

A cyanobacterial origin is unlikely for NAD(P)H-nir and nrt2 (Fig 3). In the NAD(P)H-NIR phylogeny
(Fig 3 and Supplementary Fig 6), the sister-group position of Planctomycetes to all eukaryotes
suggest that this cytoplasmic nitrite reductase originated in eukaryotes through a HGT from this
marine bacterial group. Finally, the phylogeny of NRT2 does not support any particular bacterial

lineage as the donor of this nitrate transporter to eukaryotes (Fig 3 and Supplementary Fig 7).

EUKNR originated by gene fusion

In contrast to Fd-nir, NAD(P)H-nir and nrt2, the distribution of euknr is restricted to eukaryotes. The
exclusive combination of protein domains shown by this nitrate reductase suggests a chimeric origin
involving the fusion of different proteins. Hence, we used a sequence similarity network-based
approach [2] to investigate which ancestral protein families were involved in EUKNR origins. A first
network between EUKNR and similar eukaryotic and prokaryotic sequences was constructed (Fig
4A; see Materials and methods section for details about the network construction process). The

topology of the network shows five different clusters, each one representing a specific protein family,
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namely, bacterial sulfite oxidases (SUOX), eukaryotic SUOX with a Cytochrome b5 (Cyt-b5) domain,
eukaryotic SUOX without a Cyt-b5 domain, EUKNR, and NADH reductases (Fig 4A). The pattern
connecting the EUKNR with the eukaryotic SUOX and NADH reductase clusters is characteristic of
composite genes [26]; in which two unrelated gene families are connected in the network through
an intermediate gene family. This suggests that EUKNR shares homology with both eukaryotic
SUOX and NADH reductases [2]. Hence, a gene fusion between eukaryotic SUOX and NADH
reductases would account for the origin of respectively the N-terminal and C-terminal EUKNR

domains.

In the represented network, only eukaryotic SUOX without a Cyt-b5 domain are connected to
EUKNR. This suggests that EUKNR are more related to SUOX without a Cyt-b5, a result in
agreement with standard phylogenetic methods (EUKNR sequences branched closer to SUOX
without Cyt-b5; see Supplementary Fig 8). To determine the origin of the Cyt-b5 region, we used the
Cyt-b5 domain of the two EUKNR reference sequences to construct a second network including
those eukaryotic and prokaryotic proteins that aligned to this specific EUKNR region (Fig 4C). The
two Cyt-b5 EUKNR regions connected with a lower E-value with Cyt-b5 monodomain proteins than
with proteins whose architectures contain other domains in addition to Cyt-b5 (e.g. SUOX). This
strongly suggests that the Cyt-b5 region of EUKNR was not acquired from SUOX but rather
originated from a third protein. We thus propose that EUKNR has a chimeric origin, evolving from a
fusion of genes belonging to three distinct families: eukaryotic SUOX (without Cyt-b5), Cyt-b5

monodomain proteins, and NADH reductases.

Evaluating the impact of HGT in NAPs evolution

Some of the topologies shown in the phylogenies of NAPs (Fig 5) strongly disagree with the
eukaryotic species tree (Fig 2), and hence would require a large number of ancestral paralogues
and differential paralogue losses to be accounted by a strictly vertical inheritance scenario. In general
(and with the exception of nrt2, see below), there is usually one copy of NAP genes per genome

(see Supplementary Table 1). Therefore, we did not find any a priori reasons to hypothesize that the
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number of copies could have been greater in the ancestral genomes. To evaluate potential cases of
HGT, we performed AU tests [27] (see all tested topologies and AU-test results in Supplementary
Table 3), as well as additional phylogenetic inferences excluding conflicting taxa and increasing the
taxon sampling by incorporating orthologues from the taxon-rich Marine Microbial Eukaryotic
Transcriptome Sequencing Project (MMETSP) dataset [28] (MMETSP trees, see Materials and

methods section).

Fd-NIR

This chloroplastic nitrite reductase is restricted to photosynthetic groups including all the primary
algal groups (Glaucophyta, Rhodophyta, Chloroplastida), which belong to the Archaeplastida
supergroup, as well as most of the sampled complex plastid algal groups, with the exception of the
two photosynthetic myzozoans sampled (Alveolata, SAR). These complex plastid algal groups
include Haptophyta, Ochrophyta (Stramenopiles, SAR), Bigellowiella natans (Chlorarachniophyta,

Rhizaria, SAR), and Guillardia theta (Cryptophyta, Archaeplastida) (Figs 2 and 5).

In the inferred phylogenetic tree, Galdieria sulphuraria (Rhodophyta) Fd-NIR is the earliest branch
within the eukaryotic clade (Fig 5, Supplementary Fig 9), in disagreement with the accepted
eukaryatic tree (Fig 2). However, the low nodal support and the fact that it branches with other
Rhodophyta sequences in the MMETSP tree suggest that this position is artefactual (Supplementary
Fig 10). Surprisingly, sequences from three Chloroplastida branch together with sequences from
Chondrus crispus and Pyropia yezoensis (Rhodophyta), and are hence separated from the rest of
Chloroplastida (we rejected the monophyly of Chlorophyta) (p-AU 0.0019). This unexpected topology
is also observed and well supported in the MMETSP tree, suggesting that it is unlikely to represent
a phylogenetic artefact. Because we showed that all eukaryotic Fd-nir descend from a unique
transfer from Cyanobacteria (Fig 4), this conflicting topology could only be explained either by

ancestral duplication and differential paralogue loss or by HGT.
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All Fd-NIR sequences from Ochrophyta, Chlorarachniophyta and Haptophyta form a monophyletic
clade that branch within Archaeplastida, with strong support in the MMETSP tree (99% UFBoot). We
rejected a topology constraining the monophyly of all Archaeplastida sequences (p-AU 0.0009).
These results, together with Fd-NIR being a plastidic enzyme, supports a common origin of both Fd-
nir and plastids in these complex plastid algal groups. The phylogenetic position of Haptophyta
sequences within Ochrophyta is in agreement with recent studies suggesting an Ochrophyta origin
of the Haptophyta plastid [29,30] (we rejected the monophyly of Ochrophyta sequences) (p-AU
0.0029). The position of Chlorarachniophyta Fd-NIR within Ochrophyta, however, is more difficult to
explain. One could argue that this is due to low phylogenetic signal given that Chlorarachniophyta is
the closest group to Ochrophyta among the taxa with Fd-NIR. In fact, we could not reject an
alternative topology representing a vertical inheritance of Fd-nir in these two groups from a SAR
common ancestor (B. natans as sister-group to the Ochrophyta + Haptophyta clade) (p-AU 0.2318).
However, we consider the HGT scenario more parsimonious since the same topology was recovered

in both the MMETSP tree and NRT2 tree (Fig 5, see below).

NAD(P)H-NIR

This cytoplasmic nitrite reductase is distributed in two eukaryotic supergroups, Opisthokonta and
SAR (Figs 2 and 5). Within Opisthokonta, this gene is present in Fungi and Teretosporea; while in
SAR, we found it in Labyrinthulea and Oomycota (Stramenopiles) and in some of their photosynthetic
relatives from Ochrophyta (Stramenopiles) and Myzozoa (Alveolata). Again, the reconstructed
phylogeny shows a topology discordant with the eukaryotic species tree (Fig 2), with sequences
from Myzozoa, Ochrophyta and Labyrinthulea branching as the earliest clades, respectively, to a
clade including all Opisthokonta and Oomycota sequences (Fig 5). A hypothetical scenario that could
be proposed from this topology would imply that NAP(P)H-nir was transferred from Bacteria
(Planctomycetes, see Fig 3) to a common ancestor of Alveolata and Stramenopiles, then vertically
inherited in some Stramenopiles and transferred to Opisthokonta. Our test of alternative topologies
rejected the monophilies of Opisthokonta, Stramenopiles and Teretosporea (p-AU of 0.0022, 0.0002

and 0.0033, respectively). While this altogether supports HGTs involving these groups, the exact
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number of transfers involving Opisthokonta and Stramenopiles lineages is uncertain. We thus
evaluate two parsimonious scenarios as potential explanations for the evolutionary history of

NAD(P)H-nir, which are based on three assumptions.

The first assumption is that NAD(P)H-nir originated in Opisthokonta from at least one HGT from
Stramenopiles. Although we could not reject a vertical inheritance of all Opisthokonta sequences
from a common eukaryotic ancestor (Stramenopiles + Opisthokonta clade as sister-group to other
eukaryotes) (p-AU 0.1387); we consider this as poorly parsimonious given the gene distribution and
the topology, not only of the NAD(P)H-NIR tree but also of other NAPs (Fig 5). The second
assumption is that a member of Labyrinthulea was involved in an HGT event to Opisthokonta, given
its sister-group position to the Opisthokonta + Oomycota clade (94% of UFBoot). Finally, a third
assumption is that there was an HGT event between Ichthyosporea and Oomycota, given that they
branch as sister-groups with high support (100% of UFBoot). Labyrinthulea and Oomycota are hence
the two Stramenopiles groups that we assume as potential donors of NAD(P)H-nir to Opisthokonta.
From this, we envision two parsimonious scenarios. A first one considers that all opisthokont
sequences descend from a single labyrinthulean transfer, which would imply that Ichthyosporea
subsequently transferred this gene to Oomycota. A second scenario considers that the transfer was
from Oomycota to Ichthyosporea, and hence that two different Stramenopiles lineages transferred

NAD(P)H-nir to Opisthokonta.

If the first scenario is correct, and Ichthyosporea transferred NAD(P)H-nir to Oomycota, a phylogeny
excluding Ichthyosporea should show the Oomycota sequences to be more related to other
Opisthokonta than to Ochrophyta (the closest taxonomic group to Oomycota in the NAD(P)H-NIR
dataset, see Fig 2). In agreement with this, a phylogeny excluding Ichthyosporea shows Oomycota
NAD(P)H-NIR branching within Opisthokonta with a strong support (UFBoot 96%, see
Supplementary Fig 11). Moreover, an Oomycota + Ochrophyta clade is rejected by the test of
alternative topologies (p-AU 0.0238). However, and unexpectedly, the same pattern did not occur

when we removed sequences from Oomycota, given that ichthyosporean sequences branch with

11
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Labyrinthulea rather than with other Opisthokonta (Supplementary Fig 12). In this dataset without
Oomycota, we could not reject the topology forcing Ichthyosporea and Ochrophyta together (to be
expected if ichthyosporean sequences originated from the Stramenopiles lineage) (p-AU 0.0691).
However, given that the Ichthyosporea + Labyrinthulea clade is poorly supported (UFBoot 77%,
Supplementary Fig 12) and given that we rejected the Oomycota + Ochrophyta clade in the absence
of Ichthyosporea, we consider these results altogether more consistent with a transfer from
Ichthyosporea to Oomycota rather than in the opposite direction, thus supporting the first scenario
proposed (i.e. a transfer from Labyrinthulea to Opisthokonta, and then from Ichthyosporea to

Oomycota).

Lastly, we consider the unexpected position of Corallochytrium limacisporum (Corallochytrea,
Teretosporea) NAD(P)H-NIR within the fungal clade (Fig 5) as a phylogenetic artefact rather than as
a bona fide HGT event. First, the nodal support for the position is low (UFBoot 71%). In addition, C.
limacisporum appears as a long branch taxa [31] in phylogenomic analyses [32,33], and hence is a
problematic taxa when used in phylogenetic inferences. Moreover, topologies suggesting alternative
scenarios representing an independent origin of its NAD(P)H-nir from Fungi could not be excluded,
such as forcing the monophyly of fungal sequences or forcing the monophyly of C. limacisporum +

Ichthyosporea + Oomycota (p-AU 0.3787 and 0.1879, respectively).

NRT2

This nitrate transporter is widely distributed among eukaryotes with nitrate and nitrite reductase
genes (Supplementary Fig 2), with numerous species harboring lineage-specific duplications (see
blue dots in Supplementary Fig 13). In particular, we found 66 species-specific duplications among
the 56 species in which we found nrt2, with 36 duplication events occurring in Streptophyta
(Chloroplastida). Again, to reconcile the recovered topology with the eukaryotic tree (Fig 2), a strictly
vertical inheritance scenario would require a large number of ancestral duplications and differential
paralogue losses. While obvious nrt2 paralogues are observed (Supplementary Fig 13), these must

correspond to recent duplications given that sequences from the same species branch close to each
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other. Therefore, as with other NAP genes, an HGT agnostic scenario would be poorly supported

given the absence of evident ancestral paralogues.

Sequences from Archaeplastida groups with primary plastids appear as the earliest clades of the
tree (Fig 5), together with other eukaryotes (we rejected the monophyly of all Archaeplastida
sequences) (p-AU 0.0008). The earliest-branching eukaryotic clade comprises only sequences from
Glaucophyta (UFBoot 100%). The other eukaryotic NRT2 sequences branch in two clades that are
strongly supported also in the taxon-rich MMETSP tree (Supplementary Fig 14). The first of these
two clades includes all the Chloroplastida and Haptophyta sequences. It is unclear whether
Haptophyta are more related to Chloroplastida [34] or to the SAR supergroup [35]. If Haptophyta
were more related to SAR, its position in this tree could be interpreted as a support for a horizontal
origin of nrt2 from Chloroplastida. Indeed, a previous study suggested that Haptophyta could have
received genes of non-plastidic function from the green-plastid lineage [36]. The second clade
includes Rhodophyta and Cryptophyta sequences branching as sister-group to a SAR +
Opisthokonta clade. Even though Cryptophyta presumably belongs to the Archaeplastida
supergroup, its position as sister-group to Rhodophyta is unexpected [34,35] and could represent
an ancestral Archaeplastida paralogue conserved in both groups. However, the plastid proteomes
of Cryptophyta show clear signatures of a Rhodophyta contribution [20,37], and hence nrt2 could
have been transferred to Cryptophyta from a red algal endosymbiont. Since a red algal signal has
also been found in some SAR plastid proteomes [20,37], we also propose a second transfer from
Rhodophyta to a SAR common ancestor; although we cannot discard an alternative scenario
involving a first transfer from Rhodophyta to Cryptophyta and then from Cryptophyta to a SAR

common ancestor (p-AU of 0.2698).

The topology within the SAR + Opisthokonta clade resembles that of the NAD(P)H-NIR tree (Fig 5).
Myzozoan sequences appear as the earliest-branching clade (Alveolata, SAR), with a clade
including Ochrophyta sequences (Stramenopiles, SAR) branching as sister-group to a clade

including the sequences from Oomycota and Labyrinthulea (Stramenopiles) and from Teretosporea
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and Fungi (Opisthokonta). However, this tree also includes sequences from B. natans
(Chlorarachniophyta, Rhizaria, SAR) branching within the Ochrophyta clade, as in the Fd-NIR tree
(Fig 5). Given that additional Chlorarachniophyta sequences robustly branch as sister-groups to and
within Ochrophyta in the NRT2 and Fd-NIR MMETSP trees (Supplementary Figs 14 and 10,
respectively), we propose that these two NAP genes were co-transferred from Ochrophyta to
Chlorarachniophyta. Indeed, while all Chlorarachniophyta plastids presumably descend from a green
algal endosymbiont [20], the chimeric signal of their plastid proteome suggests that other algal

lineages could have contributed to the gene repertoire of this mixotrophic algal group [38].

As with the NAD(P)H-NIR phylogeny, our test of alternative topologies rejected the monophilies of
Opisthokonta, Stramenopiles and Teretosporea (p-AU 0.0246, 0.0028 and 0.0373, respectively).
This strongly supports HGT events involving these groups. There are two reasons in favor of at least
one HGT event from Stramenopiles to Opisthokonta. Firstly, as with NAD(P)H-NIR, the earliest
branching positions of other SAR lineages to the Stramenopiles + Opisthokonta clade suggests that
it is more likely that the first donor of the clade was a member of the Stramenopiles, which would
have inherited the genes from a common ancestor. Secondly, we rejected a topology compatible
with a vertical inheritance scenario of this gene in Opisthokonta from a common ancestor to all
eukaryotes (the Stramenopiles + Opisthokonta clade as sister-group to other eukaryotes, which

would imply an HGT origin of nrt2 in Labyrinthulea and Oomycota) (p-AU 0.0014).

In contrast to the NAD(P)H-NIR phylogeny, Labyrinthulea sequences do not branch as a sister-group
to Opisthokonta + Oomycota, appearing as the sister-group (together with C. limacisporum) to Fungi
(Fig 5). Based on this topology, one possible interpretation is that nrt2 could have originated in
Opisthokonta from an ancestral member of the Stramenopiles. Then, Oomycota and Labyrinthulea
would have acquired nrt2 from Ichthyosporea and from an ancestor of C. limacisporum, respectively;
instead of vertically inheriting nrt2 from that Stramenopiles ancestor. Because this hypothesis (H1)
is too outlandish and the accuracy of protein trees is limited [39], we evaluated the following

alternative potential scenarios for the origin of the nrt2 in Opisthokonta (Supplementary Fig 15): (H2)
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nrt2 would have been transferred from (i) Oomycota to a common ancestor of Opisthokonta, and
then from (ii) an ancestor of C. limacisporum to Labyrinthulea; (H3) nrt2 would have been transferred
from (i) Labyrinthulea to a common ancestor of Opisthokonta, and then from (ii) Ichthyosporea to
Oomycota -the more parsimonious history for NAD(P)H-nir-; (H4) same as H3, but (ii) with Oomycota
as a donor of the transfer to Ichthyosporea; and (H5) two labyrinthulean transfers would have
occurred: a first transfer to common ancestor of Fungi and a second transfer to an ancestor of C.

limacisporum. In this scenario, Oomycota would have transferred nrt2 to Ichthyosporea.

We discarded the hypothesis H2 given its incompatibility with the molecular clock-based divergence
times proposed for the evolution of eukaryotes [40]. In particular, Oomycota could not have
transferred nrt2 to a common ancestor of Teretosporea and Fungi because these two lineages would
have diverged before Oomycota originated [40]. However, we could not discard any of the other
hypotheses (detailed below). As with NAD(P)H-NIR, if H3 was true (the p-AU for this topology is
0.1818), we would expect the sequences from Oomycota to be more related to a Opisthokonta +
Labyrinthulea clade rather than to Ochrophyta in a tree without Ichthyosporea (Supplementary Fig
16). The same applies for the ichthyosporean sequences in a tree without Oomycota (Supplementary
Fig 17). If, however H4 or H5 were true, we would expect exactly the opposite topology (i.e.
Oomycota more related to Ochrophyta in the absence of Ichthyosporea, and vice versa).
Unfortunately, the topologies recovered show contradictory results (Supplementary Fig 16 and 17).
To conclude, even though H3 could be favored given that it is the most parsimonious hypothesis for
NAD(P)H-NIR phylogeny (see previous Results section), neither H4 nor H5 can be rejected, at least

by the phylogenetic signal of NRT2.

EUKNR

The distribution of euknr was found to be very similar to that of nrt2 (Supplementary Fig 2). Euknr is
present in most photosynthetic and non-photosynthetic organisms for which we inferred the
capability to assimilate nitrate (Figs 2 and 5). Interestingly, we found the euknr (but no other NAP

genes) also in Chromosphaera perkinsii (Ichthyosporea, Opisthokonta). The presence of euknr in
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an additional ichthyosporean besides Creolimax fragrantissima and Sphaeroforma arctica may be
an indicator that their NAP genes were vertically inherited from an opisthokont ancestor and
subsequently lost in the other ichthyosporeans, many of which have been described as parasitic
species [41]. This was the scenario proposed by the hypothesis H3 (Supplementary Fig 15).
Unfortunately, the phylogenetic signal does not allow to confidently infer the evolutionary history of
this gene, including the eukaryotic lineage in which this nitrate reductase would have had originated

(Fig 5 and Supplementary Fig 18).

Notwithstanding the weak support of the phylogeny, we found three unexpected and well- supported
relationships between distantly related taxa. Firstly, Oomycota branches as the sister-group to the
ichthyosporeans C. fragrantissima and S. arctica, as in the NRT2 and NAD(P)H-NIR trees (UFBoot
95%). This strongly indicates that a transfer of the whole pathway occurred between Oomycota and
Ichthyosporea. Secondly, there is a clade that comprises several distantly related fungal sequences
as well as a sequence from Acanthamoeba castellanii (Amoebozoa). However, sequences from
these fungal taxa are also found in another clade that includes the A. nidulans sequence of bona
fide nitrate reductase activity (named Anid_NaR in the euk_db dataset) [42][43]. Moreover, there is
experimental evidence excluding that the A. nidulans euknr paralogue could function as a nitrate
reductase [44] (Kaufmann, J. Fritz, D. Canovas, M. Gorfer and J. Strauss, personal communication).
Thus, we propose that a fungal paralogue of euknr, of uncertain function, was transferred from an
ancestral fungus to a lineage leading to A. castellanii. In fact, the finding of a gene transfer in A.
castellanii is not surprising considering the extensive signatures of HGT found in this early
amoebozoan lineage. Thirdly, B. natans branches in-between Chlorophyta, in agreement with its

plastid being originated from a green algal endosymbiont [20].

Origin and evolution of NAP clusters
We then inquired the importance of NAP clustering in shaping the evolution of this pathway. To this
end, we analyzed the distribution of the clusters within the eukaryotic tree (Fig 2). We found clusters

in >56% of the sampled eukaryotes with at least two NAP genes in the genome (Supplementary
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Table 1). In particular, clusters were patchily distributed in Fungi, Teretosporea, Oomycota,
Ochrophyta, Labyrinthulea, Myzozoa, Chlorarachniophyta, Chlorophyta, Rhodophyta and
Haptophyta. The patchy distribution of the clusters within these groups suggests that many de-
clustering events had occurred, assuming that de-clustering events are more parsimonious than de
novo clustering events. NAP genes are always found unclustered in Cryptophyta, Glaucophyta and
Streptophyta. While Cryptophyta and Glaucophyta are poorly represented in our dataset, the
absence of clusters in Streptophyta (includes land plants) is remarkable since NAPs are found in the

9 sampled genomes of this group (Supplementary Table 1).

We found that >64% of the detected clusters include the whole pathway, nrt2, euknr and either
NAD(P)H-nir or Fd-nir. In Ochrophyta, the only eukaryotic group with taxa showing both nitrite
reductases in the same genome, we found clusters comprising nrt2 or euknr and either Fd-nir or
NAD(P)H-nir, but never both (Fig 2). In agreement with the gene distribution, clusters with Fd-nir are
found only in autotrophs. While clusters with NAD(P)H-nir are also found in autotrophs, in particular
in two Ochrophyta (Stramenopiles, SAR) and in one Myzozoa (Alveolata, SAR) species; they are
mostly distributed along osmotrophic taxa from Oomycota and Labyrinthulea (Stramenopiles, SAR)
and from Fungi and Teretosporea (Opisthokonta) (NAP clusters with NAD(P)H-nir hereafter

abbreviated as hNAPc, for “heterotrophic NAP clusters”).

The presence in two of the three primary algal groups of NAP clusters including Fd-nir leads to two
potential scenarios. First, we can envision a unique origin of the cluster in an archaeplastidan
ancestor. If Glaucophyta, where the NAPs are not clustered (Fig 2), was an earlier lineage than
Rhodophyta and Chloroplastida [24], cluster formation could have occurred in the last common
ancestor of Rhodophyta and Chloroplastida. If so, at least two de-clusterization events would have
occurred: one in the lineage leading to C. crispus and P. yezoensis (Rhodophyta) and the other in
the lineage leading to Streptophyta (Chloroplastida) (Fig 2). A second scenario would imply at least
two independent clustering events, in the lineages leading to Cyanidioschyzon merolae and G.

sulphuraria (Rhodophyta) and to Chlorophyta (Chloroplastida).
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The tendency of NAP genes to be clustered in green and red algae lineages may have facilitated
the transfer of the entire pathway during the endosymbiotic events involving these algal groups [20].
However, the phylogenetic signal of NAPs suggests that not all the clusters in complex plastid algae
would have been acquired from a single endosymbiont, with at least two independent clustering
events occurring in the lineages leading to Chrysochromulina sp. (Haptophyta) and B. natans
(Chlorarachniophyta). In Chrysochromulina sp., the cluster would have had originated after the
acquisition of nrt2 and Fd-nir from Chloroplastida and Ochrophyta, respectively (Fig 5). In B. natans,
the cluster would have had originated after the acquisition of euknr and Fd-nir from Chloroplastida

and Ochrophyta, respectively.

For hNAPc, we propose that this cluster could had been transferred between heterotrophs given that
sequences from taxa bearing the cluster (Fig 2) branch close to each other in the NAP trees (Fig 5).
This would have allowed transfers of the entire metabolic pathway, which we consider more
parsimonious than individual transfers of the genes followed by multiple clusterization events. Thus,
in agreement with NRT2 and NAD(P)H-NIR phylogenies, we propose that hNAPc would had been
originated in a common ancestor of Alveolata and Stramenopiles and later transferred between
Stramenopiles and Opisthokonta. The phylogenetic signal does not allow to infer the number and

direction of hNAPc transfers that had occurred between Stramenopiles and Opisthokonta.

A tetrapyrrole methylase and the origin of NAPs in Opisthokonta

Given the uncertainty of the phylogenetic signal, we searched for additional features that could help
clarify which of the proposed hypotheses for the origin of hNAPc in Opisthokonta is more
parsimonious (Supplementary Fig 15). We checked intron positions, but we found them to be poorly
conserved and not useful to clarify phylogenetic relationships (data not shown). We found, however,
in the genomes of C. limacisporum, C. fragrantissima (Teretosporea, Opisthokonta) and
Aplanochytrium kerguelense (Labyrinthulea, Stramenopiles, SAR) an additional protein annotated

with a TP_methylase Pfam domain clustering with NAP genes. The three proteins showed highest
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similarity to Uroporphyrinogen-1ll C-methyltransferases (data not shown), a class of tetrapyrrole
methylases involved in the biosynthesis of siroheme (which works as a prosthetic group for many
enzymes, NAD(P)H-NIR included) [45]. A phylogenetic tree of this protein family showed a clade
that includes the three proteins clustered with NAP genes as well as other eukaryotic proteins
branching within a bacterial clade (Supplementary Figs 19 and 20). We, therefore, consider this

group a subfamily of eukaryotic tetrapyrrole methylases, hereafter referred as “TPmet”.

We showed that NAP phylogenies support an origin of NAP genes in Opisthokonta through a transfer
of hNAPc from Stramenopiles. Under this hypothesis, the finding of tpmet clustered with NAP genes
(tomet-hNAPC) in three Opisthokonta and Labyrinthulea taxa could suggest that tpmet may have
been co-transferred in cluster with NAP genes also from Stramenopiles to Opisthokonta. If so, we
could expect the phylogeny and the distribution of tpmet to resemble that of hNAPc and the
corresponding genes. While the inferred tree is poorly informative given the low nodal support values
(Supplementary Fig 20), the distribution of tpmet shows similarities with the distribution of hNAPc. In
particular, we found tpmet in ~93% of taxa encoding NAD(P)H-nir, the defining gene of the cluster
(see the previous Results section). However, only ~55% of the taxa with tpmet have NAD(P)H-nir.
Interestingly, almost all the ~45% of taxa with tpmet that do not have NAD(P)H-nir correspond to
Opisthokonta lineages without NAP genes, such as Nucleariidae, Choanoflagellata as well as many
ichthyosporeans (Supplementary Fig 21). Thus, if tpmet emerged in Opisthokonta through a tpmet-
hNAPCc transfer, its presence in these early lineages would reinforce the single transfer scenario to
a common ancestor of Opisthokonta from Stramenopiles, being NAP genes secondarily lost in those
taxa. Moreover, the presence of tpmet-hNAPc in C. limacisporum (Corallochytrea, Teretosporea)
and C. fragrantissima (Ichthyosporea, Teretosporea) favors a vertical inheritance of tpmet-hNAPc in
Corallochytrea and Ichthyosporea from a common teretosporean ancestor rather than a horizontal
origin of the ichthyosporean NAP genes from Oomycota; given that tpmet is not clustered with NAP
genes in any Oomycota genome. Overall, among all the proposed scenarios, we propose H3 as the
most parsimonious given the phylogenetic signal of NAPs and the distributions of tpmet and tpmet-

hNAPc (see all the scenarios evaluated in Supplementary Fig 15).
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A novel chimeric nitrate reductase in ichthyosporean NAP clusters

In C. fragrantissima and S. arctica, rather than the canonical nitrate reductase, we identified a gene
clustered with nrt2 and NAD(P)H-nir that has a chimeric domain architecture consisting of (i) the first
three Pfam domains of the EUKNR in the N-terminal region; and (ii) the first two Pfam domains of
the NAD(P)H-NIR in the C-terminal region (Fig 6A). A domain architecture analysis of proteins from
euk_db and prok_db (see Materials and methods section) showed this unexpected domain
architecture to be restricted to these two ichthyosporeans. Phylogenetic analyses showed that the
region containing the Oxidoreductase molybdopterin binding, Mo-co oxidoreductase dimerisation
and Cytochrome b5-like Heme/Steroid binding Pfam domains correspond to the EUKNR family (Fig
5 and Supplementary Fig 18), and includes the nitrate reducing module characteristic of this nitrate
reductase [46]. In contrast, the C-terminal region, corresponding to the Pfam domains Pyridine
nucleotide-disulphide oxidoreductase and BFD-like [2Fe-2S] binding domain, branched within the
NAD(P)H-NIR clade in a tree including all the eukaryotic and prokaryotic proteins containing this pair
of domains (Fig 6B and Supplementary Fig 22). In that tree, the two sequences branched as sister-
group to C. fragrantissima and S. arctica NAD(P)H-NIR proteins. Therefore, we propose that this
chimeric gene originated after the replacement of the canonical C-terminal EUKNR region by the N-
terminal region of the NAD(P)H-NIR in a common ancestor of these two ichthyosporeans (hereafter
we refer to this gene as C. fragrantissima and S. arctica putative nitrate reductase, abbreviated as
CS-pNR). This event should have occurred after the HGT event involving Ichthyosporea and
Oomycota, since the nitrate reductase found in Oomycota does comprise the canonical domain

architecture of EUKNR (Fig 6A).

S. arctica has a NAP cluster functional for nitrate assimilation

We sought for experimental evidence of nitrate assimilation in S. arctica, as a representative of an
ichthyosporean NAP cluster including the putative uncharacterized nitrate reductase (CS-pNR). We
developed a minimal growth medium in which the nitrogen source (N source) can be controlled

(‘modified L1 medium — mL1’, see Materials and methods). We then tested growth of S. arctica in
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mL1 minimal medium with different N sources (Fig 7A). In all the minimal medium conditions (mL1
+ different N sources), cells were smaller than in Marine Broth, used as the positive control. We
observed a slight growth in the negative control (‘mL1’) after 168 hours, which we hypothesize can
be due to the use of cell reserves, or the utilization of vitamins from the medium as N source. We
detected a clearly stronger growth in mL1 supplemented with either NaNOs, (NH4).SO4 or urea,
compared to mL1 without any N source. The growth observed in mL1 + NaNOs shows that S. arctica

is able to assimilate nitrate.

The finding that S. arctica can grow using nitrate as the sole N source implies that this organism
must have a nitrate reductase activity, and the CS-pNR is indeed a strong candidate to carry out this
enzymatic activity, in line with the bioinformatics evidence (Fig 6). In general, NAP genes from
different eukaryotic species had been shown to be co-regulated in response to environmental N
sources [19,47-50]. Hence, a co-regulated expression of CS-pnr with nrt2 and NAD(P)H-nir would
be consistent with their proposed role in nitrate assimilation. We thus measured the levels of
expression of the three genes in S. arctica, in the presence of different N sources (Fig 7B). The three
S. arctica genes were up-regulated either in mL1 without any N source as well as in mL1 + NaNOs.
In contrast, we observed that the three genes were poorly expressed in mL1 + (NH4)2.SO4 and in
mL1 + urea. These results show that the cluster is functional in S. arctica and also that its expression

is regulated in response to different N sources.
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Discussion

Nitrate assimilation is restricted to autotrophs and fungal-like osmotrophs

Our screening of NAP genes provides an updated and comprehensive picture of the distribution of
the nitrate assimilation pathway in eukaryotes (Fig 2). Besides the taxa included in previous studies
[14,51], we describe the presence of the complete pathway in Haptophyta, Cryptophyta,
Chlorarachniophyta, Myzozoa, Labyrinthulea and Teretosporea (Supplementary Fig 1). While all
autotrophs analyzed have NAP genes, this is not the case for heterotrophs, where we only found
NAP genes in taxa from those groups that have convergently evolved into a fungus-like osmotrophic
lifestyle [21], that is Fungi, Ichthyosporea, Oomycota and Labyrinthulea (Fig 2 and Supplementary
Fig 2). The absence of this pathway in phagotrophs is probably due to the fact that this nutrient
acquisition strategy provides access to organic nitrogen sources, whose incorporation is
energetically less demanding than nitrate. Thus, NAP genes would be less likely to be acquired and
more prone to be lost in phagotrophic lineages, as presumably occurred with genes involved in the

synthesis of certain amino acids [52].

HGT and the evolutionary history of NAPs in eukaryotes

The patchy distribution of this metabolic pathway (Fig 2) and the large number of non-vertical
relations observed in our phylogenies (Fig 5) are not consistent with an exclusive scenario of vertical
transmission and gene loss. We consider that some of the unexpected topologies found represent
indeed bona fide gene transfers, because we consistently recovered them in more than one NAP
phylogeny and/or because they fit with endosymbiotic events proposed for the acquisition of complex
plastids [10,37]. Here we detail our proposed evolutionary scenario to account for the distribution

and the phylogenetic signal of NAPs (Fig 8):

(1) Three of the four NAP genes originated in eukaryotes through independent transfers from
Bacteria. The nitrite reductases NAD(P)H-nir and Fd-nir were most likely transferred from

Planctomycetes and Cyanobacteria (Fig 3), respectively; with Fd-nir showing signatures of a plastidic
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origin (Supplementary Fig 3) if, as proposed, this organelle originated from an early-cyanobacterial
lineage [25,53]. The particular bacterial donor of the nitrate transporter nrt2 remains unclear (Fig 3).
The nitrate reductase euknr originated through the fusion of three eukaryotic genes: a sulfite oxidase,
a Cyt-b5 monodomain and a FAD/NAD reductase (Fig 4). Furthermore, we hypothesize that the
pathway, including nrt2, Fd-nir and euknr, was established in an early-Archaeplastida ancestor, as
discussed below. First, the three pathway activities most likely originated in the same eukaryotic
ancestor. If this is the case, and the plastidic nitrite reductase Fd-NIR, and not NAD(P)H-NIR, was
present in the original nitrate assimilation toolkit, this would imply an Archaeplastida origin of the
pathway, given that it is well established that plastids originated in this group. The phylogenies of
Fd-NIR and NRT2 are consistent with this hypothesis, as they show Archaeplastida sequences in
the earliest branches within eukaryotes (Fig 5). The fact that the same topology is not observed in
the EUKNR tree does not contradict our argument, since the EUKNR tree showed low statistical
nodal support (Supplementary Fig 18). The alternative NAD(P)H-nir-early scenario, while still
possible, is less parsimonious because it disagrees with the NRT2 phylogeny and requires of

additional secondary losses of this gene.

(2) We propose that NAP genes were transferred from Archaeplastida to other eukaryotic groups
during the endosymbiotic events that led to the origin of complex plastids, as it has been shown for
numerous genes not necessarily related to plastidic functions [10]. Consistent with this, our
phylogenies suggest multiple NAP transfers between algal lineages (Fig 8), with sequences from the
complex plastid algal groups branching as sister-groups to the early-branching Archaeplastida
sequences in the Fd-NIR and NRT2 trees (Fig 5). For some transfers, the donor and the receptor
lineages coincide with proposed endosymbiotic events. This is the case of euknr from Chlorophyta
to Chlorarachniophyta [20], Fd-nir from Ochrophyta to Haptophyta [30] and nrt2 from Rhodophyta to
Cryptophyta and to SAR [20]. Even though we also found some unexpected transfers between algal
lineages, we also consider them as potential endosymbiotic gene transfers. The reason is that the
origin of complex plastids is not clearly elucidated, partly due to the heterogeneous phylogenetic

signal shown by the plastid proteomes [37]. Based on this heterogeneity, the target-ratchet model
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proposes that complex plastids resulted from a long-term serial association with different transient
endosymbionts, all of which could have contributed in shaping the proteome of the host lineage [20].
Consistent with this model, we found NAP genes in Haptophyta and Chlorarachniophyta that would

have been transferred from different potential algal endosymbionts (Fig 8).

(3) From the gene distribution and the phylogenies (Fig 5), we parsimoniously propose that
NAD(P)H-nir was transferred from Planctomycetes to a common ancestor of Alveolata and
Stramenopiles. The advent of this cytoplasmic nitrite reductase would have resulted in a eukaryotic
nitrate assimilation pathway independent from Fd-NIR, and hence independent of the chloroplast.
We found NAP sequences from distinct osmotrophic lineages from Stramenopiles and Opisthokonta
branching together in the trees (Fig 5), strongly suggesting HGT events involving these groups.
Based in these phylogenies (Fig 5) but also in an analysis of the distribution and the gene
composition of the clusters (Figs 2 and 6), we parsimoniously propose a first transfer of a NAP cluster
from an ancestral stramenopiles (probably from Labyrinthulea) to a common opisthokont ancestor;
and a second transfer of a cluster from Ichthyosporea (Teretosporea) to Oomycota (Stramenopiles)
(see H3 and all the scenarios evaluated in Supplementary Fig 15). NAP genes would had been
subsequently lost in multiple opisthokonts, mostly in phagotrophs but also in some ichthyosporean
and fungal groups (Fig 8). Interestingly, the role of HGT in shaping the gene toolkits for osmotrophic
functions is well documented in Oomycota and Fungi [12,54]. Our finding of HGT events involving
taxa from these two groups but also from Teretosporea and Labyrinthulea extends the scope and
potential importance of this mechanism in the acquisition of metabolic features associated to an

osmotrophic lifestyle [21].

The hypothetical scenario that we propose for the origin of nitrate assimilation in Opisthokonta
disagrees with previous results from Slot and Hibbet [14]. They recovered Oomycota as sister-group
to Fungi, while in our trees with an updated taxon-richer dataset, Oomycota branches as sister-group
to Ichthyosporea within the Opisthokonta + Stramenopiles clade (Fig 5). To evaluate whether the

discrepancies with previous studies are the result of differences in the taxon sampling, we
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constructed trees excluding all Teretosporea and Labyrinthulea sequences. In agreement with the
results of Slot and Hibbet, we then recovered the Oomycota sequences branching as sister-group
to Fungi in the NRT2 and NAD(P)H-NIR phylogenies (Supplementary Figs 23 and 24, respectively).
To be compatible with the molecular clock data [40] and the phylogenetic signal (Fig 5), an Oomycota
origin of all NAP genes in Opisthokonta would require multiple transfers from this lineage, and hence
it is poorly parsimonious (see H6 in Supplementary Fig 15). Instead, in agreement with the H3
scenario, we propose that in the results of Slot and Hibbet, Oomycota (Stramenopiles) appeared
more related to Fungi (Opisthokonta) than to Ochrophyta (Stramenopiles) because Oomycota
received the NAP genes from Opisthokonta, in particular from Ichthyosporea. Notwithstanding, the
support for the proposed scenario is susceptible to change with the addition of further taxa, given

the dependence of HGT inference to the taxon sampling used [7].

HGT of NAPs could be favored by the metabolic, genomic and ecological

landscapes

While HGT in eukaryotes has been the subject of controversy, there is an increasing number of gene
families where HGT has been shown to play a role [11,55,56]. The results presented here show the
evolutionary history of the nitrate assimilation pathway as a striking example of the importance that
gene transfer between eukaryotes may have in the evolution of a certain metabolic pathway. Among
the transfers proposed by the most parsimonious scenario (Fig 8), we consider at least the following
ones as bona fide transfers because of being well supported by the data (see Results section): 1) At
least one transfer of a NAP cluster from an ancestral stramenopiles to Opisthokonta; 2) a NAP cluster
transfer from Ichthyosporea to Oomycota or vice versa (although the first is more parsimonious); 3)
a nrt2 transfer between Haptophyta and Chlorophyta; 4 and 5) a Fd-nir transfer from primary algae
to SAR, and from Ochrophyta to Haptophyta; 6) a euknr transfer from Chlorophyta to
Chlorarachniophyta; and 7) a transfer of a euknr paralogue of unknown function from Fungi to a

lineage leading to A. castellanii.
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We argue that NAP genes may be particularly prone to be successfully transferred. On a metabolic
level, pathways downstream to nitrate assimilation and the enzymes involved in the synthesis of the
molybdenum cofactor (required for the activity of a number of enzymes, EUKNR included) are
widespread in eukaryotes [46,52,57]. This would facilitate the functional coupling of the newly
transferred pathway to the metabolic network. On a genomic level, NAP genes are frequently
organized in gene clusters in eukaryotic genomes (Fig 2). This would allow the acquisition of the
whole pathway in a single HGT event [58], which is also more likely to be positively selected than
separate transfers of individual components of the pathway. Moreover, the presence of the whole
pathway in the same genomic region could also favor the evolution of a co-regulated transcriptional
control after the HGT acquisition [59]. There are various reported examples of other metabolic gene
clusters transferred between eukaryotes [60]. On an ecological level, nitrate concentrations have
been fluctuating in the course of evolutionary history [61], and are still highly dependent on regional
and seasonal changes [16]. Thus, in some circumstances NAP genes could be dispensable while in
other circumstances their acquisition through HGT would be favored. This dynamic evolutionary
fitness could imply that even one given eukaryotic lineage could have acquired and lost the faculty

of nitrate assimilation more than once in the course of its evolution.

Nitrate assimilation in Ichthyosporea: a putative novel nitrate reductase

The presence of NAP genes in Ichthyosporea, described as animal symbionts or parasites [41] and
phylogenetically related to Metazoa [32], was not previously reported. In the NAP clusters of C.
fragrantissima and S. arctica, we found a putative nitrate reductase gene that probably originated in
the common ancestor of these two ichthyosporeans (CS-pnr) from the fusion of the N-terminal region
of the EUKNR with the C-terminal region of the NAD(P)H-NIR (Fig 6). The presence of the nitrate
reducing module characteristic of EUKNR [46] strongly suggests the clustered CS-pNR is a
functional nitrate reductase. The growth on nitrate as sole nitrogen source of S. arctica (mL1 +
NaNOs, Fig 7A), in the absence of any other candidate enzyme in the genome, constitutes almost
definitive proof for this function. This is further supported for by the strong transcriptional co-

regulation of CS-pnr with nrt2 and NAD(P)H-nir in response to the availability of different nitrogen
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sources. In particular, these genes are poorly expressed on easily assimilable nitrogen sources (urea
and ammonium) and highly expressed in nitrogen-free medium as well as in the presence of nitrate

(Fig 7B).

The results from the RT-gPCR experiments can be most easily rationalized by a straight-forward
repression process. However, specific induction by nitrate cannot be excluded. In the nicotinate
assimilation pathway of A. nidulans, we see both specific induction and high expression under
nitrogen starvation conditions, mediated by the same transcription factor [62]. It is possible that in
this latter instance the intracellular inducer is generated by degradation of intracellular metabolites.
Similarly, in the absence of any added nitrogen source, a high affinity nitrate transporter may
scavenge residual nitrate present in the nitrate-free culture medium, as it has been specifically shown
for A. nidulans [63], Hansenula polymorpha [64] and C. reinhardii [65]. In agreement with this,
RNAseq data show that in A. nidulans, an organism where the nitrate-responsive transcription factor
has been thoroughly studied [63], nitrate starvation results in high expression of the three genes in

the NAP cluster [66].

The transcriptional regulation of NAPs has been characterized in land plants [47], Chlorophyta [19],
Rhodophyta [48], Fungi [49,50]; and now also in the ichthyosporean S. arctica (Fig 7). The
independent origins of NAP genes in some of these groups (Fig 8), together with the shown lineage-
specific differences at the regulatory elements [19,67—69] suggests that natural selection promoted
the evolution of analogous regulatory responses, favoring the integration of this pathway into the

metabolic landscape after its acquisition through HGT.
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Materials and methods

Phylogenetic screening of NAPs

An updated database of 174 eukaryotic proteomes (euk db) was constructed (January 2017), using
predicted protein sequences from publicly available genomic or transcriptomic projects [70-72]. The
complete list of species, with the corresponding abbreviations, is available in Supplementary Table
1. All supplementary tables are in Supplementary File 2; supplementary files are accessible in

https://figshare.com/s/d11b23d7928009e2d508). The phylogenetic relationships between all the

sampled eukaryotes were constructed from recent bibliographical references (James et al., 2006;
Ruhfel et al., 2014; Derelle et al., 2015; Sierra et al., 2015; Kurtzman et al., 2015; Derelle et al.,
2016; He et al., 2016; JanousSkovec et al., 2017; Kang et al., 2017; Mccarthy and Fitzpatrick, 2017;
Mufioz-Gomez et al., 2017; Brown et al., 2018). Protein domain architectures from all euk_db
sequences were obtained with PfamScan (a Hidden Markov Model [HMM] search-based tool) using
Pfam A version 29 [85]. A database of prokaryotic protein sequences (prok_db) was constructed
from Uniprot bacterial and archaeal reference proteomes (Release 2016 _02) [72] with the aim of
detecting potential prokaryotic contamination in euk_db as well as to investigate the prokaryotic

origins of eukaryotic NAP genes.

For each NAP, we followed a multi-step procedure in order to maximize both sensitivity and
specificity in the orthology assignation process (see Supplementary File 1 for detailed information
about the particular strategy followed for each NAP). The overall strategy consisted first in identifying
potential NAP family members in euk_db with BLAST (version 2.3.0+) [86] and HMMER (version
3.1b1) [87]. For BLASTP searches, we queried the databases using the NAP sequences from
Chlamydomonas reinhardtii and A. nidulans [18], downloaded from Phytozome 11 [88] and NCBI
protein databases [70], respectively [BLASTP: -evalue le-5, only non-default software parameters
specified]. For HMMER searches [hmmsearch], we used the HMM Pfam domains MFS_1 for NRT2,
Oxidored_molyb and Mo-co_dimer for EUKNR, and NIR_SIR for NAD(P)H-NIR and Fd-NIR. The

candidate sequences retrieved from the BLASTP and hmmsearch analyses were submitted to cdhit
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(version 4.6) [89] [-c 0.99] to remove repeated/very recent paralogues (i.e. redundant sequences).
We used the non-redundant candidate sequences to detect potential prokaryotic homologues in
prok_db [-evalue 1e-5], to use them as outgroups to eukaryotic sequences and/or to detect potential
euk_db contaminant sequences during the phylogenetic analyses. The non-redundant candidate
sequences and the captured prokaryotic homologs were submitted to an iterative process in which
we recursively performed phylogenetic inferences with the sequences non-discarded in the previous
steps until we reached a set of bona fide NAP family members. The criteria to discard sequences in
each step was mainly phylogenetic, but also assisted with functional information of each candidate
sequence, predicted from their Pfam domain architecture and from their best-scoring BLASTP hit [-
evalue le-3] against the SwissProt database [72] (downloaded on July 2016). Those potential
eukaryotic NAPs that branched separately from other eukaryotic sequences within a prokaryotic
clade in the phylogenies were considered as contaminants if they correspond to a euk_db proteome
generated from transcriptomic data obtained from cultures with bacterial contamination, or if they are
encoded in potentially contaminant genomic scaffolds. Previous to all phylogenetic inferences,
sequences were aligned with MAFFT (version v7.123b) [90] [mafft-einsi] and alignments were
trimmed with trimAl (version v1.4.revl5) [91] using the -gappyout option. Maximum likelihood
phylogenetic inference was done using RAXML (version 8.2.4) [92] with rapid bootstrap analysis (100

replicates) and using the best model according to BIC criteria in ProtTest analyses (version 3.2) [93].

In Supplementary Table 1, for each species, the columns corresponding to NAPs are colored in blue
when at least 1 bona fide member has been identified. They are colored in light brown when all
members identified are likely to correspond to bacterial contamination, and in red when no NAPs

were identified.

Re-annotation of NAPs using TBLASTN
For those eukaryotes in which we detected an incomplete presence of the pathway (i.e. having only
genes coding for some but not the three required steps, see Fig 1), we performed additional searches

in the genomic sequences of the corresponding organism using the reference NAP protein
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sequences [TBLASTN: -evalue 1e-5]. This additional search allowed us to re-annotate two putative
NAPs absent from euk_db (Fd-NIR in Aureococcus anophagefferens and NRT2 in Ostreococcus

tauri) that were later incorporated in the phylogenies.

We also searched for potentially transferred prokaryotic nitrate and nitrite reductases, whose
presence would suggest a replacement of their eukaryotic counterparts. While a putative ‘Copper
containing nitrite reductase’ was found in the amoebozoan Acanthamoeba castellanii, we considered
this sequence as an uncharacterized copper oxidase not necessarily involved in nitrite reduction.
We were based in the fact that (1) the most similar sequences in euk_db and prok_db correspond
to few distantly related eukaryotes without any NAPs or with already the complete eukaryotic
pathway predicted such as C. reinhardtii and (2) the absence of the characteristic InterPro Nitrite

reductase, copper-type signature.

Correlation between NAPs distribution and feeding strategies

We constructed phylogenetic profiles for each NAP gene family: vectors with presence/absence
information (coded in “1” or “0”, respectively), with every position of the vectors corresponding to a
certain species sampled in our euk_db dataset. These vectors were then used to quantify the
correlation between the distributions of the different NAPs by computing the inverse of the Hamming
distance between each pair of phylogenetic profiles. We also quantified the correlation between the
distribution of the different NAPs and the distribution of the different nutrient acquisition strategies in
eukaryotes. For that, we classified eukaryotes into ‘Autotrophs/Mixotrophs’ (i.e. strictly and
facultative autotrophs) and ‘Non-autotrophs’. ‘Non-autotrophs’ (i.e. strictly heterotrophs) were further
subclassified into ‘Phagotrophs’, ‘Fungal-like osmotrophs’ and ‘Others’ (Supplementary Table 1).
The category ‘Phagotrophs’ include all heterotrophs that feed by phagotrophy. The category ‘Fungal-
like osmotrophs’ include all heterotrophs that belong to eukaryotic groups with cellular and
physiological features characteristic of a fungal-like osmotrophic lifestyle [21]. These include Fungi,

Teretosporea, Oomycota and Labyrinthulea. The category ‘Others’ include all the heterotrophs not
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classified in any of these categories, all of them belonging to eukaryotic groups with a parasitic

lifestyle.

Evolution of NAP genes

We used the bona fide eukaryotic NAP sequences identified to reconstruct the evolutionary history
of the NAP gene families in eukaryotes. We excluded all the sequences with less than half of the
median length of the corresponding NAP family in order to remove fragmented sequences that could
mislead the alignment and the phylogenetic inference processes. Sequences were aligned and
trimmed with MAFFT [mafft-einsi] and trimAl [-gappyout]. For the phylogenies, we used IQ-TREE
(version 1.5.3) [94] instead of RAXML given that an approximately unbiased (AU) test can be
performed in IQ-TREE [27]. AU test was used to evaluate whether the robustness of those branches
indicating potential gene transfer events are significantly higher than other alternative topologies
(10000 replicates; see all the alternative topologies tested and AU test results in Supplementary
Table 3). Trees representing the alternatives topologies were constructed also with IQ-TREE, using
the same alignments and evolutionary models and constraining the topologies with Newick guide
tree files [-g option]. For bootstrap support assessment, we used the ultrafast bootstrap option (1000
replicates) because was shown to be faster and less biased than standard methods [95,96]. For

model selection, we used ModelFinder, already implemented in IQ-TREE [97].

Moreover, and given that some eukaryotic groups were poorly represented due to the lack of
genomic data, we constructed additional NAP trees incorporating orthologues from the Marine
Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) dataset [28]. We queried the
reference NAP protein sequences against all the MMETSP transcriptomes [BLASTP: -evalue le-3].
MMETSP NAP orthologues were identified from the aligned sequences by means of Reciprocal Best

Hits (RBH) [98] and best-scoring BLASTP hit against SwissProt database [-evalue 1e-3].

Comprehensive screening of NAPs in prokaryotes
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We used the bona fide eukaryotic NAP sequences to capture potential prokaryotic orthologues of
nrt2, NAD(P)H-nir and Fd-nir. First, we queried those sequences against prok_db with BLASTP [-
max_target_seqgs 100, -evalue 1e-5]. Protein domain architectures were annotated with PfamScan,
and those with clearly divergent architectures were discarded. The remaining prokaryotic sequences
were aligned with eukaryotic NAPs using MAFFT [mafft-einsi]. The alignments were trimmed with
trimAl [-gappyout] and the phylogenetic inferences were done with 1Q-TREE [ultrafast bootstrap 1000
replicates, best model selected with ModelFinder]. Prokaryotic sequences were taxonomically
characterized by aligning them against a local NCBI nr protein database (downloaded on November
2016), and only hits with more than 99% of identity and query coverage were considered [BLASTP:

-task blastp-fast].

To ensure that the taxonomic representation of prok_db allow to detect signatures of genes likely to
have been transferred from Alphaproteobacteria and Cyanobacteria (the putative donors of the
mitochondria and the plastid, respectively [99]), we constructed control phylogenies using in each
case two genes with a known plastidic (‘Photosystem Il subunit I’ and ‘ribosomal protein L1’ [24])
(Supplementary Figs 4 and 5, respectively) and mitochondrial origin (‘Cytochrome c oxidase subunit
III" and ‘Cytochrome b’ [100]) (Supplementary Figs 25 and 26, respectively). For the mitochondrial
and plastid control genes, the eukaryotic sequences used to query prok_db were retrieved from a
subset of proteomes from plastid-bearing eukaryotes. For the detection of potential orthologues in
prok_db, alignment and phylogenetic inference; we used the same procedure, software and

parameters than with the NAP trees (see above).

Construction of sequence similarity networks

Sequence similarity network of full length EUKNR

The EUKNR protein sequences were aligned against a database including euk_db and prok_db
[BLASTP: -max_target_seqs 10000, -evalue le-3]. Aligned sequences were concatenated with the
EUKNR and redundant sequences were removed with cdhit before being aligned all-against-all with

BLASTP [-max_target_seqs 10000, -evalue le-3]. We used Cytoscape (version v.321) [89] to
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construct a sequence similarity network from BLAST results, represented using the organic layout
option. In the network, each aligned protein correspond to a node. Nodes are connected through
edges if the corresponding sequences aligned with a lower E-value than the threshold value. A
relaxed E-value threshold would lead to an over-connected network, with edges connecting very
divergent proteins. On the other hand, a strong threshold would lead to an under-connected network,
having only connections between strongly similar proteins. After exploring different thresholds, we
chose an E-value of 1e-82 because it allows to represent only the most similar protein families to the
N-terminal and C-terminal regions of EUKNR. We performed as well the following modifications in
order to remove redundant and non-informative connections and to facilitate the analysis and
interpretation of the network: (i) we removed self-loops and duplicate edges; (ii) we removed those
nodes that were not connected to the EUKNR cluster or that were connected with a distance of more
than two nodes; (iii) non-EUKNR sequence names were modified to include information of their
protein domain architectures [PfamScan]; (iv) we removed nodes and edges corresponding to
proteins with strong evidence of corresponding to miss-predicted proteins (e.g. spurious domain
architectures). Nodes representing proteins that only connected with miss-predicted sequences
were also removed (information about the list of proteins, their domain architecture and the particular

reasons for their exclusion is available in Supplementary Table 2).

To validate whether EUKNR are more phylogenetically related to non-Cyt-b5 sulfite oxidases than
to Cyt-b5 sulfite oxidases (see the corresponding Results section), we constructed a phylogenetic
tree with the identified EUKNR sequences and the sulfite oxidases detected during the network
construction process. MAFFT [mafft-einsi], trimAl [-gappyout] and 1Q-TREE [ultrafast bootstrap 1000

replicates, best model selected with ModelFinder] were used for phylogenetic inference.

Sequence similarity network of EUKNR Cyt-b5 domain
The regions of the A. nidulans and C. reinhardtii EUKNR corresponding to the Cyt-b5 Pfam domain
were aligned against a database including euk_db and prok_db [BLASTP: -max_target_seqs 10000,

-evalue le-3]. Non-redundant and non-EUKNR sequences were concatenated with the two EUKNR
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Cyt-b5 sequences and an all-against-all alignment was performed [BLASTP: -max_target_seqs
10000, -evalue 1e-3]. Sequence names were modified to include information of their protein Pfam
domain architectures [PfamScan]. A sequence similarity network was constructed with Cytoscape
and represented with the organic layout option (as with full length EUKNR), removing self-loops and
duplicate edges and using an E-value threshold of 1e-17. We also removed those nodes that were
not connected to A. nidulans or C. reinhardtii EUKNR Cyt-b5 regions or that were connected with a

distance of more than two nodes.

Detection of NAP clusters

For the detection of clusters of NAP genes, we scanned the genomes of those sampled eukaryotes
with more than 1 NAP gene identified. We aligned the NAPs of each organism against the
corresponding genomes using TBLASTN [-evalue 1le-3]. The genomic location of each NAP was
annotated based on the TBLASTN hit with the highest score. Then, we looked for genomic fragments
with more than 1 NAP genes annotated, and the genes were considered to be in a cluster when they
were proximally located in that fragment. In the case of Corallochytrium limacisporum, the two NAP
genes detected were found in terminal positions of two separate fragments of the genome assembly
(nrt2 in scaffold99_|en85036_cov0 and NAD(P)H-nir in scaffold79_len158446_cov0). To figure out
whether these two genes are in different scaffolds because of an assembly artifact, we designed
primers directed to the terminal regions of both fragments (ClimH_R73C and ClimH_F72C, see all
the primers used in this work in Supplementary Table 4). These primers were used to check, by
PCR, whether the two scaffolds are contiguous on the same chromosome. We obtained a PCR
fragment of ~500 bp that was cloned into pCR2.1 vector (Invitrogen) and Sanger sequenced. BLAST
analysis of the sequenced products (available in Supplementary Table 4) showed the presence of
regions from both scaffolds in the extremes of the PCR fragment, confirming that nrt2 and NAD(P)H-

nir are clustered in this species.

Furthermore, we investigated the genomic regions flanking the clusters of C. fragrantissima, S.

arctica, C. limacisporum, Phytophthora infestans and A. kerguelense in order to find additional genes
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in the NAP clusters of Opisthokonta and SAR. Because we found a TP_methylase Pfam domain
protein (TP_methylase) clustered with NAP genes in three of these genomes, we scanned the
remaining SAR and Opisthokonta for the presence of additional clusters of NAP genes with a
TP_methylase. To do that, we retrieved all the TP_methylase of each organism and aligned them
against the corresponding genome [TBLASTN: -evalue le-3]. As with NAP genes, the genomic

location of each TP_methylase was annotated considering the BLAST hit with the highest score.

Phylogenetic analyses of tetrapyrrole methylase proteins

All the TP_methylase in euk_db were retrieved and used to detect similar sequences in prok_db
[BLASTP: 1e-3]. Among the aligned sequences from prok_db, only those with a detected
TP_methylase Pfam domain were kept [PfamScan]. TP_methylase sequences from euk db and
prok_db were aligned with MAFFT and trimmed with trimAl [-gappyout]. Because there were >1000
sequences in the alignment, we used FastTreeMP (version 2.1.9) [101] for the construction of the
phylogenetic tree instead of IQ-TREE. We kept for further analyses the sequences in the blue clade
because it included the three TP_methylase proteins found in cluster with NAP genes (sequences
pointed by arrows in Supplementary Fig 19). Because in that blue clade eukaryotic sequences were
monophyletic and branched within a bacterial clade, we considered all the eukaryotic sequences of
this clade as a particular eukaryotic TP_methylase protein family (TPmet). We used all TPmet
sequences to capture potential prokaryotic homologs of this specific family in prok_db [BLASTP: -
evalue 1le-3], which were incorporated to TPmet sequences for a second phylogenetic tree
(Supplementary Fig 27). To that end, sequences were aligned with MAFFT [mafft-einsi], trimmed
with trimAl [-gappyout], and the tree was inferred with 1Q-TREE [ultrafast bootstrap 1000 replicates,
best model selected with ModelFinder]. To get a higher phylogenetic resolution of TPmet and their
prokaryotic relatives, a third and last phylogenetic inference (Supplementary Fig 20) was done with
sequences labeled in blue in Supplementary Fig 27 (for phylogenetic inference, we used the same

procedure as for the second tree).
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We also constructed a Venn diagram to evaluate the coincidence between the phylogenetic
distributions of TPmet and NAD(P)H-nir families along eukaryotes. In this analysis, we excluded the
TPmet sequence belonging to N. vectensis (Nvec XP_001617771) because it is located in a
genomic fragment (NW_001825282.1) that most likely represents a contaminant scaffold. In
particular, the phylogenetic tree revealed that this protein is identical to a region of the TPmet found
in the choanoflagellate Monosiga brevicollis (Mbre_XP_001745780). We found that this M.
brevicollis protein, as well as the TPmet protein found for the choanoflagellate Salpingoeca rosetta
(Sros_PTSG_11107), are encoded in large genomic fragments (1259938 bp in the case of M.
brevicollis), while the N. vectensis protein is found in a small genomic fragment (1325 bp). Moreover,
this N. vectensis fragment entirely aligned without mismatches with the M. brevicollis fragment
(CH991551, between the 280127-281451 positions), indicating that this most likely represents a

contamination from the M. brevicollis genome.

Phylogenetic analyses of the C-terminal region of CS-pNR

Sequences from euk_db and prok_db as well as from MMETSP and Microbial Dark Matter database
(MDM_db) [102] (downloaded in January 2017) were scanned for the co-presence Pyr_redox_2 and
Fer2_BFD Pfam domains [hmmsearch]. Sequences with these pair of domains were retrieved and
aligned with MAFFT [mafft-einsi]. We only kept the region of the alignment that correspond to
Pyr_redox_2 and Fer2_BFD Pfam domains. The alignment was further trimmed with trimAl [-
gappyout], and IQ-TREE was used for the phylogenetic inference [ultrafast bootstrap 1000

replicates, best model selected with ModelFinder].

Cells and growth conditions

S. arctica JP610 was grown axenically at 12 °C in 25 cm? or 75 cm? culture flasks (Corning) filled,
respectively, with 5 mL or 20 mL of Marine Broth (Difco). For nitrogen limitation experiments, cells
were incubated in modified L1 medium (mL1) [103], of the following composition (per liter): 35 g
marine salts (Instant Ocean), 0.1 g dextrose, 5 g NaH,PO4.H,0, 1.17 x 10 M Na,EDTA.2H,0, 1.17

x 10 M FeCls.6H20, 9.09 x 10" M MnCl,.4H0, 8.00 x 108 M ZnS04.7H0, 5.00 x 108 M CoCl,.6H-0,

36


https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

975

980

985

990

995

1000

bioRxiv preprint doi: https://doi.org/10.1101/454272; this version posted October 29, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

1 x 108 M CuS04.5H,0, 8.22 x 108 M Na;M004.2H,0, 1 x 108 M H,SeOs3, 1 x 108 M NiS04.6H,0, 1
X 108 M NazVOs, 1 x 108 M K>CrO4, 2.96 x 108 M thiamine-HCI, 2.05 x 10-° M biotin, 3.69 x 101t M
cyanocobalamin. For nitrogen supplementation experiments, mL1 medium was supplemented with
either 100 mM NaNOs, 100 mM (NH4).SO. or 100 mM urea as nitrogen source, as specified in the
text. Photomicrographies were taken with a Nikon Eclipse TS100 equipped with a DS-L3 camera

control unit (Nikon). Images were processed with imageJ.

RNA isolation, cDNA synthesis and real-time PCR analyses

The expression levels of S. arctica NAP genes in cultures with different nitrogen sources were
analyzed using real-time PCR. S. arctica cells were grown for 10 days in 75 cm? cell culture flasks
(Corning) with 20 mL Marine Broth (Difco). Cells were scraped and collected by centrifugation at
4500 xg for 5 min at 12 °C in 50 mL Falcon tubes (Corning). Supernatant was discarded and pellets
were washed twice by resuspension with 20 mL of mL1 medium to wash out any trace of Marine
Broth. An aliquot of the washed cells was collected as time 0. Cells were finally resuspended in mL1
medium, distributed equally into four 25 cm? culture flasks, and supplemented with different nitrogen
sources. Aliguots were collected at 6, 12 and 24 hours. At each time-point, cells were pelleted in 15
mL Falcon tubes (Corning), supernatant was discarded and the pellets were resuspended in 1 mL
Trizol reagent (Invitrogen) and transferred to 1.5 mL microfuge tubes with safe lock (Eppendorf).
Tubes were subjected to two cycles of freezing in liquid nitrogen and thawing at 50 °C for 5 min.
After this treatment, samples were kept at -20 °C until further processing. To eliminate any trace of
genomic DNA, total RNA was treated with Amplification Grade DNAse | (Roche) and precipitated
with ethanol in the presence of LiCl. The absence of genomic DNA was confirmed using a control
without reverse transcription. A total of 2.5 ug of pure RNA was used for cDNA synthesis using oligo
dT primer and SuperScript Il retrotranscriptase (Invitrogen), following the instructions of the
manufacturer. cDNA was quantified using SYBR Green supermix (Bio-Rad) in an iQ cycler and iQ5
Multi-color detection system (Bio-Rad). Primer sequences are shown in Supplementary Table 4. The
total reaction volume was 20 pL. All reactions were run in duplicate. The program used for

amplification was: (i) 95 °C for 3 min; (ii) 95 °C for 10 s; (iii) 60 °C for 30 s; and (iv) repeat steps (ii)
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and (iii) for 40 cycles. Real-time data was collected through the iQ5 optical system software v. 2.1
(Bio-Rad). Gene expression levels are expressed as number of copies relative to the ribosomal L13

subunit gene, used as housekeeping.
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Figure captions

Fig 1. Proteins involved in the eukaryotic nitrate assimilation pathway (NAPs). The eukaryotic
nitrate assimilation pathway and the downstream proteins necessary for the assimilation of
1275  ammonium. Nitrate transporter NRT2; EUKNR: assimilatory NAD(P)H:nitrate reductase [EC 1.7.1.1-

3]; NAD[P]H-NIR: ferredoxin-independent assimilatory nitrite reductase [EC 1.7.1.4]; Fd-NIR:
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ferredoxin-dependent assimilatory nitrite reductase [EC 1.7.7.1]; GS: glutamine synthetase [EC
6.3.1.2], GOGAT: Glutamine oxoglutarate aminotransferase [1.4.1.14], GDH: Glutamate
dehydrogenase [EC. 1.4.1.2-4]. In this article, we focus on the proteins specifically required for the
incorporation and reduction of nitrate to ammonium (hereafter abbreviated as NAPs, for “Nitrate

Assimilation Proteins”).

Fig 2. Distribution of NAP gene families among 172 sampled eukaryotic genomes. The
evolutionary relationships between the sampled species, represented in a cladogram, were
constructed from recent bibliographical references (see Materials and methods section). Species
names were colored according to the taxonomic groups to which they belong. The presence of each
NAP in each taxon is shown with symbols. Black symbols indicate genes that are found within
genome clusters of NAP genes. For illustration purposes, some clades of species (e.g. Metazoa)
were collapsed into a single terminal leaf. For detailed information about the taxonomic categories
and the NAP profiles and NAP cluster status of each species, see Supplementary Table 1.
Autotrophic and fungal-like osmotrophic lineages are indicated (see panel and see Supplementary

Table 1 for information about the nutrient acquisition strategy of each taxon).

Fig 3. The prokaryotic origins of nrt2, NAD(P)H-nir and Fd-nir shown by phylogenetic
analyses. Schematic representation of the maximum likelihood phylogenetic trees inferred for nrt2,
NAD(P)H-nir and Fd-nir, with the aim of reconstructing the origins of the eukaryotic homologs.
Prokaryotic sequences were taxonomically characterized following NCBI taxonomic categories.
Clades with bacterial sequences belonging to the same taxonomic group were collapsed and colored
as indicated in the panel. Similarly, eukaryotic sequences were classified, collapsed and colored
according to whether they contain or not a plastid/plastid-related organelle. See Supplementary Figs
3, 6 and 7 for the entire representation of phylogenetic trees and Materials and methods section for

details on their reconstruction.

Fig 4. The chimeric origin of euknr shown by sequence-similarity network approach. Graphical
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representation of two pre-processed sequence similarity networks constructed from all-vs-all Blast
hits between eukaryotic and prokaryotic proteins. Sequences were detected using as queries all
eukaryotic EUKNR in (A) and the Cytochrome-b5 (Cyt-b5) regions of Chlamydomonas reinhardtii
and Aspergillus nidulans (reference EUKNR sequences) in (C). See Materials and methods section
for details on the network pre-processing and construction processes. Each node represents a
protein, and each edge represents a Blast hit between two proteins. Proteins were grouped and
colored according to their protein domain architecture and protein family information (see panels). In
(C), we also represented the lowest E-value with which C. reinhardtii aligned with the Cyt-b5
monodomain and the Cyt-b5 multidomain clusters (see Results section). (B) The canonical protein
domain architecture of a full-length eukaryotic EUKNR (Pfam domains), with paired lines indicating
the gene families from which each domain would have originated (see Results section). Bact:
Bacterial. SUOX: sulfite oxidase. Euk: Eukaryotic. Prot: Protein. EUKNR: eukaryotic nitrate
reductase. NADH red: NADH reductase. Cyt-b5: Cytochrome b5-like Heme/Steroid binding Pfam
domain. Crei: Chlamydomonas reinhardtii. Anid: Aspergillus nidulans. Oxidored_molyb:
Oxidoreductase molybdopterin binding Pfam domain. Mo-co_dimer: Mo-co oxidoreductase
dimerization Pfam domain. FAD_binding_6: Ferric reductase NAD binding Pfam domain.

NAD_binding_1: Oxidoreductase NAD-binding Pfam domain.

Fig 5. The evolutionary history of NAPs in eukaryotes. Simplified representation of the maximum
likelihood phylogenetic trees inferred for each NAP (Fd-NIR, NAD[P]H-NIR, NRT2, EUKNR). Some
branches were collapsed into clades that represent higher eukaryotic taxonomic groups. Branches
and clades were colored according to the taxonomic groups to which they belong (see panel). For
illustration purposes, given the overall poor nodal support of the EUKNR tree, we converted the
branches with <90% UFBoot into polytomies using Newick Utilities (Junier et al., 2010) (see the draft

EUKNR tree in Supplementary Fig 18).

Fig 6. NAP clusters in Ichthyosporea and the origins of a putative novel nitrate reductase. (A)

Cluster organization and protein domain architecture of NAP clusters from some holozoan and
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stramenopiles representatives. Within each cluster each box represents a gene, with the arrowhead
indicating its orientation. The Pfam domains predicted for the corresponding protein sequences are
represented inside each box (see panel). (B) Schemes showing a simplified representation of the
maximum likelihood phylogenetic trees inferred for the N-terminal and C-terminal regions of the
putative nitrate reductase identified in Creolimax fragrantissima and Sphaeroforma arctica (CS-pNR,
see Results section). For an entire representation of the phylogenetic trees, see Supplementary Figs
18 and 22 for N-terminal and C-terminal regions, respectively. (C) Schematic representation of the

evolutionary origin of CS-pnr, inferred from the phylogenies shown in (B).

Fig 7. Sphaeroforma arctica culture and qPCR experiments in nitrogen minimal media. (A)
Growth of Sphaeroforma arctica in media with different nitrogen sources (scale bar = 100 ym). (B)
S. arctica NAP genes mRNA levels in mL1, mL1 + NaNOs, mL1 + (NH4).SO4 and mL1 + urea. The
y-axis represents copies per copy of ribosomal L13. Results are expressed as the mean + S.D. of

three independent experiments.

Fig 8. Summary of the HGT events that we propose to have occurred in the evolution of NAP
genes in eukaryotes. Each NAP gene is represented by a specific symbol (same as Fig 2; see
panel). Donor and receptor lineages as well as the NAP genes involved in each transfer are
indicated. Transfers of NAP genes in clusters are represented with the corresponding NAP symbols
surrounded by a square. Branches in red are those where loss of the entire pathway would have
occurred, which were parsimoniously inferred from the reconstructed evolutionary history. Lineages
are colored according to the taxonomic group to which they belong (see panel). For the sake of
simplicity, some species were collapsed into clades representing higher taxonomic categories. For
each species/clade, NAP gene presence/absence (NAP symbols) and their cluster status (symbols
colored in black for those NAPs found in a same gene cluster) are indicated. For those clades in
which not all the represented species have the same NAP content and cluster status (labeled with
*), the most prevalent ones are shown (see Supplementary Table 1 for a complete representation of

the NAP content and cluster status).
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Supplementary files captions

All supplementary files are accessible in https://figshare.com/s/d11b23d7928009e2d508. These

include:
Supplementary File 1. Supplementary methods for the 'Phylogenetic screening of NAPs' section.

Supplementary File 2. Includes all the supplementary tables.

Supplementary figures captions

Supplementary Fig 1. Completeness of the nitrate assimilation pathway in the 172 sampled
eukaryotic genomes. The evolutionary relationships between the sampled species, represented in a
cladogram, were constructed from recent bibliographical references (see Materials and methods
section). Species names were colored according to the taxonomic groups to which they belong. The
presence of each NAP in each taxon is shown with symbols. Black symbols indicate genes that are
found within genome clusters of NAP genes. For illustration purposes, some clades of species (e.g.
Metazoa) were collapsed into a single terminal leaf. For detailed information about the taxonomic
categories and the NAP profiles and NAP cluster status of each species, see Supplementary Table
1. Species are labelled as to whether they include a complete (dark blue circle) or partial pathway
(light blue circle). The presence of the pathway was considered complete when the transporter and
the two reductase activities (i.e. NRT2, EUKNR and at least 1 of the two NIRs) were detected in the

genome.

Supplementary Fig 2. Correlation measures of NAPs distribution. (A) Correlation (from 0 to 1)
between the distributions of the four NAPs in the entire eukaryotic dataset and (B) in eukaryotes
from which at least one NAP was identified. (C) Correlation between the presence of NAPs with the
nutrient acquisition strategies within the entire eukaryotic dataset (from 0 to 1) (see Materials and

methods section).
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Supplementary Fig 3. Maximum likelihood phylogenetic tree inferred from eukaryotic and
prokaryotic Fd-NIR amino acid sequences. The tree was rooted in the branch that separates the
eukaryotic clade from the rest of the tree. Statistical support values (1000-replicates UFBoot) are
shown in all nodes. Prokaryotic sequences were colored according to the corresponding phylum or
class, while eukaryotes were colored according to whether they contain or not a plastid/plastid-

related organelle (see panel).

Supplementary Fig 4. Maximum likelihood phylogenetic tree inferred from eukaryotic and
prokaryotic 'Photosystem Il subunit IlI' amino acid sequences (plastidic protein). Statistical support
values (1000-replicates UFBoot) are shown for all nodes. Prokaryotic sequences were colored
according to the corresponding phylum or class, while eukaryotes were colored according to whether

they contain or not a plastid/plastid-related organelle (see panel).

Supplementary Fig 5. Maximum likelihood phylogenetic tree inferred from eukaryotic and
prokaryotic 'Ribosomal protein L1' amino acid sequences (plastidic protein). Statistical support
values (1000-replicates UFBoot) are shown for all nodes. Non-informative clades were collapsed.
Prokaryotic sequences were colored according to the corresponding phylum or class, while
eukaryotes were colored according to whether they contain or not a plastid/plastid-related organelle

(see panel).

Supplementary Fig 6. Maximum likelihood phylogenetic tree inferred from eukaryotic and
prokaryotic NAD(P)H-NIR amino acid sequences. The tree was rooted in the branch that separates
the eukaryotic clade from the rest of the tree. Statistical support values (1000-replicates UFBoot) are
shown in all nodes. Prokaryotic sequences were colored according to the corresponding phylum or
class, while eukaryotes were colored according to whether they contain or not a plastid/plastid-

related organelle (see panel).
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Supplementary Fig 7. Maximum likelihood phylogenetic tree inferred from eukaryotic and
prokaryotic NRT2 amino acid sequences. The tree was rooted in the branch that separates the
eukaryotic clade from the rest of the tree. Statistical support values (1000-replicates UFBoot) are
shown for all nodes. Prokaryotic sequences were colored according to the corresponding phylum or
class, while eukaryotes were colored according to whether they contain or not a plastid/plastid-

related organelle (see panel).

Supplementary Fig 8. Schematic representation of a maximum likelihood phylogenetic tree
including the identified EUKNR and SUOX sequences. The sulfite oxidases (SUOX) sequences were
detected during the EUKNR sequence-similarity network reconstruction process. The topology
suggests that EUKNR sequences are more related to SUOX without a Cyt-b5 domain, in agreement

with the network results.

Supplementary Fig 9. Maximum likelihood phylogenetic tree inferred from eukaryotic Fd-NIR amino
acid sequences, with some prokaryotic sequences used as outgroup (see Materials and methods
section). The tree was rooted in the branch that separates the eukaryotic clade from the bacterial.
Statistical support values (1000-replicates UFBoot) are shown in all nodes. Eukaryotic sequence
names are abbreviated with the four-letter code (see Supplementary Table 1) and colored according
to their major taxonomic group (see panel). All sequences starting with 'UP-' correspond to

prokaryotic sequences.

Supplementary Fig 10. Maximum likelihood phylogenetic tree inferred from eukaryotic Fd-NIR
amino acid sequences, with some prokaryotic sequences used as outgroup and including sequences
from the MMETSP dataset (see Materials and methods section). The tree was rooted in the branch
that separates the eukaryotic clade from the prokaryotic sequences. Statistical support values (1000-
replicates UFBoot) are shown for all nodes. Eukaryotic sequence names from euk _db are

abbreviated with the four-letter code (see Supplementary Table 1) and colored according to their
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major taxonomic group (see panel). Sequences from MMETSP are colored in black. All sequences

starting with 'UP-' correspond to prokaryotic sequences.

Supplementary Fig 11. Maximum likelihood phylogenetic tree inferred from eukaryotic NAD(P)H-
NIR, with some prokaryotic sequences used as outgroup and excluding Creolimax fragrantissima
and Sphaeroforma arctica sequences. The tree was rooted in the branch that separates the
eukaryotic clade from the bacterial sequences, with nodes. Statistical support values (1000-
replicates UFBoot) are shown for all nodes. Eukaryotic sequence names are abbreviated with the
four-letter code (see Supplementary Table 1) and colored according to their major taxonomic group

(see panel). All sequences starting with 'UP-' correspond to prokaryotic sequences.

Supplementary Fig 12. Maximum likelihood phylogenetic tree inferred from eukaryotic NAD(P)H-
NIR, with some prokaryotic sequences used as outgroup and excluding the sequence from
Phytophthora infestans. The tree was rooted in the branch that separates the eukaryotic clade from
the bacterial sequences, with nodes. Statistical support values (1000-replicates UFBoot) are shown
for all nodes. Eukaryotic sequence names are abbreviated with the four-letter code (see
Supplementary Table 1) and colored according to their major taxonomic group (see panel). All

sequences starting with 'UP-' correspond to prokaryotic sequences.

Supplementary Fig 13. Maximum likelihood phylogenetic tree inferred from eukaryotic NRT2, with
some prokaryotic sequences used as outgroup. The tree was rooted in the branch that separates
the eukaryotic clade from the bacterial sequences. Statistical support values (1000-replicates
UFBoot) are shown in all nodes. Eukaryotic sequence names are abbreviated with the four-letter
code (see Supplementary Table 1) and colored according to their major taxonomic group (see panel).
All sequences starting with 'UP-' correspond to prokaryotic sequences. Nodes with blue circles

correspond to species-specific duplication events.
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Supplementary Fig 14. Maximum likelihood phylogenetic tree inferred from eukaryotic NRT2 amino
acid sequences, with some prokaryotic sequences used as outgroup and including sequences from
the MMETSP dataset (see Materials and methods section). The tree was rooted at the branch that
separates the eukaryotic clade from the bacterial sequences. Statistical support values (1000-
replicates UFBoot) are shown for all nodes. Eukaryotic sequence names from euk_db are
abbreviated with the four-letter code (see Supplementary Table 1) and colored according to their
major taxonomic group (see panel). Sequences from MMETSP are colored in black. All sequences

starting with 'UP-' correspond to prokaryotic sequences.

Supplementary Fig 15. Six hypothetical scenarios evaluated for the origin and evolution of nrt2 and
other genes that were likely co-transferred in cluster between lineages of Stramenopiles and
Opisthokonta. For each scenario, we indicate the branches in which gene transfer, clustering, de-
clustering and gene loss events are proposed to have occurred in the evolution of Alveolata and
Stramenopiles (left panel) and Opisthokonta (right panel). The proposed donors of the transfers are
also indicated. With the exception of Sphaeroforma arctica, Creolimax fragrantissima and
Corallochytrium limacisporum, the other species were grouped and the clades were named
according to (i) the more inclusive taxonomical category of the taxa represented or (ii) with the four-
letter code of the taxa represented (see Supplementary Table 1). For each clade, a symbol of any of
the four inspected genes is represented if we detected them in at least one taxa of that clade.

Similarly, the largest cluster of TPmet + NAP genes found in each clade is indicated.

Supplementary Fig 16. Maximum likelihood phylogenetic tree inferred from eukaryotic NRT2, with
some prokaryotic sequences used as outgroup and excluding Creolimax fragrantissima and
Sphaeroforma arctica sequences. The tree was rooted at the branch that separates the eukaryotic
clade from the bacterial sequences. Statistical support values (1000-replicates UFBoot) are shown
for all nodes. Eukaryotic sequence names are abbreviated with the four-letter code (see

Supplementary Table 1) and colored according to their major taxonomic group (see panel). All
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sequences starting with 'UP-' correspond to prokaryotic sequences.

Supplementary Fig 17. Maximum likelihood phylogenetic tree inferred from eukaryotic NRT2, with
some prokaryotic sequences used as outgroup and excluding sequences from Oomycota. The tree
was rooted at the branch that separates the eukaryotic clade from the bacterial sequences. Statistical
support values (1000-replicates UFBoot) are shown in all nodes. Eukaryotic sequence names are
abbreviated with the four-letter code (see Supplementary Table 1) and colored according to their
major taxonomic group (see panel). All sequences starting with 'UP-' correspond to prokaryotic

sequences.

Supplementary Fig 18. Maximum likelihood phylogenetic tree inferred from eukaryotic EUKNR, with
some sulfite oxidase sequences used as outgroup. The tree was rooted in the branch that separates
the EUKNR clade from the three sulfite oxidase sequences. Statistical support values (1000-
replicates UFBoot) are shown in all nodes. Eukaryotic sequence names are abbreviated with the
four-letter code (see Supplementary Table 1) and colored according to their major taxonomic group

(see panel). All sequences starting with 'UP-' correspond to prokaryotic sequences.

Supplementary Fig 19. Maximum likelihood phylogenetic tree of TP_methylase Pfam domain
proteins from euk_db and prok _db (see Materials and methods section). Eukaryotic sequence
names are abbreviated with the four-letter code (see Supplementary Table 1) and colored according
to their major taxonomic group (see panel). All sequences starting with 'UP-' correspond to
prokaryotic sequences. A second phylogenetic tree (Supplementary Fig 27) was constructed using
sequences from the blue clade (hamed as TPmet proteins, see Materials and methods section). The

three sequences found in cluster with NAP genes are indicated with arrows.

Supplementary Fig 20. Phylogenetic inference of the tetrapyrrole methylase TPmet family.

Maximum likelihood phylogenetic tree of TP_methylase Pfam domain proteins (see Materials and
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methods section), including all the sequences from the blue clades in Supplementary Fig 27. All the
eukaryotic sequences of the tree are considered to belong to a subset of tetrapyrrole methylase
proteins named TPmet family. Eukaryotic sequence names are abbreviated with the four-letter code
(see Supplementary Table 1) and colored according to their major taxonomic group (see panel). All
sequences starting with 'UP-' correspond to prokaryotic sequences. The three sequences found in

cluster with NAP genes are indicated with arrows.

Supplementary Fig 21. Distribution of TPmet in eukaryotes. Venn diagram representing the
quantitative distribution of the sampled eukaryotes (euk_db) recording the presence/absence of the
NAD(P)H-nir and the TPmet genes. A ranking of the taxonomic groups that have at least one

representative species with the TPmet but without the NAD(P)H-nir is also represented.

Supplementary Fig 22. Maximum likelihood phylogenetic tree of the regions of all the euk_db,
prok_db, MMETSP and MDM_db proteins with the Pyr_redox_2 and Fer2_BFD Pfam domains (see
Materials and methods section). Eukaryotic sequence names are abbreviated with the four-letter
code (see Supplementary Table 1) and colored according to their major taxonomic group (see panel).
All sequences starting with 'UP-' correspond to prokaryotic sequences. Sequences from MMETSP
are colored in black. Blue and orange clades represent the sequences corresponding to the

Creolimax fragrantissima and Sphaeroforma arctica EUKNR and NAD(P)H-NIR, respectively.

Supplementary Fig 23. Maximum likelihood phylogenetic tree inferred from eukaryotic NRT2, with
some prokaryotic sequences used as outgroup and excluding sequences from Labyrinthulea and
Teretosporea. The tree was rooted at the branch that separates the eukaryotic clade from the
bacterial sequences. Statistical support values (1000-replicates UFBoot) are shown in all nodes.
Eukaryotic sequence names are abbreviated with the four-letter code (see Supplementary Table 1)
and colored according to their major taxonomic group (see panel). All sequences starting with 'UP-'

correspond to prokaryotic sequences.
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Supplementary Fig 24. Maximum likelihood phylogenetic tree inferred from eukaryotic NAD(P)H-
NIR, with some prokaryotic sequences used as outgroup and excluding sequences from
Labyrinthulea and Teretosporea. The tree was rooted in the branch that separates the eukaryotic
clade from the bacterial sequences, with nodes. Statistical support values (1000-replicates UFBoot)
are shown for all nodes. Eukaryotic sequence names are abbreviated with the four-letter code (see
Supplementary Table 1) and colored according to their major taxonomic group (see panel). All

sequences starting with 'UP-' correspond to prokaryotic sequences.

Supplementary Fig 25. Unrooted representation of a maximum likelihood phylogenetic tree inferred
from eukaryotic (mitochondrial protein) and prokaryotic 'Cytochrome ¢ oxidase subunit III' amino acid
sequences. Prokaryotic sequences are colored according to the corresponding phylum or class,
while eukaryotes are colored according to whether they contain or not a plastid/plastid-related
organelle (see panel). As expected, Alphaproteobacteria is the sister group to eukaryotes,
suggesting that the taxonomic representation of prok_db allow to detect proteins with signatures of
Alphaproteobacteria, and hence of putative mitochondrial origin. The process of phylogenetic

inference and taxonomic assignation is explained in Materials and methods section.

Supplementary Fig 26. Unrooted representation of a maximum likelihood phylogenetic tree inferred
from eukaryotic (mitochondrial protein) and prokaryotic 'Cytochrome b' amino acid sequences.
Prokaryotic sequences are colored according to the corresponding phylum or class, while eukaryotes
are colored according to whether they contain or not a plastid/plastid-related organelle (see panel).
As expected, Alphaproteobacteria is the sister group to eukaryotes, suggesting that the taxonomic
representation of prok_db allow to detect proteins with signatures of Alphaproteobacteria, and hence
of putative mitochondrial origin. The process of phylogenetic inference and taxonomic assignation is

explained in Materials and methods section.
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Supplementary Fig 27. Maximum likelihood phylogenetic tree of TPmet proteins (selected from the
blue clade in Supplementary Fig 19), with some prokaryotic sequences used as outgroup (see
Materials and methods section). Eukaryotic sequence names are abbreviated with the four-letter
code (see Supplementary Table 1) and colored according to their major taxonomic group (see panel).
All sequences starting with "UP-' correspond to prokaryotic sequences. A third and last phylogenetic

tree was constructed using sequences from the blue clades (see Supplementary Fig 20).
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Supplementary figure

A) Correlation between NAPs distribution in the whole dataset
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Holomycota 10 [] + NIR-NAD(P)H + TPmet
Ichthyosporea (Holozoa) 4

+ NIR-NAD(P)H - TPmet
Choanoflagellata (Holozoa) 2 L (P)
1 [] - NIR-NAD(P)H + TPmet
Cryptophyta 1 [] - NIR-NAD(P)H - TPmet
Ochrophyta (Stramenopiles) 1



https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/454272; this version posted October 29, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

- ildble under aCC-BY-NC 4.0 International license.
Supplementary figure®2%

Taxonomy
(euk_db seq. names)
D Haptophyta Alignment statistics
Number of taxa: 860
l= Bl Rhodophyta
. Chloroplastida Alignment length: 492
l:l Rhizaria Parsimony info. sites: 98.20%
. Alveolata Missing data: 10.45%
B stramenopiles phvl .
ylogenetic inference
[ ]Amoebozoa
l:l Holozoa Maximium likelihood
it m LMetazoa 1000 UFBoot replicates
Il Holomycota LG+F+RI10
Il Others (includin
MMETSP


https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/454272; this version posted October 29, 2018. The copyright holder for this preprint (which

was not certified by peer reV|ew) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

S u pple me nta ry fl g u reraBe under aCC-BY-NC 4.0 International license.

bryo-Mgut_mgv1a004568m
o embryo-Mgut_mgv1a027122m

Poryo
embryo-Mgut_mgv1a0256
+00 mbryo-Ntab_3789
embryo-Ntab_3446
embryo-Mgut_mgv1a004332m

embryo-Atha,

1o moryo-Atha_le762
mbryo-Atha_11637
embryo-Alha, 16968
@ﬁ‘bryu—;\coe,oao,oousz
bryo-Acoe_030_00093
embryo-Bdis_3g01277
embryo-Bdis_3g01290
0, gmbryo-Bdis 3901270
embryo-Bdis_3g01250
embryo-Sbic_04g001000
embryo-Sbic

bryo-
embryo-Mgut_mgvia023971m
embryo-Atha_3537

embryo-Bdis
embryo-Acoe_002. 00061

86

bryo-Mgut_mgv1a005457m

embryo-Mgut_mgv1a023402m
-Mgut_mgv1a022931m
64m

embryo-Atha_! 30033

1756
embryo-Mgut_mgv1a004788m

bryo Mout mgvia0i9058m
Mgut_mgv1a004977m

embryo-! Sb\c 03g032310

—jg———_ embryo-Shic_03g025300

100

100

embryo-Smoe_XP_002966266
embryo-Smoe_XP_002993278
bryo-Mpol_14273
Mmbryo-Mpol_8180
geembryo-Mpol 15963
00embryo-Mpol_ 16082
‘embryo-Mpol_14780
embryo-Mpol_9278
embryo-Mpol_13200
embryo Mpol_10920
embryo- Mpo\ 11433
o embryo-Mpol 6345
embryo-Mpol_17009
embryo-Mpol_10947
embryo-Mpol_13516
embryo-Ppat_XP_001754130
embryo-Ppat_XP_001779265
embryo-Ppat_XP_001754049
embryo-Ppat_XP_001768801
embryo-Ppat_XP_001765331
gnbryo-Ppat XP_001768210
embryo-Ppat_XP_001768212
embryo-Ppat_XP_001785194

N — embryo-Kfla_8997
embryo-Kfla_5215

790 chioro-Crei_XP_001696789

chloro-Vcar_XP_002955218
chloro-Vear_XP_002955217

‘o0

ﬁ 1

L
embryo-Acoe_002_00060

chloro-Crei_XP_001696788
chloro-Crei_XP_001694496
XP

L% embryo-Bdis_2g40740
embryo-Atha_25512
bryo-Mgut_mgv1a005911m
ryo-Mgut_mgv1a005636m
embryo-Mgut_mgv1a006145m

{‘W—M chloro-Crei_XP_001699931

hl ~ XP_002947869

chloro-Cvar_EFN52690

chloro-Mpus.

77

100
9%

100

chloro-Cvar_EFN52689
3
p-NRT2_tblastn_chloro-Otau_NG_014435.1_155021-156448_framet

fungi-Anid_32

35
[—:wo fungi-Aory_CADAORATOD006174
fungi-Anid_7526

10—

fungi-Tmel_XP_002841190

100

L

100
700

fungi-Nora_6351NCU07205
fungi-Fgra_CEF72344
j-Bade_5343

fungi-Bade_t
00 fungi-Bade_1945
100 100 fungi-Bade_5232

700

fungi-Opar_3451
fungi-Ccin_CC1G_07229

100

99

100
fungi-Spun_SPPG_01654
fungi-Rirr_30454
fungi-Rirr_46659
fung Nver 08622

fungi-Uram_251407

fungi-Umay_XP_759996
fungi-Gpro_57051
2

fungi-Gpro_13147;

SARhete-Hara_4352
0 SARhete-Pinf_XP_002903614

700

oo SA SARhete-Pult_2696
SARhete-Pult_12610

ARhete-Alai_CCA24412

SARhete-Pinf_XP_002900552

100

SARhete-Pult_5693
SARhete-Pult_12598
SARhete-Pinf_XP_002900550

SARhete-Pinf_XP_002900551
SARhete-Ptri_XP_002184871

SARhete-Phal_2142

SARhete-Ptri_XP_002180934
SARhete-Tpse_XP_002287398

ARhete-Tpse_XP_002295904
Rhete-Tpse_XP_002288802
00— SARete-PtriXP_002177983
'SARhete-Ptri_XP_002178487
SARhete-Toce_31243

hl ~ XP_002947064

SARhete-Toce_10904

SARhete-Ptri_XP_002185352

82 SARhete-Esil 03131726

[ o BARnete-Esil_CBJ317:
Rhete-Esil_( CEJGT 725
ARhete-Esil_CBJ31728

SARhete-Aano_FOY6A2
SARhete-Aano_FOYL80
SARrhiz-Bnat
nat_41977

SARrhiz
SARrhiz-Bnat_470:
1005 ARrhiz-Bnat_48035

‘SARalve-Vbra_3602

00 %" SARalve-Vbra_21071
100 SARalve-Vbra_6

691
L SARalve-Smin_016992_t1
thodo-Ceri_T00009493001
rhodo-Pyez_15784_g3774

rhodo-Gsul_4935

thodo-Cmer_CMGO18C
ypto-Gthe_154872
glauco-Cpar_675G

glauco-Cpar_16401Contig10789

e Cpar_10143Contg5a034
00— UP000001550 7

00 u \,2573
L UP000007507_2881
UP000037884_2074
UP000033468_3229
UP000007127_2333
UP000008707_804

UP000000239_2168
UP000033642_2416
0 UP000027249 633

'UP000018258 1469
UP000006242_2222
UP000031623_2421

r—{ 100
100

UP000001822_2291
UP000010796_1928
UP000001635_3019
UP000006073_2635
UP000001847_1514

UP000003087_3028

u 1312
90 Upooo00s30s. 2498
5_3111

UP000011058_4290

u ) 5465
) 1948

u

1430
= UP000008634_1772

Moot Ul 1745
— UP000004690_2917
UP000003919_1098

55712

1 SARrhiz-Bnat_29248
SARrhiz-Bnat_47189

Alignment statistics
Number of taxa: 175
Alignment length: 501
Parsimony info. sites: 96.40%
Missing data: 8.76

Phylogenetic inference
Maximium likelihood

1000 UFBoot replicates
LG+F+R8

Taxonomy
(sequence names)

[ ] Haptophyta
H Rhodophyta
M Chloroplastida
Il Rhizaria

Il Alveolata

Il stramenopiles
[ ]Amoebozoa

[l Holozoa

N LMetazoa

Hl Holomycota
I others



https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/454272; this version posted October 29, 2018. The copyright holder for this preprint (which
funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Suppfeéritdiy figure

ble under aCC-BY-NC 4.0 International license.

100

fungi-Aory_ CADAORAT00006175
fungi-Anid_7892

74

100

fungi-Tmel_XP_002841192
fungi-Ncra_4204NCU04720

fungi-Fgra_ CEF76735

96

fungi-Opar_3131

100 { 100 fungi-Bade_5354
fungi-Ccin_CC1G_07228
79 —1*® fungi-Umay XP_759995
I fungi-Uram_177615
& %7 fungi-Mcir_Mucci2_73657
55 Mo fungi-Rirr_3245
L fungi-Rirr_250550
49 fungi-Spun_SPPG_07925
99 fungi-Gpro_158697
o SARhete-Pinf_XP_002900554
L——— SARhete-Pult_9450
o0 SARhete-Toce 16230
100 SARhete-Tpse_XP_002287665
100 100 SARhete-Ptri_XP_002180792
100 SARhete-Aano_F0OY6U7
SARhete-Esil_CBJ31380
92 r aﬂ’-\RaIve—Smin70366787t1
94 | éARaIve—Smin_040143_t1
[ | 4 100 SARalve-Vbra_16973
SARalve-Vbra_1590
= UP000004358_4856
I UP000003087_3029
— UP000001635_3015
% UP000010796_2200
%8 UP000005438_2929
83 UP000000493_1397
| /s UP000002534_491
oo UP000001847_1509
L  UP000004889_2868
100 = UP000001693_3753
_j:UP000037921_2448
o L UP000002566_4011
= UP000000925_552
' | UP000004947_1252 Taxonomy
(sequence names)
0.2
| |Haptophyta
Alignment statistics . Rhodo
phyta
Number of taxa: 40 . Chloroplastida
Alignment length: 807 D Rhizaria
Parsimony info. sites: 78.70% . Alveolata
Missing data: 1.43% . Stramenopiles
| | Amoebozoa
Phylogenetic inference
"/ Holozoa
Maximium likelihood . LMetazoa
1000 UFBoot replicates . Holomycota
LG+RS H others



https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/454272; this version posted October 29, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
under aCC-BY-NC 4.0 International license.

Supplementary figuré 25

i
i

e o

Upy, 207, @50
0000555 R0
Up, 206306; o Yk
009, (20379975 . Up, I ope
015480064565 PR 0o 0
i 0
5 i %
Uj

[ AL 53799" ur
Ueao Rt e B
1520903 11559 B o)
Uy, UP0GS, 34751960 ocBle i}
[ty S !
y Wil
00000271 }gggaggg/um 75;’5;;; )
oum py iy

00340 it G
i

R o
o

el

o

o i
iy ity
et s

notosyr
7 phylum purple PIORRIGER
umoggg‘;@@?&gix%V,pnwwmg“m o

123684
po000

0
2, 9 5
00,
N “”ﬁ%%%iﬂf’ﬁ/
e

nelobaciaitottcafd

ans
55

Chit
aromaticivor

b EFh BREEP090 5,

lovosgningobium
a_prot

il
e, XP_ 002894289

Comp43687_c0_seql_m.67144

RS PRARKETES

'wamefaae?%ﬁs%wmw

0.8

it

il

class, Fimibacteria/s

Grams/c

Y_GC_(
T

esnpausnijoeg

1301_phylum_fow.
'UP000000;

UP000003981_1

Alignment statistics
Number of taxa: 418
Alignment length: 260
Parsimony info. sites: 96.90%

Missing data: 9.99%

Phylogenetic inference
Maximium likelihood

1000 UFBoot replicates
LG+F+R10

Taxonomy
Bacteria
[] Cytophaga-Flexibacter-Bacteroides
] Planctomycetes
I Aquificaeota
[] Cyanobacteria
I Alphaproteobacteria
Il Betaproteobacteria
[] Gammaproteobacteria
Il Others

Archaea
I Euryarchaeotas

Eukaryota

[Plastid donors]

I Taxa with plastid/plastid-related organelles

[l Other eukaryotes

[Mitochondrial donors]

7
*gé;g/@ &
6
"oy
g
%
o,
e,
18y s,

%
%,

ilus_subsp_nematophilus

Pe-T_of_Uroleucon
Uroleucon_ambrosige


https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/454272; this version posted October 29, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Supplementary figure 26

Alignment statistics
Number of taxa: 473
Alignment length: 754
Parsimony info. sites: 85.90%
Missing data: 50.68%

Phylogenetic inference

10
WgSTBSa) AB INBN

Maximium likelihood
1000 UFBoot replicates
LG+R10

.
gy e

igard® ioticus
s 5™

s,

cesanus
o neREsaNCs
- negesgunt
e "
N
R

UPoggy, Phylun,
0426; IP00000 JFRLR

v T
i

il
3t

ol
UPooffh i oeh
P000GG 09 A: gﬁ}‘p é"'i%
—Phylimf” ;u,p o

i
UP0ooq
UP000006209099181 1,
U2 AT

snail_isolate_Moniu

o ; :
5?3%%% e %‘%fs oo P onin 360
o Al R e
N

lithotrophicus
221 TPy o IR AT USSR A B S R S oB

P02 B e
UPDE%%§W35 B % up/s ERIZQ ium_sp_Pops
; 0B 5B RhizSRIUm-$p-EeR3%,
o e i e 80 = 4 s R ——
Gostoozath p ho\ﬁa@guciw‘m gt - & “azﬁc“u'mgs"
uPeﬂOUﬂ&%%;g@éigéﬁgi‘;n Y“\gz,&jg;mp\;gmﬁﬂ\\i%ﬁ@; F 3 , psh a15bad 626
UP000033TOC 5@&{9‘3 &

Taxonomy
B UOron. Um0
Ve, St
o ’”’%”gggzggﬁy 6. %
i 9 X
L. &a,,,g s&@ﬁl”%ii

Bacteria

& B
X B85S

Taxa with plastid/plastid-related organelles
Other eukaryotes

0037
Up
i
ui

[] Cytophaga-Flexibacter-Bacteroides

[] Planctomycetes

B Aquificaeota

[[] cCyanobacteria [Plastid donors]

I Alphaproteobacteria  [Mitochondrial donors]

I Betaproteobacteria

] Gammaproteobacteria

Il Others
Archaea ‘

I Euryarchaeotas %ﬂi% o
Eukaryota FLA

m N

[ |

UPoogy
UPOo

ot

O3B

V2
502"

E

09


https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/454272; this version posted October 29, 2018. The copyright holder for this preprint (which
ifi r i tl nder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
S u p\ﬁi @m&ﬂfﬁ*y%wévme under aCC-BY-NC 4.0 International license.

g - %gw S

o
upooom
= hiificesr a0
il Woorr
it
.
— anim-Aque_4769
= ‘SARalve-Smin_015591_t1
=
5
d oo
=
=
P ————
o
.
!
=

= T,
o “ﬁ@ﬂ%m #

UP000001806_ 367

B
B 1000
Tromy
s ﬁmﬂ?ﬁiyf =
e

i w? 011403m

Wi

Bty

Taxonomy
(sequence names)

[ 1Haptophyta
Il Rhodophyta
Il Chloroplastida
I Rhizaria
M Alveolata
[l stramenopiles
[ ]Amoebozoa
[Tl Holozoa
| LMetazoa

o HEB&SM;E;? s sore Il Holomycota
= : Il others

= _ B o1y
B
s e OO obs
- T
o "8 upooonerese 2315 16179

®
Wﬁ rhodo-Gsul_2655
T T8 XD 2 ‘SARhete-Toce_1745
“ L - - e el
s |s o %%@v S
2
zora
: ummymww o sos50
® L P i
S W
B
P
Ll =
o
" - 0
N o T -
« wr
| 9 el — o UPOO000Z386 1092 gl
i Pty PR A
n = TS e UP000000323_179
2 o UPY -
s 0 ¢ Boss
s = T
B e ianove 1o
= - T
PRRRRaEEed UP000OG
Bo8F55_255
LT ——
Upocooors72.635
sumvot g A cans oas
= ”551‘
e —
o N
0 e :"&*B‘igl%
I E— e o5
= { — e

B oo X6 o1 7e5e7
T
R W 0T
- — g A
” % ‘%‘m e
" T %‘MS ﬁs@‘%f? 7s

s s e
X = Toner Fm'mw oszis

Tong-Crev 80257 “kﬁ% R

10

S = i o i
e === 55 %vfp “fg 0 soqimstss
: m ,, i onar
= — g —m mw q‘%ancm 95610
- B
o [ = ) B oo
L o
= ot s
w ¢
dw o e e cese
A = ex = bm'&”ﬁﬁﬁg 887
o0 o - SRAIENGAS

TS SPPCUT e



https://doi.org/10.1101/454272
http://creativecommons.org/licenses/by-nc/4.0/

	Ocana_et_al_Nitrate_toBioRxiv.261018.EOP
	allMainFigures_200918
	Figure1
	Figure2
	Figure3
	Figure4
	Figure5
	Figure6
	Figure7
	Figure8

	allSupplFigs_261018
	supplFigS01
	supplFigS02
	supplFigS03
	supplFigS04
	supplFigS05
	supplFigS06
	supplFigS07
	supplFigS08
	supplFigS09
	supplFigS10
	supplFigS11
	supplFigS12
	supplFigS13
	supplFigS14
	supplFigS15
	supplFigS16
	supplFigS17
	supplFigS18
	supplFigS19
	supplFigS20
	supplFigS21
	supplFigS22
	supplFigS23
	supplFigS24
	supplFigS25
	supplFigS26
	supplFigS27


