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Abstract 15 

Multistep cell fate transitions with stepwise changes of transcriptional profiles are common to many 16 

developmental, regenerative and pathological processes.  The multiple intermediate cell lineage states 17 

can serve as differentiation checkpoints or branching points for channeling cells to more than one 18 

lineages. However, mechanisms underlying these transitions remain elusive. Here, we explored gene 19 

regulatory circuits that can generate multiple intermediate cellular states with stepwise modulations of 20 

transcription factors. With unbiased searching in the network topology space, we found a motif family 21 

containing a large set of networks can give rise to four attractors with the stepwise regulations of 22 

transcription factors, which limit the reversibility of three consecutive steps of the lineage transition. We 23 

found that there is an enrichment of these motifs in a transcriptional network controlling the early T cell 24 

development, and a mathematical model based on this network recapitulates multistep transitions in 25 

the early T cell lineage commitment. By calculating the energy landscape and minimum action paths for 26 

the T cell model, we quantified the stochastic dynamics of the critical factors in response to the 27 

differentiation signal with fluctuations. These results are in good agreement with experimental 28 

observations and they suggest the stable characteristics of the intermediate states in the T cell 29 

differentiation. These dynamical features may help to direct the cells to correct lineages during 30 

development. Our findings provide general design principles for multistep cell linage transitions and new 31 

insights into the early T cell development. The network motifs containing a large family of topologies can 32 

be useful for analyzing diverse biological systems with multistep transitions.  33 
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Author summary 34 

The functions of cells are dynamically controlled in many biological processes including development, 35 

regeneration and disease progression. Cell fate transition, or the switch of cellular functions, often 36 

involves multiple steps. The intermediate stages of the transition provide the biological systems with the 37 

opportunities to regulate the transitions in a precise manner. These transitions are controlled by key 38 

regulatory genes of which the expression shows stepwise patterns, but how the interactions of these 39 

genes can determine the multistep processes were unclear. Here, we present a comprehensive analysis 40 

on the design principles of gene circuits that govern multistep cell fate transition. We found a large 41 

network family with common structural features that can generate systems with the ability to control 42 

three consecutive steps of the transition.  We found that this type of networks is enriched in a gene 43 

circuit controlling the development of T lymphocyte, a crucial type of immune cells.  We performed 44 

mathematical modeling using this gene circuit and we recapitulated the stepwise and irreversible loss of 45 

stem cell properties of the developing T lymphocytes. Our findings can be useful to analyze a wide range 46 

of gene regulatory networks controlling multistep cell fate transitions.   47 
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Introduction 48 

Cell fate transition, including differentiation, de-differentiation and trans-differentiation, is a 49 

fundamental biological process in which the function of a cell gets specialized, reprogrammed or altered. 50 

The process often involves significant changes of multiple cellular properties, including the morphology, 51 

the self-renewal capacity and the potentials to commit to alternative lineages [1,2]. These changes are 52 

controlled by the dynamics of interacting transcription factors (TFs) and the modulation of chromatin 53 

structures, which in term are governed by complex regulatory networks in the cells [3-5]. Interestingly, 54 

the fate transitions in many systems are achieved by sequential commitments to a series of cellular 55 

states with stepwise changes in their transcriptional profile towards the final stage of the program 56 

(Figure 1) [6-11]. The intermediate states between the initial state (e.g. the undifferentiated state in the 57 

case of cell differentiation) and the final state may be important for multiple purposes, such as 58 

facilitating ‘checkpoints’ that ensure appropriate development of cellular behaviors, or allowing the cells 59 

to make correct decisions at the lineage branching points [11-15].  60 

One example of these stepwise cell lineage transitions is the development of T lymphocytes in the 61 

thymus. The differentiation from multipotent pre-thymic progenitor cells to committed T cells involves 62 

multiple cellular states with stepwise changes of their cellular properties and the transcriptional profiles 63 

(Table 1) [16-19]. Several lines of evidence suggest that the transition states at an early phase of the 64 

differentiation can serve as stable checkpoints for sequential lineage commitments. The progress 65 

through these intermediate states is accompanied by stepwise loss of their potentials to differentiate 66 

into other cell types: pre-thymic progenitor cells can be converted to a few types of cells, including B 67 

cells, natural killer (NK) cells, dendritic cells (DCs) etc., whereas the multipotency of the intermediate cell 68 

types is more limited but not completely lost [20-26].  In addition, the stability of these intermediate 69 

states is substantial because the loss of differentiation signals does not result in de-differentiation of 70 
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some intermediate states [20], suggesting restricted reversibility (or complete irreversibility) of the 71 

multiple transitions. In addition, the lymphoid progenitor cells need to divide for a certain number of 72 

times at an intermediate state before committing to the T cell lineage, and the stable activities of the 73 

lineage defining transcriptional program at the intermediate stages may be important for the 74 

proliferations [27].  Finally, the loss of certain transcription factors (e.g. BCL11B) can lead to the 75 

termination of the differentiation at some intermediate states, which is often associated with diseases 76 

such as leukemia [18,20,28]. This further suggests that the intermediate states are cellular ‘attractors’ 77 

between the initial and the final stages of the differentiation (Figure 1, bottom panel). Similar stable 78 

intermediate states during cell lineage transitions are observed in other systems, such as the epithelial-79 

mesenchymal transition, and the skin development (Table 1), and those states also serve as regulatory 80 

stages for altering cellular properties including self-renewal and migration [10,29-37]. Therefore, the 81 

multiple intermediate states are involved in diverse normal development and pathological conditions. 82 

Understanding the regulatory programs for the sequential cell lineage commitments is a key step 83 

towards the elucidation of mechanisms underlying various biological processes involving multistep 84 

lineage transitions. Despite the accumulating data and observations on these stepwise lineage 85 

commitments, general mechanisms governing these differentiation processes with multiple 86 

intermediate cellular states remain unclear.   87 

 88 

Figure 1.  Illustration of multistep cell fate transition. A. transition from one cellular state to another 89 

via two intermediate states. Dashed arrow indicates the limited reversibility of each transition. B. 90 

stepwise changes of the levels of two transcription factors during the multistep transitions involving four 91 

states. C. metaphoric energy landscape depicting the four-attractor system. Colors for cell states and 92 

transition arrows in B and C match those in the illustration in A. 93 
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 94 

Table 1. Examples of multistep transitions with restricted reversibility 95 

Physiological 

scenario 

Cellular phenotypic 

transition 

Key regulators 

with stepwise 

modulations 

Extracellular 

signals 

Evidence supporting 

multistep transitions, 

multiple intermediate states 

and restricted reversibility 

Early T cell 

development 

ETP/DN1 → DN2a → 

DN2b → DN3 

PU.1 TCF-1 

GATA3 

BCL11B
 b

 

Notch [17-20,28] 

Skin 

development 

Stem cell → 

renewable spinous 

cell → non-

renewable spinous 

cell → granular cell 

OVOL1 OVOL2 Calcium ion [32,33,37] 

Epithelial-

mesenchymal 

transition 

E →
 a
 EM1 →

 a
 EM2 

→
 a
 M 

SNAIL1 TWIST 

ZEB1 miR200 

TGF-β [29-31,34-36] 

 96 

a
 Reversal transitions were observed, but they occur in a limited subpopulation. 97 

b
 Unlike other factors, BCL11B exhibits an abrupt change at the second transition. 98 

 99 

In this study, we explored the strategies in terms of the transcriptional network design that gives rise to 100 

stepwise transitions during cell differentiation. We first used a generic form of networks containing 101 

three interacting TFs to find network motifs that can produce four attractors (the minimum number of 102 

attractors in the examples of T cell development, epithelial-mesenchymal transition and skin 103 

development) with stepwise changes of transcriptional factor levels. We found two types of network 104 

motifs, both involving interconnections of positive feedback loops, which can generate the four-105 

attractor systems. These motifs constitute a large family of gene regulatory networks. We found that 106 

there is an enrichment of these motifs in a network controlling the early T cell development. We built a 107 
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specific model using known interactions among key transcription factors in developing T cells, and the 108 

model shows that the transcriptional network governs multistep and irreversible transitions in the 109 

development process. 110 

To investigate the stochastic dynamics for early T cell development model, we mapped out the quasi-111 

energy landscape for the early T cell development. This landscape characterizes the four attractors 112 

representing four stages of early T cell development quantitatively. In addition, by calculating the 113 

minimum action paths (MAPs) between different attractors, we quantified the dynamics of the key 114 

factors in response to Notch signal with fluctuations, which are in good agreement with experimental 115 

observations. Finally, we identified the critical factors influencing T cell development by global sensitivity 116 

analysis based on the landscape topography. Overall, our model for early T cell development elucidates 117 

the mechanisms underlying the stepwise loss of multipotency and multiple stable checkpoints at various 118 

stages of differentiation. The network topologies for multiple attractors found in this study and our 119 

motif discovery strategy combined with the landscape methodology can be useful for analyzing a wide 120 

range of cell differentiation systems with multiple intermediate states. 121 

 122 

Results 123 

Networks in a large motif family govern systems with four attractors with stepwise transcriptional 124 

modulation 125 

To find transcriptional network topologies that can generate multiple intermediate states during cell 126 

fate transition, we first performed random parameter sampling with a network family containing up to 3 127 

nodes (Figure 2A). In this framework of network topology, each node represents a transcription factor 128 

(TF) that can potentially influence the transcription levels of other two TFs and itself. Topology searching 129 
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with a 3-node network was used for motif discovery for various performance objectives in previous 130 

studies [38,39]. We performed exhaustive search for topologies with up to 6 regulations from a total of 131 

9 regulations of the network family, and constructed a mathematical model for each topology (see 132 

Methods for details). For each model, we performed random sampling of the parameter space from 133 

uniformly distributed values (Table S1). and we selected topologies containing at least one parameter 134 

set that is able to generate four attractors with stepwise changes of transcriptional levels. We define the 135 

system with four attractors with the stepwise changes of transcriptional levels as the scenario in which 136 

there are four stable steady states and they can be consistently ordered by the concentrations of any 137 

pairs of TFs.  In other words, one TF always monotonically increases or decreases with another TF in 138 

these four states. Among the 2114 network topologies that we searched, we found 216 topologies that 139 

can produce such behavior. In addition, we found 417 topologies that can only produce four unordered 140 

steady states (TF concentrations are non-monotonically correlated among the states) (Figure S11).  141 

To visualize the relationships among these topologies, we constructed a complexity atlas (Figure 2B), in 142 

which the nodes represent the network structures that gave rise to four attractors, and the edges 143 

connect pairs of topologies that differ by a single regulation (addition or removal of a transcriptional 144 

interaction) [40]. We define the minimum topologies as those of which the reduction of complexity, or 145 

the removal of any regulation from the network, will abolish its capability to generate four attractors 146 

(solid nodes in Figure 2B and examples in Figure 2C). We found 29 such minimum topologies which 147 

represent the non-redundant structures for producing the four-attractor system.  148 

Interestingly, all of the 216 topologies obtained from our search contain three distinct positive feedback 149 

loops (including double-negative feedback loops), and they can be categorized into two types of motifs 150 

(Figure 2B, bottom panel). The Type I motif contains three positive feedback loops that are closed at a 151 

single TF (red nodes and edges in Figure 2B). The Type II motif contains three connected positive 152 
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feedback loops, two of which do not share any TF but are connected via the third loop (blue nodes and 153 

edges in Figure 2B). There is a remarkable diversity of each of the motif types because the 154 

interconnected positive feedback loops can share multiple TFs (Figures S1 and S2).  Based on the 155 

complexity atlas (Figure 2B), we found that Type II motifs contain 4-6 regulations, and Type I motifs 156 

contain 5-6 regulations. Some of the networks with 6 regulations contain subnetworks of both Type I 157 

and Type II motifs (Hybrid type, green nodes). The four attractors in the space of two TFs exhibit a 158 

variety of patterns of nonlinear monotonic correlations (Figure 2C, Figure S3), which are governed by 159 

intersections of highly nonlinear nullclines in the state space containing the two TFs (Figure 2D, Figures 160 

S1 and S2).  The definitions of various types of motifs are listed in Table 2, and the statistics of the 161 

topologies discovered are summarized in Table 3 (also see Figure S11 for an illustration). Overall, this 162 

motif family represents a large number of networks that can produce a common type of behaviors: 163 

multiple stable intermediate states in terms the transcriptional activity. 164 

 165 

Figure 2. Network motifs governing four-attractor systems. A. Illustration of the network topology 166 

searching. Dashed arrows are regulations sampled. The topologies were screened by the criterion of the 167 

four attractors with stepwise changes of TFs. B. Complexity atlas for selected topologies. Closed circles 168 

denote minimum motifs. Open circles denote topologies containing more regulations than those in the 169 

minimum motifs. Each arrow denotes the difference by one regulation in the network. Examples of 170 

minimum motifs are shown at the bottom.  Red: Type I motif. Blue: Type II motif. Green: Hybrid motif. C. 171 

Overlaid four attractors for each of the 29 minimum topologies. Factor A denotes the TF on the left of 172 

the network diagram. Factor B denotes the TF on the right of the network diagram. In some topologies A 173 

and B and positively correlated (left panel), whereas they are negatively correlated in other topologies 174 

(right panel). Colored dots denote the stable steady states. Colored lines connect states of their 175 
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corresponding topologies. The colors of the cell states match the illustration in Figure 1. The colors of 176 

the lines denote different representative models. z-score is calculated by shifting the mean of each four 177 

attractors to 0 and then normalizing the four data points to unit variance data.  D. Example phase planes 178 

for two minimum topologies (Type I and Type II respectively). In each case, four out of the seven steady 179 

states (intersections denoted by solid dots) are stable. Network structures and phase planes for all 29 180 

minimum motifs are included in Figures S1 and S2. All models shown in this figure are built with additive 181 

form of Hill functions. 182 

Table 2. Definitions and key features of network motifs that generate systems with four ordered 183 

attractors.  184 

 Definition Minimum 

number of 

regulations 

Minimum number 

of positive 

feedback loops 

Type I motifs Three positive feedback loops 

that share one or more TFs 

among all of them. 

5 3 

Type II motifs Three connected positive 

feedback loops. Two of them do 

not share any TF but are 

connected via the third loop. 

4 3 

Hybrid motifs Motifs containing both Type I 

and Type II motifs. 

6 4 

 185 

In summary, we found two types of network motifs that generate four attractors with stepwise changes 186 

of the transcriptional profile. Two of these attractors represent the multiple intermediate states 187 

observed in various biological systems. This exploratory analysis elicits several interesting questions: 188 

what are the biological examples of such network motifs? Can the conclusions with respect to the two 189 

types of motifs be generalized to networks with more than three TFs? Is there any advantage of 190 

combining both types of motifs? How are the transitions among these states triggered deterministically 191 

and stochastically? To provide insights into these questions in a more biologically meaningful context, 192 
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we will use a specific biological system to describe more detailed analysis of these motifs and their 193 

underlying gene regulatory networks in the following sections. 194 

 195 

Type I and Type II network motifs are enriched in a transcriptional network controlling early T cell 196 

development 197 

We asked whether the motifs that we discovered can be found in any known transcriptional network 198 

that potentially control multistep cell differentiation. We used the early T cell differentiation in the 199 

thymus as an example to address this question. The differentiation from multipotent lymphoid 200 

progenitor cells to unipotent early T cells involves multiple stages at which the cells possess varying 201 

potentials to commit to non-T lineages and other cellular properties such as proliferation rates. At the 202 

early phase of this process, four stages of development T cells (ETP/DN1, DN2a, DN2b, DN3) were 203 

identified experimentally, and the progression through these stages is controlled by a myriad of 204 

transcription factors including four core factors, TCF-1, PU.1, GATA3 and BCL11B. These TFs form a 205 

complex network among themselves (see Figure 3A and supporting experimental observations in Table 206 

S3), and the stepwise changes in the levels of these TFs were observed in the four developmental stages 207 

of T cells [20,28]. The interactions involving these core TFs were shown to be critical for the irreversible 208 

commitment to the T cell lineage by forming a bistable switch [41]. Among these factors, PU.1 level 209 

decreases as the cells commit to later stages, whereas the levels of other three factors increase in this 210 

process. It is unclear, however, whether this transcriptional network can serve as a regulatory unit that 211 

governs the multistep nature of the T cell differentiation. 212 

We noticed that this T cell transcriptional network contains the motifs that we found in our analysis 213 

using the generic form of networks, we therefore hypothesized that the models based on this network 214 

can have four attractors with sequential changes of the four TFs. Indeed, using random sampling we 215 
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were able to find parameter sets that give rise to four-attractor systems similar to what we obtained 216 

with the generic 3-node framework. To find the functional components that generate this behavior, we 217 

analyzed the subnetworks of the complex T cell regulatory network [42]. We removed the regulations 218 

from the network systematically, and we found that out of the non-redundant 1553 topologies (2047 219 

subnetworks), there are 568 topologies (701 subnetworks) that can generate four attractors with 220 

stepwise changes of the TFs (Figure 3B). We used a complexity atlas to visualize the relationships among 221 

these subnetworks (Figure 3C). We found that the network can be reduced to one of the 66 minimum 222 

topologies (97 minimum subnetworks) which retains the four-attractor property (solid nodes in Figure 223 

3C). Notably, these networks can be classified into the two types of motifs described earlier (Figure 2B). 224 

Similar to the networks that we obtained through the generic framework, the two types of minimum 225 

motif have 4-6 regulations. Subnetworks with both types of motifs (green nodes and edges) start to 226 

appear when the number of regulations reaches six. The numbers of motifs and subnetworks obtained 227 

for the generic framework and the T cell model are summarized in Table 3. 228 

 229 

Figure 3. Four-attractor motifs in the early T cell transcriptional network.  A. Influence diagram for 230 

transcriptional regulations among four core factors controlling the early T cell development. B. 231 

Functional subnetworks of the T cell network were systematically obtained by removing regulations 232 

from the network. These subnetworks were screened by the criterion that four attractors with stepwise 233 

changes of TFs exist in the absence of Notch signal. C. Complexity atlas showing the relationships of the 234 

two four-attractor motifs in the subnetworks of the T cell model. Top callout shows the full network in 235 

the absence of Notch. Bottom callouts show examples of the minimum functional subnetworks of the 236 

two types with particular numbers of regulations. Red: Type I motif. Blue: Type II motif. Green: Hybrid 237 

motif.  D. Overlaid four attractors for each of the 66 minimum topologies. Colored dots denote the 238 
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stable steady states. Colored lines connect states of their corresponding topologies. All models shown in 239 

this figure are built with the multiplicative form of Hill functions. 240 

 241 

Table 3. Numbers of sampled network structures and discovered motifs 
a

 242 

 3-node networks T cell model 

Total networks sampled 2114 (12258) 1553 (2047) 

Type I motifs 77 (448) 191 (286) 

Type II motifs 115 (638) 108 (120) 

Hybrid motifs 24 (144) 269 (295) 

Minimum Type I motifs 15 (84) 44 (71) 

Minimum Type II motifs 14 (78) 22 (26) 

 243 

a 
In each cell of the table, the first number is the number of non-redundant network topologies. The 244 

number in the parentheses is the number of networks (or sub-networks of the T cell model) including 245 

the isometric topologies. 246 

 247 

We next quantified the enrichment of the two motif families in the early T cell transcription network. 248 

We first generated random networks by perturbing the existing regulations in the network model and 249 

computed the empirical p-values for observing the numbers of different types of network motifs. The T 250 

cell network contains a large number of positive feedback loops and the two types of motifs that we 251 

described earlier (Figure 4, top panel).  As expected, the network is significantly enriched with positive 252 

feedback loops in general (Figure 4, middle panel, red bars). However, the enrichments of Type I motifs 253 
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and the combinations of Type I and Type II motifs are even more significant than that of the single 254 

positive feedback loops (Figure 4, middle panel, red bars). To exclude the possibility that this differential 255 

significance was observed due to the way we generate random networks which gives low p-values (<10
-4

) 256 

in general, we used another method to generate random networks with an augmented number of 257 

regulations (Figure 4, middle panel, blue bars). Each pair of TFs were assigned with a pair of random 258 

regulations (positive, negative or none). Consistent with the previous method, the T cell transcriptional 259 

network is enriched with positive feedback loops overall, but the enrichment is more significant for Type 260 

I motifs or for the combination of Type I and Type II motifs. Interestingly, motifs that are similar to Type I 261 

motif but have higher complexity (more positive feedback loops) does not show more significant 262 

enrichment than Type I motif does (Figure S12). These results suggest the possibility that the network 263 

has been evolved to reach more complex performance objectives than those enabled by simple positive 264 

feedback loops alone. 265 

 266 

Figure 4. Enrichment of Type I and Type II motifs in the T cell model. Top panel: total occurrences of 267 

various types of motifs in the T cell network. Middle panel: empirical p-values of the single positive 268 

feedback loops and the sum of the two types of motifs.  Bottom panel: an illustration of the p-values 269 

with the distributions of background population. Random networks were obtained by 1) permuting the 270 

regulations in the existing network by randomly assigning their sources and targets (red) and 2) 271 

assigning random regulations (positive, negative or none) between each pair of TFs (blue). 10
5
 random 272 

networks were generated with each method. Empirical p-values were obtained by counting the number 273 

of the random networks with the number of motifs not less than those in the T cell network. See 274 

Methods for details of the p-value definition. Distributions of motif frequencies obtained from the 275 

random networks using the second method are shown in the bottom panel. The yellow vertical bars 276 
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represent the number of occurrences in the T cell network. The right-tail areas defined by the vertical 277 

bars correspond to the p-values shown in the middle panel (blue bars).  278 

 279 

Since the minimum motifs alone can generate the four-attractor system, we asked whether the 280 

combination of these motifs enhances the ability of the network to produce the system. We therefore 281 

compared a subnetwork containing only one minimum Type I motif with another one containing 282 

multiple such motifs in terms of the performance to generate a particular four-attractor system (Figure 283 

5A. See Methods and Text S1 for details). We found that the subnetwork with multiple Type I motifs 284 

outperforms the one with only one motif (Figure 5B and C, the purple curve for production rate has a 285 

more robust pattern showing 7 intersections with the degradation curve than the red production curve 286 

does), suggesting the advantage of combining multiple motifs with similar functions to enhance its 287 

overall performance. We next asked whether the topologies that contain both Type I and Type II motifs 288 

have greater probabilities to generate the four-attractor system than the topologies with one type of 289 

motifs do. When we explored the parameter space randomly for each topology with a fixed number of 290 

samples, a larger number of parameter sets that can generate the four-attractor system were found 291 

with the topologies containing both motifs than with those containing either Type I or Type II motifs 292 

only (Figure S5 and Figure 5D). This suggests that the combination of both motifs might be a robust 293 

strategy to generate the four-attractor system. This pattern was observed for all the topologies in the 294 

complexity atlas (Figure S6) as well as those with the same degree of complexity (Figure 5D, networks 295 

with 7 regulations were chosen because they have comparable fractions of the three types of motifs). 296 

 297 

Figure 5. Comparisons of motifs with different complexity and types. A. Two specific network 298 

topologies were selected for comparing models with different complexity. Network 1 contains multiple 299 
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Type I motifs, whereas Network 2 is a single Type I motif. The color code of the complexity atlas is the 300 

same as that in Figure 2 and Figure 3. Red: Type I motif. Blue: Type II motif. Green: Hybrid motif. B. 301 

Performances of the two subnetworks are compared. Performance was quantified with the sum of 302 

squared distance (SSD) from a predefined continuous production function (gray curve) of PU.1 level that 303 

generate four attractors (see details in supplementary text). Purple and red curves represent the 304 

optimized functions fitted to the gray curve. C. SSD values obtained from 500 optimization runs. Each 305 

value was calculated using the procedure shown in B.  D. Histogram for the numbers of topologies with 306 

7 regulations with respective to the number of parameter sets that generate the four-attractor systems 307 

per 10
6
 random parameter sets.  308 

 309 

In summary, we found that the core transcriptional network controlling early T cell differentiation are 310 

enriched with Type I and Type II network motifs.  The network composed of these two types of motifs 311 

governs a dynamical system containing four attractors, corresponding to four known stages in the early 312 

T cell development. The networks with both types of motifs and greater number of such motifs have 313 

more robust capability of generating the four-attractor systems than those networks with fewer types of 314 

numbers of motifs do. 315 

 316 

Stepwise transitions with restricted reversibility provide robustness to fluctuating differentiation 317 

signal to multiple intermediate states 318 

We next characterized the dynamical features of the four-attractor system of the T cell development 319 

model in response to differentiation signals. For this and subsequent analysis, we focused on a model 320 

describing the network topology shown in Figure 3A (the full model). We first performed bifurcation 321 

analysis of the system to the changes of Notch signaling (Figure 6A). With the increasing Notch signal, 322 
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the system undergoes three saddle-node bifurcations, at which the stability of the proceeding cellular 323 

states is lost (Figure 6A, black arrows). These bifurcation points therefore represent the cell state 324 

transitions from one stage to the next. The structure of the bifurcation diagram shows a remarkable 325 

robust multistep commitment program governed by the T cell transcription network: the commitment 326 

to each stage of the program has restricted reversibility in that the attenuation or withdrawal of the 327 

Notch signaling does not result in de-differentiation of the developing T cells (i.e. the return of the 328 

transcription profile to earlier stages that may have greater multipotency). It was previously shown that 329 

the commitment from DN2a to DN2b is an irreversible process with respect to Notch signaling, and this 330 

transition eliminates developing T cells’ potential to be diverted to any other lineages when Notch 331 

signaling is abolished [20,41]. However, simple toggle-switch models do not explain the observation that 332 

the multipotency of the early T cells is lost in a stepwise manner. For example, cells at ETP can be 333 

differentiated into B cells, macrophages, dendritic cells (DCs), granulocytes, natural killer (NK) cells and 334 

Innate lymphoid cellsubset2 (ILC2), whereas the potentials to commit to many of the lineages are 335 

blocked even in the absence of Notch signaling at the DN2a stage, at which the cells can only be 336 

differentiated into NK cells and ILC2 [20]. Therefore, the stepwise, irreversible transcriptional transitions 337 

revealed by our model is consistent with the experimental observations with respect to the loss of 338 

multipotency in the stepwise manner.  339 

Although the absence of Notch signal does not allow the reversal of lineage progression, it was 340 

previously shown that the absence of BLC11B in lymphoid progenitor cells blocks its ability to progress 341 

to DN2b stage, whereas the Cre-controlled knockout of BCL11B in committed T cells (e.g. DN3 cells) 342 

reverts its transcriptional profile to DN2a-like cells [28]. Upon blocking the production of BCL11B in our 343 

model, we observed the loss of attractors of DN2b and DN3, and the DN2a state is the only stable stage 344 

even in the presence of the strong Notch signaling (Figure 6B). As a result, increasing Notch signaling 345 

only triggers one saddle-node bifurcation, representing the transition from ETP to DN2a cell (Figure 6B, 346 
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top panel and black arrow), whereas the decrease of the BCL11B production triggers the transition back 347 

to DN2a instead of ETP (Figure 6C). These results are in agreement with the previous experimental 348 

findings [28], and they further support the importance of the multistep differentiation system revealed 349 

by our model. 350 

 351 

Figure 6. Stability analysis of the T cell model.  The full model shown in Figure 3A is used for all the 352 

analysis. A. Bifurcation diagrams for the steady states of the four core factors with respect to the Notch 353 

signal. Solid curve: stable steady state. Dashed curve: unstable steady state. B. Bifurcation diagram 354 

under Bcl11b knockout condition with respect to Notch signal. Solid curve: stable steady state. Dashed 355 

curve: unstable steady state. C.  Bifurcation diagram with respect to BCL11B production rate parameter. 356 

Solid curve: stable steady state. Dashed curve: unstable steady state. D. Illustration of the observed 357 

transitions among the four states. Colors of the stable branches of the bifurcation diagrams and the cell 358 

icons are matched to the cellular states shown in Figure 1. 359 

 360 

The bifurcation analysis shows how the lineage progression is influenced by stably increasing or 361 

decreasing Notch signal strengths. We next asked how the duration of Notch signal may control the 362 

multistep lineage transition. By inducing the differentiation with varying durations of the Notch signaling, 363 

we found that cells experiencing transient Notch signals may only commit to intermediate stages of 364 

differentiation (Figure 7A). In addition, the system is able to integrate the information of the signal 365 

intensity and duration to make decision on the lineage progression. These results suggest that the 366 

multistep lineage transition can be triggered by the increasing strength of the signal, the increasing 367 

duration of the signal, or the combination of both types of signal dynamics. Earlier experimental studies 368 

have shown that transient Notch signaling can irreversibly drive the cells to an intermediate, but 369 
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committed stage with a definitive T cell identity (DN2b) [28,41,43]. This is in agreement with our results, 370 

and our model further suggests that the commitment to other intermediate states is also irreversible 371 

with respect to the lineage progression (note that this irreversibility does not refer to the establishment 372 

of T cell identity).  373 

One possible advantage of the multi-stable system is its robustness of response in facing fluctuating 374 

signals. We therefore performed numerical simulations of the dynamical system under increasing Notch 375 

signaling with significant fluctuations. Under this condition, transient reduction of Notch signaling halted 376 

the progress of the lineage commitment but did not trigger the de-differentiation (Figure 7B). Our model 377 

suggests that the design of transcriptional network allows system to stop at intermediate stages before 378 

proceeding to the next ones. This strategy has several potential physiological benefits: 1) it protects the 379 

cell lineage progression against sporadic fluctuations of Notch signaling; 2) it facilitates the ‘checkpoints’ 380 

before lineage commitment in the middle of the entire developmental process and 3) it allows the 381 

stable storage of differentiation intermediates which can be differentiated into mature T cells rapidly 382 

when there is an urgent need of new T cells with a diverse T cell receptor repertoire.  383 

 384 

Figure 7. Multistep lineage transitions under the influence of varying dynamics Notch signals. A.  385 

Strength and duration of the Notch signal were varied in each simulation. 200X200 combinations of 386 

different signal strengths and durations were tested, and the final cellular phenotypes were determined 387 

using the levels of the four core factors.  B. Dynamics of PU.1 in response to increasing Notch with 388 

significant fluctuations. The mean of the Notch signal increases linearly in the first phase, then it is 389 

attenuated in the second phase. Fluctuations were simulated with additive noise in small time intervals. 390 

 391 
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Quantitative analysis of the energy landscapes and minimum action paths delineates the patterns of 392 

the multiple-attractor system in T cell differentiation 393 

With the deterministic modeling and bifurcation approaches, we described the local stability for multi-394 

stable T cell model. However, the global stability is less clear from the bifurcation analysis alone. In 395 

addition, it is important to consider the stochastic dynamics for T cell development model, because the 396 

intracellular noise may play crucial roles in cellular behaviors [44,45] .  The Waddington landscape has 397 

been proposed as a metaphor to explain the development and differentiation of cells [46]. Recently, the 398 

Waddington epigenetic landscape for the biological networks has been quantified and employed to 399 

investigate the stochastic dynamics of stem cell development and cancer [47-51].  400 

Following a self-consistent approximation approach (see Methods), we calculated the steady state 401 

probability distribution and then obtained the energy landscape for the model of the early T cell 402 

development. For visualization, we selected two TFs (PU.1 and TCF-1) as the coordinates and projected 403 

the 4-dimensional landscape into a two-dimensional space, by integrating the other 2 TF variables. Here 404 

TCF-1 is a representative T cell lineage TF, and PU.1 is a TF for alternative cell fates. Note that our major 405 

conclusions do not depend on the specific choice of the coordinate (see Figures S7 and S8 for landscapes 406 

with PU.1/BCL11B and PU.1/GATA3 as the coordinates).  407 

In the case without Notch signal (N = 0), four stable cell states emerge on the landscape for the T cell 408 

developmental system (Figure 8). On the landscape surface, the blue region represents lower potential 409 

or higher probability, and the yellow region represents higher potential or lower probability. The four 410 

basins of attraction on the landscape represent four different cell states characterized by different TF 411 

expression patterns in the 4-dimensional state space. These states separately correspond to ETP/DN1 412 

(high PU.1/low TCF-1/low BCL11B/low GATA3 expression), DN3 state (low PU.1/high TCF-1/high 413 

BCL11B/high GATA3 expression), and two intermediate states (DN2a and DN2b, intermediate expression 414 
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for the four TFs). The existence of four stable attractors is consistent with experiments [16-19]. As the 415 

Notch signal (N) increases, the landscape change from a quadristable (four stable states coexist), to a 416 

tristable (DN2a, DN2b and DN3), to a bistable (DN2b and DN3) and finally to a monostable DN3 state 417 

(Figure S9). These results provide a straightforward explanation for the irreversibility observed in 418 

experiments for the stepwise T cell lineage commitment. 419 

To examine the transitions among individual cell types, we calculated kinetic transition paths by 420 

minimizing the transition actions between attractors [52,53], obtaining minimum action paths (MAPs). 421 

The MAPs for different transitions are indicated on the landscape (Figure 8). The white MAPs from the 422 

ETP state to the DN3 state, correspond to the T cell developmental process while the magenta MAPs 423 

from the DN3 state to the ETP state, correspond to reprogramming process. The lines represent the 424 

MAPs, and the arrows denote the directions of the transitions. The MAP for T cell developmental 425 

process and the MAP for the backward process are irreversible, since the forward and reverse kinetic 426 

paths are not identical. This irreversibility of kinetic transition paths is caused by the non-gradient force, 427 

i.e. the curl flux [54,55]. Here, the solid white lines represent three stepwise transitions from ETP to 428 

DN2a, DNa2 to DN2b, and DN2b to DN3, whereas the dashed white line represents the direct transition 429 

paths from ETP to DN3. From the MAPs for T cell development, we found that the direct transition path 430 

is very similar to the stepwise transition path (the white solid line is similar to the white dashed line, 431 

Figure7, Figures S7 and S8), which indicates that the T cell developmental process needs to go through 432 

the two intermediate states (DN2a and DN2b). This confirms the critical roles of the intermediate states 433 

for the T cell differentiation. It is worth noting that the MAPs here quantify the most probable transition 434 

paths, which suggest the optimal path (with least transition actions) for cells to switch from one state to 435 

another. However, in a realistic gene regulatory system, usually a signal is needed to induce cell state 436 

transitions (e.g. the Notch signaling is used here to induce T cell development). 437 

 438 
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Figure 8. Energy landscape for T cell development. The landscape and corresponding minimum action 439 

paths (MAPs) for the T cell developmental network are shown in 3-dimensional figure. White solid lines 440 

represent the MAP from ETP state to DN2a, DN2b, and DN3 states. Magenta solid lines represent the 441 

MAP from DN3 to DN2b, DN2a, and to ETP state. Dashed lines represent the direct MAP from ETP to 442 

DN3 and from DN3 to ETP states, respectively. Here, TCF-1 and PU1 are selected as the two coordinates 443 

for landscape visualization. See Supporting information for the landscapes using other pairs of TFs. 444 

 445 

To investigate the dynamical developmental process of T cell for multiple TFs, we visualized the 4-446 

dimensional MAP from the ETP to the DN3 state by discretizing the levels of the four TFs. We found that 447 

for T cell development, TCF-1 is upregulated first, followed by the activation of GATA3. This leads to the 448 

complete inactivation of the alternative fate TF PU.1 and the activation of BCL11B (Figure 9). 449 

Interestingly, this temporal order is in good agreement with experimental observations [56]. These 450 

results suggest that the sequence of switching on or off for different TFs can be critical for the lineage 451 

commitment of T cell development. Moreover, under the Bcl11b knockout condition (kB=0), the 452 

landscape changes from a quadristable (four stable states coexist), to a bistable (ETP and DN2a) state 453 

(Figure S10), which is consistent with the bifurcation analysis (Figure 6) and experimental observations 454 

[28]. 455 

 456 

Figure 9. Discrete kinetic transition paths for T cell model. Transition paths from ETP state to DN3 state 457 

in terms of levels of 4 different TFs. A. The relative TF levels are discretized to 0 or 1. 1 represents that 458 

the corresponding TFs are in the on (activated) state and 0 represents that the corresponding TFs are in 459 

the off (repressed) state. B. The relative TF levels are discretized to five values from low to high. X axis 460 

shows the time along the transition path. 461 
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 462 

Global sensitivity analysis based on landscape topography reveals the critical factors for T cell 463 

development 464 

To identify the critical factors (regulations and TFs) which determine T cell development, we performed 465 

a global sensitivity analysis based on the landscape topography. Specifically, we use the transition action 466 

between attractors as a measure to quantify the feasibility of a transition between different attractors. 467 

A smaller transition action, corresponding to a larger energy barrier, means a more feasible transition 468 

from one attractor to another. In this way, by changing the parameters each at a time we can identify 469 

the critical parameters for T cell development (we use the transition from ETP to DN3 as an example). To 470 

do this, we constrict the models within the parameter region corresponding to the four-attractor system, 471 

so that we can make comparisons for the changes of transition actions as parameters are varied. 472 

We identified some critical parameters of which the variations caused significant changes of transition 473 

actions between ETP and DN3 attractor. These parameters include the effective degradation rate of 474 

PU.1, (rdP), the regulated production rate of PU.1 (kP), the basal production rate of PU.1 (kP0), the 475 

threshold of the self-activation of PU.1 (KPP), and the threshold for the repression of PU.1 on GATA3 476 

(KGP) (Figure 10). In particular, the increase of the self-activation strength of PU.1 (i.e. decreased KPP) 477 

reduces the transition action from DN3 to DN2b (Figure 10B), indicating a less stable DN3 state and a 478 

more stable ETP state. This is reasonable because the PU.1 is a major TF for alternative cell fates (B-cell, 479 

dendritic-cell, and myeloid cell), and silencing of PU.1 is operationally important for T cell commitment 480 

[28]. Additionally, the increase of the repression strength of PU.1 on GATA3 (decreased KGP) raises the 481 

transition action from ETP to DN2a (Figure 10B), indicating a more stable ETP state and a less stable DN3 482 

state, which is consistent with the observation that GATA3 is a critical TF promoting T cell development. 483 

Overall, these results from sensitivity analysis indicate that the PU. 1 synthesis/degradation related 484 
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parameters, the GATA3 synthesis related parameters, and the regulations between PU.1 and GATA3 are 485 

critical to the dynamics and the cell fate decisions of T cell development. This indicates that the 486 

regulatory circuit between PU.1 and GATA3 plays critical roles for the cell fate determinations during T 487 

cell development. 488 

 489 

Figure 10. Global sensitivity analysis for T cell developmental model. Sensitivity analysis was 490 

performed for the 39 parameters in the T cell model. The transition actions between different states 491 

(SETP->DN2a and SDN3->DN2b) were calculated to quantify the sensitivity of parameters on the landscape. The 492 

Y-Axis represents the 39 parameters. The X-Axis represents the percentage of the transition action (S) 493 

changed relative to S without parameter changes. Here, SETP->DN2a represents the transition action from 494 

attractor ETP to attractor DN2a (cyan bars), and SDN3->DN2b represents the transition action from attractor 495 

DN3 to attractor DN2b (magenta bars). A. Each parameter is increased by 1%, individually. B. Each 496 

parameter is decreased by 1%, individually. 497 

 498 

 499 

Discussion 500 

In this study, we identified two types of network motif families that are responsible for generating a 501 

four-attractor dynamical system commonly observed in stepwise cell differentiation. Some instances of 502 

these motifs were previously described and analyzed in the context of binary or ternary switches during 503 

lineage transitions [57-61], but the systematic analysis for these motifs was not performed to our 504 

knowledge. In addition, the design principle for multiple intermediate states was not clear. Our 505 

approach provides a comprehensive framework for analyzing systems with a complex dynamical 506 
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property, a four-attractor system with stepwise transcriptional modulation, and we illustrate the 507 

intricate relationships among these motifs with an intuitive visualization method.  508 

Previous studies on biological circuits governing irreversible transitions focused on the analysis of toggle 509 

switches which generate none-or-all type of responses [62,63]. Our work suggests that multistep or 510 

graded responses can be associated with irreversible transitions as well. Given the importance of graded 511 

response in various biological scenarios [64-66], we expect the design strategy that we found can be 512 

useful for discovery of natural-occurring irreversible graded responses or construction of synthetic 513 

biological circuits producing these responses. Our work also suggests that the response to signals, or the 514 

progression of lineage transition, may be proportional to the intensity and/or the duration of the signal. 515 

This is consistent with the previous observations that the duration of the morphogen signal can be 516 

critical for cell lineage choice [67,68]. Of note, when signal strength is converted to digital (none-or-all) 517 

response in early phases of signal transduction, its duration can play an essential role in determining the 518 

graded response [69]. 519 

In our systematic exploration in the network topology space, we took the assumption that network 520 

structure is correlated with its function, i.e. assuming the existence of functional motif structure in 521 

transcription regulatory networks. The notion of network motifs is very helpful for understanding many 522 

complex biological systems [70,71], but the richness of dynamic behaviors of these motifs is beyond 523 

their structures – distinct kinetic rates in the same motif can produce diverse responses [72]. Therefore, 524 

it is expected that the motifs that we discovered may be able to generate dynamical behaviors different 525 

from the four-attractor system (we will discuss some of them in the following paragraphs). We also 526 

expect that some of network motifs can be responsible for multiple functions by themselves, and this 527 

multifunctionality may explain the diverse motifs that we found for the four-attractor systems in the 528 

biological examples. Future work is warranted to examine the distributions of the diverse functions in 529 
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the parameter space of the motifs that we found. Nonetheless, it is important to understand the 530 

capacity of the network motifs in terms of their functional outputs. Our work provides a holistic view of 531 

the potential network motif structures governing multistep cell lineage transitions. 532 

Although network motifs with three positive feedback loops closing at a single factor (Type I motifs 533 

discussed in this study) were not systematically analyzed in previously studies to our knowledge, some 534 

simpler versions of Type I motif, e.g. a pair of interconnected positive feedback loops, have been 535 

described in various systems such as the epithelial-mesenchymal transition and the cancer progression 536 

[59,73]. These systems typically govern ternary switches with a single intermediate state. These studies 537 

and ours suggest a correlation between the number of positive feedback loops and the number of the 538 

intermediate states the system may be able to generate. In fact, early studies on multistability systems 539 

have shown the requirement of positive feedback loops for generating multiple steady states [74], 540 

which was later proved mathematically [75]. Intriguingly, an ultrahigh feedback system similar to the 541 

Type I motifs was shown to govern irreversible transitions with low differentiation rates for adipocytes 542 

[76]. It would be interesting to examine whether controlling the low differentiation rate through cell-to-543 

cell variability and controlling the number of intermediate states suggested by our model can be 544 

achieved in the same system. Our findings are consistent with the earlier work in that they highlight the 545 

importance of this type of signaling motifs in controlling cell differentiation by preventing the direct and 546 

homogeneous transition from the initial state to the final one.  547 

Near symmetrical parameters in models based on a particular instance of the Type II motif class (the one 548 

with mutually inhibiting TFs) have been widely used to explain stochastic lineage choice observed in 549 

embryonic stem cells, developing hematopoietic cells and CD4
+
 T cells [77,78]. Our findings with Type II 550 

motifs complement these studies with newly identified functions of these motifs for cell differentiation. 551 

Instead of the stochasticity that breaks the symmetry of this motif, the Notch signal may be responsible 552 
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for switching the system from one side (PU.1 high) to another (PU.1 low) in a stepwise fashion, and the 553 

intermediate states mark the stable stages where the system is relatively balanced in terms of two 554 

groups of competing TFs. 555 

It was previously suggested that the network consisting of four core transcription factors governs a 556 

bistable switch with irreversible transition [41]. Our models based on this network provide explanations 557 

for additional experimental observations with respect to the multistep feature of the early T cell 558 

development. Although it is possible that interconnection of multiple positive feedback loops simply 559 

enhances the robustness of the bistable switches, the observation that several important irreversible 560 

transitions in cell cycle progression are primarily controlled by two positive feedback loops implies that 561 

the enrichment of the positive feedback loops in the T cell transcriptional network is unlikely due to the 562 

intrinsic biophysical limits of positive feedback loops in generating bistable switches [63,79]. Instead, 563 

other cellular functions, such as generating the multiple intermediate states, might be the performance 564 

objectives for the design of this network. 565 

Our model of early T cell development suggests that the differentiation program may be stopped at 566 

multiple locations in the state space of transcription levels of key factors. These multiple attractors may 567 

correspond to the lineage branching points at which the progenitor cells are given opportunities to be 568 

converted to T cell as well as other types of lymphocytes. As such, it is possible that this dynamical 569 

property is exploited to achieve a better control for the fate determination of the lymphoid progenitor 570 

cells at systems level. Given that subpopulations of NK cells and DCs are generated by the thymus [80-571 

82], the multistep lineage transition provides a basis for channeling the lymphoid progenitor to multiple 572 

lineages in a precise manner.  573 

Based on the recent landscape-path theory and the T cell gene regulatory network model, we 574 

investigated the stochastic dynamics of T cell development. We identified four stable cell states 575 
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characterized by attractors on the landscape including ETP/DN1, DN3, and two intermediate states 576 

(DN2a and DN2b). We also calculated the kinetic transition paths between different cell states from 577 

minimum action path approaches. Importantly, from the MAPs of T cell development, we found that 578 

different TFs are switched on or off in different orders. For example, TCF-1 needs to be first activated, 579 

and then GATA3 is activated, leading to the inactivation of PU.1 and activation of BCL11B. These 580 

predictions agree well with experiments [28,56], which provides further validations for our 581 

mathematical model. 582 

In our models, we only considered four core factors based on previous published T cell gene regulatory 583 

network for simplicity [41]. In the realistic biological system, there are more factors critical to T cell 584 

development [28]. It would be interesting to incorporate other important factors into the network and 585 

construct a more realistic model for T cell development. By studying the landscape of more 586 

comprehensive T cell development network, we will better understand the underlying regulatory 587 

machinery and obtain more insights into the intricate mechanisms for T cell development. 588 

In summary, we identified a large family of network motifs that can generate four attractors that are 589 

observed in various biological systems involving cell lineage transition. We built a mathematical model 590 

for transcriptional network controlling early T cell development, and we found that the network 591 

underlying this developmental process is enriched with the motifs that we identified. The system with 592 

the four attractors has a remarkable irreversibility for transitions to multiple intermediate states when 593 

the differentiation signal is varied. We suggest that this multistep process may be useful for precise 594 

control of the differentiation of lymphoid progenitor cells towards T cell and other cell types. Our T cell 595 

model provides new insights into the complex developmental or regeneration processes, and our 596 

combined approaches of comprehensive analysis of network motifs for generating multistable systems 597 

and landscape-path framework provide a powerful tool for studying a wide range of networks 598 

controlling cell lineage transitions.   599 
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Methods 600 

 601 

Framework of mathematical modeling 602 

We used ordinary differential equations (ODEs) to describe the dynamics of the concentrations of 603 

transcription factors (TFs). We used Hill function to describe the transcriptional regulation by TFs. Each 604 

ODE 605 has the 

following 

form:  607 

 608 

(1) 609 

 610 

Here, ��  represents the concentration of a transcription factor (TF). ��, ��
 is the basal production rate of 611 

the TF in the absence of any regulator.  � ��
 is the maximum production rate under the control of the 612 

transcriptional activators and inhibitors of this TF. ��,� denotes the weight of the influence of the TF � on 613 

� . The sum of the Hill functions determines the regulation of the production of this TF by other TFs. In 614 

each term of the summation, � � 1 when the regulating TF (��) is an activator. � � 0 when the 615 

regulating TF is an inhibitor. ��,� is the apparent dissociation constant of the regulating TF binding to its 616 

regulatory element of the promoter, and it describes the effectiveness of the regulation in terms of the 617 

concentration of the TF. � is the total number of regulating TFs. �,��
 is the effective degradation rate 618 

constant. The production rate of the proteins is assumed to be linearly correlated with mRNA 619 

production rate. Similar generalized forms of Hill function were previously used for analysis of a variety 620 
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of gene regulatory networks [48,83].  One time unit of our model corresponds to 20 minutes, and all the 621 

parameters are dimensionless.  622 

To exclude the possibility that our conclusions are sensitive to the choice of the form of equations, we 623 

used an alternative form of ODE to describe the regulatory networks: 624 

 625 

 626  

 (2) 627 

 628 

In these ODEs, multiplication of Hill functions was used instead of addition. Similar forms of Hill function 629 

were also previously used for modeling a variety of gene regulatory networks [60,84].  With this form, 630 

the two types of network motifs that generated the four-attractor behavior are the same as those 631 

discovered with the additive form of Hill functions (Figure S3). In fact, using both forms of equations 632 

gave rise to the same number of network topologies (216 topologies with the steady states shown in 633 

both Figure S3 and Figure S4). Therefore, our conclusions are robust in terms of the choice of equation 634 

form.  635 

During topology searching, random parameters values were chosen from defined ranges (Table S1, see 636 

below).  637 

 638 

Topology searching for four-attractor systems 639 

Network topology searching was first performed for all possible topologies involving up to 3 nodes (TFs) 640 

and 6 regulations that are able to generate four-attractor systems with stepwise changes of TF levels. 641 
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Three-node networks were previously used to explore several types of functional dynamics of network 642 

motifs [38,85]. Isometric topologies were removed in the search. For each topology, we performed 643 

random sampling with 10
6
 parameter sets. For each parameter set, we selected 125 initial conditions in 644 

the three-dimensional state space ((0, 3.3) for each variable) using Latin Hypercube sampling, and then 645 

solved the ODEs numerically. We stopped the simulations at time point 500 and checked if the 125 ODE 646 

systems are stabilized at four or more distinct steady states. We next checked if the changes of the TFs 647 

are monotonically coupled. We first ordered the steady states by the levels of one TF, and then we 648 

looked for scenarios in which all other TFs monotonically increase or decrease with the ordered TF (i.e. 649 

the attractors with stepwise changes of the TFs). We excluded the scenarios in which one TF is not 650 

monotonically correlated with others in terms of their levels at the four attractors. Models that 651 

generated oscillations at the final time point were also excluded. The parameter sets which produced 652 

the stepwise changes of steady state were accepted and their associated network topologies were 653 

analyzed. Parameter values for the minimum topologies are listed in Table S2. 654 

Complexity atlas was plotted for the obtained network topologies as described previously by Jiménez et 655 

al [40] (Figure 2B and Figure 3C).  656 

 657 

Transcriptional network model for early T cell development 658 

We built a model for early T cell development based on the regulations that were previously shown 659 

experimentally [86-99]. Information about experimental evidence is described in Table S3. The form of 660 

equations is similar to Equation (2). We chose this multiplicative form of Hill functions because earlier 661 

experimental study suggested that regulations of Bcl11b gene are combined via an ‘and’ logic gate [100], 662 

which favors the use of multiplication. Although similar detailed information is not available for other 663 

TFs, we have shown that our main conclusions with respect to the multistep transitions controlled by a 664 
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network motif family do not depend on the choice of the form of equations (Figure 2 and Figure S4). Full 665 

list of equations is included in Text S1. The parameter values were obtained by random searching 666 

described above followed by minor manual adjustment. The parameter values are listed in Table S4. To 667 

explore the subnetworks of the T cell development model that are essential for the four-stage transition, 668 

we performed similar exhaustive search in a set of 1553 non-redundant topologies (2047 subnetworks) 669 

to find functional circuit in the model. We obtained 568 topologies (701 topologies) from the search, 670 

and we analyzed them with complexity atlas. Isometric topologies were removed in the simulations, but 671 

they are included in the complexity atlas so that we do not mix isometric topologies with possibly 672 

differential biological meanings specific to certain genes. 673 

During bifurcation analysis, the value of the parameter � (Notch signal strength) or ������ (maximum 674 

production rate of BCL11B) is varied and the changes of the steady states of the system were analyzed. 675 

We let  ������ � 0 to simulate the Bcl11b knockout condition. 676 

To simulate the system under various scenarios of Notch signaling, we first varied the strength and/or 677 

duration of the Notch signal and checked the steady state distribution of the system under the varying 678 

strengths and durations. We tested 200X200 combinations of strengths and durations of Notch signals 679 

and obtained the phenotypes of the cells at the steady state. To simulate the fluctuating Notch signals, 680 

we divided the time window of the simulation into small intervals (0.1 unites of time). For each interval, 681 

we used a random number with a specified mean and an additive noise. The mean of the Notch signal 682 

first increased overtime and then became attenuated. 683 

 684 

Enrichment analysis of the four-attractor motifs in the T cell model 685 

To quantify the enrichment of various types of motifs, we used the generic definition of p-value: the p-686 

value for a particular motif is the probability of obtaining at least � number of motifs from a random 687 
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network population, where � is the observed number of such motif in the T cell network.  To compute 688 

the p-values, we first counted the frequencies of the positive feedback loop, Type I motif and Type II 689 

motif in the T cell model (i.e. ��, �� , ��, �� representing the numbers of positive feedback loops, Type I 690 

motifs, Type II motifs, and the sum of the Type I and Type II motifs respectively). Random networks were 691 

generated using two methods: 1) for each regulation in the existing T cell model, we randomly reassign 692 

its source and target TFs (referred to as ‘permuted regulations’), and 2) for each pair of TFs from the 693 

network, we randomly assign a regulation (positive, negative or none) (referred to as ‘permuted 694 

regulations’). For each of the two methods, we generated 10
5
 networks, and we calculated the empirical 695 

p-values by counting the number of the random networks with the numbers of motifs not less than 696 

those of respective motifs in the T cell network. The method with permuted regulations is more 697 

biologically relevant because the number of the positive and negative regulations are retained in the 698 

random networks. We used the second approach as alternative to exclude the possibility that the 699 

conclusion of the trend of the p-values is due to the low number of networks containing the extreme 700 

amount of the motifs.  701 

 702 

Optimization for performance comparison of two subnetworks 703 

Due to the difficulty to compare the performances of regulatory circuits with different complexities in 704 

general, we selected two specific instances of Type I network motif for comparison. One of them 705 

contains only one Type I motif, whereas the other one contains multiple motifs. For each topology, we 706 

reduced the system to one ODE with quasi-steady state assumption and defined a continuous 707 

production rate function that can produce four attractors as a surrogate function (see Text S1). Multiple 708 

runs of optimization using differential evolution algorithm was used, and 500 converged parameter sets 709 
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for each circuit were used for comparison. This optimization method was previously used for finding 710 

optimum parameter sets and for comparing the performances of regulatory circuits [58,101,102]. 711 

 712 

Self-consistent mean field approximation for the quantification of energy landscape 713 

The temporal evolution a dynamical system was determined by a probabilistic diffusion equation 714 

(Fokker-Planck equation). Given the system state P��� , �� , … , ��,t�, where �� , �� , … , ��, represent the 715 

concentrations of molecules or gene expression levels, we have N-dimensional partial differential 716 

equation, which are difficult to solve because the system has a very large state space. Following a self-717 

consistent mean field approach [48,54,103,104], we split the probability into the products of the 718 

individual probabilities: P�X, t� � P���, �� , … , ��,t� � ∏ ����� , ���
�  and solve the probability self-719 

consistently. In this way, we effectively reduced the dimensionality of the system from MN to MN (M is 720 

the number of possible states that each gene could have), and thus made the computation of the high-721 

dimensional probability distribution tractable. 722 

Based on the diffusion equations, when the diffusion coefficient D is small, the moment equations can 723 

be approximated to [105,106]: 724 

��� ��� � ��������      (3) 725 

	� ��� � 	���
���� � 
����	��� � 2�������    (4) 726 

Here,  !���, "��� and #��� are vectors and tensors. "��� denotes the covariance matrix and #��� is the 727 

jacobian matrix of $� !����. #�(t) is the transpose of #�t�. The elements of matrix A are specified as: 728 

%�� � ���������

������
. By solving these equations, we can acquire  !��� and "�t�. Here, we consider only the 729 

diagonal elements of "�t� from the mean field approximation. Then, the evolution of the probability 730 

distribution for each variable can be acquired from the Gaussian approximation: 731 
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P�x, t� �
�

������	
�

����������

�����      (5) 732 

The probability distribution acquired above corresponds to one stable steady state or the basin of 733 

attraction. If the system has multiple stable steady states, there should be several probability 734 

distributions localized at each basin with different variances. Thus, the total probability is the sum of all 735 

these probability distributions with different weights. From the self-consistent approximation, we can 736 

extend this formulation to the multi-dimensional case by assuming that the total probability is the 737 

product of each individual probability for each variable. Finally, with the total probability, we can 738 

construct the potential landscape by: U�x� � �ln���� �. In this work, we define two quantities based on 739 

the landscape theory. One is the energy barrier height, which is defined as the energy difference 740 

between the local minimum and the corresponding saddle point. Another quantity is the transition 741 

action, which is defined as the minimum action from one attractor to the other. These two quantities 742 

both measure the difficulty of the transitions. However, the transition actions are suggested to provide a 743 

more accurate description for the barrier crossing between attractors or the transition rate {Feng, 2014 744 

#113}. Therefore, we used the transition actions to quantify the difficulty of the transitions between 745 

attractors in this work (see the following section for minimum action paths). 746 

 747 

Minimum action paths from optimization 748 

Following the approaches  based on the Freidlin-Wentzell theory [52,107,108], for a dynamical system 749 

with multistability the most probable transition path from one attractor � at time 0 to attractor � at time 750 

T，*��
� �t�，t + ,0, T.，can be acquired by minimizing the action functional over all possible paths: 751 

/�0*��1 � �

�
2 3*�

�� � 45*��63�7��

�
     (6) 752 

Here 4�*��� is the driving force. This optimal path is called minimized action path (MAP). We calculated 753 
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MAPs numerically by applying minimum action methods used in [52,107]. 754 

  755 
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Supporting information 1003 

 1004 

Text S1. Model equations, model reductions and evaluation procedure through optimization. 1005 

Table S1. Ranges of parameter values for sampling 3-node networks. 1006 

Table S2. Parameter values for models of 29 minimum motifs for 3-node networks. 1007 

Table S3. Experimental evidence supporting the regulations in the early T cell development model. 1008 

Table S4. Parameter values for early T cell development model. 1009 

Figure S1. Phase planes for Type I minimum network topologies. Nullclines for TF A (the node on the 1010 

left of the network diagram) and TF B (the node on the right of the network diagram) are shown. Stable 1011 

steady states are shown as black dots. The inset network diagram shows the corresponding network. 1012 

Random parameter sampling was used to obtain the parameter sets that allows the 4-attractor systems. 1013 

Figure S2. Phase planes for Type II minimum network topologies. Nullclines for TF A (the node on the 1014 

left of the network diagram) and TF B (the node on the right of the network diagram) are shown. Stable 1015 

steady states are shown as black dots. Random parameter sampling was used to obtain the parameter 1016 

sets that allows the 4-attractor systems. 1017 

Figure S3. Overlaid four attractors for each of the 216 topologies from the 3-node network that 1018 

produce 4-attractor systems. Factor A denotes the TF on the left of the network diagram. Factor B 1019 

denotes the TF on the right of the network diagram. In some topologies A and B and positively 1020 

correlated (left panel), whereas they are negatively correlated in other topologies (right panel). Colored 1021 

dots denote the stable steady states. Colored lines connect states of their corresponding topologies. The 1022 

colors of the cell states match the illustration in Figure 1. The colors of the lines denote different 1023 
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representative models. z-score is calculated by shifting the mean of each four attractors to 0 and then 1024 

normalizing the four data points to unit variance data.  All models shown in this figure are built with 1025 

additive form of Hill functions. 1026 

Figure S4. Four-attractor systems generated with the alternative form of equations. A. Overlaid four 1027 

attractors for each of the 216 topologies from the 3-node network that produce 4-attractor systems. 1028 

Factor A is the TF on the left of the network diagram. Factor B is the TF on the right of the network 1029 

diagram. In some topologies A and B and positively correlated (left panel), whereas they are negatively 1030 

correlated in other topologies (right panel). Colored dots denote the stable steady states. Colored lines 1031 

connect states of their corresponding topologies. The colors of the cell states match the illustration in 1032 

Figure 1. The colors of the lines denote different representative models. z-score is calculated by shifting 1033 

the mean of each four attractors to 0 and then normalizing the four data points to unit variance data.   B. 1034 

Example phase planes for two minimum topologies (Type I and Type II respectively). In each case, four 1035 

out of the seven steady states (intersections denoted by solid dots) are stable. All models shown in this 1036 

figure are built with multiplicative form of Hill functions. 1037 

Figure S5. Overlaid four attractors for each of the 559 topologies from the T cell network that produce 1038 

4-attractor systems. Colored dots denote the stable steady states. Colored lines connect states of their 1039 

corresponding topologies. The colors of the cell states match the illustration in Figure 1. The colors of 1040 

the lines denote different representative models. z-score is calculated by shifting the mean of each four 1041 

attractors to 0 and then normalizing the four data points to unit variance data.  All models shown in this 1042 

figure are built with multiplicative form of Hill functions. 1043 

Figure S6. Comparison of three types of network topologies. Histogram shows distributions of the 1044 

numbers of topologies from the entire complexity atlas (Figure 3C) over the space of parameter sets 1045 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 25, 2018. ; https://doi.org/10.1101/453522doi: bioRxiv preprint 

https://doi.org/10.1101/453522


50 

 

that generate the four-attractor systems per 10
6
 random parameter sets. Distributions are separately 1046 

shown for three types of motifs.  Red: Type I motif. Blue: Type II motif. Green: Hybrid motif. 1047 

Figure S7. Landscape and corresponding minimum action paths (MAPs) for the T cell developmental 1048 

network in the PU.1-BCL11B state space. White solid lines represent the MAP from ETP state to DN2a, 1049 

DN2b, and DN3 states. Magenta solid lines represent the MAP from DN3 to DN2b, DN2a, and to ETP 1050 

state. Dashed lines represent the direct MAP from ETP to DN3 and from DN3 to ETP states, respectively. 1051 

Figure S8. Landscape and corresponding minimum action paths (MAPs) for the T cell developmental 1052 

network in the PU.1-GATA3 state space. White solid lines represent the MAP from ETP state to DN2a, 1053 

DN2b, and DN3 states. Magenta solid lines represent the MAP from DN3 to DN2b, DN2a, and to ETP 1054 

state. Dashed lines represent the direct MAP from ETP to DN3 and from DN3 to ETP states, respectively. 1055 

Figure S9. Landscape changes as Notch signal increases. As the Notch signal (N) increases, the 1056 

landscape change from a quadristable (four stable states coexist), to tristable (DN2a, DN2b and DN3), to 1057 

bistable (DN2b and DN3) and finally to a monostable DN3 state. 1058 

Figure S10. Quasi-energy landscape for the Bcl11b knockout condition. With the Bcl11b knockout 1059 

(kB=0), the landscape changes from a quadristable (four stable states coexist), to a bistable (ETP and 1060 

DN2a) state. 1061 

Figure S11. Venn diagram of four types of network motifs that can produce four attractors with up to 1062 

three TFs. Red and blue areas correspond to Type I and Type II motifs shown in Figure 2B. Green area 1063 

corresponds to motifs that contain both Type I and Type II networks. Orange area corresponds to motifs 1064 

that can only produce four unordered attractors, in which the concentrations of the TFs are non-1065 

monotonically correlated. Numbers in the diagrams denote the total numbers of non-redundant 1066 

topologies for each type. The Type II (blue) and Hybrid (green) motifs can produce both ordered and 1067 

unordered 4-attractor systems, depending on the choice of parameters. 1068 
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Figure S12. Enrichment motifs containing varying numbers of positive feedback loops similar to Type I 1069 

motif. Top panel: total occurrences of various types of motifs in the T cell network. Middle panel: 1070 

empirical p-values (middle panel) for these motifs with a background network population. Bottom panel: 1071 

an illustration of the p-values with the distributions of the background population. Each motif has � 1072 

(0 8 � 8  9) positive feedback loops, all of which share at least one TFs in the motif. Type I motif is a 1073 

special case of such motifs with � � 3 . Random networks were obtained by assigning random 1074 

regulations (positive, negative or none) between each pair of TFs. 10
5
 random networks were generated. 1075 

Empirical p-values were obtained by counting the number of the random networks with the motifs not 1076 

less than those in the T cell network. See Methods for details of the p-value definition. Distributions of 1077 

motif frequencies obtained from the random networks are shown in the bottom panel. The yellow 1078 

vertical bars represent the number of occurrences in the T cell network. The right-tail areas defined by 1079 

the vertical bars correspond to the p-values shown in the middle panel (blue bars). 1080 

 1081 
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