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6 ICREA, Pg. Llúıs Companys 23, 08010 Barcelona, Spain
7 Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain

¤Current Address: The Francis Crick Institute, London, United Kingdom
* nuria.folguerablasco@crick.ac.uk

Abstract

The inherent capacity of somatic cells to switch their phenotypic status in response to
damage stimuli in vivo might have a pivotal role in ageing and cancer. However, how
the entry-exit mechanisms of phenotype reprogramming are established remains poorly
understood. In an attempt to elucidate such mechanisms, we herein introduce a
stochastic model of combined epigenetic regulation (ER)-gene regulatory network
(GRN) to study the plastic phenotypic behaviours driven by ER heterogeneity.
Furthermore, based on the existence of multiple scales, we formulate a method for
stochastic model reduction, from which we derive an efficient hybrid simulation scheme
that allows us to deal with such complex systems. Our analysis of the coupled system
reveals a regime of tristability in which pluripotent stem-like and differentiated
steady-states coexist with a third indecisive state. Crucially, ER heterogeneity of
differentiation genes is for the most part responsible for conferring abnormal robustness
to pluripotent stem-like states. We then formulate epigenetic heterogeneity-based
strategies capable of unlocking and facilitating the transit from differentiation-refractory
(pluripotent stem-like) to differentiation-primed epistates. The application of the hybrid
numerical method validated the likelihood of such switching involving solely kinetic
changes in epigenetic factors. Our results suggest that epigenetic heterogeneity
regulates the mechanisms and kinetics of phenotypic robustness of cell fate
reprogramming. The occurrence of tunable switches capable of modifying the nature of
cell fate reprogramming from pathological to physiological might pave the way for new
therapeutic strategies to regulate reparative reprogramming in ageing and cancer.
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Author summary

Certain modifications of the structure and functioning of the protein/DNA complex 1

called chromatin can allow adult, fully differentiated cells to adopt a stem cell-like 2

pluripotent state in a purely epigenetic manner, not involving changes in the underlying 3

DNA sequence. Such reprogramming-like phenomena may constitute an innate 4

reparative route through which human tissues respond to injury and could also serve as 5

a novel regenerative strategy in human pathological situations in which tissue or organ 6

repair is impaired. However, it should be noted that in vivo reprogramming would be 7

capable of maintaining tissue homeostasis provided the acquisition of pluripotency 8

features is strictly transient and accompanied by an accurate replenishment of the 9

specific cell types being lost. Crucially, an excessive reprogramming to pluripotency in 10

the absence of controlled re-differentiation would impair the repair or the replacement of 11

damaged cells, thereby promoting pathological alterations of cell fate. A mechanistic 12

understanding of how the degree of chromatin plasticity dictates the reparative versus 13

pathological behaviour of in vivo reprogramming to rejuvenate aged tissues while 14

preventing tumorigenesis is urgently needed, including especially the intrinsic epigenetic 15

heterogeneity of the tissue resident cells being reprogrammed. We here introduce a 16

novel method that mathematically captures how epigenetic heterogeneity is actually the 17

driving force that governs the routes and kinetics to entry into and exit from a 18

pathological pluripotent-like state. Moreover, our approach computationally validates 19

the likelihood of unlocking chronic, unrestrained pluripotent states and drive their 20

differentiation down the correct path by solely manipulating the intensity and direction 21

of few epigenetic control switches. Our approach could inspire new therapeutic 22

approaches based on in vivo cell reprogramming for efficient tissue regeneration and 23

rejuvenation and cancer treatment. 24

Introduction 25

The correlation between ageing and cancer incidence rate is a well established empirical 26

fact. The currently accepted explanation for such a correlation is subsumed under the 27

multiple hit hypothesis or Knudson hypothesis [1, 2]. This multi-mutation theory 28

considers cancer as the result of the successive accumulation of genetic mutations and, 29

therefore, time is necessary for cells to overcome a certain mutagenic threshold before 30

cancer can develop. An alternative paradigm has emerged in recent years, in which the 31

ability of the ageing process per se to interfere with the robustness of the epigenetic 32

regulation (ER) of differentiated phenotypes might suffice to generate malignant 33

transformation [3]. 34

Fully committed somatic cells can spontaneously reprogram to pluripotent stem-like 35

cells during the normal response to injury or damage in vivo [4]. Such cellular processes 36

involving dedifferentiation and cell-fate switching might constitute a fundamental 37

element of a tissue’s capacity to self-repair and rejuvenate [5, 6]. However, such 38

physiological (normal) cell reprogramming might have pathological consequences if the 39

acquisition of epigenetic and phenotypic plasticity is not transient. In response to 40

chronically permissive tissue environments for in vivo reprogramming, the occurrence of 41

unrestrained epigenetic plasticity might permanently lock cells into self-renewing 42

pluripotent cell states disabled for reparative differentiation and prone to malignant 43

transformation (see Fig. 1) [3, 7–10]. 44

Central to such so-called stem-lock model for ageing-driven cancer [8, 11,12] is the 45

notion that ER of cell fate should be key for the causal relationship between ageing and 46

cancer. ER refers to a series of modifications of the cell’s DNA without modifying its 47

genetic sequence. Such modifications can disrupt or allow expression of particular genes. 48
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By switching on or off different parts of the genome, ER is in fact responsible for the 49

variety of phenotypes in complex multicellular organisms (where all somatic cells are 50

genetically identical). Recent advances in experimental determination of ER 51

mechanisms have triggered an interest in developing mathematical models regarding 52

both ER of gene expression [13–18] and epigenetic memory [14–16,19–22]. 53

Fig 1. Physiological and pathological cell fate reprogramming: A mathematical approach. Reprogramming-like phenomena
in response to damage signalling may constitute a reparative route through which human tissues respond to injury, stress, and
disease via induction of a transient acquisition of epigenetic plasticity and phenotype malleability. However, tissue
regeneration/rejuvenation should involve not only the transient epigenetic reprogramming of differentiated cells, but also the
committed re-acquisition of the original or alternative committed cell fate. Chronic or unrestrained epigenetic plasticity would
drive ageing/cancer phenotypes by impairing the repair or the replacement of damaged cells; such uncontrolled phenomena of
in vivo reprogramming might also generate cancer-like cellular states. Accordingly, we now know that chronic
senescence-associated inflammatory signalling might lock cells in highly plastic epigenetic states disabled for reparative
differentiation and prone to malignant transformation. We herein introduce a first-in-class stochastic, multiscale reduction
method of combined epigenetic regulation (ER)-gene regulatory network (GRN) to mathematically model and
computationally simulate how ER heterogeneity regulates the entry-exit mechanisms and kinetics of physiological and
pathological cell fate reprogramming. (SAIS: Senescence-associated inflammatory signalling).

We are rapidly amassing evidence that, beyond the role of genetic alterations, 54

non-genetic stimuli such as inflammation or ageing, among others, can promote 55

epigenetic plasticity, namely, overly restrictive epigenetic states – capable of preventing 56

the induction of tumour suppression programmes or blocking normal differentiation – or 57

overly plastic epigenetic states – capable of stochastically activating oncogenic 58

programmes and non-physiological cell fate transitions including those leading to the 59

acquisition of stem cell-like states [18, 23]. Disruption of normal epigenetic resilience has 60

the potential to give rise to each classic cancer hallmark [23]. An ideal therapy should 61

not only need to address chronic epigenetic plasticity of senescence-damaged tissues, but 62

also to “unlock” stem cell-like states to drive tissue regeneration. Unfortunately, most 63

current models and drug discovery strategies are largely biased on the prevailing, 64

mutation theory of the origin of cancer. Such a framework cannot capture the stochastic 65

aspects that drive the structure and dynamics of epigenetic plasticity and chromatin 66

structure that connects ageing and cancer, and might arise in the absence of initiating 67

genetic events. 68
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(a) (b)

Fig 2. Schematic reprentation of the ER-GRN model and its multiscale reduction. (a): Gene regulatory network (GRN) of
two self-activating, mutually-inhibitory genes with epigenetic regulation. In the GRN model, the gene product (denoted by Xi

in S2 Table) is its own transcription factor which, upon dimerisation, binds the promoter region of the gene thus triggering
gene transcription. The transition rates corresponding to this GRN are given in S2 Table. For simplicity, we use an effective
model in which the formation of the dimer and binding to the promoter region is taken into account in a single reaction, and
the resulting number of promoter sites bound by two transcription factors is denoted by Xij (see S2 Table). Furthermore,
depending on whether the epigenetic state is open (i.e. predominantly acetylated (A)) or closed (i.e. predominantly
methylated (M)) the promoter region of the gene is accessible or inaccessible to the transcription factor, respectively. (b):
Schematic representation of the time separation structure of the multiscale method developed to simulate the ER-GRN
system. See text and S1 File for more details.

Identification of the molecular interactions controlling the transition between normal, 69

restrictive and permissive chromatin states is expected to have major impact in the 70

understanding and therapeutic management of the causative relationship between 71

ageing and cancer [9, 24,25]. In this regard, our mathematical approach intends to 72

deconstruct and model the predictive power that epigenetic landscapes might have for 73

the susceptibility of cells to lose their normal identity. In order to determine the key 74

mechanisms underlying epigenetic plasticity and its connections with stem cell-locking, 75

we consider a gene network model that regulates the phenotypic switch between 76

differentiated and pluripotent states. Each gene within this regulatory system is acted 77

upon by epigenetic regulation which restricts/enables its expression capability (see Fig. 78

2(a) for a schematic representation). Crucially, the precise deconstruction of the highly 79

complex mechanisms through which epigenetic plasticity allows cells to stochastically 80

activate alternative regulatory programs and undergo pathological versus physiological 81

cell fate transitions requires the incorporation of a central role for epigenetic 82

heterogeneity in phenotypic plasticity [18,26] (see Fig. 1 for a schematic representation). 83

Pour et al. [26] have reported evidence that the potential to reprogram is higher within 84

select subpopulations of cells and that preexisting epigenetic heterogeneity can be tuned 85

to make cells more responsive to reprogramming factor induction. Along this line, we 86

recently presented a model of cell fate reprogramming, in which the heterogeneity of 87

epigenetic metabolites, which operates as a regulator of the kinetic parameters 88

promoting/preventing histone modification, stochastically drives phenotypic variability 89

capable of producing cell epistates primed for reprogramming [18]. However, how the 90

variability of both histone-modifying enzymes and their corresponding cofactors might 91

dictate changes in chromatin-related barriers and lead to drastic changes in the 92

transcriptional regulatory networks for cell fate determination was not contemplated. 93

In the present work, we present a stochastic model of a coupled ER-GRN system 94

aimed at analysing the effects of epigenetic plasticity on cell-fate determination and 95

reprogramming driven by the heterogeneity of the ER system. Furthermore, we 96

introduce a stochastic model reduction analysis based on multiple scale asymptotics of 97

the combined ER-GRN system [27–34], which allows us to study a variety of different 98

behaviours due to heterogeneity in the epigenetic regulatory system [26]. By adding ER 99
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to the picture, this work extends previous approaches where phenotypes are associated 100

with the attractors of complex gene regulatory systems and their robustness, with the 101

resilience of such attractors in the presence of intrinsic noise, environmental fluctuations, 102

and other disturbances [35–43]. We initially evaluate the epigenetic parameters 103

regulating the entry into robust epigenetic states throughout the entire ER-GRN 104

system. We then formulate epigenetic heterogeneity-based strategies capable of 105

directing the exit and transit from stem-locked to differentiation-primed epistates. We 106

finally apply a hybrid numerical method derived from our theoretical analysis to 107

determine the efficiency of the epigenetic strategies formulated to unlock a persistent 108

state of pathological pluripotency. 109

This work is organised as follows. In section Materials and methods, we present a 110

summary of the formulation of our ER-GRN model and its analysis. By developing a 111

multiscale asymptotic theory to study ER-GRN systems (for which additional details 112

are given in the Supplemental Information), we are able to reduce the complexity of the 113

model to a hybrid system, for which a numerical simulation method was implemented. 114

Results section is devoted to a detailed presentation of our results, especially those 115

pertaining to the mechanisms regulating the phenotypic robustness of 116

pluripotency-locked and differentiation-primed states. In the Conclusion section, we 117

summarise our findings and present our conclusions. 118

Materials and methods: Model formulation and 119

analysis 120

In this paper, we aim to study an ER-GRN model which can describe cell differentiation 121

and cell reprogramming. One of the simplest GRNs which allows to do this consists of 122

two genes, one promoting differentiation, and the other promoting pluripotency (see Fig. 123

2(a)). Nevertheless, in this section , we formulate our model and we analyse it 124

considering the most generic case, i.e. we assume to have an arbitrary number of genes 125

NG. By doing so, our theoretical analysis can be further applied to any ER-GRN model, 126

which implies a wide applicability of the derived formulation. However, when possible, 127

we try to relate the theory developed to our particular ER-GRN so as to keep track of 128

our case study. 129

General description of the stochastic model of an 130

epigenetically-regulated gene network 131

Consider a gene regulatory network composed of NG self-activating genes which can 132

repress each other. In particular, we consider that the gene product of each of these 133

genes forms homodimers, which act as a transcription factor (TF) for its own gene by 134

binding to its own promoter. Furthermore, each gene within the network has a number 135

of inhibitors, which operate via competitive inhibition: the homodimers of protein j 136

bind to the promoter of gene i, and by doing so they impede access of the TF to the 137

promoter of gene i. In Fig. 2(a), an illustrative scheme of the simplified case of two 138

mutually inhibiting genes, one promoting pluripotency (blue) and one promoting 139

differentiation (green), is shown. The regulation topology of the network can be 140

represented using a weighted adjacency matrix B. B is a NG ×NG matrix, whose 141

elements, bij > 0, are the binding rates of homodimers of protein j to the promoter of 142

gene i (see Fig. 2(a)). Moreover, the expression of gene i is induced at a constant basal 143

production rate, R̂i, independent of the regulatory mechanism described above. 144

Proteins (TF monomers) of type i are synthesised at a rate proportional to the number 145

of bound promoter sites with rate constant ki1 and degraded with degradation rate ki2 146
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(see Fig. 2(a), S1 Table and S2 Table). 147

In addition to TF regulation, we further consider that each gene is under epigenetic 148

regulation (ER). ER controls gene transcription by modulating access of TFs to the 149

promoter regions of the genes. In other words, in our model, ER is associated with an 150

upstream drive that regulates gene expression [44]. Such epigenetic control is often 151

related to alternative covalent modifications of histones. To address the high complexity 152

of ER, we focus on a simpler stochastic model of ER, based on that formulated 153

in [13,18] and [19]. Our model belongs to a wider class of models which consider that 154

single unmodified (U) chromatin loci can be modified so as to acquire positive (A) or 155

negative (M) marks. These positive and negative marks involve covalent modification of 156

histones. Of such modifications we consider methylation (associated with negative 157

marks) and acetylation (associated with positive marks) [19]. An illustrative example on 158

how epigenetic modifications, acetylation and methylation, alter the accessibility of TFs 159

to the promoter regions of the genes is shown in Fig. 2(a). Both modifications are 160

mediated by associated enzymes: histone methylases (HMs) and demethylases (HDMs), 161

and histone acetylases (HACs) and deacetylases (HDACs). For simplicity, we only 162

explicitly account for HDM and HDAC activity (see Fig. 2(a)). In our model, a positive 163

feedback mechanism is introduced whereby M marks help to both add more M marks 164

and remove A marks from neighbouring loci. The positive marks are assumed to be 165

under the effects of a similar positive reinforcement mechanism [16,19]. A full 166

description of the details of the ER model are given in Section S.2 of the S1 File (see 167

also [18]) and S3 Table, where the transition rates for the ER model are given. 168

Under suitable conditions, determined by the activity and abundance of 169

histone-modifying enzymes and co-factors, the positive reinforcement mechanism 170

produces robust bistable behaviour. In this bistable regime, the two possible ER stable 171

states are: an open epigenetic state where the levels of positive (negative) marks are 172

elevated (downregulated). In this case, the promoter of the gene is accessible to TFs and 173

transcription can occur. By contrast, in the absence (abundance) of positive (negative) 174

marks the gene is considered to be silenced, as TFs cannot reach the promoter. 175

An essential part of the stochastic dynamics of the ER system is the noise-induced 176

transitions between the open and silenced states. Escape from steady states is a 177

well-established phenomenon (see e.g. [45]) and thoroughly analysed within the theory 178

of rate processes [46] and large deviation theory [40,47,48]. As we will illustrate below, 179

these noise-induced dynamics are essential to classify the epiphenotypes of somatic 180

cells [18] and stem cells and unravel the mechanisms of reprogramming and locking. 181

Multi-scale analysis and model reduction 182

The system that results from coupling the ER and GRN models becomes rather 183

cumbersome and computationally intractable as the GRN grows. For this reason, in 184

order to analyse the behaviour of the resulting stochastic model, we take advantage of 185

intrinsic separation of time scales [27–34]. We exploit this time scale separation to 186

reduce our model by performing stochastic quasi-steady state approximations (QSSA) 187

by means of asymptotic analysis of the stochastic ER-GRN system as established 188

in [29–31,33] (see Fig. 2(b)). Especifically, we assume that the characteristic scale for 189

the number of TF monomers (S), the number of promoter binding sites (E), the 190

number of ER modification sites (Y ), and the number of ER enzymes (Z), are such that 191

S � E, Y � Z and O(E) = O(Y ) (see S1 Table for the definition of these variables). 192

Note that the assumption Y � Z is exactly the Briggs-Haldane hypothesis for enzyme 193

kinetics [49] since the ER modification sites are the substrates for the ER enzymes (see 194

Section S.2 in the S1 File). The multiscale analysis is carried out in this Section, with 195

additional technical details provided in Sections S.3 and S.4 of the S1 File. Furthermore, 196

the corresponding numerical method is described in S1 Appendix. We show that, upon 197
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(a) (b)

Fig 3. Comparison between raw simulated data (red) with best fitted data resulting from the parametric sensitivity analysis
of the epigenetic regulatory system (blue). (a) Evolution to the open state of the differentiation-regulating gene. (b)
Evolution to the silenced state of the pluripotency-regulating gene. Raw simulated data is generated by using the SSA on the
model defined by the rates shown in S3 Table with parameter values given in Tables S.5 and S.6 in S1 File, for (a) and (b),
respectively. Resulting fitted data correspond to the 100 ABC parameter sets that best fit the raw data.

appropriate assumptions regarding the characteristic scales of the different molecular 198

species, our model exhibits a hierarchy of time scales, which allows to simplify the 199

model and its computational simulation. 200

The resulting reduced stochastic model is such that, since S � E and Y � Z, the 201

number of bound-to-promoter TFs and ER enzyme-substrate complexes are fast 202

variables that can be sampled from their quasi-equilibrium distribution with respect (or 203

conditioned to) their associated slow variables. TFs and ER modification sites (ER 204

substrates) are slow variables whose dynamics, which dominate the long time behaviour 205

of the system, are given by their associated stochastic dynamics with the fast variables 206

sampled from their quasi-steady state approximation (QSSA) probability density 207

functions (PDFs). The assumption that S � Y allows for further simplification of the 208

model, as it allows to take the limit of S � 1 in the stochastic equations for the TFs 209

monomers which leads to a piece-wise deterministic Markov description: the dynamics 210

of the number of TFs monomers is given by an ODE which is perturbed at discrete 211

times by a noise source [31]. 212

We present a summarised version of the asymptotic model reduction. Details of this 213

analysis are provided in Section S.3 of the S1 File. The starting point of our analysis is 214

the so-called Poisson representation of the stochastic process, which is equivalent to the 215

Master Equation, [30]: 216

Xi(t) = Xi(0) +

RG∑
k=1

rGik
P
(∫ t

0

Wik(X(s);Yi(s))ds

)
(1)

Xij(t) = Xij(0) +

RG∑
k=1

rGijk
P
(∫ t

0

Wik(X(s);Yi(s))ds

)
(2)

Yij(t) = Yij(0) +

RE∑
k=1

rEijk
P
(∫ t

0

Vik(Yi(s))ds

)
(3)
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where Xi denotes the product of gene i, Xij refers to the number of dimers of type j 217

bound to the promoter region of gene i and Yij corresponds to the number of molecular 218

species of type j within the ER model of gene i. We also use the notation 219

X = (X1, . . . , XNG
, X11, . . . , XNGNG

) and Yi = (Yi1, . . . , Yi7). P(λ) ∼ Poisson(λ), i.e. 220

P(λ) is a random number sampled from a Poisson distribution with parameter λ [30], 221

RG and RE denote the total number of reactions in the GRN model (see S2 Table) and 222

in the ER model (S3 Table), respectively, with Wik and Vik denoting the transition 223

rates corresponding to the GRN model and the ER model (see S2 Table and S3 Table, 224

respectively). The stoichiometries rGik
, rGijk

and rEijk
denote the change in number of 225

molecules that reaction k has on Xi, Xij and Yij , respectively. Eqs. (1) and (2) are 226

associated with the the stochastic dynamics of the GRN (see S2 Table), which are 227

regulated by the ER part of the model. Eq. (3) describes the dynamics of the ER 228

system, which drives the dynamics of the GRN (see S2 Table and S3 Table). 229

Under the appropriate conditions, separation of time scales can be made explicit by 230

re-scaling the random variables and the transition rates. Based on our previous 231

work [18,32,34], we propose the following rescaling: 232

Xi = Sxi, Xij = Exij ,

Yij = Y yij , for j = 1, 2, 3, Yij = Zyij , for j = 4, 5, 6, 7

Wik(X;Yi) = b11ES
2wk(x;yi), Vik(Yi) = c14ZY

2vik(yi).

(4)

In Eq. (4), the scale factors S, E, Y , and Z are the characteristic number of protein 233

transcripts, promoter region binding sites, histone modification sites, and epigenetic 234

enzymes (HDMs and HDACs), respectively. For simplicity, we assume that these scales 235

are the same for all the genes involved in the GRN. We assume that S � E ' Y � Z. 236

We further define a re-scaled (dimensionless) time: τ = b11ESt. 237

By using Eq. (4) in Eqs. (1)-(3), we obtain: 238

xi(τ) = xi(0) +

RG∑
k=1

rGik

1

S
P
(
S

∫ τ

0

wk(x(σ);yi(σ))dσ

)
(slow) (5)

xij(τ) = xij(0) +

RG∑
k=1

rGijk

1

E
P
(
E

1

ε1

∫ τ

0

wk(x(σ);yi(σ))dσ

)
(fast) (6)

yij(τ) = yij(0) +

RE∑
k=1

rEijk

1

Y
P
(
Y

1

ε2

∫ τ

0

vik(yi(σ))dσ

)
, j = 1, 2, 3 (slow) (7)

yil(τ) = yil(0) +

RE∑
k=1

rEilk

1

Z
P
(
Z

1

ε2

1

ε3

∫ τ

0

vik(yi(σ))dσ

)
, l = 4, 5, 6, 7 (fast) (8)

where ε1 = E
S � 1, ε2 = b11S

c14Z
, and ε3 = Z

Y � 1, with ε1 < ε3. We have no direct 239

information to estimate the order of magnitude of ε2. Thus, without loss of generality 240

we will assume that ε2 = O(1). 241

The scaling hypothesis S � E ' Y � Z allows for a series of successive 242

approximations which enables us to reduce the model Eqs. (5)-(8) into a much less 243

computationally demanding system. First, provided that both ε1 � 1 and ε3 � 1, we 244

can assume that the (rescaled) rates associated with the fast variables GRN-ER 245

dynamics (Eqs. (6) and (8)) are much larger than those corresponding to their slow 246

counterparts (Eqs. (5) and (7)). Under these conditions, the stochastic dynamics of the 247
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fast variables reaches their (quasi-)steady states while the slow variables are effectively 248

frozen [27–29,50]. 249

We proceed with the asymptotic model reduction by first addressing the QSSA 250

PDFs of the fast variables (see Inner solution below). We then move on to study the 251

QSS approximation of the slow variables, in particular, the large-S asymptotics of the 252

protein concentration dynamics (see Outer solution below). 253

Inner solution The inner solution corresponds to the relaxation dynamics of the fast 254

variables onto their quasi-equilibrium state, while the slow variables remain unchanged. 255

The solution of the inner dynamics allows us to determine the QSSA PDFs of the fast 256

variables conditioned to fixed values of the slow variables. 257

We proceed by considering the following rescaling of the time variable T = ε−11 τ . 258

Upon such rescaling, it is straightforward that all the rates of the reactions affecting the 259

slow variables (Eqs. (5) and (7)) are now O(ε1), which implies that the slow variables, 260

xi and yij (for j = 1, 2, 3), can be considered to remain frozen whilst the fast variables 261

reach their quasi-equilibrium distribution according to the dynamics: 262

xij(T ) = xij(0) +

RG∑
k=1

rGijk

1

E
P

(
E

∫ T

0

wk(x(σ);yi(σ))dσ

)
(9)

yil(T ) = yil(0) +

RE∑
k=1

rEilk

1

Z
P

(
Z
c14ε1
b11ε3

∫ T

0

vik(yi(σ))dσ

)
(10)

where l = 4, 5, 6, 7, ε2 = O(1) and the slow variables, xi and yij , j = 1, 2, 3, are 263

considered to stay constant. 264

Consider the (inner) dynamics of the number of bound sites within the promoter 265

regions, Xij(T ), Eq. (9). Provided that the ER of gene i remains in the open state, i.e. 266

yi2 � 1 and yi3 ∼ O(1), the resulting stochastic dynamics describes how the binding 267

sites switch between bound-to-TF dimer to unbound-to-TF dimer at constant rates 268

(since the number of the different TF molecules does not change at this time scale). 269

Since the number of binding sites is a constant, the (quasi-)steady state distribution of 270

bound TFs to each promoter is a multinomial (see Section 3.2 of the S1 File for a 271

detailed derivation of this result). Otherwise, if gene i is epigenetically closed, then 272

Xij(T ) = 0 for all j with probability one. Therefore, the random vector describing the 273

number of TFs bound at the promoter region of gene i, Bi, whose components are 274

Bi = (Xi1, . . . , XiNG
) is sampled from: 275

P (Bi|N) = ηiP+(Bi|N) + (1− ηi)P−(Bi|N),

(11)

where N = (X1, . . . , XNG
) is a vector containing the monomer gene product of all genes, 276

P−(Bi|N) =
∏
j∈〈i〉 δXij ,0, with δXij ,0 = 1 when Xij = 0, and P+(Bi|N) is a 277

multinomial PDF, whose generating function is given by: 278

G(pi1, . . . , piNG
) =

(
1 +

∑
k
βik

δik
x2kpik

1 +
∑
k
βik

δik
x2k

)ei
(12)

where ei denotes the number of binding sites at the promoter region of gene i, and other 279

parameters are defined in S2 Table (transition rates) and S4 Table (rescaled parameters). 280

The quantity ηi is defined as: ηi = H(Yi3 − Y0) (i.e. gene i is epigenetically open if the 281

corresponding level of acetylation, Yi3, exceeds the threshold Y0). 282
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Eq. (10) describes the inner dynamics of the fast components (enzymes and 283

enzyme-substrate complexes) of the ER system for each gene i. The resulting stochastic 284

dynamics describes how the enzymes switch between their free state and their complex 285

state at constant rates (since the number of the different substrates is constant under 286

the hypothesis of time scale separation). Since the number of enzymes is conserved, the 287

(quasi-)steady distribution of the number of enzymes of each type in complex form is a 288

binomial (see Section 3.4 of the S1 File for a detailed derivation of this result). The 289

corresponding generating functions are given by: 290

GHDM (pi) =

(
κi2 + κi3 + (κi5 + κi6)yi3 + (κi1 + yi3)yi2pi
(κi2 + κi3) + (κi1 + yi3)yi2 + (κi5 + κi6)yi3

)eHDM

(13)

GHDAC(pi) =

(
κi10 + κi11 + (κi13 + κi14)yi2 + (κi9 + κi12yi2)yi3pi
(κi10 + κi11) + (κi9 + κi12yi2)yi3 + (κi13 + κi14)yi2

)eHDAC

(14)

where i = 1, . . . , NG and κij are defined in S4 Table. The number of free HDM and 291

HDAC molecules is then obtained from the conservation equations Yi4 = eHDM − Yi5 292

and Yi6 = eHDAC − Yi7. 293

Outer solution The outer solution, corresponding to the dynamical evolution of the 294

slow variables, is obtained by sampling the fast variables, whose values are needed to 295

compute the reaction rates for the slow variables, from their QSSA PDFs (see Eqs. 296

(12)-(14)): 297

xi(τ) = xi(0) +

RG∑
k=1

rGik

1

S
P
(
S

∫ τ

0

wk(x(σ);yi(σ))dσ

)
(15)

yij(τ) = yij(0) +

RE∑
k=1

rEijk

1

E
P
(
E

ε2

∫ τ

0

vik(yi(σ))dσ

)
, j = 1, 2, 3 (16)

The QSSA PDFs of the fast variables are conditioned by the current value of the slow 298

variables. We complete our asymptotic analysis by looking at the large S behaviour of 299

the slow GRN variables (see Eq. (5)). We resort to a law of large numbers enunciated 300

and proved by Kurtz which states that S−1P(Su)→ u when S � 1 [29–31,51]. We can 301

apply this result straightforwardly to Eq. (15), which eventually leads to the asymptotic 302

reduction of the full ER-GRN system: 303

dxi
dτ

= Ri + ωi1xii − ωi2xi − 2

NG∑
j=1

(
βijηi

(
ej
E
−

NG∑
k=1

xjk

)
x2i − δijxij

)
, i = 1, . . . , NG

(17)

yij = yij(0) +

RE∑
k=1

rEijk

1

E
P
(
E

1

ε2

∫ τ

0

vik(yi(σ))dσ

)
, j = 1, 2, 3, (18)

The resulting dynamics consists on a hybrid system where the dynamics of the TF 304

monomers, xi(τ), Eq. (17), is described in terms of a piece-wise deterministic Markov 305

process [52,53], i.e. by a system of ODEs perturbed at discrete times by two random 306

processes, one corresponding to stochastic ER (Eq. (18)) and the other to TF dimers 307

binding to the promoter regions. The latter are sampled from their QSSA PDFs, Eq. 308

(11). The stochastic dynamics of the slow ER variables, Eq. (18) is in turn coupled to 309

the random variation of the associated fast variables (ER enzymes, HDM and HDAC, 310
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and complexes). The number of complexes, Yi5 and Yi7, are sampled from their QSSA 311

PDFs, Eqs. (13) and (14). The corresponding numerical method used to simulate such 312

system is described in detail in S1 Appendix. 313

Fig 4. Phase diagram of the two-gene system, Eqs. (23)-(24). Vertical blue (horizontal
green) hatching denotes regions where the pluripotency (differentiated) state is stable.
Diagonal pink hatching denotes regions where the undecided state is stable. Regions of
the phase diagram where different hatchings overlap correspond to regions of bistability
or tristability. In the labels in the plot, P stands for pluripotency, D stands for
differentiation and U for undecided. This phase diagram was obtained using the
methodology formulated in [54]. Parameters values: ω11 = ω21 = 4.0. Other parameter
values as per Table S.12 in Section S.7 of the S1 File.

Transitions between ER states: minimum action path approach 314

Noise-induced transitions are essential to understand ER dynamics and their effect on 315

cell-fate determination [23]. Throughout the bistable regime, sufficiently large 316

fluctuations in the stochastic ER system will induce switching between the open and 317

silenced states. The rate at which such transitions occur can be described using 318

reaction-rate theory [46] and large deviation theory [47], which show that the waiting 319

time between transitions is exponentially distributed. The average switching time, τs, 320

increases exponentially with system size, which in this case is given by the scale of ER 321

substrates, Y [47, 48,55,56]: 322

τs = CeY S , (19)

where C is a constant and S is the action of the stochastic switch. Eq. (19) is derived 323

from considering the probability distribution of the so-called fluctuation paths, ϕ(τ), 324

which connect the mean-field steady states in a time τ . According to large deviation 325

theory [47,48], we have P (ϕ(τ)) ∼ e−YAFW (ϕ(τ)), which implies that the probability of 326

observing paths different from the optimal, i.e. the path ϕ∗ that minimises the action, 327

is exponentially supressed as system size, Y , increases. This means that, for large 328

October 18, 2018 11/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/452433doi: bioRxiv preprint 

https://doi.org/10.1101/452433
http://creativecommons.org/licenses/by/4.0/


enough system size, the behaviour of the system regarding large fluctuations is 329

characterised by the optimal path, which is such that: 330

S ≡ AFW (ϕ∗) = min
τ,ϕ(τ)

AFW (ϕ(τ)) . (20)

An explicit form of the functional AFW (ϕ(τ)) can be given if the dynamics is given by 331

the corresponding chemical Langevin equation [57]: 332

dyij(τ) = fj(yi)dt+ gij(yi)dBjt , (21)

where Bjt denotes a Wiener process, and the mean-field drift, fj(yi), is 333

fj(yi) =
∑RE

k=1 rEijk
vik(yi), and the noise matrix, gij(yi), 334

gjj =
√∑RE

k=1 r
2
Eijk

vik(yi), gij = 0 if i 6= j. The rescaled variables yi = (yij =
Yij

Y ), 335

j = 1, . . . , 7, and the rescaled rates vik(yi) are defined in Multi-scale analysis and model 336

reduction. In this case, the action functional AFW (ϕ(τ)) is the Freidlin-Wentzel (FW) 337

functional: 338

AFW (ϕ) =

∫ τ

0

||ϕ̇(t)− f (ϕ(t)) ||2g(ϕ(t))dt, (22)

The norm || · ||2g(ϕ(t)) =
〈
·, D (ϕ(t))

−1 ·
〉

, where D (ϕ(t)) = g (ϕ(t)) g (ϕ(t))
T

is the 339

diffusion tensor. Using Eq. (22), the optimal value of the action, S, can be found by 340

numerical minimisation, which provides both the optimal or minimum action path 341

(MAP) and the rate at which the ER system switch state driven by intrinsic noise. 342

Details regarding implementation of the action-optimisation algorithm are given in 343

Section S.5 of the S1 File. A complete description of τs requires to estimate the 344

pre-factor C, which is not provided by the FW theory, but can be easily estimated using 345

stochastic simulation. 346

ER-systems ensemble generation and analysis 347

Folguera-Blasco et al. [18] have proposed to analyse an ensemble of ER systems in order 348

to study the robustness of the different ER scenarios under heterogeneous conditions 349

regarding the availability of co-factors associated with the activity of ER enzymes, 350

which we take into account by considering variations (variability) in the kinetic 351

constants cij (see S1 Table and S3 Table). Such an ensemble is generated using 352

approximate Bayesian computation (ABC) [58, 59], whereby we generate an ensemble of 353

parameter sets θi = (cij , i = 1, . . . , NG, j = 1, . . . , 16) compatible with simulated data 354

for the epigenetic regulation systems. 355

Our approach follows closely that of [18], to which we refer the readers for a detailed 356

presentation of the implementation. To summarise, we start by generating synthetic 357

(simulated) data (denoted as “raw data” in Fig. 3) regarding the ER system of a genetic 358

network epigenetically poised for differentiation, i.e. open differentiation-promoting 359

genes and silenced pluripotency-promoting genes (see the example shown in Fig. 3). 360

This simulated data will play the role of the experimental data, x0, to which we wish to 361

fit our model. The data set consists of 10 realisations and 25 time points per realisation 362

for each of the NG epigene regulatory systems. For each time point, ti, we consider two 363

summary statistics: the mean over realisations, x̄(ti), and the associated standard 364

deviation, σ(ti). We then run the ABC rejection sampler method until we reach an 365

ensemble of 10000 parameter sets which fit the simulated data, x0, within the 366

prescribed tolerances for the mean and standard deviation. In our particular case 367

NG = 2, i.e. we have a 10000 parameter set ensemble of the ER system for the 368

pluripotency-promoting gene and another 10000 parameter set ensemble for the gene 369
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promoting differentiation. Fig. 3(a) & (b) show results comparing the reference (raw 370

simulated) data to a subensemble average consisting of the 100 sets that best fit the 371

data, for the differentiation- and pluripotency-promoting genes, respectively. 372

The above procedure provides us with an ensemble of parameter sets that are 373

compatible with our raw data, i.e. such that they fit the data within the prescribed 374

tolerances. The heterogeneity associated with the variability within this ensemble has a 375

clear biological interpretation. The rates cij are associated with the activity of the 376

different enzymes that carry out the epigenetic-regulatory modifications (HDMs, 377

HDACs, as well as, histone methylases (HMs) and histone acetylases (HACs)), so that 378

variation in these parameters can be traced back to heterogeneity in the availability of 379

cofactors, many of them of metabolic origin such as NAD+, which are necessary for 380

these enzymes to perform their function [18]. 381

The generated kinetic rate constants are dimensionless, i.e. they are relative to a 382

given rate scale [18]. Such a feature implies that there is an undetermined time scale in 383

our system. This additional degree of freedom can be used to fit our model of epigenetic 384

(de-)activation to particular data. Since the global time scales associated with different 385

ER regulation systems may differ among them, our model has the capability of 386

reproducing different systems characterised by different time scales as previously shown 387

by Bintu et al. [14]. 388

Results 389

(b)(a)

Fig 5. Scatter plots showing heterogeneity in the behaviour of bistable differentiation ER systems (DERSs) and pluripotency
ER systems (PERSs). The vertical axis corresponds to the average opening time and the horizontal axis, to the average closing
time. Each dot in plot (a) represents a DERS within the ensemble (see Section ER-systems ensemble generation and analysis).
Different colours and black lines show the three clusters resulting from a k-means analysis discussed in Sections Co-factor
heterogeneity gives rise to both pluripotency-locked and differentiation-primed states and Analysis of ensemble heterogeneity.
Dots in plot (b) represent PERSs within the ensemble defined in Section ER-systems ensemble generation and analysis.

In order to focus our discussion, we illustrate the application of our model 390

formulation on the case we want to study: a gene regulatory circuit with two genes, one 391

whose product promotes differentiation and another one whose protein induces 392

pluripotency. These two genes are further assumed to interact through mutual 393
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(c)(b)(a)

Fig 6. Differentiation probability Q within the ensembles of DERSs and PERSs corresponding to the three clusters of Fig.
5(a) (see Section Co-factor heterogeneity gives rise to both pluripotency-locked and differentiation-primed states). For all three
plots, the horizontal axis runs over the whole ensemble of PERSs. The vertical axis of plots (a), (b), and (c) runs over all the
DERSs within the blue cluster, the green cluster, and the red cluster, respectively.

competitive inhibition (see Fig. 2(a)). Although such a system may appear to be too 394

simplistic to describe realistic situations, there is evidence that mutual inhibition 395

between two key transcription factors controls binary cell fate decisions in a number of 396

situations [60,61]. Our results are straightforward to generalise to more complex 397

situations. 398

We proceed to analyse how ER sculpts the epigenetic landscape over the substrate of 399

the phase space given by the model of the gene regulatory network. The latter provides 400

the system with a variety of cell fates, corresponding to the stable steady states of the 401

dynamical system underpinning the model of gene regulatory network [62]. The 402

transitions between such cellular states, both deterministic and stochastic, depend upon 403

the ability of the cell regulatory systems to elevate or lower the barriers between them. 404

Epigenetic regulation is one of such mechanisms. Here, we examine how ER is affected 405

by ensemble variability associated with variations in the availability of the necessary 406

co-factors on which histone modifying enzymes (HMEs) depend to carry out their 407

function. In particular, we will show that such variability is enough to produce a variety 408

of behaviours, in particular differentiation-primed and stem-locked states. 409

The GRN model exhibits a complex phase space, including an 410

undecided regulatory state 411

We start our analysis by studying the phase space of the dynamical system underlying 412

our model of gene regulation, schematically illustrated in Fig. 2(a). Using the 413

methodology described in detail in Section S.3 of the S1 File, we have derived the 414

(quasi-steady state approximation) equations for the optimal path theory of the 415

stochastic model of the mutually inhibitory two-gene system [13]. Such equations 416

describe the most likely relaxation trajectories towards their steady states [55,56], under 417

conditions of time scale separations described in detail in Section S.3. For the two GRN, 418

they read as 419

dq1
dτ

= R1 + p∞1
p

ω11
β11

δ11
q21

1 + β11

δ11
q21 + β12

δ12
q22
− ω12q1 (23)

dq2
dτ

= R2 + p∞2
p

ω21
β22

δ22
q22

1 + β21

δ21
q21 + β22

δ22
q22
− ω22q2 (24)
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where q1 and q2 are the variables (generalised coordinates) associated with the number 420

of molecules of proteins, X1 and X2. The re-scaled variables, qi and qij , and the 421

re-scaled parameters, ωij , βij , and δij , are defined in S4 Table (see also Section S.3 in 422

the S1 File). 423

The multiscale analysis carried out in Section S.3 shows that the parameters p, p∞1 424

and p∞2
are such that p∞1

p = e1
E and p∞2

p = e2
E , where e1 and e2 are the number of 425

sites in the promoter regions of our two genes exposed to and available for binding by 426

TFs, which implies that p∞1
p and p∞2

p can be directly related to ER: p∞i
p→ 0, 427

i = 1, 2, corresponds to an epigenetically silenced gene, whereas p∞i
p ≥ O(1) is 428

associated with an epigenetically open gene. In this section, we study the phase space of 429

the system when both p∞1p and p∞2p are varied. This allows us to understand how the 430

behaviour of the GRN changes when its components are subject to ER. Our results are 431

shown in Fig. 4. 432

The system described by Eqs. (23)-(24) exhibits three types of biologically relevant 433

steady states, namely, the pluripotency steady state (PSS), the differentitation steady 434

state (DSS), and the undecided steady state (USS). Different combinations of these 435

states can be stable or unstable depending on the parameter values (see Fig. 4). The 436

PSS (DSS) corresponds to a steady state with q1 � 1 and q2 = O(1) (q1 = O(1) and 437

q2 � 1) and the USS is associated with a state such that both q1 � 1 and q2 � 1. 438

Fig. 4 shows the phase space associated with the dynamical system Eqs. (23) and 439

(24). It shows the behaviour as the parameters p∞1
p and p∞2

p vary. The lines shown in 440

Fig. 4 correspond to the stability boundary of the different regimes. At such boundaries, 441

saddle-node bifurcations occur, as illustrated in the example shown in Fig. S.2 (Section 442

S.4 of the S1 File). Fig. 4 reveals a complex phase space with seven different phases. 443

We denote by RP (RD) the region of the phase space where only the pluripotency 444

(differentiation) steady state is stable. Similarly, RU corresponds to those parameter 445

values such that only the undecided steady state is stable. Furthermore, there are three 446

bistable phases: one in which the PSS and the DSS coexist, RPD, a second one where 447

the PSS coexists with the USS, RPU , and the third one where the DSS and USS 448

coexist, RDU . Finally, a region exists where stable PSS, stable DSS, and stable USS, 449

RPUD, coexist. Fig. S.5 of the S1 File shows examples of trajectories illustrating the 450

dynamics described by Eqs. (23)-(24) for different values of the pair (p∞1
p, p∞2

p) 451

corresponding to the different regions shown in Fig. 4. In particular, we show how the 452

long term behaviour of different initial conditions differ as (p∞1p, p∞2p) varies, so that 453

different cell fates (co)exist associated to different levels of TF accessibility. 454

Co-factor heterogeneity gives rise to both pluripotency-locked 455

and differentiation-primed states 456

In the previous section, we have analysed the dynamical landscape provided by the 457

dynamical system describing the GRN. We now proceed to study the effect of ER on 458

the robustness of the different phases shown in Fig. 4 (see also Fig. S.5, Section S.8 of 459

the S1 File). We here put forward that ER is essential to the robustness of such phases 460

and, consequently, to the stability of the associated cell fates, since transitions in 461

bistable ER systems can induce (or facilitate) transitions between the GRN phases. 462

Such transitions are associated with differentiation and reprogramming of cell fates. 463

This phenomenon, so-called epigenetic plasticity, has been recently proposed as a major 464

driver for disrupting cell-fate regulatory mechanisms in cancer and aging [23]. We 465

further focus on the role of heterogeneity within the ensemble described in Section 466

Materials and methods (see also [18]). 467

In order to characterise robustness of the different ER systems within the ensemble, 468

we have focused on the analysis of the average transition times between the open and 469
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closed ER states. We define τ1+ (τ1−) as the average transition time for a differentiation 470

ER system- DERS- to switch from closed to open (open to closed). Similarly, the 471

quantities τ2+ and τ2− are analogously defined for the pluripotency ER systems-PERSs. 472

The results are shown in Fig. 5(a) and (b), where we present scatter plots of the 473

average transition times within the ensemble of DERSs (Fig. 5(a)) and PERSs (Fig. 474

5(b)). These figures show scatter plots where each point represents an ER system (i.e. a 475

given parameter set) within our ensemble. The vertical and horizontal axes show the 476

average switching time from closed-to-open and open-to-closed, respectively. We observe 477

that the heterogeneity exhibited by the differentiation ER systems is greater than the 478

one corresponding to the pluripotency ER systems. In particular, the dispersion in τ2+ 479

is much smaller than in τ1+ . Regarding τ2+ , most of the pluripotency ER systems are 480

concentrated around a narrow band. By contrast, the differentiation ER systems show 481

large degrees of heterogeneity in both τ1+ and τ1− . 482

Heterogeneity in the differentiation ER systems exhibits an interesting pattern, 483

whereby such systems organise themselves in three clusters obtained through k-means 484

clustering, shown as blue, green and red dots in Fig. 5(a). DERSs within the blue 485

cluster are charaterised by long closed-to-open waiting times and short open-to-closed 486

waiting times. DERSs belonging to the red cluster are the specular image of those 487

within the blue cluster, i.e. they have short closed-to-open waiting times and long 488

open-to-closed waiting times. Finally, DERSs in the green cluster are characterised by 489

large values of both τ1+ and τ1− . 490

Table 1. Minimum action values, S, corresponding to the optimal escape paths shown
in Fig. S.6 of the S1 File (see Section Transitions between ER states: minimum action
path approach and Section Co-factor heterogeneity gives rise to both pluripotency-locked
and differentiation-primed states for details). Parameter values are given in Section S.7
of the S1 File.

ER system Open to closed Closed to open
DERS1 0.05387 0.007012
DERS2 0.09947 0.05813
PERS1 0.01502 0.1836
PERS2 0.02043 0.07645

Insight into the stochastic dynamics, particularly regarding heterogeneity of the 491

robustness of the open and silenced ER states to intrinsic noise, can be gained by 492

analysing the corresponding optimal escape paths. Four examples of such paths, 493

computed according to the MAP theory (see Section Transitions between ER states: 494

minimum action path approach), for two DERSs (DERS1 and DERS2) and two PERSs 495

(PERS1 and PERS2) are shown in Figs. S.6(a)-(d) of the S1 File. A comparison 496

between the value of the minimum action, S (see Eqs.(20)-(22)), for the optimal escape 497

paths corresponding to DERS1 and DERS2 (Figs. S.6(a) and (c)), and for PERS1 and 498

PERS2 (Figs. S.6(b) and (d)) shows a tendency for DERSs to exhibit much more 499

variability (see Table 1). Whilst the action value for PERS1 is about twice the value of 500

PERS2 in Fig. S.6(b), there is an over 8-fold increase when comparing the action values 501

of DERS1 and DERS2 in Fig. S.6(a). Similarly, when comparing the action S for the 502

open to closed optimal paths, we observe that the variability associated with the DERSs 503

(Fig. S.6(c)) is also larger than the one in PERSs (Fig. S.6(d)). This property partly 504

explains the difference between Fig. 5(a) and Fig. 5(b) regarding DERS and PERS 505

heterogeneity, respectively. A similar argument can be put forward to help us explain 506

the heterogeneity within the DERS ensemble (Fig. 5(a)). Blue cluster DERSs exhibit 507

optimal closed-to-open paths with larger value of the optimal action than that found in 508

their red cluster counterparts (see Fig. S.6(a), where DERS1 belongs to the red cluster 509
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and DERS2 to the blue cluster). This property has the consequence that the 510

closed-to-open waiting time, τ1+ , is longer for blue cluster DERSs. 511

To quantify the effects of bistable ER on the landscape related to the gene regulatory 512

system (see Fig. 4), we proceed to estimate the probability, Q, that the combined 513

activity of each pair of DERS and PERS within our ensemble produces a global 514

epigenetic regulatory state compatible with differentiation. DERS-PERS pairs with 515

high values of Q are associated with differentiation-primed states. By contrast, those 516

DERS-PERS combinations with low Q are identified with pluripotency-locked states. 517

We proceed forward with this programme by recalling that escape times from a 518

stable attractor in a stochastic multi-stable system are exponentially distributed [47, 48]. 519

This implies that the PDFs for the escape times for both DERSs and PERSs are fully 520

determined by the corresponding values of τ1± and τ2±. We also assume that, for a 521

given ER-GRN system, the DERS and the PERS evolve independently of each other. 522

We consider the PDF of the waiting time associated with a scenario of full 523

reprogramming of the epigenetic landscape, τP . Such a scenario assumes that the 524

system is initially in a pluripotency-locked ER state where the DERS is closed and the 525

PERS is open, which we denote as D−P+. For the system to make its transit into the 526

differentiation-primed state D+P−, corresponding to open DERS and closed PERS, 527

there are two possible routes: D−P+ → D−P− → D+P− (route 1) and 528

D−P+ → D+P+ → D+P− (route 2). Simultaneous switch of both ER systems is 529

considered highly unlikely and therefore ignored. The PDF of the waiting time of the 530

transition D−P+ → D+P−, denoted by P+−,−+(τP ), is given by: 531

P+−,−+(τP ) = Z−1 (P1(τP ) + P2(τP )) , (25)

where 532

P1(τ) = τ−11− τ
−1
2+ e

−τ/τ1−

(
e−τ/τ2+ − e−τ/τ2−

τ−12− − τ
−1
2+

)
533

P2(τ) = τ−11− τ
−1
2+ e

−τ/τ2+

(
e−τ/τ1+ − e−τ/τ1−

τ−11− − τ
−1
1+

)
,

and 534

Z−1 =
(τ1− + τ2+)

(
(τ−11− + τ−12− )(τ−11+ + τ−12+ )

)
τ−12+ + τ−11+ + τ−12− + τ−11−

.

P1(τp) and P2(τp) are the probabilities related to each of the landscape reprogramming 535

routes. The probability that the ER landscape has undergone reprogramming from 536

pluripotency-locked into differentiation-primed state within the time interval (0, τP ], Q, 537

is thus given by: 538

Q ≡
∫ τP

0

P+−,−+(τ)dτ, (26)

where in our case, τP has been taken as the mean time of τ1+, that is, the mean time 539

for the differentiation ER systems (DERSs) to switch from the closed to the open state, 540

which is needed for a cell to differentiate. Furthermore, τ1+ exhibits a larger range of 541

variability than the time for the pluripotency ER systems to switch from its open to its 542

closed state, which is also a necessary condition for differentiation to happen. 543

We investigate the DERSs belonging to the different clusters of Fig. 5(a) regarding 544

their likelihood to produce pluripotency-locked epigenetic landscapes (results shown in 545

Fig. 6). The analysis shows that DERSs within the red cluster (Fig. 6(c)) correspond to 546

differentiation-primed epigenetic landscapes (Q = 1) for all the DERS-PERS pairs. By 547
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contrast, the blue cluster (Fig. 6(a)) and the green cluster (Fig. 6(b)) contain DERSs 548

associated with both differentiation-primed (large Q) and pluripotency-locked (small Q) 549

epigenetic landscapes. As discussed in the next section, the latter are more abundant 550

within the blue cluster. 551

Analysis of ensemble heterogeneity 552

We now proceed to analyse the patterns observed in our ensemble of ER systems 553

regarding both the differences between the three clusters observed in the ensemble of 554

DERSs (Fig. 5(a)) and the distinctive features that characterise pluripotency-locked 555

DERS-PERS pairs. In order to do this, we follow the methodology put forward by [18], 556

whereby ensemble statistics (cumulative distribution functions (CDFs)) of the 557

parameters cij (see S1 Table) corresponding to the DERSs/PERSs associated with the 558

subensemble of systems exhibiting a particular behaviour are analysed. By comparing 559

such CDFs to either the general population (i.e. whole ensemble) or to different 560

subensembles, we can detect statistically significant biases, which allows us to identify 561

key parameters (and their biases) associated with the behaviour displayed by the focal 562

subensemble. 563

Significant differences within the ensemble of DERSs 564

We start this analysis by studying the pattern emerging in the ensemble of DERSs, Fig. 565

5(a). As discussed in the previous section, DERSs organise themselves in three clusters, 566

which exhibit remarkable differences regarding their capability to trigger 567

differentiation-primed epigenetic landscapes (see Figs. 5(a) and 6). Our results are 568

shown in Fig. 7, where we depict the empirical CDFs for the different kinetic 569

parameters of the ER reactions for the differentiation gene, c1j (see S3 Table). We 570

proceed to look for which c1j there are statistically significant differences, by comparing 571

the CDF of each cluster with that corresponding to the whole DERS ensemble, and also 572

the CDFs of the clusters among them (see Fig. 7). Each of these two-sample 573

comparison is carried out by means of the Kolmogorov-Smirnov (KS) test. Statistically 574

significant differences were found in the cases we comment below. The p-values are 575

reported in Section S.6 of the S1 File. 576

Red cluster versus blue cluster. As discussed in the previous section, the differences 577

between DERSs within the blue and red clusters are essential to ascertain the main 578

features that distinguish differentiation-primed and pluripotency-locked systems. The 579

bias detected within the red (blue) cluster in the corresponding CDFs (see Fig. 7) is 580

towards bigger (smaller) values for c11 (unrecruited demethylation) and c115 581

(unrecruited acetylation) and towards smaller (larger) values for c111 (unrecruited 582

deacetylation) and c116 (recruited acetylation). The behaviour of c11 , c111 , and c115 is 583

straightforward to interpret. The trends observed in the data are consistent with the 584

DERSs within red cluster being more prone to differentiation-primed ER landscapes, as 585

they promote removal of negative marks and addition of positive marks. 586

Red cluster versus green cluster. In this case, the bias detected within the red 587

(green) cluster in the corresponding CDFs (see Fig. 7) is to larger (smaller) values for 588

c13 (unrecruited demethylation) and to smaller (bigger) values for c116 (recruited 589

acetylation). The tendency in the data corresponding to c13 is compatible with the 590

features of the red cluster DERSs, as it involves an increase in the removal of negative 591

marks. 592

Blue cluster versus green cluster. Fig. 7 shows that DERSs within the green cluster 593

have smaller values of c13 (unrecruited demethylation) and larger values of c18 594

(recruited methylation) than their blue cluster counterparts. Both of such effects 595

stimulate addition of negative marks. However, DERSs in the green cluster also exhibit 596
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lower c111 (unrecruited deacetylation) and bigger c115 (unrecruited acetylation), which 597

both encourage addition of positive marks. This can explain why the green cluster 598

DERSs exhibit both long τ1− and τ1+ (see Fig. 5(a)). 599

Significant differences between differentiation-primed and 600

pluripotency-locked ER landscapes 601

The quantity Q allows us to classify each pair DERS-PERS drawn from our ensemble 602

regarding their degree of resilience to switch into a state prone to differentiation. If Q is 603

larger than a threshold value T , the corresponding DERS-PERS pair is categorised as 604

differentiation-primed. By contrast, when Q < T , the DERS-PERS pair is classified as 605

pluripotency-locked. 606

We first proceed to compare within the whole population (without discriminating 607

between clusters) those DERSs such that Q ≥ T (differentiation-primed ER landscapes) 608

against those with Q < T (pluripotency-locked ER landscapes). We take T = 0.7. The 609

results are shown in Fig. S.7 of the S1 File in Section S.8. The CDFs of the parameters 610

c11 (unrecruited demethylation), c114 (recruited deacetylation), and c115 (unrecruited 611

acetylation) are biased towards higher values for the subensemble associated with 612

differentiation-primed ER landscapes (Q ≥ T ). The requirement for Q to be Q ≥ T 613

biases the CDF of c116 (recruited acetylation) towards lower values than in the general 614

population. The interpretation of the results regarding c11 and c115 is clear, since they 615

encourage the removal of negative marks and the addition of positive marks and thus 616

promote expression of the differentiation gene. The CDFs of c114 and c116 corresponding 617

to differentiation-primed ER landscapes are virtually identical to the CDFs associated 618

with the general population (see Fig. S.7, S1 File). These features are therefore inherent 619

in bistable behaviour (see Section General description of the stochastic model of an 620

epigenetically-regulated gene network), rather than being specific to 621

differentiation-primed DERSs. 622

If we now restrict our analysis to those DERSs within the blue cluster (see Fig. 8), 623

we observe that the parameters whose CDFs differ significantly when splitted into 624

differentiation-primed and pluripotency-locked are c11 (unrecruited demethylation) and 625

c114 (recruited deacetylation). As in the analysis in the whole ensemble, only the result 626

regarding c11 is relevant for the analysis of the features yielding differentiation-primed 627

ER landscapes. 628

Regarding the PERSs, the results are less compelling. The results are shown in Fig. 629

S.8 of the S1 File. Our analysis shows that significative differences can be found 630

between the empirical distributions of three parameter values: c13 (unrecruited 631

demethylation), c18 (recruited methylation), and c115 (unrecruited acetylation). PERSs 632

such that Q ≥ T exhibit larger values of all three parameters. 633

Ensemble-based strategies for unlocking resilient pluripotency 634

The results of the previous sections suggest a number of strategies to unlock resilient 635

pluripotency states which hinder differentiation. One of our main conclusions is that 636

such states of resilient pluripotency are mostly vinculated to DERS-PERS combinations 637

such that the DERS belongs to either the blue or the green cluster. In view of this, a 638

possible strategy in order to encourage differentitation-primed ER landscape consists on 639

changing a selected combination of parameter values according to a rationale provided 640

by the analysis carried out in the previous two sections. Our results are shown in Fig. 9. 641

One possible strategy consists on first transforming a blue cluster DERS into a green 642

cluster one, and then completing the reprogramming of the DERS by transforming the 643

resulting set into a red cluster DERS. A candidate strategy involves first changing a 644

parameter whose CDF is significantly different when the blue cluster is compared with 645
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the green cluster. The second step is then to change a parameter that exhibits 646

significant difference between the green and red cluster. Taking the results of the 647

previous section into consideration, we consider the reduction of c111 (unrecruited 648

deacetylation) and the increase of c13 (unrecruited demethylation). The result of this 649

reprogramming strategy is shown in Fig. 9(a), where we show that a blue cluster DERS 650

is first transformed into a green cluster one (green square in Fig. 9(a)), and then, finally, 651

into a red cluster DERS (red square in Fig. 9(a)). The initial blue cluster DERS has 652

been chosen as the set with the largest value of c111 , which has been shown to be a 653

significant difference when comparing the blue cluster to the red one, and the blue 654

cluster to the green one, leading to the idea that this property is linked to the blue 655

cluster (idea which is reinforced because c111 is not significant when comparing the red 656

and the green cluster). 657

The efficiency of such a strategy to unlock resilient pluripotency and to encourage 658

differentiation is shown in Fig. 9(b) where we present statistics of the differentiation 659

time, τD, for the original blue cluster DERS and for the corresponding reprogrammed 660

one (two step reprogramming, red cluster-like). These simulations have been done for 661

the full ER-GRN, Eqs. (17)-(18), using the hybrid multiscale simulation algorithm 662

described in Section Multi-scale analysis and model reduction (and fully developed in 663

Section S.3 of the S1 File). The resulting differentiation times for the ER-GRN with 664

reprogrammed ER landscape are orders of magnitude smaller than those with original 665

ER-GRN within the blue cluster DERS. 666

An alternative strategy, that involves changing the value of one parameter only, 667

consists on increasing the value of c13 (unrecruited demethylation). Such a strategy is 668

not obvious, since c13 is not one of the parameters whose empirical CDF has significant 669

differences when DERS in the red cluster are directly compared with those in the blue 670

cluster. However, since the CDF of c13 is significantly different when both the blue 671

cluster and the red cluster are compared to the green cluster, it is conceivable that 672

increasing c13 without further intervention could reprogram blue cluster DERSs. The 673

result of this reprogramming strategy is shown in Fig. 9(a) (red diamond). Simulation 674

results shown in Fig. 9(b) (two step reprogramming) confirm the viability of this 675

approach. In fact, based on the statistics of the differentiation time, both strategies are 676

virtually indistinguishable. 677

Loss of HDAC activity hinders differentiation in our ER-GRN 678

model 679

Besides variability associated with cofactor heterogeneity, our model allows us to 680

address the issue of variability regarding HME activity. HME activity is affected by 681

both normal physiological processes, such as ageing, and pathologies such as cancer. For 682

example, impaired activity of HDM and HDAC has been observed in relation to cancer 683

and ageing. Here, we analyse the impact of HDM and HDAC loss of activity on the 684

dynamics of differentiation. In particular, we simulate differentiation in our ER-GRN 685

model to obtain statistics of the differentiation time to assess the effect of loss of HME 686

activity. The simulations shown in this section have all been carried out using the 687

hybrid multiscale simulation algorithm described in the S1 Appendix. 688

In order to clarify the effect of loss of HME activity on the ER model, we first 689

consider the phase diagram of its mean-field limit in different situations (see [18] for 690

details). The results are shown in Fig. S.9 of the S1 File. Figs S.9(a) and (c) show the 691

phase diagram for two DERSs, one belonging to the red cluster (DERS1) and another, 692

to the blue cluster (DERS2). Regarding the features of the phase diagram, the main 693

distinction between blue cluster DERSs and red cluster DERSs, as illustrated in the 694

examples shown in Figs. S.9(a) and (c), is that the surface occupied by the bistable 695
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region (shaded blue region) is much larger in blue cluster DERSs, because of the 696

displacement of its lower boundary. By comparison, the bistability region of the PERSs 697

is narrower than that of the DERSs (see Figs. S.9(b) and (d)). In particular the 698

boundary that separates the bistable phase from the closed phase (area at the left of the 699

blue shaded region) is displaced towards smaller HDM activity in the DERS phase 700

diagrams. 701

This property suggests that a possible strategy to promote differentiation would be 702

to decrease HDM activity, as this would drive the PERS into its closed phase whilst 703

allowing the DERS to remain within its bistability region. In order to assess this and 704

other scenarios, we consider a base-line scenario where the number of HMEs is exactly 705

equal to average, i.e. eHDM = eHDAC = Z. We then compare different scenarios 706

regarding the abundance of HDM and HDAC to the base-line scenario. 707

Contrary to what could be expected, simulation results show that the strategy of 708

reducing HDM activity alone beyond the PERS closing boundary further hinders 709

differentiation. As can be seen in Fig. 10(c), a decrease in HDM activity actually leads 710

to longer differentiation time (see also [13]). Similarly, Figs. 10(a) and (b), which show 711

statistics of the differentiation time, reveal that a decrease in both HDM and HDAC 712

activity also leads to an increment in differentiation times, that is, this strategy fails to 713

decrease the differentiation time below the base-line scenario. In both cases, such 714

hindrance of differentiation is the product of the increase in the opening times (τ1+) of 715

the DERS. This effect occurs because, as HDM and HDAC activity is reduced, the 716

DERS is driven towards its closed-bistability boundary. Close to such a region, the 717

DERS closed state becomes more stable and thus the corresponding τ1+ increases. By 718

contrast, further reduction of HDAC activity moves the DERSs system closer to their 719

open-bistable boundary, resulting in a reduction of the differentiation time. However, 720

since the differentation times remain above those corresponding to the base line HDM 721

and HDAC activity scenario, we conclude that loss of both HDM and HDAC activity 722

contributes towards hindering differentiation. 723

Conclusion 724

In this paper we have presented a model of epigenetic plasticity which has helped us to 725

uncover some of the details and mechanisms underlying epigenetic regulation of 726

phenotypic robustness, in particular regarding the robustness of pluripotent states. We 727

have further uncovered how epigenetic heterogeneity regulates the decision mechanisms 728

and kinetics driving phenotypic robustness in a stem-lock model of pathological 729

pluripotency. Our deconstruction of epigenetic plasticity and phenotypic malleability 730

provides crucial insights into how pathological states of permanently acquired 731

pluripotency can be therapeutically unlocked by exploiting epigenetic heterogeneity. 732

We have added an ER layer to previous approaches in which cell phenotypes were 733

associated with the attractors of complex gene regulatory systems and their robustness, 734

with the resilience of such attractors tuned by the presence of intrinsic noise, 735

environmental fluctuations, and other disturbances [35–43]. Our approach is based on 736

two main pillars: namely, a framework for the generation of the ensemble of ER systems, 737

and a multiscale asymptotic analysis-based method for model reduction of the stochastic 738

ER-GRN model (see Section Multi-scale analysis and model reduction). The ensemble 739

generation method allows the definition of epi-phenotypes based on epigenetic-regulatory 740

modes compatible with a given state of the whole ER-GRN system [18]. We initially 741

chose an epi-phenotype in which the ER of differentiation gene(s) (DERS) is 742

open/active whereas the ER of pluripotency gene(s) (PERS) is closed/silent. We then 743

used Approximate Bayesian Computation (ABC) to generate an ensemble of DERS and 744

PERS compatible with the above-mentioned phenotype (see Section ER-systems 745
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ensemble generation and analysis, Fig. 3 and [18]). With such an ensemble generated, 746

we then proceeded to evaluate its hidden, intrinsic heterogeneity in terms of the physical 747

properties of the ER-GRN systems. This approach is closely related to the notion of 748

neutral networks formulated to analyse systems with genotype-phenotype maps [63–65]. 749

By making a number of assumptions regarding separation of characteristic scales, we 750

re-scaled both the variables and the parameters of the ER-GRN system, which allowed 751

us to discriminate the underlying separation of time scales and consequently construct 752

an asymptotic expansion, leading to a stochastic QSSA of the system. This 753

approximation reduces a rather complex stochastic system (Eqs. (1)-(3)) to a hybrid, 754

piece-wise deterministic Markov system (see Section Multi-scale analysis and model 755

reduction). Furthermore, our model reduction procedure gives rise to an efficient and 756

scalable, hybrid numerical method to simulate the ER-GRN system (see S1 Appendix). 757

Although the model reduction was formulated for a GRN with an arbitrary number of 758

mutually inhibiting genes, such a procedure is applicable to broader situations. 759

When analysing the behaviour of the mean-field limit of the GRN, it became 760

apparent that, even in the simplest case considered involving a gene regulatory circuit of 761

only two genes, the system exhibited a complex space that included several multi-stable 762

phases. We observed a regime of tri-stability where the expected stem-lock (pluripotent) 763

and differentiated steady-states coexist with a third state, the indecision state, in which 764

the expression level of both genes is very low. From a developmental perspective, the 765

latter state could serve the purpose of priming cells for differentiation, as the expression 766

level of the pluripotency gene has decreased in a manner that could release repression 767

upon the differentiation gene. Of note, the transitions between the different phases can 768

be triggered by changes directly related to epigenetic regulation (i.e., cofactors of 769

chromatin-modifying enzymes), which thereby act as bona fide molecular bridges 770

connecting epigenetic and phenotypic plasticity by translating changes in ER states into 771

variations of GRN states. 772

Having analysed the phase diagram of the GRN system and established its 773

connection with ER (see Section The GRN model exhibits a complex phase space, 774

including an undecided regulatory state), we have assessed the role of epigenetic 775

heterogeneity in generating stem-lock pluripotent states. Such states can be viewed as 776

examples of the so-called overly restricted epigenetic states, which present accentuated 777

epigenetic barriers that block cell state transitions and are biologically unable to 778

disengage self-renewal pathways [23]. The opposite situation of so-called overly 779

permissive epigenetic states is accompanied by lowered epigenetic barriers that allow the 780

promiscuous sampling of alternative cell states [23]. Yamanaka originally appreciated 781

the link between epigenetic heterogeneity and plasticity when aiming to explain the 782

extremely low efficiency of somatic cell reprogramming at the population level [66]. We 783

now know that an epigenetic predisposition to reprogramming fates exists in somatic 784

cells and, therefore, the potential to acquire stem cell-like traits might in part reflect a 785

pre-existing heterogeneity in cell states [26]. Furthermore, by perturbing the epigenetic 786

state of somatic populations via inhibition of some epigenetic enzymes (e.g., the histone 787

methyltransferase Ezh2, which catalyses repressive H3K27 methylation [67]), such 788

heterogeneity can be harnessed to fine-tune the cellular response to 789

reprogramming-to-pluripotency factors. Indeed, our findings support a scenario in 790

which a sub-ensemble of ER systems with higher reprogramming potential pre-exists 791

within the ensemble of ER systems compatible with a terminally differentiated cell state, 792

and that such a sub-ensemble could be harnessed by targeting chromatin-modifying 793

enzymes such as HDMs and HDACs. 794

A careful evaluation of our ensemble of ER systems (i.e., combinations of DERSs 795

and PERSs) concerning stem-locked systems associated with repressive ER states (see 796

Sections Co-factor heterogeneity gives rise to both pluripotency-locked and 797
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differentiation-primed states, Analysis of ensemble heterogeneity, and Ensemble-based 798

strategies for unlocking resilient pluripotency) has concluded that DERS heterogeneity 799

had a stronger influence on such pluripotency-locked systems when compared with that 800

of PERSs. Accordingly, we found that the ensemble of DERSs can be divided into three 801

different clusters, with each one exhibiting distinct properties regarding stem locking. 802

The so-called red cluster appeared to generate differentiation-permissive ER systems 803

irrespective of their PERSs counterparts. By contrast, the so-called blue and green 804

clusters contained DERSs yielding pluripotency-locked ER systems irrespective of their 805

PERSs companions. In light of these findings, we conducted a detailed comparative 806

analysis to uncover the underlying, statistically significant differences between DERSs 807

within the differentiation-permissive sub-ensemble and those associated with the 808

differentiation-repressive epigenetic states (see Section Co-factor heterogeneity gives rise 809

to both pluripotency-locked and differentiation-primed states). This approach allowed us 810

to detect which kinetic ER parameters were key to determine whether a DERS within a 811

given system produces either permissive or repressive ER differentiation systems (see 812

Section Analysis of ensemble heterogeneity). Remarkably, the elucidation of the identity 813

of such critical regulators (see Fig. 11) would allow the formulation of strategies aimed 814

to unlock differentiation-repressive epigenetic states by solely changing the values of 815

such parameters (i.e., epigenetic cofactors). The feasibility of such strategies was verified 816

by direct simulation of the ER-GRN system using our hybrid simulation method. 817

Our mathematical deconstruction of epigenetic plasticity suggests, for the first time, 818

that epigenetic heterogeneity may underlie the predisposition of cell populations to 819

pathological reprogramming processes that cause a permanent, locked stem-like state 820

disabled for reparative differentiation and prone to malignant transformation. Just as 821

the potential of single somatic cells to generate pluripotent lineages reflects a 822

pre-existing epigenetic heterogeneity permissive for the enhancement of reprogramming 823

fates [13,18,26], we show that ER heterogeneity could generate a subpopulation in 824

which robustness of the pluripotent phenotype is inherently boosted. Moreover, the 825

uncovering of the epigenetic mechanisms underpinning such stem-locked states might 826

help in the formulation of strategies capable, for instance, of unlocking the chronic 827

epigenetic plasticity of senescence-damaged tissues while stimulating differentiation of 828

such stem cell-like states to successfully achieve tissue rejuvenation. As we enter a new 829

era of therapeutic approaches to target ageing per se (e.g., senolytic agents), our current 830

mathematical modelling and computation simulation might pave the way to incorporate 831

new systemic strategies based on the local availability of epigenetic cofactors capable of 832

fine-tuning the senescence-inflammatory regulation of reparative reprogramming in 833

ageing and cancer. 834

Supporting information 835

S1 File. Supplemental material. 836

S1 Appendix. Numerical method. In Section Multi-scale analysis and model 837

reduction, we have exploited separation of time scales to formulate a QSSA whereby 838

both the number of bound sites within the promoter of the genes and the number of 839

enzymes and complexes molecules associated with the ER enzyme kinetics are sampled 840

from their QSSA PDFs. Furthermore, since S � 1, we have taken a large-S limit which 841

allows us to write the dynamics of Xi, i.e. the number of protein transcripts of gene i, 842

in terms of an ODE perturbed by two random forcings: one associated with the random 843

(fast) binding/unbinding dynamics and another one produced by the random ER 844

dynamics. However, as long as we assume that ε2 = O(1) and Y = E � S, further 845

simplification is not possible and the evolution of the slow ER variables (i.e. number of 846
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positive and negative marks, and unmarked sites) need to be solved by numerical 847

simulation of their stochastic dynamics. In spite of this, Eqs. (11)-(14) and (17)-(18) 848

provide the reduced version of the original stochastic model which allows for a far more 849

efficient numerical implementation of a complex ER-GRN stochastic system. 850

The asymptotic reduction of the full stochastic model provides the basis for a hybrid 851

numerical method with enhanced performance with respect to the stochastic simulation 852

algorithm (as illustrated in Figure S.4 in the S1 File). The current hybrid method is 853

based on that formulated in [68]. The numerical method proceeds through iteration of a 854

basic algorithm composed of the following steps: 855

1. Set initial conditions for the slow variables of the GRN and ER components of the 856

system described by Eqs. (11)-(14). 857

2. Sample the fast variables from their QSSA PDFs conditioned to the current value 858

of the corresponding slow variables. Their sampled values are fed in the evolution 859

equations of the latter. 860

3. Consider the stochastic dynamics of the slow ER variables, Eqs. (7). These 861

stochastic equations must be solved by numerical simulation using Gillespie’s SSA. 862

We first set the corresponding time step, ∆τ , using the SSA. 863

4. Solve the ODEs for the slow variables of the GRN dynamics in the time interval 864

[τ, τ + ∆τ). 865

5. Complete the Gillespie step for the slow ER variables by choosing which 866

elementary reaction alters the ER regulatory state and update the slow ER 867

variables accordingly. 868

6. Repeat Steps 2 through to 5 until some stopping condition is satisfied. 869

If we are running the fixed time step version of the algorithm, Step 1 needs to be 870

done only once during the initialisation of the algorithm. 871

S1 Table. The variables and parameters involved in our model 872

formulation. 873

S2 Table. The transition rates associated with the stochastic dynamics of 874

the GRN submodel. 875

S3 Table. The transition rates associated with the stochastic dynamics of 876

the ER submodel. 877

S4 Table. Re-scaled GRN and ER parameters. 878
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Matemàtica. The authors have been partially funded by the CERCA Programme of the 883

Generalitat de Catalunya. E.C. is the recipient of a Sara Borrell post-doctoral contract 884

(CD15/00033, Ministerio de Sanidad y Consumo, Fondo de Investigación Sanitaria, 885

Spain). N.F-B. and T.A. acknowledge MINECO and AGAUR for funding under grants 886

October 18, 2018 24/34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/452433doi: bioRxiv preprint 

https://doi.org/10.1101/452433
http://creativecommons.org/licenses/by/4.0/


Table 2. Brief description of the variables and parameters involved in the symmetric model of gene regulatory network with
competitive binding inhibition. For simplicity, we will assume that O(E) = O(Y )

Variable Description
NG Number of genes
S Characteristic scale (average) of the number of proteins
E Characteristic scale (average) of the number of binding sites in the promoter regions
Y Characteristic scale (average) of the number of binding sites for epigenetic marks
Z Characteristic scale (average) of the number of epigenetic enzymes
ei Number of binding sites in the promoter region of gene i = 1, . . . , NG
eHDM Number of HDM molecules
eHDAC Number of HDAC molecules

R̂i Basal rate of induction of gene i = 1, . . . , NG
ki1 Rate of transcription of gene i = 1, . . . , NG
ki2 Degradation rate of the protein of type i = 1, . . . , NG
bij Binding rate of the homodimers of protein of type j onto the promoter region of gene i
uij Unbinding rate of the homodimers of protein of type j from the promoter region of gene i
cij Kinetic rate of the jth reaction corresponding to the ER system of gene i (see S3 Table)
Xi Number of transcription factor monomers of type i = 1, . . . , NG
Xij Number of sites of the promoter region of gene i bound to a dimer of proteins of type j
Yi1 Number of unmodified nucleosomes (U-nucleosome) associated with the ER system of gene i
Yi2 Number of methylated nucleosomes (M-nucleosome) associated with the ER system of gene i
Yi3 Number of acetylated nucleosomes (A-nucleosome) associated with the ER system of gene i
Yi4 Number of free HDM enzyme molecules associated with the ER system of gene i
Yi5 Number of methylated nucleosome-HDM enzyme complexes associated with the ER system of gene i
Yi6 Number of free HDAC enzyme molecules associated with the ER system of gene i
Yi7 Number of acetylated nucleosome-HDAC enzyme complexes associated with the ER system of gene i
xi = Xi

S Re-scaled number of transcription factor monomers of type i = 1, . . . , NG (slow GRN variables)

xij =
Xij

E Re-scaled number of dimers of type j bound to promoter of type i = 1, . . . , NG (fast GRN variables)

yij =
Yij

Y Re-scaled ER slow variables i = 1, . . . , NG and j = 1, 2, 3

yij =
Yij

Z Re-scaled ER fast variables i = 1, . . . , NG and j = 4, 5, 6, 7

Table 3. Transition rates associated with the stochastic dynamics of gene regulatory circuit. Note that the rate of binding of
homodimers to the promoter region of gene i is modulated by the level of acetylation of gene i, Yi3: if Yi3 is above the
threshold Y0, gene i is open, i.e. the promoter is accessible to homodimers and TFs. By contrast, if the gene’s acetylation
levels decay, gene i is silenced and the promoter is inaccessible to gene-transcription regulatory dimers.

Transition rate Event

Wi1(X) = R̂1 + ki1Xii Xi → Xi + 1, i = 1, . . . , NG
Wi2(X) = ki2Xi Xi → Xi − 1, i = 1, . . . , NG

Wi3(X) = bijH(Yi3 − Y0)
(
ei −

∑NG

k=1Xik

)
Xj(Xj − 1) Xj → Xj − 2, Xij → Xij + 1, i, j = 1, . . . , NG

Wi4(X) = uijXij Xj → Xj + 2, Xij → Xij − 1, i, j = 1, . . . , NG
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Table 4. This table shows the transition rates associated with the stochastic dynamics of the epigenetic regulatory system of
gene i. The random variables Yik are defined in S1 Table. The different modification reactions are assumed to be of two
types, recruited and unrecruited. Details regarding the assumptions between this distinction as well as a full description of
the formulation of the stochastic epigenetic regulation model are given in Section S.1, S1 File. We also refer the reader to
references [13,18,19].

Transition rate Reaction change vector Event
Vi1 = ci1Yi2Yi4 rEi1

= (0,−1, 0,−1,+1, 0, 0) Formation of M-nucleosome-HDM enzyme complex (unrecruited)
Vi2 = ci2Yi5 rEi2

= (0,+1, 0,+1,−1, 0, 0) M-nucleosome-HDM enzyme complex splits (unrecruited)
Vi3 = ci3Yi5 rEi3

= (+1, 0, 0,+1,−1, 0, 0) Demethylation and HDM enzyme release (unrecruited)
Vi4 = ci4Yi2Yi3Yi4 rEi4

= (0,−1, 0,−1,+1, 0, 0) Formation of M-nucleosome-HDM enzyme complex (recruited)
Vi5 = ci5Yi3Yi5 rEi5

= (0,+1, 0,+1,−1, 0, 0) M-nucleosome-HDM enzyme complex splits (recruited)
Vi6 = ci6Yi3Yi5 rEi6

= (+1, 0, 0,+1,−1, 0, 0) Demethylation and HDM enzyme release (recruited)
Vi7 = ci7Yi1 rEi7

= (−1,+1, 0, 0, 0, 0, 0) Methylation (unrecruited)
Vi8 = ci8Yi1Yi2 rEi8

= (−1,+1, 0, 0, 0, 0, 0) Methylation (recruited)
Vi9 = ci9Yi3Yi6 rEi9

= (0, 0,−1, 0, 0,−1,+1) Formation of A-nucleosome-HDAC enzyme complex (unrecruited)
Vi10 = ci10Yi7 rEi10

= (0, 0,+1, 0, 0,+1,−1) A-nucleosome-HDAC enzyme complex splits (unrecruited)
Vi11 = ci11Yi7 rEi11

= (+1, 0, 0, 0, 0,+1,−1) Deacetylation and HDAC enzyme release (unrecruited)
Vi12 = ci12Yi3Yi2Yi6 rEi12

= (0, 0,−1, 0, 0,−1,+1) Formation of A-nucleosome-HDAC enzyme complex (recruited)
Vi13 = ci13Yi7Yi2 rEi13

= (0, 0,+1, 0, 0,+1,−1) A-nucleosome-HDAC enzyme complex splits (recruited)
Vi14 = ci14Yi7Yi2 rEi14

= (+1, 0, 0, 0, 0,+1,−1) Deacetylation and HDAC enzyme release (recruited)
Vi15 = ci15Yi1 rEi15

= (−1, 0,+1, 0, 0, 0, 0) Acetylation (unrecruited)
Vi16 = ci16Yi1Yi3 rEi16

= (−1, 0,+1, 0, 0, 0, 0) Acetylation (recruited)
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Fig 7. Empirical CDFs for the whole ensemble of DERS parameter sets (magenta lines). This ensemble has been generated
according to the methodology explained in Section ER-systems ensemble generation and analysis (see also [18]). We also show
the partial empirical CDFs corresponding to each of the clusters from Fig. 5(a) (red, green, and blue lines). We analyse a
total of 90 DERS parameter sets. The red cluster includes 31 sets, the green cluster contains 13 sets, and the blue cluster has
46 sets. For reference, we also show the CDF for a uniform distribution (black line).
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Fig 8. Empirical CDFs for the DERS parameter sets within the blue cluster. This ensemble has been generated according to
the methodology explained in Section ER-systems ensemble generation and analysis (see also [18]). The DERSs within the
blue cluster have been divided into two subsets: those such that Q < T (SC-locked, blue lines) and those such that Q ≥ T
(non-SC-locked, orange lines), with T = 0.7. For comparison, we plot the CDFs of the whole DERS ensemble (magenta lines),
and, for guidance the CDF corresponding to a uniformly distributed random variable (black lines).
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(b)(a)

Fig 9. Plots showing the effect of the different reprogramming strategies of blue cluster DERSs, as evaluated in terms of the
statistics of the differentiation time (τD). (a) Two step reprogramming is illustrated by the green square (first step), which
finally becomes the red square (second step). One step reprogramming is depicted as the red diamond (see Section
Ensemble-based strategies for unlocking resilient pluripotency for details). (b) Comparison of τD for the original DERS and
the ones resulting from the reprogramming strategies. We consider a base-line scenario where the number of HMEs is exactly
equal to average, i.e. eHDM = eHDAC = Z. We then compare the simulation results obtained for different scenarios regarding
the different strategies to the base-line scenario. Parameter values: Z = 5 and Y = 15. Other parameter values given in Table
S.11, Section S.7 of the S1 File.

(c)(b)(a)

Fig 10. Plots showing the effect of the variation of HDM and HDAC on the statistics of the differentiation time (τD). We
consider a base-line scenario where the number of HMEs is exactly equal to average, i.e. eHDM = eHDAC = Z. We then
compare the simulation results obtained for different scenarios regarding the abundance of HDM and HDAC to the base-line
scenario, i.e. by changing the values of (eHDM , eHDAC). Parameter values: Z = 5 and Y = 15. Other parameter values given
in Tables S.7, S.8, S.9 and S.10, Section S.7 of the S1 File.
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Fig 11. Strategies to unlock pluripotent stem-like states in ageing and cancer. Epigenetic regulation heterogeneity of
differentiation genes (DERS), but not that of pluripotency genes (PERS), was predominantly in charge of the entry and exit
decisions of the pluripotent stem-like states (blue). The application of the hybrid numerical method validated the likelihood
of epigenetic heterogeneity-based strategies capable of unlocking and directing the transit from differentiation-refractory to
differentiation-primed (red) epistates via kinetics changes in epigenetic factors. (Note: The epigenetic parameters regulating
the entry into robust epi-states throughout the entire ER-GRN system revealed a regime of tri-stability in which pluripotent
stem-like (blue) and differentiated (red) steady-states coexisted with a third indecisive (green) state). (R: Recruited; U:
Unrecruited).
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