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Abstract  17 

During spatial navigation, animals use self-motion to estimate positions through path integration. 18 
However, estimation errors accumulate over time and it is unclear how they are corrected. Here we report 19 
a new cell class (“cue cell”) in mouse medial entorhinal cortex (MEC) that encoded visual cue 20 
information that could be used to correct errors in path integration. Cue cells accounted for a large 21 
fraction of unidentified MEC cells. They exhibited firing fields only near visual cues during virtual 22 
navigation and spatially stable activity during navigation in a real arena. Cue cells' responses occurred in 23 
sequences repeated at each cue and were likely driven by visual inputs. In layers 2/3 of the MEC, cue 24 
cells formed clusters. Anatomically adjacent cue cells responded similarly to cues. These cue cell 25 
properties demonstrate that the MEC circuits contain a code representing spatial landmarks that could 26 
play a significant role in error correction during path integration.   27 
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Introduction 28 
Animals navigate using landmarks, objects or features that provide sensory cues, to estimate spatial 29 

location. When sensory cues defining position are either absent or unreliable during navigation, many 30 
animals can use self-motion to update internal representations of location through path integration 31 
(Mittelstaedt, 1982; Tsoar et al., 2011). A set of interacting brain regions, including the entorhinal cortex, 32 
parietal cortex, and the hippocampus (Brun et al., 2008; Bush et al., 2015; Calton et al., 2003; Calton et 33 
al., 2008; Clark et al., 2010; Clark et al., 2013; Clark et al., 2009; Clark and Taube, 2009; Frohardt et al., 34 
2006; Geva-Sagiv et al., 2015; Golob and Taube, 1999; Golob et al., 1998; Hollup et al., 2001; Moser et 35 
al., 1993; Parron et al., 2004; Parron and Save, 2004; Taube et al., 1992; Whitlock et al., 2008) participate 36 
in this process. 37 

The MEC is of particular interest in path integration. Grid cells in the MEC have multiple firing fields 38 
arrayed in a triangular lattice that tiles an environment (Hafting et al., 2005). This firing pattern is 39 
observed across different environments, and the grid cell population activity coherently shifts during 40 
locomotion (Fyhn et al., 2007). These observations have led to the hypothesis that grid cells form a spatial 41 
metric used by a path integrator. Given this, theoretical studies have demonstrated how velocity-encoding 42 
inputs to grid cell circuits could shift grid cell firing patterns, as expected of a path integrator (Barry and 43 
Burgess, 2014; Burak and Fiete, 2009; Fuhs and Touretzky, 2006; McNaughton et al., 2006).  Cells 44 
encoding the speed of locomotion have been identified in this region (Kropff et al., 2015), providing 45 
evidence of velocity-encoding inputs and providing further support for the role of MEC in path 46 
integration.  47 

A general problem with path integration is the accumulation of errors over time. A solution to this 48 
problem is to use reliable spatial cues to correct estimates of position (Evans et al., 2016; Hardcastle et al., 49 
2015; Pollock, 2018). Many recent experimental studies showed profound impairment of grid cell activity 50 
by altering spatial cues, including landmarks and environmental boundaries. For example, the absence of 51 
visual landmarks significantly disrupted grid cell firing patterns (Chen et al., 2016; Perez-Escobar et al., 52 
2016). Experiments that maintained the boundaries of a one-dimensional environment but manipulated 53 
nonmetric visual cues caused rate changes in grid cells (Perez-Escobar et al., 2016). The decoupling of an 54 
animal’s self-motion and visual scene altered grid cell firing patterns (Campbell et al., 2018). Also, many 55 
studies have also shown that grid cell firing patterns were also  influenced by nearby boundaries 56 
(Carpenter et al., 2015; Derdikman et al., 2009; Giocomo, 2016; Hardcastle et al., 2015; Krupic et al., 57 
2015; Krupic et al., 2018; Stensola et al., 2015; Yamahachi et al., 2013). 58 

Border cells in the MEC, with firing fields extending across environmental boundaries (Solstad et al., 59 
2008), are good candidates for supplying information for error correction near the perimeter of simple 60 
arenas (Pollock, 2018). This role of border cells is supported by the fact that an animal’s interactions with 61 
boundaries yielded direction-dependent error correction (Hardcastle et al., 2015). However, grid cell 62 
firing fields are maintained throughout open arenas in locations where border cells are not active and thus 63 
cannot participate in error correction. It is unclear how grid cells error correct to maintain stable firing 64 
fields within open areas of a bounded arena.  65 

Also, natural navigation involves moving through landmark-rich environments with higher 66 
complexity than arenas with simple boundaries. How information from a landmark-rich environment is 67 
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represented within the MEC is unknown. If there were cells in the MEC that encoded sensory information 68 
of landmarks, then more robust path integration and error correction of grid cells would be possible using 69 
circuitry self-contained within this brain area. In the MEC, while border cells have been shown to respond 70 
to landmarks in virtual reality (Campbell et al., 2018), increasing evidence suggests that unclassified cells 71 
also contained information about spatial environments (Diehl et al., 2017; Hardcastle et al., 2017; Hoydal, 72 
2018; Kinkhabwala, 2015). Therefore, it would be useful to further determine whether these unclassified 73 
cells represent spatial cues (other than borders) that could be used in error correction.  74 

Here we addressed this question by recording from populations of cells in the MEC during virtual 75 
navigation along landmark-rich linear tracks using electrophysiological and two-photon imaging 76 
approaches. Virtual reality (VR) allowed for complete control over the spatial information of the 77 
environment, including the presence of spatial cues along the track. The animal’s orientation within the 78 
environment was also controlled, simplifying analysis. We report that a significant fraction of the 79 
previously unclassified cells in MEC respond reliably to prominent spatial cues. As a population, the cells 80 
fire in a sequence as a spatial cue was passed. They were also anatomically organized by their spatial 81 
firing patterns within layers 2/3 of the MEC. These cells could provide the information necessary in local 82 
MEC circuits for error correction during path integration in sensory rich environments that are regularly 83 
found in nature.  84 
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Results 85 
Cue-responsive cells in virtual reality  86 

Mice were trained to unidirectionally navigate along linear tracks in virtual reality to receive water 87 
rewards. Virtual tracks were 8 meters long and had a similar general organization and appearance: the 88 
tracks began with a set of black walls, followed by a short segment with patterned walls, and then ended 89 
with a long corridor with a simple wall pattern (Figure 1A). Different environments were defined by 90 
different pairs of identical visual cues (tower-like structures) present along both sides of the corridor. 91 
These cues were non-uniformly spaced along the track. The last cue was always associated with a water 92 
reward.  93 

We used tetrodes to record 1590 units in the MEC of four mice (Materials and Methods and 94 
Supplementary Figure 1). Activity of a subpopulation of these units exhibited a striking pattern, with 95 
spiking occurring only near cue locations along the virtual linear tracks (Figure 1A). On each run along 96 
the track, clusters of spikes were present at cue locations, forming a vertical band of spikes at each cue in 97 
the run-by-run raster plot. Spatial firing rates were calculated by averaging this spiking activity across all 98 
runs along the track. Clear peaks in the spatial firing rate were present at cue locations. We also defined 99 
spatial firing fields as the locations along the track where the spatial firing rate exceeded 70% of the 100 
shuffled data (Materials and Methods) and observed that the spatial firing fields were preferentially 101 
located near cue locations. 102 

To quantify this feature of the spatial firing rate, we developed a “cue score” that measures the 103 
relationship between a cell’s spatial firing rate and the visual cues of the environment (Figure 1B and 104 
Materials and Methods). The cue score was based on the correlation of the cell’s spatial tuning with a 105 
spatial template that had value one at each cue, and zero elsewhere. Cells with cue scores above the 106 
threshold (95th percentile of shuffled data, Materials and Methods) represented ~18% of all recorded cells 107 
(Figure 1C). In the remainder of the paper, we refer to these cells as “cue cells”.  108 

We next quantified the distribution of spatial firing fields of all cue cells along the track by 109 
calculating, for each 5 cm bin, the fraction of cue cells with a spatial firing field (Materials and Methods). 110 
We defined the plot of this fraction versus location as the field distribution for all cue cells. This field 111 
distribution had peaks in locations where salient information about the environment was present (Figure 112 
1D), and some fields were correlated with the beginning of the track where wall patterns changed. The 113 
mean firing field fraction for spatial bins in cue regions (0.4 ± 0.2) was higher than that for bins outside of 114 

cue regions (0.2 ± 0.1) (paired one-tailed t-test: cell fraction in cue regions  > cell  fraction in outside cue 115 
regions, N = 283, p < 0.001). Thus, the cue score identifies a subpopulation of MEC cells with spatial 116 
firing fields correlated with prominent spatial landmarks.  117 

 118 
Cue cell responses to environment perturbations 119 

Is the activity of cue cells truly driven by the visual cues of the environment? To address this 120 
question, we designed related pairs of virtual tracks. One track had all cues present (with-cues track) and, 121 
in the second track, the last three cues were removed (missing-cues track). Tetrode recordings were 122 
performed as mice ran along both types of track in blocks of trials within the same session. Water rewards 123 
were delivered in the same location on each track regardless of the cue location differences.  124 
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At the beginning of both with-cues and missing-cues tracks where the tracks were identical, the 125 
spatial firing rates of cue cells were similar across tracks. Vertical bands of spikes were present in the run-126 
by-run raster plots of both tracks and formed peaks in the spatial firing rate. The bands were also 127 
identified as spatial firing fields, which generally aligned to features of the environment (spatial 128 
cues/changes in wall patterns) present on both tracks (Figure 2A). However, the firing patterns changed 129 
dramatically from the point along the track where the environments began to differ. Spatial firing fields 130 
were prominent at cue locations along the entire remaining part of the with-cues track (Figure 2A, top) but 131 
were not present on the same part of the missing-cues track (Figure 2A, bottom). To quantify this 132 
difference, we compared changes in both cue cell spatial firing rates (Figure 2B) and in the spatial firing 133 
field distribution of the cue cell population (Figure 2C) across the two tracks. The data were split into two 134 
regions along the track (Figure 2B, left): the start region where cues were present for both tracks (gray bar 135 
marks this region, Region A - same) and the rest of the track where cues were either present or absent 136 
(blue bar, Region B - different). While cue cells showed similar mean and maximum firing rates in 137 
Region A across tracks,  in Region B, mean firing rates remained the same but the maximum firing rates 138 
were lower in the missing-cues track compared to the with-cues track  (maximum firing rate with-cues: 139 
8.9 ± 5 Hz, missing-cues: 7.4 ± 4.9 Hz, mean difference (with-cues – missing-cues): 1.5 Hz; paired one-140 
tailed t-test: maximum firing rate in Region B on with-cues track > maximum firing rate in Region B on 141 
missing-cues track, N = 161,  p < 0.001). Moreover, cue cells had spatial firing fields clustered in each 142 
region where a cue was located on both tracks, but these fields were not present when cues were removed 143 
in Region B of the missing-cues track (Figure 2C). The mean fraction of cells with spatial firing fields 144 
was significantly higher when cues were present in comparison to when they were removed (Region B in 145 
cue bins: mean cell fraction on with-cues track: 0.41 ± 0.01, on missing-cues track: 0.33 ± 0.04; paired 146 
one-tailed t-test: with-cues cell fraction > missing-cues cell fraction, N = 161, p < 0.02). These results 147 
demonstrate that cue cells are more coherently active in regions along an environment where cues are 148 
located. When these cues are removed, these cells remain active but they do not coherently form spatial 149 
firing fields, indicating that the responses of these cells are correlated to the presence of the cues. 150 

 151 
Relationship to previously defined cell classes 152 

To relate our population of cells recorded along linear tracks in virtual reality to previously 153 
characterized cell types in the MEC, the same cells were also recorded as the animal foraged for chocolate 154 
chunks in a real two-dimensional (2D) environment (0.5m × 0.5m). From the recordings in the real arena, 155 
we calculated grid, border, and head direction scores for all recorded cells (i.e. both cue and non-cue cells, 156 
Materials and Methods). We plotted the values of these spatial scores against the cue scores, which were 157 
calculated for the same cell during VR navigation, to determine the relationship of cue cells and the 158 
previously defined cell classes (Figure 3A). We found that a small percentage of cue cells were 159 
conjunctive with border (10%) or grid (18%) cell types, but the majority of cue cells had a significant 160 
head direction score (53%) (since the head direction score is based on orientation tuning, we do not 161 
consider the head direction cell type to be a spatial cell type). The total percentage of cue cells (18%) in 162 
the dataset was comparable to that of grid and border cells (Figure 3B).  163 
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Since most cue cells (72%) were not conjunctive with a previously known spatial cell type, we next 164 
examined what their spatial activity patterns were in the real arena. As expected from their scores, most 165 
cells had irregular activity patterns in the arena and were not classified as any previously identified spatial 166 
cell type (Figure 3C and Supplementary Figure 2, the activity patterns of cue cells in the real environment 167 
are shown in the top and middle panels).  168 

One striking feature of the spatial firing patterns of cue cells observed in real environments was the 169 
spatial stability of these complex and irregular patterns (Materials and Methods). The spatial firing rates 170 
in the real arena from the first and the second halves of the recording for 10 cue cells are shown in Figure 171 
3C. We calculated the spatial stability as the correlation between these two halves and found that the 172 
spatial firing patterns were irregular but surprisingly stable. To further quantify this observation, we 173 
calculated the distributions of the stability of both the spatial and head direction firing rates for all cell 174 
types (Materials and Methods) (Boccara et al., 2010). We found that the distributions of stability for 175 
unclassified cells (not classified as cue, grid, border, or head direction cells, labeled as “Other”) were 176 
generally shifted towards lower values compared to all the currently classified cells, indicating that a large 177 
fraction of the remaining unclassified cells do not stably encode spatial and head direction information in 178 
the real arena (Figure 3D). Figure 3E shows the fractions of all cells with significant stability scores for 179 
their spatial firing rates in the real arena, classified by cell type. While some cue cells were conjunctive 180 
with border or grid cells, a large percentage (72%) of cue cells were previously unclassified as a particular 181 
spatial cell type. Cue cells accounted for 13% of the population of spatially stable cells, and for 22% of 182 
the previously unclassified spatially stable cells. 183 

 184 
Cue cells form a sequence at cue locations 185 

For many cue cells, we observed that their firing fields had varying spatial shifts relative to the cue 186 
locations on virtual tracks (Figure 1A). We next investigated whether these shifts were consistent for a 187 
given cell across cues, suggesting that the spatial shift is a property for each cue cell similar to the spatial 188 
shift that defines the location of grid cell firing patterns. This would provide an overall patterning of the 189 
population of cue cell activity within an environment.  190 

To test this, we took all cue cells identified for each virtual track and ordered their spatial firing rates 191 
and fields by the values of their spatial shift relative to the cue template, which was the smallest 192 
displacement of the cue template to best align with the firing rate (Figures 4A and 4B; Materials and 193 
Methods). We found a striking pattern where cue cells formed a sequence of spatial firing fields that was 194 
repeated at each cue. To examine if this pattern was produced by the concentration of neural firing around 195 
cues, rather than the alignment and ordering of the data alone, we compared this pattern to that of  time-196 
shuffled data, which were created by circularly permuting spike times of each cell by a random amount of 197 
time (Supplementary Figure 3, Materials and Methods). Time shuffled data did not exhibit an obvious 198 
sequence. This difference between the cue cells and shuffled data was further quantified by a ridge-to-199 
background ratio (Materials and Methods), which was computed as the mean firing rate in a band 200 
centered on the sequential spatial firing rates of the cue cell population divided by the mean background 201 
rate outside of this band. We note that although ordering the spatial firing rates of the cells by their spatial 202 
shift was expected to create a ridge of firing rate along the diagonal, the mean ridge/background ratio for 203 
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cue cells (2.58) was higher than that for time shuffled data (1.04 ± 0.003, p <0.001; N = 283 cue cells, 204 
1,000 shuffles). Thus, the sequence represents sequential neural activity preferentially located near cue 205 
locations, rather than an artifact of ordering the data.  206 

Since the virtual environment cues have various shapes and sizes, we next examined the alignment of 207 
cue cell spatial firing rates with each cue. We determined the location and amplitude of the peaks in the 208 
cue cell spatial firing rate and plotted these relative to each cue. We observed high peak amplitudes close 209 
to the cue locations for both tracks (Figures 4C and 4E).  To determine how cue cell activity was aligned 210 
to cues, we also plotted cue cell spatial firing rate peaks and spatial firing fields aligned to the start, 211 
middle, and end of the cues to determine whether the sequences were more aligned to a particular region 212 
of the cue (start, middle, or end; Figures 4D and 4F). For each environment, we found the activity of all 213 
cue cells was best aligned to the center of the cue rather than the start or end of the cues (mean 214 
displacement ± standard error from position of alignment for the cue cell spatial firing rate peaks closest 215 

to each alignment location: cue start aligned: -49.0 cm ± 1.6, cue center aligned: 2.7 ± 1.3 cm, cue end 216 

aligned: 25.8 ± 1.1 cm; for cue cell spatial firing fields located within ± 50 cm of alignment location:  cue 217 

start aligned: -9.0 ± 1.2 cm, cue center aligned: 2.2 ± 1.1 cm, cue end aligned: -6.5 ± 1.1 cm). Thus, cue 218 
cells, as a population, are activated in a sequence that is centered on prominent visual landmark locations.  219 

  220 
Cue cell pairwise activity patterns 221 

Since cue cells are activated sequentially, do pairs of cue cells exhibit a correlation in their spike 222 
timing? We reasoned that temporal shifts (peaks in the spike time cross correlation function) should be 223 
observed between the firing of co-recorded cue cells that have peak activity at different spatial shifts in 224 
the sequence surrounding. Since the temporal correlation is a measurement of the spiking of these cells 225 
over time, this can be a useful measurement of the cue-independent activity of the population of cue cells, 226 
and thus represent an intrinsic relationship between cue cells in the MEC neural circuit. 227 

We took all identified pairs of cue cells in our data and examined the spatial and temporal 228 
relationships of their spiking. Figure 5A shows several examples of the spiking of two cue cells recorded 229 
during ten runs on a virtual track. As expected from the cue cell spatial sequences described earlier, in 230 
many cases cue cell spatial firing patterns for pairs were offset relative to one another in space. To 231 
determine if there was a correlation of one cell to another in their spike timing, we calculated the spike 232 
time cross-correlogram for the spike times of each pair of cells. We observed that many pairs showed a 233 
temporal shift in the spike time cross-correlogram (Figure 5A, right). In Figure 5B, we calculated the 234 
relative spatial shift (peak in cross correlation of spatial firing rate) along with a temporal shift for each 235 
cue cell pair and plotted them in a 2D histogram. There is, as predicted, a general trend where the spatial 236 
and temporal shifts are correlated (Pearson correlation = 0.3).  237 

If the temporal correlations are produced by the sequential activation of the cells as cues are passed, 238 
then these correlations should disappear if the analysis is performed during times when no cues are 239 
present. Conversely, if correlations remain, this might provide an indication that the spike timing 240 
relationship between cells was produced independent of cues through intrinsic circuit mechanisms. Since 241 
we showed in Figure 5 that pairs of cue cells can be assigned both a spatial and temporal shift, we next 242 
asked whether there might still be a relationship between the spiking of the two cue cells even when cues 243 
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are no longer present and the cells are active (despite the fact that no obvious sequence of activity is 244 
present in these regions without cues). Using a strategy similar to that used in Figure 2, we recorded from 245 
cue cells during virtual navigation on the with-cues and missing-cues tracks, and split the tracks into two 246 
regions: the start region where cues were identically present on both tracks (Region A), and the remaining 247 
region where cues were either present on with-cues track or missing on the missing-cues track (Region B). 248 
Using all cue cell pairs, we calculated the temporal shift for each pair in the four conditions (Regions A 249 
and B on both with-cues and missing-cues tracks). In Region A, there was a spread in the temporal shifts 250 
for pairs of cue cells and these shifts were correlated for the two tracks (Figure 5C left, Pearson 251 
correlation = 0.34). However, the temporal shifts in Region B of the two tracks were less correlated: 252 
while a similar spread of temporal shifts was observed when cue cells were recorded on the with-cues 253 
track (plotted along the x-axis of the bottom right panel in Figure 5C), but most cue cell pairs did not have 254 
a nonzero phase in the their relative spike timing when cues were missing (plotted along the y-axis of the 255 
bottom right panel in Figure 5C right, Pearson correlation = 0.13). This suggests that the spike timing 256 
relationship between cue cell pairs is present only when cues are present and thus when these cells are 257 
driven to be active in a sequential manner by locomotion past the cue. 258 
 259 
Side-preference of cue cells in superficial layers of the MEC  260 

What type of sensory inputs could be driving the activity of cue cells? One potential candidate is 261 
visual input corresponding to spatial cues along the track, as suggested by the fact that the cue related 262 
spatial fields and the temporal shifts of cue cell spikes no longer existed when cues were removed from 263 
the track (Figures 2A and 5C).  If visual input indeed drives cue cell responses, the cue cells in one 264 
hemisphere of the MEC, which receives inputs largely from the ipsilateral visual cortex (Olsen et al., 265 
2017), should preferentially respond to cues on the contralateral side of the animal, as the visual cortex in 266 
one hemisphere generally receives visual information from the contralateral eye (Erskine and Herrera, 267 
2014). To investigate this possibility, we designed an 18-meter long virtual track with asymmetric cues on 268 
the left and right sides of the track (different from the tracks used in above experiments, where identical 269 
visual cues were present on both sides of the track) and examined cue cell responses to these cues (Figure 270 
6A). To increase the sampling and obtain precise anatomical information of cue cells in specific layers of 271 
the MEC, we used microprism-based cellular-resolution two-photon imaging to measure calcium 272 
responses of a large number of neurons in layers 2 and 3 of the MEC (Low et al., 2014). The genetically-273 
encoded calcium indicator GCaMP6f was specifically expressed in layer 2 excitatory neurons of the MEC 274 
in the GP5.3 transgenic mice (Dana et al., 2014; Gu et al., 2018) and in layer 3 MEC neurons via viruses 275 
targeted to layer 3 of the MEC in wild type mice (Supplementary Figure 4). We only imaged neurons in 276 
the MEC on the left hemisphere. 277 

During virtual navigation, we identified cue cells responding to the left, right, and both-side cues by 278 
calculating cue scores of their calcium responses along the virtual track with the three side-specific cue 279 
templates. Therefore, each cell had three cue scores. The highest score that passed the cue score threshold 280 
was used as the cue score of the cell, and the cell was thus assigned as a cue cell responding to the side of 281 
cues producing the highest score (Figure 6B). In both layers 2 and 3, we identified cells that responded to 282 
all three side categories of cues (Figure 6C) and formed sequences around these cues (Figure 6D). 283 
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However, the majority of cue cells preferentially responded to cues on a single side (left or right) (96.9% 284 
and 98.0% for layers 2 and 3, respectively). While all imaging experiments were performed in the left 285 
hemisphere, there were significantly more right cue cells than left cue cells in both layers (Figure 6E and 286 
6G). Also, in layer 2, the cue scores of the right cue cells were generally higher than those of the left cue 287 
cells, indicating the higher correlation of calcium responses of cue cells to right side cues (Figure 6F). 288 
This was not the case for layer 3 (Figure 6H). Overall, these results indicate that in superficial layers of 289 
the left MEC most cue cells respond to cues on the right side, strongly suggesting the role of side-specific 290 
visual input in driving the cue-related responses in these cells. 291 

 292 
Micro-organization of cue cells in the MEC 293 

Cellular-resolution two-photon imaging provides detailed anatomical information of imaged neurons. 294 
This allowed for the study of the micro-organization of cue cells, providing additional information about 295 
potential connectivity between the cells and the inputs they receive. Since the majority of cue cells only 296 
responded to cues on single sides, we largely focused on right or left cue cells for this micro-organization 297 
study. A single field of view (FOV) in layer 2 or 3 generally contained multiple right and left cue cells 298 
(Figures 7A, B, D, and E). However, we observed that these cue cells tended to cluster, which was 299 
revealed by the shorter physical distances between cue cells than the distances between cue and non-cue 300 
cells (Figures 7C and 7F, left panels). In addition, cue cells with the same side preferences also tended to 301 
cluster, indicated by the fact that cue cells with the same side preferences generally showed shorter 302 
physical distances than those with different side preferences (Figures 7C and 7F, middle and right panels). 303 

We also investigated the relationship between the physical distances of cue cells and the difference of 304 
the spatial shifts of their calcium responses relative to cue location. In layers 2 and 3, we consistently 305 
observed that anatomically adjacent cue cells (physical distances around 30 µm) showed more similar 306 
spatial shifts, whereas the relationship was more varied if cue cells were further apart (Figures 7G-7N). 307 
The similar cue responses of adjacent cue cells suggest that they may share similar inputs or be 308 
connected. 309 

 310 
Discussion 311 

We have described a novel class of cells in MEC—termed cue cells—that were defined by a spatial 312 
firing patterns consisting of spatial firing fields located near prominent visual landmarks. When 313 
navigating a cue-rich virtual reality linear track, the population of cue cells formed a sequence of neural 314 
activity that was repeated at every landmark and aligned to the landmark centers. When cues were 315 
removed, these cells no longer exhibited a sequence of spatial firing fields but remained active, although 316 
typically at a lower maximum firing rate. There were spatial and temporal shifts between pairs of cue 317 
cells when cues were present, but these shifts disappeared in the absence of cues, consistent with the idea 318 
that their responses were driven primarily by sensory input rather than internal brain dynamics. The 319 
sensory input was likely visual input, as supported the fact that cue cells in the superficial layers of the 320 
left MEC mostly responded to cues on the right side of the track. In layers 2 and 3 of the MEC, all cue 321 
cells clustered, and more specifically, cue cells with the same side preferences also clustered. The spatial 322 
responses of anatomically adjacent cue cells had similar spatial shifts to cue patterns on their preferred 323 
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side of the track. These properties of cue cells suggest that they could provide a source of spatial 324 
information in the local circuits of MEC that could be used in error correction in landmark rich 325 
environments.  326 
Cue cells and previously identified cell types 327 

By recording during foraging in real arenas, we were able to determine how cue cells were related to 328 
previously identified MEC cell types (grid, head direction, border), all of which are defined by their 329 
activity in bounded 2D environments. We found that most cue cells were not grid or border cells, yet they 330 
did have noticeably stable, and somewhat irregular, spatial firing patterns in real arenas. Cue cells account 331 
for a significant fraction (~22 %) of the previously unexplained spatially-stable cells in MEC. While most 332 
cue cells were not grid or border cells, a vast majority of them had some orientation tuning (~50%). The 333 
high prevalence of head direction tuning for these cells suggests either that cue cells may receive inputs 334 
from traditional head direction cells, or that a head direction preference is present for cue cells because of 335 
the location of particular features of the real arena that drives the activation of cue cells. Further work is 336 
required to determine the circuit mechanisms of this orientation tuning preference. 337 

Do cue cells resemble spatially modulated cells in other brain regions, such as place cells or boundary 338 
vector cells?  Place cells typically have only a single firing field during navigation along linear tracks, 339 
even in virtual reality environments with prominent visual cues along the tracks (Dombeck et al., 2010). 340 
This is distinctly different from cue cells, in which the number of spatial firing fields scales with the 341 
number of cues. Boundary vector cells, which were found in subiculum, encode distance to a boundary 342 
(Lever et al., 2009; Stewart et al., 2014). An identified boundary vector cell must have a spatial firing 343 
field that is uniformly displaced from a particular region of the boundary. The width of the spatial firing 344 
field is proportional to the distance from the boundary, meaning that cells shifted significantly from the 345 
border would have very wide spatial firing fields, which could cover a large majority of the environment 346 
(Lever et al., 2009; Stewart et al., 2014). Border cells are a special case of boundary vector cells. To 347 
determine whether cue cells might be boundary vector cells, we sorted their spatial responses in the real 348 
2D arena based on the shifts of their spatial firing rates from the visual cue pattern on a virtual track 349 
(Supplementary Figure 2). We found no obvious trends in the spatial firing patterns of these cue cells in 350 
the real arena. Along with this, many cells had multiple fields or fields that were not uniformly displaced 351 
from the border of the environment. These spatial firing field features of cue cells were inconsistent with 352 
those of boundary vector cells. Thus, cue cells have properties distinct from both place cells and boundary 353 
vector cells. Their spatial firing responses were distributed throughout the arena, despite there being a 354 
single white cue card visible, indicating that these cells perform more complex computations in real 355 
arenas where spatial cues take many forms in comparison to the cues along a virtual track. Previous 356 
studies have also found similar complex responses of non-grid cells in the MEC encoding features of real 357 
environments (Diehl et al., 2017; Hardcastle et al., 2017). 358 
Cue cells and path integration  359 

It has been hypothesized that the MEC is a central component of a path integrator that uses self-360 
motion information to update a spatial metric encoded by the population of grid cells (Burak and Fiete, 361 
2009; Fuhs and Touretzky, 2006; McNaughton et al., 2006). Grid cells are grouped into modules based on 362 
each cell’s grid spacing. Each grid module maintains its own orientation, to which all grid cells align and 363 
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are related by a two-dimensional spatial phase. Grid cells in a given module maintain their relative spatial 364 
phase offsets across different environments (Fyhn et al., 2007), including linear tracks (Yoon et al., 2016), 365 
indicating that the population of grid cells form a consistent spatial metric largely defined only by the 366 
two-dimensional phase. This provides support for the idea that grid cell dynamics are constrained to a 367 
two-dimensional attractor manifold (Yoon et al., 2013). In a manifold-based path integrator, spatial 368 
location is represented as the location of the grid cell population activity on the attractor manifold. Self-369 
motion signals, such as running speed in a particular direction, move the population activity along the 370 
manifold, such that changes in location are proportional to the integral of the velocity over time. Path 371 
integration is inherently a noisy process that requires calibration and error correction for more accurate 372 
estimates of position. 373 

In the context of continuous attractor models for path integration, it is interesting to consider the 374 
potential functional roles of cue cells. One role could be to act as external error-correction inputs to the 375 
path integrator network that tend to drive the neural activity pattern to manifold locations appropriate for 376 
each landmark. An analogous use was proposed for border cells, in which they contribute to error 377 
correction near boundaries (Hardcastle et al., 2015; Pollock, 2018). In this role, it would be advantageous 378 
if the cue cell population activity represented distinct cues differently, so that more refined information 379 
about the locations of individual cues might be coded in cue cell firing and used in the correction. In 380 
Supplementary Figure 5, we provide preliminary evidence that the population activity of cue cells 381 
encoded information about the particular identity of each cue. More work is needed to further characterize 382 
the precise nature of this precise coding of unique landmarks and, with new models, to determine how 383 
effectively it might be used to drive an attractor network to the appropriate spatial locations when 384 
interacting with a noisy path integrator.  385 

An alternative, or additional, role for cue cells in path integration would be to produce a continuous 386 
adjustment of location. The sequence of activity that was produced across the cue cell population as 387 
individual landmarks were passed could drive the network activity continuously along the manifold, in 388 
essence acting as a velocity input that is quite different from those traditionally considered, such as 389 
running speed. This use, as an effective velocity, is analogous to the recent demonstration (Hopfield, 390 
2015; Ocko, 2018) that the collective state of a line attractor can be moved continuously along the 391 
manifold by an appropriately learned sequence of external inputs. In essence, the set of inputs at each 392 
time point move the location of the activity on the attractor a slight amount, and this is repeated 393 
continuously to produce smooth motion, without requiring asymmetric synaptic connectivity and 394 
velocity-encoding signals of previous path integrator models (Burak and Fiete, 2009; Fuhs and Touretzky, 395 
2006; McNaughton et al., 2006; Ocko, 2018). In principle, both path-integration and error correction can 396 
be combined through this process.  397 
Cue cells in real and virtual environments 398 

Why cue cells had such stable and easily classified activity patterns in virtual reality, but not in the 399 
real arena remains an open question. Navigating along a virtual track differs greatly from foraging in a 400 
complex real arena. In the case of virtual reality, the animal encounters a single cue at a time, so the 401 
representation of location using visual information is primarily from a limited orientation to individual 402 
cues, one pair at a time, along the track. It is possible that forming a representation of location in the real 403 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/453787doi: bioRxiv preprint 

https://doi.org/10.1101/453787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 12 of 43 
 

arena requires triangulation from many cues located at various angles and distances away. Despite the 404 
simple design of our real arena with a single cue card on one wall, there could be multimodal features 405 
from the floor, walls, or from distal cues outside of the arena. Navigation along simple virtual 406 
environments comprised of only visual cues sets up an ideal experimental paradigm to further understand 407 
the activity of these cells. Future experiments could probe other features of the cells with more 408 
perturbations of the virtual environment. 409 
Cell classes in MEC 410 

Although our analysis and discussion of cue cells have largely followed the traditional approach of 411 
describing MEC cells according to discrete classes, it is interesting to note that cue scores, like grid, head 412 
direction, and border scores, each form a continuum and that a significant fraction of cells in MEC are 413 
conjunctive for more than one class (Figure 3). The conjunctive coding in neural firing in MEC is also 414 
demonstrated by a recent study (Hardcastle et al., 2017) and is conceptually analogous to the “mixed 415 
selectivity” in neural codes that have been increasingly recognized in cognitive, sensory and motor 416 
systems (Finkelstein et al., 2015; Fusi et al., 2016; Rigotti et al., 2013; Rubin et al., 2014). Recently, 417 
mixed selectivity has been demonstrated to be computationally useful in evidence integration and 418 
decision-making by allowing the selection of specific integrating modes in accumulating evidence to 419 
guide future behavior (Mante et al., 2013; Ulanovsky and Moss, 2011). Reframing this in the context of 420 
path integration, it will be useful to determine how navigation systems might use mixed selectivity and 421 
context-specific integrating modes to weigh different accumulating information (different velocity and 422 
position inputs) according to the reliability of that information during navigation in complex, feature-rich 423 
environments.   424 
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Materials and Methods 425 
Animals 426 

All procedures were approved by the Princeton University Institutional Animal Care and Use 427 
Committee and were in compliance with the Guide for the Care and Use of Laboratory Animals. Four 428 
C57BL/6J male mice, 3-6 months old, were used for electrophysiological experiments. Two 10-week old 429 
male mice were used for the two-photon imaging of layer 3 neurons. Mice used for the two-photon 430 
imaging of layer 2 neurons were six 10- to 12-week old GP5.3 males, which were heterozygous for 431 
carrying the transgene Thy1-GCaMP6f-WPRE to drive the expression of GCaMP6f (Dana et al., 2014).  432 
Experimental Design and Statistical Analysis 433 

All electrophysiological data are represented as mean ± STD and imaging data are represented as 434 
mean ± SEM, unless otherwise noted. A student’s t-test was always used to evaluate whether the 435 
difference of two groups of values was statistically significant. Significance was defined using a p value 436 
threshold of 0.05 (* p<0.05, ** p<0.01, *** p<0.001). All analysis was performed using custom Matlab 437 
software and built in toolkits. All correlations were Pearson correlations unless otherwise specified.  438 
Code Accessibility 439 

Code for all the analyses will be available upon request. 440 
Real arena for tetrode recording 441 

Experiments were performed as described previously (Domnisoru et al., 2013). The real arena 442 
consisted of a 0.5 m × 0.5 m square enclosure with black walls at least 30 cm high and a single white cue 443 
card on one wall. Animals foraged for small pieces of chocolate (Hershey’s milk chocolate) scattered 444 
throughout the arena at random times. Trials lasted 10-20 minutes. On each recording day, real arena 445 
experiments were always performed before virtual reality experiments. Video tracking was performed as 446 
described previously (Domnisoru et al., 2013) using a Neuralynx acquisition system (Digital Lynx). 447 
Digital timing signals, which were sent and acquired using NI-DAQ cards, and controlled using ViRMEn 448 
software in Matlab (Aronov and Tank, 2014) were used to synchronize all computers.  449 
Virtual reality (VR) 450 

The virtual reality system was similar to those described previously (Dombeck et al., 2010; 451 
Domnisoru et al., 2013; Gauthier and Tank, 2018; Gu et al., 2018; Harvey et al., 2012; Harvey et al., 452 
2009; Low et al., 2014). ViRMEn software (Aronov and Tank, 2014) was used to design the linear VR 453 
environment, control the projection of the virtual world onto the toroidal screen, deliver water rewards (4 454 
µl) through the control of a solenoid valve, and monitor running velocity of the mice. Upon running to the 455 
end of the track, mice were teleported back to the beginning of the track.  456 

VR for tetrode recording: The animal ran on a cylindrical treadmill, and the rotational velocity of the 457 
treadmill, which was proportional to mouse velocity, was measured using sequential sampling of an 458 
angular encoder (US Digital) on each ViRMEn iteration (~60 iterations per second). The tracks were 8 459 
meters long with identical cues on both side of the track. 460 

VR for imaging: Mice ran on an air-supported spherical treadmill, which only rotated in the 461 
forward/backward direction. Their heads were held fixed under a two-photon microscope (Gu et al., 2018; 462 
Low et al., 2014). The motion of the ball was measured using an optical motion sensor (ADNS3080; red 463 
LED illumination) controlled with an Arduino Due. The VR environment was rendered in blue and 464 
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projected through a blue filter (Edmund Optics 54-462). The track was 18 meters long with asymmetric 465 
cues on two sides of the track. Water rewards (4 µl) were delivered at the beginning and the end of the 466 
track. 467 
Microdrives and electrode recording system 468 

Custom microdrives and the electrophysiology recording system used were similar to those described 469 
previously (Aronov and Tank, 2014; Domnisoru et al., 2013; Kloosterman et al., 2009). Tetrodes were 470 
made of PtIr (18 micron, California Fine Wire) and plated using Platinum Black (Neuralynx) to 100-150 471 
kΩ at 1 kHz. A reference wire (0.004” coated PtIr, 0.002” uncoated 300 µm top) was inserted into the 472 
brain medial to the MEC on each side, and a ground screw or wire was implanted near the midline over 473 
the cerebellum. 474 

The headstage design was identical to the one used previously (Aronov and Tank, 2014) with the 475 
addition of solder pads to power two LEDs for use in tracking animal location and head orientation. 476 
Custom electrode interface boards (EIBs) were also designed to fit within miniature custom microdrives. 477 
A lightweight 9-wire cable (Omnetics) connected the headstage to an interface board. The cable was long 478 
enough (~3m) to accommodate the moving of the animal between the real arena and the virtual reality 479 
system without disconnection.  480 
Surgery  481 

Tetrode recording: Surgery was performed using aseptic techniques, similar to those described 482 
previously (Domnisoru et al., 2013). The headplate and microdrive were implanted in a single surgery 483 
that lasted no longer than 3 hours. Bilateral craniotomies were performed with a dental drill at 3.2 mm 484 
lateral of the midline and just rostral to the lambdoid suture. After the microdrive implantation, 4-6 turns 485 
were slowly made on each drive screw, lowering the tetrodes at least 1 mm into the brain. Animals woke 486 
up within ~10 minutes after the anesthesia was removed and were then able to move around and lift their 487 
heads.  488 

Imaging: The surgical procedures were similar to those described previously (Low et al., 2014). A 489 
microprism implant was composed of a right angle microprism (1.5 mm side length, BK7 glass, 490 
hypotenuse coated with aluminum; Optosigma), a circular coverslip (3.0 mm diameter, #1 thickness, BK7 491 
glass; Warner Instruments) and a thin metal cylinder (304 stainless steel, 0.8 mm height, 3.0 mm outer 492 
diameter, 2.8 mm inner diameter; MicroGroup) bonded together using UV-curing optical adhesive 493 
(Norland #81). The microprism implantation was always performed in the left hemisphere (Gu et al., 494 
2018; Low et al., 2014). A circular craniotomy (3 mm diameter) was centered 3.4 mm lateral to the 495 
midline and 0.75 mm posterior to the center of the transverse sinus (at 3.4 mm lateral). The dura over the 496 
cerebellum was removed. The microprism assembly was manually implanted, with the prism inserted into 497 
the subdural space within the transverse fissure. The implant was bonded to the skull using Vetbond (3M) 498 
and Metabond (Parkell). A titanium headplate with a single flange was bonded to the skull on the side 499 
opposite to the side of the craniotomy using Metabond. For imaging layer 3 neurons in the MEC, 500 
AAV1.hSyn.GCaMP6f.WPRE.SV40 (Penn Vector Core) virus was diluted 1:4 in a solution of 20% (w/v) 501 
mannitol in PBS and pressure injected at two sites (200 nl/site): (1) ML 3.00  mm, AP 0.77 mm, depth 502 
1.79 mm; (2) ML 3.36 mm, AP 0.60 mm, depth 1.42 mm.  503 
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Two-photon imaging during virtual navigation 504 
Imaging was performed using a custom-built, VR-compatible two-photon microscope (Low et al., 505 

2014) with a rotatable objective. The 920 nm excitation laser was delivered by a mode-locked Ti:sapphire 506 
laser (Chameleon Ultra II, Coherent, 140fs pulses at 80 MHz). The laser scanning for imaging layer 2 507 
neurons of the MEC was achieved by a resonant scanning mirror (Cambridge Tech.). The laser scanning 508 
for imaging layer 3 neurons of the MEC was achieved by a galvanometer XY scanner (Cambridge Tech.). 509 
Fluorescence of GCaMP6f was isolated using a bandpass emission filter (542/50 nm, Semrock) and 510 
detected using GaAsP photomultiplier tubes (1077PA–40, Hamamatsu). The two objectives used for 511 
imaging layers 2 and 3 were Olympus 40×, 0.8 NA (water) and Olympus LUCPLFLN 40x, 0.6 NA (air), 512 
respectively. Ultrasound transmission gel (Sonigel, refractive index: 1.3359 (Larson et al., 2011); Mettler 513 
Electronics) was used as the immersion medium for the water immersion objective used for layer 2 514 
imaging. The optical axes of the microscope objective and microprism were aligned at the beginning of 515 
each experiment as described previously (Low et al., 2014). Microscope control and image acquisition 516 
were performed using ScanImage software (layer 2 imaging: v5; layer 3 imaging: v3.8; Vidrio 517 
Technologies (Pologruto et al., 2003)). Images were acquired at 30 Hz at a resolution of 512 x 512 pixels 518 
(~410 x 410 µm FOV) for layer 2 imaging, and 13 Hz at a resolution of 64 x 256 pixels (~100 x 360 µm 519 
FOV) for layer 3 imaging. Imaging and behavioral data were synchronized by simultaneously recording 520 
the voltage command signal to the galvanometer together with behavioral data from the VR system at a 521 
sampling rate of 1 kHz, using a Digidata/Clampex acquisition system (Molecular Devices).  522 
Histology 523 

For tetrode recording: To identify tetrode locations, small lesions were made by passing anodal 524 
current (15 µA, 1 sec) through one wire on each tetrode. Animals were then given an overdose of 525 
Ketamine (200 mg/kg)/Xylazine (20 mg/kg) and perfused transcardially with 4% formaldehyde in 1X 526 
PBS. At the end of perfusion, the microdrive/headplate assembly was carefully detached from the animal. 527 
The brain was harvested and placed in 4% formaldehyde in 1X PBS for a day and then transferred to 1X 528 
PBS. To locate tetrode tracks and lesion sites, the brain was embedded in 4% agarose and sliced in 80 µm 529 
thick sagittal sections. Slices were stained with a fluorescent Nissl stain (NeuroTrace, Molecular Probes), 530 
and images were acquired on an epifluorescence microscope (Leica) and later compared with the mouse 531 
brain atlas (Paxinos). To identify which tetrode track belonged to each tetrode of the microdrive, the 532 
microdrive/headplate assembly was observed with a microscope to determine the location of each tetrode 533 
in the cannula, the relative lengths of the tetrodes, and whether the tetrodes were parallel or twisted. If 534 
tetrodes were twisted, then recordings were used only if grid cells were found on the tetrode. 535 

For imaging: For verifying the layer-specific expression of GCaMP6f in the MEC, animals were 536 
transcardially perfused, as described above, and their brains were sliced in 100 µm thick sagittal sections. 537 
A fluorescent Nissl stain was performed as described above. 538 
General data processing for tetrode recording 539 

Data analysis was performed offline using custom Matlab code. Electrophysiology data were first 540 
demultiplexed and filtered (500 Hz highpass). Spikes were then detected using a negative threshold set to 541 
three times the standard deviation of the signal averaged across electrodes on the same tetrodes. 542 
Waveforms were extracted and features were then calculated. These features included the baseline-to-543 
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peak amplitudes of the waveforms on each of the tetrode wires as well as the top three principal 544 
components calculated from a concatenation of the waveforms from all wires. 545 

Cluster separation: Features of the waveforms were plotted with a custom Matlab GUI. Criteria for 546 
eliminating clusters from the dataset were: units with less than 100 spikes (in real arena or virtual tracks), 547 
the minimum spatial firing rate along the virtual track > 10 Hz or the maximum firing rate > 50 Hz. After 548 
this, 2825 clusters remained. Since clusters were cut with two different methods (using all 4 electrodes 549 
and using 3 electrodes with the fourth subtracted as a reference), repeats needed to be removed from the 550 
overall dataset. Repeats were found using a combination of 3 measures: the Pearson correlation of the real 551 
arena spatial firing rate, the same correlation of the virtual track spatial firing rate and the ISI distribution 552 
of the spikes merged between the two clusters. If the sum of these scores exceeded 2.25 then the clusters 553 
were considered to be from the same cell; the cluster with the larger number of spikes was kept, and the 554 
other cluster was discarded.  555 

Recordings were performed on four animals over two months. From these recordings, 5940 clusters 556 
were manually cut using a custom Matlab GUI. Of these, there were 1081 clusters that were identified on 557 
tetrodes that were histologically identified to be in MEC during the recording that also passed our cluster 558 
quality criteria.  The grid scores of these cells were calculated and a grid score threshold was calculated 559 
using shuffled permutations of these cells (Aronov and Tank, 2014; Domnisoru et al., 2013). Any tetrode 560 
on a particular day with a grid cell was then added to the database from that date on. The final database 561 
contained 1590 clusters.  562 
Spatial firing rates of tetrode data 563 

Position data (including head orientation in real 2D arenas) were subsampled at 50 Hz and spikes 564 
were assigned into the corresponding 0.02 sec bins. Velocity was calculated by smoothing the 565 
instantaneous velocity with a moving boxcar window of 1 second. Only data in which the animal’s 566 
smoothed velocity exceeded 1 cm/sec were used for further analyses of firing rates or scores. 567 

Real arena spatial firing rate: 2D arenas were divided into 2.5x2.5 cm bins. Spike counts and the 568 
total amount of times spent in these bins were convolved with a Gaussian window (5x5 bins, σ = 1 bin). 569 
Firing rate was not defined for spatial bins visited for a total of less than 0.3 seconds. 570 

Real arena, head direction: The animal’s head direction was binned in 3-degree intervals. For each 571 
angle bin, the spike count and the total amount of time spent (occupancy) was calculated. These values 572 
were separately smoothed with a 15 degree (5 bins) boxcar window, and the firing rate was computed as 573 
the ratio of the smoothed spike count to the smoothed occupancy.  574 

Virtual track spatial firing rate: Virtual tracks were divided into 5 cm bins. Spike counts and the 575 
amount of time spent in these bins were smoothed independently with a Gaussian window (3 point, σ = 576 
1). The smoothed firing rate was calculated as the smoothed spike position distribution divided by the 577 
smoothed overall position distribution. 578 

Spatial firing fields: To calculate spatial firing fields we created time arrays for position and for 579 
number of spikes of a cell. Time bins were 100 msec. For position, we calculated the average position 580 
within each chunk of time (5 data points since data were interpolated to 20 msec sampling intervals). We 581 
then divided the spatial track into 5 cm bins and determined in which bin the average position was 582 
located. For spikes, we counted the number of spikes in that 100 msec interval. This generated two arrays 583 
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in time (sampled at 100 msec), one with spike count and one with spatial bin location along the track. We 584 
then circularly permuted the spike count array by a random time interval between 0.05 x recording length 585 
and 0.95 x recording length. We then calculated the smoothed firing rate of this shuffled spike time array 586 
with the spatial bin location array. This was repeated 100 times, and the shuffled spatial firing rate was 587 
calculated for each permutation. The p-value was defined for each spatial bin along the track as the 588 
fraction of permutations on which the firing rate in that bin was above the actual firing rate. Any bin in 589 
which the p-value was less than 0.3 was considered part of a firing field. 590 

Firing field distributions: For each cue cell, we define an array (5 cm bins) that is 1 when there is a 591 
firing field and 0 otherwise. To look at the distribution of firing fields for the population of cells, we sum 592 
the values for each bin across all cue cells and divide by the number of cells. This gives the fraction of 593 
cue cells with firing fields at each location. The plot of this fraction versus location was defined as the 594 
population firing field distribution. 595 
Scores for cells in tetrode data 596 

For all scores below, 400 shuffles were performed with spike times circularly permuted by a random 597 
amount of time chosen between 0.5 x recording length and 0.95 x recording length, a standard method for 598 
determining score thresholds (Domnisoru et al., 2013). Shuffled distributions from all units combined 599 
were used to calculate a threshold at 95th percentile. 600 

Grid score: The unbiased autocorrelation of the 2D firing rate in a real arena was first calculated 601 
(Hafting et al., 2005). Starting from the center of the 2D autocorrelation function, an inner radius was 602 
defined as the smallest radius of three different values: local minimum of the radial autocorrelation; 603 
where the autocorrelation was negative; or at 10 cm. Multiple outer radii were used from the inner radius 604 
+ 4 bins to the size of the autocorrelation - 4 bins in steps of 1 bin. For each of these outer radii, an 605 
annulus was defined between the inner and the outer annulus. We then computed the Pearson correlation 606 
between each of these annuli and its rotation in 30 degree intervals from 30 to 150 degrees. For each 607 
annulus we then calculated the difference between the maximum of all 60 and 120 rotation correlations 608 
and the minimum of all 30, 90, and 150 degree correlations. The grid score was defined to be the 609 
maximum of all of these values across all annuli. 610 

Head direction score: The head direction score was defined to be the mean vector length of the head 611 
direction firing rate (Giocomo et al., 2014). The head direction angle was defined to be the orientation of 612 
the mean vector of the head direction firing rate.  613 

Spatial/head direction stability: This was calculated as described previously (Boccara et al., 2010). 614 
Recording sessions were divided into two parts, the firing rate was calculated for each, and the spatial 615 
stability was defined as the Pearson correlation between the two parts. 616 

Cue score: The cue score was developed to measure the correlation of the spatial firing rate to the 617 
visual cues of the environment. A “cue template” was defined in 5 cm bins with value equal to 1 for bins 618 
that included the area between the front and back edges of each cue and 0 elsewhere. The cross 619 
correlation between the cue template and the firing rate was first calculated (relative shift <= 300 cm). 620 
The peak in the cross correlation with the smallest absolute shift from zero was chosen as the best 621 
correlation of the firing rate to the cue template. The spatial shift at which this peak occurred was then 622 
used to displace the cue template to best align with the firing rate. The correlation was then calculated 623 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/453787doi: bioRxiv preprint 

https://doi.org/10.1101/453787
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 18 of 43 
 

locally for each cue. The local window included the cue and regions on either side extending by half of 624 
the cue width. The mean of local correlation values across all cues was calculated and defined as the “cue 625 
score”. An illustration of this method is shown in Figure 1B. This score effectively distinguished grid 626 
cells from cue cells, because grid cells generally did not have peaks at consistent locations relative to all 627 
the cues. The small number of grid cells that passed the cue score shuffle test also tended to have activity 628 
in other locations, where cues were not present.  629 

Ridge/background ratio: The ridge/background ratio was calculated on the smoothed spatial firing 630 
rate at each cue location. The spatial firing rate of each cell was shifted to maximally align to the cue 631 
template as was done to calculate the cue score. The 5 bins (25 cm) in the center of each cue location are 632 
defined to be bins for the ridge. Background bins were all bins outside of cue locations displaced in both 633 
directions by [cue half-width + 20] to [cue half-width + 30]. For each cue, the ridge/background ratio was 634 
calculated as the mean firing rate in the ridge bins divided by the mean firing rate in the background bins. 635 
The ridge/background ratio for the cell was defined to be the mean of these individual ridge/background 636 
ratios. We performed 1000 shuffles of the data, as described above, and calculated the mean 637 
ridge/background ratio for each shuffle. The p value is the (number of shuffled data mean values larger 638 
than the mean ridge/background ratio of the data)/(number of shuffled data mean values less than the 639 
mean ridge/background ratio of the data). 640 
General imaging data processing 641 

All imaging data were motion corrected using a whole-frame, cross-correlation-based method 642 
(Dombeck et al., 2010) and were then used to identify regions of interest (ROIs) using an independent 643 
component analysis (ICA) based algorithm (Mukamel et al., 2009) (for individual layer 3 field of view 644 
(FOV): mu = 1, 150 principal components, 150 independent components, s.d. threshold = 3; for 645 
individual layer 2 FOV, which was evenly split as nine blocks before ICA: mu = 0.7, 30 principal 646 
components, 150 independent components, s.d. threshold = 3). Fluorescence time series of these ROIs 647 
were extracted from all motion-corrected stacks. The fractional change in fluorescence with respect to 648 
baseline (ΔF/F) was calculated as (F(t) – F0(t)) / F0(t), similar to what was described previously (Gu et al., 649 
2018; Low et al., 2014). Significant calcium transients were identified as those that exceeded cell-specific 650 
amplitude/duration thresholds (so that artefactual fluctuations were expected to account for less than 1% 651 
of detected transients (Dombeck et al., 2007)). Mean ΔF/F of the whole imaging session or individual 652 
traversals was calculated as a function of position along the virtual track for non-overlapping 5 cm bins. 653 
Only data points during which the mouse's running speed met or exceeded 1 cm/s were used for the 654 
calculation. 655 
Identifying cue cells in imaging data 656 

Selection of cells: candidates for cue cells were restricted to cells that contained at least one in-field 657 
period and one out-of-field period based on a p-value analysis of their calcium responses (Domnisoru et 658 
al., 2013; Gu et al., 2018; Heys et al., 2014; Yoon et al., 2016). Similar to identifying spatial fields for 659 
tetrode-recorded cells, in- and out-of-field periods were defined by comparing the mean ΔF/F value in 660 
each 5 cm bin to that of a random distribution created by 1000 bootstrapped shuffled responses, which 661 
were generated by rotating the ΔF/F trace starting from random sample numbers between 0.05 × Nsamples 662 
and 0.95 × Nsamples (Nsamples: number of samples in the ΔF/F trace). For each bin, the p-value equaled the 663 
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percent of shuffled mean ΔF/F that were above the real mean ΔF/F. In-field-periods were defined as three 664 
or more adjacent bins (except at the beginning and end of the track where two adjacent bins were 665 
sufficient) whose p-value ≤ 0.2 and for which at least 10% of the runs contained significant calcium 666 
transients within the period. Out-of-field periods were defined as two or more bins whose p-value ≥ 0.75. 667 

Defining cue cells responding to left, right, and both-side cues: Three types of cue template were 668 
generated: left, right, and both side cue templates corresponded to cues localized on the left, right, and 669 
both sides of the track, respectively. Three cue scores for each cell were calculated as described above 670 
according to the three types of template. The highest score and its corresponding side were used as the 671 
cue score and side preference for that cell, respectively. The cue score of a cell was further compared to 672 
those of bootstrapped shuffled responses (200 shuffles for each cell, generated as described above). Cue 673 
scores of all shuffles from all cells to all types of cue templates were combined together. If the cue score 674 
of a cell exceeded the 95th percentile of the shuffled scores, the cell was a cue cell responding to cues with 675 
that side preference.  676 
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Figures and figure legends 847 

 848 
Figure 1. Cells respond to cues in the environment.  849 
A. Examples of cells with cue-related activity recorded during navigation along virtual tracks. At the top 850 

of each example are views of each cue from the animal’s perspective inside the track at that location. 851 
Side views of the track are shown below, with the start location to the left. The raster plot for a single 852 
cell’s spatial activity pattern across multiple traversals of the track is plotted with the average firing 853 
rate (Hz) as a function of track position (spatial firing rate) below. Spatial firing fields for the cell are 854 
indicated with horizontal red bars. 855 

B. Calculation of cue score. The Pearson correlation between the cue template and the cell’s spatial firing 856 
rate was calculated, then the cue template was shifted to where it was maximally correlated with the 857 
spatial firing rate and the correlations of cue template and spatial firing rate at each cue were 858 
individually calculated. The cue score was defined to be the mean of these correlations (Materials and 859 
Methods).  860 

C. The distribution of cue scores of recorded cells is shown at the top with the distribution of cue scores 861 
calculated on shuffled data shown below. The threshold was chosen as the value that 95% of the 862 
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shuffled scores did not exceed (vertical black line). Cells exceeding this threshold were termed ‘cue 863 
cells’ and are shown in red in the top plot.  864 

D. Distribution of spatial firing fields of all cue cells in two environments.   865 
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 866 
Figure 2. Cells respond to cue changes in environment 867 
A. Examples of the spatial firing rates of cells during cue perturbation experiments. For each example, 868 

the top and bottom panels are from the same cell in blocks of trials in which the animal either ran 869 
down a virtual track with all cues present (with-cues track, top) or a track where some cues were 870 
missing in the later part of the track (missing-cues track, bottom). The environment and cue template 871 
for both environments are shown with the corresponding raster plots and spatial firing rates below. 872 
Cell 1: T5 20140211 t7 c2, Cell 2: T8 20140315 t8 c2, Cell 3: T10 20140326 t2wref c2, Cell 4: T10 873 
20140313 t6wref c3.  874 

B. Comparison of firing rates of all cue cells between runs in the initial region that is the same for both 875 
tracks (Region A) and the later region (Region B) that either had cues (with-cues track) or missed 876 
cues (missing-cues track) (left). The maximum and mean firing rates in these regions of the two tracks 877 
are plotted to the top and bottom on the right.   878 

C. Population field distribution for the entire population of cue cells along with-cues and missing-cues 879 
tracks for two environments.   880 
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 881 
Figure 3. Cue cell activity during foraging in a real arena   882 
A. Relative distributions of cue scores compared to border, grid, and head direction scores. Thresholds 883 

were calculated as the value that exceeds 95% of shuffled scores. The solid line indicates the 884 
threshold for each score that was used to determine the corresponding cell type (Materials and 885 
Methods). Cells are color-coded for whether they are cue (red), grid (green), border (blue), or head 886 
direction cells (black). The percentage of the cue cell population that was conjunctive for border, grid, 887 
and head direction is shown on each plot.  888 

B. Percentage of each cell type in the dataset.  889 
C. Examples of cue cells’ spatial firing rate in a real arena and their spatial stability. The recording of 890 

each cell was divided in half. The activity features of the first and second halves are shown for each 891 
cell in the left and right columns. For each column of each cell: top: plots of spike locations (red dots) 892 
and trajectory (gray lines); middle: the 2D spatial firing rate (represented in a heat map) with the 893 
maximum firing rate indicated above; bottom: head direction firing rate. The stability was calculated 894 
as the correlation of these two firing rates and shown under the cell number.  895 

D. Histograms of the spatial and head direction stability of the 2D real environment firing rates by cell 896 
type.   897 

E. Percentage of 2D real environment stable cells that are of a certain type. Cell types are color-coded: 898 
red = cue cell, green = grid cell, blue = border cell, black = head direction cell. The threshold for 899 
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spatial stability was calculated as the value that exceeds 95% of score values for the shuffled 900 
distribution.   901 
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 902 
Figure 4. Cue cells form a sequence aligned at each cue 903 
A. Cue cell sequence in an environment. Top two rows show a side view of the virtual track and the 904 

corresponding cue template below. The spatial firing rates (middle) and corresponding spatial firing 905 
fields (bottom) are shown for all cue cells recorded during navigation in a single environment. Each 906 
row is the firing rate of a single cell along the track, normalized by its maximum. The cells are sorted 907 
based on their spatial shifts calculated for alignment of spatial firing rates to the cue template (using 908 
the spatial shift of maximal correlation of the firing rate to the cue template, Materials and Methods). 909 
The firing fields are ordered in the same sequence as the firing rates.  910 

B. Sorted spatial firing rates and corresponding spatial firing fields for a different environment.  911 
C and E. The location of spatial firing rate peaks is plotted versus the peak heights for individual cues in 912 

the two environments in A and B, respectively.  913 
D and F. Alignment of cue cell sequences with different regions of cues in the environments in A and B, 914 

respectively. For each environment, the top panels are side views of sections of the environment 915 
around each cue (the earlier part of the track is to the left). Each row represents one cue. For each cue, 916 
the start, center, and end of the cue are centered in the left, middle, and right panels, respectively. 917 
Each cue is color-coded (vertical alignment bars in these plots and for the rest of the plots below, cue 918 
1 = blue, cue 2 = green, cue 3 = red, cue 4 = cyan, cue 5 = purple). Since the cues were different 919 
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sizes, the alignment of cue cell activity differed when aligned to the start, center, or end of the cues. 920 
For the alignments with different parts of each cue, the lower panels show the locations of the peaks 921 
of the cue cell spatial firing fields (Peaks), the distribution of the peaks (Peaks Hist.), the cue cell 922 
spatial fields (Fields), and the distribution of the spatial fields (Fields Hist). Both the spatial firing 923 
field peak and spatial field distributions show that the alignment to the center of the cues produced the 924 
most similar distributions of cue cell activity across all cues.   925 
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926 
Figure 5. Cue cell pair activity and spatial and temporal shifts 927 
A. Temporal activity relationship between pairs of cells with spatial offsets of their spatial firing rate. 928 

For each cell pair: left: the spiking activity for the two simultaneously recorded cue cells. The raster 929 
plot shows the spike locations on 10 runs along the track for each cell (cell 1 spikes are red, cell 2 930 
spikes are blue). The spatial firing rates over all of the runs (not just for the ten runs shown) for both 931 
cells are plotted at the bottom. Right: the spike time cross-correlograms of the two cells with the 932 
temporal shift shown by a red line and arrow.  933 

B. Spatial and temporal shifts for all pairs of simultaneously recorded cue cells. The relative spatial shift 934 
was defined as the shift at which the correlation between the two firing rates had a local maximum 935 
closest to zero. The temporal shift was the shift at which the spike time cross-correlogram had a local 936 
maximum closest to zero. All cells are plotted in a histogram for relative spatial and temporal shifts, 937 
excluding zero values (no shift) along either axis. 938 

C. Temporal activity relationship between pairs of cells on with-cues and missing-cues tracks. Top: 939 
cartoons illustrating the track types and regions used for the data plotted below. For both tracks, the 940 
first region was identical in wall and cue locations (Region A). The second region (Region B) differed 941 
between the two tracks, one with cues (left, with-cues track) and one missing cues (right, missing-942 
cues track). Data were sorted by different regions on the two tracks. Bottom: the mean +/- standard 943 
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error of the temporal shifts between cue cell pairs recorded on both tracks. Bottom left: the time shifts 944 
of the peaks in the spike time cross-correlograms of cue cell pairs are plotted for the two tracks in 945 
Region A. Right: the time shifts for cue cell pairs on Region B of the two tracks. There was a range of 946 
time shift values when cues were present (for the ‘with-cues track’ plotted along the x-axis). 947 
However, there were fewer nonzero time shifts when cues were not present (see the distribution of 948 
values along the y-axis for the ‘missing-cues track’ in Region B).   949 
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 950 

 951 
Figure 6. Cue cell responses to side-specific cues in superficial layers of the MEC  952 
A. An 1800 cm (18 meter) long virtual track for imaging experiments. “L”, “R” and “L/R” indicate cues 953 

on the left, right and both sides of the track, respectively. 954 
B. Three types of cue templates corresponding to cues on the left, right, and both sides of the track. 955 
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C. Examples of individual cue cells responding to the three side categories of cues in layers 2 and 3 of 956 
the MEC. For each cell: top: ΔF/F versus linear track position for a set of sequential traversals. 957 
Middle: mean ΔF/F versus linear track position. Bottom: overlay of the cue template and aligned 958 
mean ΔF/F (black) according to the shift, which gave the highest correlation between them (Materials 959 
and Methods).  960 

D. Cue cell sequences responding to the three side categories in layers 2 and 3. Each row is mean ΔF/F 961 
of a single cell along the track, normalized by its maximum. The cells are sorted by the spatial shifts 962 
of their mean ΔF/F to the cue template. 963 

E and F. Percentage (E) and cue scores (F) of cue cells in layer 2 responding to three side categories of 964 
cues. In E, each curve represents the percentage of left, right, and both-side cue cells (from left to 965 
right) in the whole cue cell population of a single FOV.  Error bars:  mean +/- SEM. All layer 2 cells 966 
shown in D were used in this analysis. 967 

G and H. Similar to E and F but for layer 3 cue cells. All layer 3 cells shown in C were used in this 968 
analysis.  969 
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 970 
Figure 7. Micro-organization of cue cells in layers 2 and 3 971 
A. A FOV in layer 2 of the MEC containing left (green) and right (magenta) cue cells. Cell indices are 972 

consistent with those in B. Anatomical orientations: D: dorsal; V: ventral; M: medial; L: lateral, same 973 
in the panels D, G, and K. 974 

B. Calcium responses of left and right cue cells shown in A. Each row is mean ΔF/F of a single cell 975 
along the track, normalized by its maximum. The cells are sorted by the shift of their mean ΔF/F to 976 
the cue template of their preferred side, same in panels E, H, and L. 977 

C. Pairwise distance between different cell types in layer 2. Non-cue cells included all cells in the MEC 978 
except cue cells. Non-left cue cells included all cue cells responding to right and both-side cues. Non-979 
right cue cells included all cue cells responding to left and both-side cues. Error bars:  mean +/- SEM. 980 
The analyses included 749 cue cells, 2170 non-cue cells, 272 left cue cells, 455 right cue cells and 22 981 
both-side cue cells. 982 
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D-F. Similar to A-C but for layer 3 cue cells. The analyses in F included 355 cue cells, 1569 non-cue 983 
cells, 145 left-cue cells, 201 right-cue cells and 9 both side cue cells. 984 
G. A FOV in layer 2 of the MEC containing right cue cells with different spatial shifts. Individual cue 985 

cells are color-coded according to their spatial shifts shown in H. Cell indices are consistent with H.  986 
H. Calcium responses of the right cue cells in G and their spatial shifts to cues on the right side of the 987 

track. 988 
I and J. Pairwise physical distance of left- (I) and right-cue cells (J) in layer 2 of the MEC versus pairwise 989 

difference of the spatial shifts of their mean ΔF/F to the left and right cue templates, respectively. 990 
Error bars:  mean +/- SEM. 1026 left-cue cell pairs and 2940 right-cue cells were used. 991 

K and L. Similar to G and H but for left cue cells in a FOV in layer 3. 992 
M and N. Similar to I and J but for layer 3 cue cells. 351 left-cue cell pairs and 733 right-cue cells were 993 

used.  994 
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995 
Supplementary Figure 1. Histology  996 
For each animal, T5, T8, and T10, a summary table shows the number of cells in the database from each 997 
tetrode, as well as the number of cue, grid, border and head direction cells within that population. For T5, 998 
an example of the orientation of the tetrodes within the cannula on either side of the brain is shown. This 999 
was used as a guide to identify individual tetrodes based on the tetrode tracks and lesions in the brain. The 1000 
images of sagittal brain sections taken under the bright field microscope and the fluorescence microscope 1001 
after fluorescent Nissl stain are shown for individual animals. Individual tetrodes were identified, color-1002 
coded and labeled in the figure. All images were sharpened and recolored to emphasize tetrode tracks and 1003 
lesions.  1004 
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 1005 
Supplementary Figure 2. Cue cell activity in real arenas 1006 
Top and middle panels: the spatial and head direction firing rates of cue cells in a real arena are sorted 1007 
based on the spatial shifts of their spatial firing fields to the cue template in virtual reality (bottom panel). 1008 
No clear patterns of changes in number, size and location of firing fields or the mean vector length of 1009 
head direction firing rates were observed.            1010 
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 1011 
Supplementary Figure 3. Cue cell sequences and the ridge/background ratio compared to shuffled 1012 
data 1013 
For each environment, left: spatial firing rates (normalized by each cell’s maximum firing rate) of cue 1014 
cells were sorted by their shifts relative to the cue template; right: an example of one set of shuffled firing 1015 
rates of all cue cells. The shuffled spatial firing rates were also sorted by the spatial shifts relative to the 1016 
cue template. Bottom: mean ridge/background ratios for all cue cells (2.58, left) and all shuffles (1.04+/- 1017 
0.003, right). Error bars: mean +/- STD.  1018 
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 1019 
Supplementary Figure 4. Layer-specific expression of GCaMP6f in the mouse MEC 1020 
A. Expression of GCaMP6f in layer 3 of the MEC, shown by a sagittal brain slice of a wild type mouse, 1021 

prepared 13 days after the injection of AAV2/1-hSyn-GCaMP6f virus to the MEC. Left: blue 1022 
epifluorescence image showing cell bodies in layers 2 and 3 (between white dotted curves) of the 1023 
MEC labeled by fluorescent Nissl staining. Right: green epifluorescence image of the same slice on 1024 
the left showing GCaMP6f expression of dorsal layer 3 neurons in the MEC. Scale bar: 200 µm. 1025 

B. Expression of GCaMP6f in layer 2 of the MEC, shown by a sagittal brain slice of a GP5.3 mouse, 5 1026 
months of age. Left: blue epifluorescence image showing cell bodies in layers 2 and 3 (between white 1027 
dotted curves) of the MEC labeled by fluorescent Nissl staining. Right: green epifluorescence image 1028 
of the same slice on the left showing GCaMP6f expression of layer 2 neurons in the MEC. Scale bar: 1029 
200 µm.  1030 
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 1031 
Supplementary Figure 5. Identity of each cue is encoded by population of cue cells 1032 
Cue cell firing rates around individual cues in two different environments (left and right). In each 1033 
environment around each cue, cue cell firing rates are sorted by the relative peak amplitude of the spatial 1034 
firing rates at the first cue of the environment. Firing rate peaks for subsequent cues are sorted in the same 1035 
order as for the first cue. The firing rate peak amplitude for a cue cell at a single cue is not predictive for 1036 
the amplitude of the peaks at other cues but is predictive for the spatial shifts of the peaks from other 1037 
cues. For this reason, the amplitude of the firing rate peaks might encode cue features or identity. 1038 
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