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Abstract: Airway mucin secretion is necessary for ciliary clearance of inhaled particles 

and pathogens, but can be detrimental in pathologies such as asthma and cystic 

fibrosis. Exocytosis in mammals requires a Munc18 scaffolding protein, and airway 

secretory cells express all three Munc18 isoforms. Using conditional airway epithelial 

deletant mice, we found that Munc18a has the major role in baseline mucin secretion, 

Munc18b has the major role in stimulated mucin secretion, and Munc18c does not 

function in mucin secretion. In an allergic asthma model, Munc18b deletion reduced 

airway mucus occlusion and airflow resistance. In a cystic fibrosis model, Munc18b 

deletion reduced airway mucus occlusion and emphysema. Munc18b deficiency in the 

airway epithelium did not result in any abnormalities of lung structure, particle 

clearance, inflammation, or bacterial infection. Our results show that regulated secretion 

in a polarized epithelial cell may involve more than one exocytic machine at the apical 

plasma membrane, and that the protective roles of mucin secretion can be preserved 

while therapeutically targeting its pathologic roles. 
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Introduction 

In mammalian conducting airways, mucus forms a critical barrier that protects the lungs 

from inhaled particles, pathogens and toxicants (1). These foreign substances are 

trapped by mucus, which is swept out of the lungs by ciliary beating into the pharynx 

where it is swallowed. Secreted polymeric mucins, the principal macromolecular 

components of mucus, are large, highly glycosylated proteins that polymerize into linear 

chains and networks (2, 3). Mucins are packaged dehydrated in secretory granules, and 

after exocytosis they interact with several hundred-fold their mass of water to expand 

and generate viscoelastic, gel-like mucus. 

 

Two polymeric secreted mucins are expressed in the airway epithelium—Muc5b and 

Muc5ac. Mouse Muc5b is expressed constitutively in superficial epithelial cells and 

submucosal glands, and is primarily responsible for mucociliary clearance. Deletion of 

the gene encoding Muc5b in mice results in death from bacterial infection and airway 

obstruction (4). Heterozygous gene deletion results in ~50% reduction in polystyrene 

bead clearance (5), showing that Muc5b is limiting for mucociliary clearance. 

Conversely, an overexpressing allele of human MUC5B is highly prevalent in 

Caucasians and shows evidence of positive selection, probably for its value in 

protection against lung infection even though it is a risk factor for pulmonary fibrosis late 

in life (6, 7). Muc5ac is expressed only at low levels in all airways of naïve (uninflamed) 

mice and in distal airways of humans (1). However, Muc5ac expression rises ~40-fold 

during allergic inflammation (8, 9). Induced Muc5ac expression contributes importantly 

to helminth defense in the gut (10), and may help trap helminths migrating through the 
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lungs (11). In allergic asthma, overexpressed and rapidly secreted Muc5ac causes 

airway mucus occlusion and airflow obstruction (12). 

 

Mucins are secreted at a low baseline rate and a high agonist-stimulated rate (13, 14). 

Both rates are regulated by the second messengers diacylglycerol and calcium acting 

on the exocytic sensor Munc13-2 (15). Important extracellular agonists promoting 

baseline secretion are ATP and its metabolite adenosine, released predominantly from 

ciliated cells sensing shear stress from airflow during ventilation (14, 16, 17). These 

agonists act on heptahelical receptors coupled by G-proteins of the Gq subtype to PLC-

β that generates the second messengers diacylglycerol and inositol triphosphate, with 

the latter inducing the release of calcium from intracellular stores (13). Higher levels of 

the same agonists can stimulate high rates of mucin secretion (18), as can the neural 

and inflammatory mediators acetylcholine and histamine acting on the same pathway 

downstream of their cognate receptors (12). At high levels of intracellular calcium, the 

fast, low-affinity exocytic calcium sensor Synaptotagmin-2 promotes mucin secretion 

(19). Baseline secretion is thought to be primarily responsible for clearance of inhaled 

particles and pathogens, while stimulated secretion can induce airway obstruction 

protectively to trap helminths or pathologically in asthma (11, 12). 

 

Defects in mucin secretion in SNAP23 and VAMP8 mutant mice implicate the highly 

conserved SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein 

receptors) machinery in mucin exocytosis (20, 21). The SNARE complex is a four-helix 

bundle comprised of three helices attached to the target membrane (t-SNAREs) and 
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one attached to the vesicle membrane (v-SNARE). Specific binding of these helices 

confers accuracy and directionality on the fusion reaction, and full coiling provides the 

energy to fuse the lipid membranes. SNARE-dependent vesicle traffic universally 

involves SM (Sec1/Munc18) proteins that promote SNARE complex assembly and help 

prevent off-target interactions (22). Yeast contain four SM proteins, among which the 

exocytic protein Sec1 has evolved into three exocytic Munc18 isoforms in metazoans. 

We previously found, using heterozygous hypomorphic mutant mice (23), that Munc18b 

has a role in stimulated mucin secretion, but were unable to identify a role in baseline 

secretion. Here, by performing a comprehensive analysis of airway epithelial deletants 

of all three Munc18 isoforms in mice, we sought to identify the Munc18 protein(s) 

mediating baseline secretion, to fully characterize the role of Munc18b in stimulated 

mucin secretion, and to test the hypothesis that selective impairment of stimulated 

secretion can protect against airway mucus obstruction in pathophysiologic models.  
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Results 

Generation of airway epithelial Munc18 deletant mice. We had previously found that 

homozygous mutant Munc18b mice are not viable postnatally (23), and others found 

that homozygous Munc18a (24) and Munc18c (25) knockout mice are similarly not 

viable. Therefore we assembled a panel of conditional mutant Munc18 mice by 

generating a conditional allele of Munc18b that is described here (Figure 1, A and S1), 

generating a conditional allele of Munc18c that is described elsewhere (26), and 

obtaining from others a conditional allele of Munc18a (27). Crossing conditional 

Munc18b mice with Zp3-Cre transgenic mice to generate whole animal knockout mice 

did not yield any Munc18b-/- pups, confirming that Munc18b is an essential gene in 

mice. Munc18b-/- embryos grown in vitro developed to E3.5 at a Mendelian ratio, but in 

vivo, Munc18b-/- embryos at E10.5 were present at less than a Mendelian ratio, and at 

E11.5 there were none (Figure 1, B).  

 

Deletion of Munc18b in airway epithelial cells by crossing Munc18bF/F mice with 

CCSPiCre mice (28) yielded Munc18bCCSP-Δ/Δ (hereafter Munc18bΔ/Δ) mice with normal 

litter sizes and weight at 3 weeks compared to Munc18bF/F mice (Figure 1, C and D). 

The efficiency of recombination of CCSPiCre mice at the ROSA26 locus is >99% in both 

airway secretory and ciliated cells (Figure S2, A and B), and occurs occasionally in 

alveolar type 2 secretory epithelial cells as well (Figure S2, C). Histopathologically, the 

lungs of all floxed and single Munc18 isoform airway deletant mice were unremarkable 

by H&E staining, as were the lungs of Munc18a/b and Munc18b/c floxed mice, and 

Munc18a/b double deletant mice (Figure S3, A and B). However, the airways of 
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Munc18b/c double deletant mice showed a flattened epithelium with an almost complete 

absence of airway secretory cells by immunohistochemical staining for club cell 

secretory protein (CCSP) (Figure S3, C), and the lung alveolar regions showed 

emphysema (Figure S3, D). To determine whether these abnormalities reflected 

dependency on Munc18b and Munc18c only during development, we used CCSPCreER 

mice to induce recombination during adulthood (29). Airway secretory cell viability was 

still impaired because CCSP expression was lost two weeks after recombination (Figure 

S3, E), though emphysema was not present (Figure S3, F). 

 

To determine the normal expression of Munc18 isoforms in the airway epithelium and 

confirm the efficiency of gene deletion, we performed quantitative in situ hybridization 

with riboprobes. Munc18a and Munc18b transcripts were expressed in secretory cells at 

levels several-fold higher than in ciliated cells (Figure 2, A and B), whereas Munc18c 

transcripts were expressed in both cell types at similar levels (Figure 2, C). All three 

Munc18 conditional deletant mice showed no significant expression of cognate 

transcripts (Figure 2), and there was no significant difference in transcript expression 

between any of the floxed mice and WT (not shown).        

 

Munc18b predominates in stimulated mucin secretion. Our previous study using 

heterozygous mutant mice indicated that Munc18b has a major role in stimulated mucin 

secretion (23). To comprehensively analyze Munc18 function in stimulated secretion, 

mucin production was first increased (mucous metaplasia) in all mutant mice using 

ovalbumin sensitization and challenge to induce allergic inflammation, and then mice 
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were stimulated with the secretagogue ATP to induce secretion acutely (Figure 3, A). 

None of the Munc18 floxed mice showed a phenotype in mucous metaplasia or in mucin 

secretion in this or any subsequent experiments. All three Munc18 single conditional 

deletants had mucin content similar to WT mice after the ovalbumin challenge, but the 

Munc18a/b double deletant had significantly higher mucin content (Figure 3, A and B), 

suggesting a defect in baseline secretion that results in mucin accumulation (see 

below). After ATP exposure, the predominant role of Munc18b was confirmed because 

the conditional deletant secreted only ~26% of intracellular mucin (mean value) 

compared to Munc18b floxed mice that secreted ~60% or WT mice that secreted ~52% 

(Figure 3, C). Munc18a and Munc18c deletants secreted as efficiently as their cognate 

floxed mice or WT mice, while the Munc18a/b double deletant secreted ~31%, 

comparable to the Munc18b single deletant (Figure 3, C). 

 

Munc18a predominates in baseline mucin secretion. No defect in baseline mucin 

secretion had been observed in Munc18b heterozygous mutant mice (23). This could be 

due either to the lack of a role of Munc18b or to the lack of an obvious phenotype with 

just a 50% reduction in protein expression. To further study baseline mucin secretion, all 

Munc18 airway deletants were examined.  

 

In naïve (uninflamed) WT mice, the rate of mucin secretion closely matches the rate of 

mucin production such that intracellular mucin does not accumulate and is not visible by 

PAFS histochemical staining. Hence, a defect in baseline mucin secretion can be 

detected as spontaneous mucin accumulation (15, 30). Munc18a deletant mice showed 
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significant spontaneous mucin accumulation, indicating a role of Munc18a in baseline 

secretion (Figure 4, A and B). Munc18b and Munc18c deletants showed no mucin 

accumulation. However, Munc18a/b double deletant mice showed a higher level of 

mucin accumulation than Munc18a single deletant mice, indicating an additive effect of 

Munc18a and Munc18b in baseline mucin secretion. Spontaneous mucin accumulation 

was further analyzed by quantitative immunoblotting for Muc5b, which is expressed in 

the airways of naïve mice (4, 8, 15, 31). This confirmed significant mucin accumulation 

in Munc18a deletant mice, a trend towards a small increase in Munc18b deletant mice 

(P=0.09), and an additive effect in Munc18a/b double deletant mice (Figure 4, C; Figure 

S4). Muc5ac is not expressed significantly in the airways of naïve mice (4, 8, 31), and 

was not detected in immunoblots of the lungs of any naïve Munc18 deletant mice (not 

shown). To rule out the possibility that spontaneous mucin accumulation was due to an 

increase in mucin expression resulting from an inflammatory response in any of the 

deletants, mRNA expression was analyzed by qRT-PCR in Munc18a and Munc18 

single deletant mice and Munc18a/b double deletants. There was no significant 

increase in expression of Muc5ac or Muc5b in any of the conditional deletants (Figure 

S6, A).   

 

To examine granule morphology by electron microscopy and stereological analysis, 

mice were lightly stimulated with IL-13 so that mucin granules were readily visible in WT 

mice (Figure S5, A). Munc18a/b double deletant mice showed an increase in surface-to-

volume density of granules (Sv, Figure S5, B), indicating smaller granules with a lower 

ratio of surface area to volume. However, there was no change in volume density of 
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granules per volume density of cells (Vv, Figure S5, C). Together, these findings 

indicate that the cells from Munc18a/b double deletant mice had an increased number 

of smaller granules. In addition, mucin granules in Munc18a/b double deletant mice 

were also found to be more electron-dense (Figure S5, D). 

 

Deletion of Munc18a or Munc18b does not impair mucociliary clearance. The absence 

of an increase in mucin transcripts in the Munc18 airway deletants suggested that 

mucociliary clearance function was preserved, preventing lung infection and 

inflammation that might induce mucin gene upregulation (Figure S6, A). To further test 

these inferences, several additional studies were performed. First, lung lavage fluid was 

obtained for measurement of leukocytes, which is a sensitive indicator of inflammatory 

status. There was no difference in total cell number or fractional representation of any 

leukocyte subset in either of the Munc18a or Munc18b single deletant mice compared to 

WT or floxed littermate mice (Figure S6, B). However, the double deletant mice showed 

a small but significant increase in neutrophil number. Next, polystyrene beads were 

instilled into the lungs to measure their clearance by mucociliary transport. There was 

no difference in the fraction of beads cleared by Munc18a or Munc18b deletant mice 

compared to WT (Figure S6, C). Last, the lung microbiome was interrogated by qPCR 

and sequencing of 16S ribosomal RNA. There was no significant difference in the 

quantity (Figure S6, D) or composition (Figure S6, E) of bacteria present in the lungs of 

Munc18 single or double deletant mice compared to WT or floxed littermate mice.  
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Deletion of Munc18b protects mice against airway obstruction in a model of allergic 

asthma. Increased mucin production followed by stimulated secretion causes airway 

lumenal mucus occlusion and airflow obstruction in asthma (1, 12). We hypothesized 

that deletion of Munc18b in airway secretory cells would protect against this 

pathophysiology. To test this, we first performed a pilot study in a WT mouse with IL-13 

instilled intrapharyngeally to induce mucous metaplasia and then exposed to a 

methacholine aerosol to stimulate mucin secretion. We measured the occlusion of 

airways throughout the lungs at 500 µm intervals as a fraction of cross-sectional airway 

area, and found that the right caudal lobe had the highest fractional occlusion (Figure 

S7, A). We next compared fractional occlusion in the right caudal lobe between 

Munc18b floxed and deletant mice and found a significant reduction (~50%, mean 

values) in the deletant mice (Figure S7, B). We then performed a definitive study 

comparing the sum of the area of lumenal mucus in the right caudal lobe at 1 mm 

intervals together with measurement of lung mechanics (Figure 5). Munc18b deletant 

mice showed a ~62% reduction (mean values) in lumenal mucus area compared to 

Munc18b floxed mice, similar to the ~37% reduction in Muc5ac knockout mice, whereas 

Munc18a deletant mice showed no reduction (Figure 5, B).  

 

Exposure to methacholine induces resistance to airflow due to a combination of smooth 

muscle contraction (bronchoconstriction) and mucus obstruction (12). An augmented 

response to methacholine (airway hyperresponsiveness) is a sensitive indicator of 

asthmatic airway dysfunction. WT mice with mucous metaplasia induced by IL-13 and 

exposed to increasing concentrations of aerosolized methacholine showed increased 
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respiratory system resistance compared to naïve WT mice (Figure 5, C and D). 

Munc18aF/F, Munc18bF/F, and Munc18aΔ/Δ mice with mucous metaplasia were similar to 

WT mice, but Munc18bΔ/Δ and Muc5ac-/- mice with mucous metaplasia were highly 

protected from airway hyperresponsiveness to methacholine (Figure 5, C and D). 

 

Deletion of Munc18b protects mice against airway mucus occlusion and parenchymal 

emphysema in a model of cystic fibrosis. In cystic fibrosis, an inherited defect in 

transepithelial anion and water transport causes the formation of mucus that is 

excessively concentrated, viscoelastic and adhesive (32-34). Mucus accumulates 

because its excessive viscoelasticity impedes clearance by ciliary beating and its 

adhesivity results in the formation of airway mucus plaques. These in turn, lead to 

infection and inflammation that cause progressive lung disease. In mice, deletion of the 

anion transporter, CFTR, does not result in lung disease because of the presence of 

alternative mechanisms of anion transport, but transgenic overexpression of the beta 

subunit of the epithelial Na+ channel (ENaC) results in concentrated mucus leading to 

lung disease that resembles human cystic fibrosis (35).  

 

To test whether stimulated mucin secretion contributes to pathophysiology in this model, 

we crossed Munc18b deletant mice with βENaC-Tg mice (Figure 6, A). Mucus occlusion 

in βENaC-Tg mice was reduced by ~66% (mean values) by deletion of Munc18b in the 

airway (Figure 6, B). Emphysema measured as equivalent mean diameter (D2) was 

increased ~86% in βENaC-Tg-Munc18bF/F mice compared to Munc18F/F mice as 

previously described for the βENaC-Tg (35) (Figure 6, C). This increase was attenuated 
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by ~22% by deletion of Munc18b in the airway (Figure 6, C). However, lung neutrophilic 

and eosinophilic inflammation present in βENaC-Tg-Munc18bF/F was not reduced by 

Munc18b deletion (Figure 6, D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/451914doi: bioRxiv preprint 

https://doi.org/10.1101/451914
http://creativecommons.org/licenses/by-nd/4.0/


 15 

Discussion 

Here, we have performed a comprehensive analysis of the function of Munc18 proteins 

in a polarized epithelial cell specialized for apically directed regulated secretion. Our 

central finding is that baseline and stimulated secretion are predominantly mediated by 

different Munc18 proteins, with Munc18a having the major role in baseline secretion, 

Munc18b having the major role in stimulated secretion, and Munc18c having no 

apparent role. This finding has implications for understanding the cell biology of 

regulated secretion in polarized cells and for manipulating the exocytic machinery of the 

airway epithelium therapeutically to alleviate mucus dysfunction. 

 

Regarding cell biology, Munc18b has been described previously by us and others as 

mediating apical secretion in polarized epithelial cells (23, 36, 37). Munc18a has been 

studied primarily for its role in synaptic vesicle release from neurons (24, 38, 39), but 

other regulated exocytic systems where Munc18a has been reported to function include 

vascular endothelial cells (40) and acrosomal exocytosis in spermatozoa (41). In airway 

epithelium, Munc18a was reported to modulate the conductance of the apical anion 

channel CFTR (42), but a role in vesicular transport was not described. Munc18a and 

Munc18b have been reported to cooperate in regulated exocytosis of insulin-containing 

granules of pancreatic islet cells (43, 44) and cytolytic granules of natural killer cells (45) 

in response to different signaling pathways. Prior reports that Munc18a and Munc18b 

both participate in mast cell degranulation appear to have been in error, with Munc18b 

having an exclusive role as we recently described (26). Thus, the current work is the 
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first report, of which we are aware, of two different Munc18 proteins mediating different 

rates of secretion in response to the same signaling pathway. 

 

Munc18c has been proposed to mediate basolateral secretion in polarized epithelial 

cells (46, 47), consistent with the lack of effect of Munc18c deletion in apical regulated 

secretion in our system (Figures 3 and 4). A role for Munc18c in stimulated exocytosis 

has been described in non-polarized cells, such as translocation of glucose transporters 

in adipocytes (48), but not in in polarized epithelia. The cellular lethality induced by 

simultaneous deletion of both Munc18b and Munc18c in airway epithelial cells (Figure 

S3) suggests that the predominant function of Munc18c is in constitutive secretion 

because that is an essential cellular function. We hypothesize that Munc18c function is 

rescued in the single airway deletant mouse by ectopic function of Munc18b. This 

hypothesis is consistent with the cellular viability of airway epithelial cells in double 

Munc18a/b mice (Figures 3 and 4) because regulated secretion is not a cell-

autonomous essential function. Whether Munc18c mediates constitutive secretion at 

both the apical and basolateral surfaces in airway epithelial cells or functions exclusively 

at the basolateral surface is not known. 

 

Since Munc18 proteins partner with specific Syntaxins t-SNAREs (23), our findings here 

suggest that the exocytic SM-SNARE machinery is mostly different between baseline 

and stimulated mucin secretion. This inference is supported by the role of the v-SNARE 

VAMP8 predominantly in stimulated secretion (21), even though SNAP23 functions in 

both processes (20). What might be the adaptive value of utilizing different exocytic 
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machines for baseline and stimulated secretion rather than utilizing a single machine 

capable of running at different rates? In view of the differing roles of baseline and 

stimulated mucin secretion in mucociliary clearance and airway occlusion (12), and the 

differing roles of Muc5ac and Muc5b in helminthic and microbial defense (4, 10), several 

plausible possibilities exist. These include different exocytic machines acting on small 

immature granules in baseline secretion to minimize the chance of airway occlusion, 

and on large mature granules in stimulated secretion to maximize the chance of 

occlusion. This might occur by exchanging VAMP proteins during granule maturation, 

by analogy with Rab conversion during progression from early to late endosomes (49). 

Another possibility is that Muc5ac and Muc5b are packaged separately during exit from 

the trans-Golgi network (50), with different exocytic machines acting on secretory 

granules containing either secreted mucin. This last possibility is supported by the 

apparent segregation of MUC5AC and MUC5B extracellularly and intracellularly in 

human asthmatic airways (51). Further studies colocalizing vesicular components of the 

exocytic machinery such as VAMPs and Synaptotagmins with different secreted mucins 

will be required to resolve these questions. The fact that secretory granules visualized 

by EM in Munc18a/b double deletant mice are smaller and denser than granules in WT 

mice (Figure S5) suggests that these SM proteins also mediate homotypic fusion 

between granules during post-Golgi maturation, and that mucins decondense to some 

degree during granule maturation. 

 

Importantly, the existence of two different exocytic machines in airway secretory cells 

affords the possibility to molecularly target the pathologic consequences of stimulated 
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mucin secretion without compromising the critical protective clearance function of 

baseline mucin secretion. While the fundamental pathophysiologic processes in allergic 

asthma and cystic fibrosis are mucin hyperproduction and impaired anion transport, 

respectively, stimulated mucin secretion contributes to airway occlusion in both 

diseases as indicated by our prior (12) and current studies in mouse models of allergic 

asthma (Figure 5) and cystic fibrosis (Figure 6). To fully appreciate the contribution of 

stimulated secretion to airway mucus occlusion, it is important to recognize several 

features of mucin biology. First, the production of mucins, particularly of Muc5ac, can be 

greatly increased by inflammatory signaling, resulting in the filling of airway epithelial 

secretory cells with large amounts of mucin contained within secretory granules (Figure 

3). If secretion is not stimulated, the stored mucins are slowly released and cause only 

minimal mucus occlusion (12). Second, stimulated secretion can result in the explosive 

exocytic release of mucin granule contents within seconds (18), and the massive 

extracellular swelling of the released mucins by absorbing several hundred-fold their 

mass of water occurs in less than a second (3, 52). Thus, the area of the airway cross-

section occupied by intracellular mucin is only a small fraction of that occupied by fully 

hydrated extracellular mucus, and the extracellular expansion of mucin volume within 

such a short time frame are key determinants of pathophysiology. In large proximal 

airways, rapid release of stored mucins from surface epithelial cells is unlikely to 

completely occlude the airway lumen, and may have adaptive value in promoting the 

trapping of particles and pathogens for clearance, as described for submucosal glands 

(53, 54). However, in small distal airways, rapid massive mucin release can overwhelm 

clearance mechanisms, resulting in airway lumenal occlusion (12) (Figures 5 and 6). 
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The adaptive value of small airway occlusion in the stimulated secretion of metaplastic 

epithelial cells may be to trap helminths migrating through lungs (11), a hypothesis 

being tested by us and others. In allergic asthma, IL-13 plays a central role in increased 

mucin production, as it does in helminth infection, and rapid secretion can be induced 

by acute inflammatory mediators such as acetylcholine and histamine (11, 12). In cystic 

fibrosis, increased mucin production is more modest (32), and the role of secretagogues 

in small distal airways is less well studied. However, the stimulation of secretion from 

submucosal glands is critical to mucus dysfunction in a pig model of cystic fibrosis (32), 

and the stimulation of mucin secretion from surface epithelial cell by acetylcholine from 

neurons or ATP from leukocytes or epithelial cells could contribute to mucus occlusion 

in small airways.       

  

Mucus occlusion was significantly reduced by deletion of Munc18b in airway epithelial 

cells in both of the mouse models of airway disease we tested. In the allergic asthma 

model, reduction of mucus occlusion was shown to result in improvement of lung 

mechanics (Figure 5, C and D). In the cystic fibrosis model, while the emphysema that 

occurs secondary to mucus occlusion was also mitigated (Figure 6, A and C), 

neutrophilic and eosinophilic inflammation was not reduced (Figure 6, D), similar to what 

occurred upon treatment with aerosolized hypertonic saline solution in that model (55). 

Deletion of Munc18b in airway epithelium did not result in any abnormalities of lung 

structure, particle clearance, inflammation, or bacterial infection (Figure S6). Therefore, 

targeting the stimulated exocytic machine with small molecules or RNA silencing 

technologies in human subjects might be free of intrinsic adverse consequences. 
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Whether the trapping of helminths during migration through the lungs might be impaired 

by Munc18b deletion is an area of our active investigation, but helminth infestation is not 

a common problem in developed countries.   
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Methods 

Mice. C57BL/6J (catalog no. 000664), C57BL/6-Tg(Zp3-cre)93Knw/J (catalog no. 

003651), Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (catalog no. 007576) and 

B6N.129S6(Cg)-Scgb1a1tm1(cre/ERT)Blh//J (catalog no. 016225) mice were purchased from 

The Jackson Laboratory. We obtained Munc18a conditional deletant mice from Dr. 

Matthijs Verhage (U. Amsterdam) (27), Munc18c conditional deletant mice from Dr. 

Roberto Adachi (U. Texas MD Anderson Cancer Center) (26) and CCSPiCre 

(Scgb1a1tm1(icre)Fjd) mice from Dr. Francisco DeMayo (NIEHS) (28). -ENaC-C57BL/6-Tg 

mice (35) were crossed to Munc18b conditional deletant mice at the University of North 

Carolina at Chapel Hill. 

 

In the Munc18a conditional deletant, exon 2 of the gene is flanked by two loxP sites and 

Cre recombination induces a frameshift resulting in a nonsense codon and absence of 

protein (27). In the Munc18c conditional deletant, exon 1 is flanked by two loxP sites 

and Cre recombination removes the start codon (26). To generate Munc18b conditional 

deletant mice, we built a targeting vector to insert two loxP sites to flank exon 1 (Figure 

S1) by homologous recombination. Upstream of exon 1, the zeocin and puromycin 

resistance genes flanked by two loxP sites (M2) were inserted, and downstream of exon 

1, the phosphoglucokinase promoter-neomycin resistance gene (PGK-neo) resistance 

gene flanked by two Flp recognition target (FRT) sites was inserted. The herpes simplex 

virus thymidine kinase gene was introduced outside the homology arms for a negative 

selection marker. This vector was electroporated into 129S6:B6 embryonic stem cells; 

after 24 h cells were selected using (1-(2-deoxy-2-fluoro-1-D-arabinofuranosyl)-5-
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iodouracil), puromycin and G418. Of 84 surviving clones, one correctly targeted clone 

was chosen for subsequent manipulation. The puromycin resistance gene was removed 

in vitro by electroporation of a circular CMV-Cre plasmid into the positive clone. Cells 

were plated at low density (2.5 x 105 to 2.0 x 104 cells/ml), and individual clones were 

transferred to 96-well plates. Duplicate plates were prepared, and one plate selected on 

puromycin. Of the 19 subclones that did not survive puromycin selection, one clone was 

shown to have correct targeting to remove the puromycin resistance gene by PCR. This 

clone was used for injection into B6(Cg)-Tyrc-2J/J blastocysts. The 8 chimeric males 

generated were crossed to B6(Cg)-Tyrc-Gt(ROSA)26Sortm1(FLP1)Dym/RainJ (The Jackson 

Laboratory, catalog no. 009086) to remove PGK-Neo and establish our floxed line. We 

then crossed the Munc18b floxed mouse with C57BL/6-Tg(Zp3-cre)93Knw/J (catalog 

no. 003651) to generate full animal KOs (Figure 1, B) or with CCSPiCre mice for specific 

deletion in the airway epithelium. All our lines were crossed with C57BL/6J mice for 10 

generations.  

 

Genotypes of Munc18b mutant mice were determined by PCR of genomic DNA with 

primers #7 (AAGGCGGTGGTAGGGAAAGT) and #64 

(CAGTTGGTCAAATTCAAGTGCTC) to differentiate between the conditional (F; 1075 

bp) and WT (+; 931 bp) alleles. Munc18a and Munc18c were genotyped as previously 

described (26). The presence of Zp3-cre was determined by PCR with primers ZpCre 5’ 

(GCGGTCTGGCAGTAAAAACTTC); ZpCre 3’ (GTGAAACAGCATTGCTGTCACTT); 

IntControl 5’ (CTAGGCCACAGAATTGAATTGAAAGATCT); IntControl 3’ 

(GTAGGTGGAAATTCTAGCATCATCC), that give a 324 bp internal control band and a 
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100 bp band from the transgene. The presence of conditional CCSPiCre was determined 

by PCR with primers CC10-iCreR (GAGATGTCCTTCACTCTGATTC); CC10-iCreF 

(TCTGATGAAGTCAGGAAGAACC); FJD13 (TGCCAGAGATTGTTCTAGAAAACAA) 

and FJD14 (GGCACAATGATGTTAATGACGTAAA), that give a 1 kbp internal control 

band and a 0.5 kbp band from the transgene. Genotyping for the -ENaC-Tg mice was 

performed as previously described (35). 

 

For CreER induction, five doses of 6 mg of tamoxifen (T5648, MilliporeSigma) dissolved 

in corn oil (C8267, MilliporeSigma) were injected into adult mice every other day 

intraperitoneally (i.p.). Mice were harvested two days after the last dose. Mice of both 

sexes were used in all experiments, ranging from 6-32 weeks of age.  

 

Immunohistochemistry. Lungs were inflated and fixed with 10% neutral buffered 

formalin (NBF) for 24 h at 4°C and then embedded in paraffin. Lung sections were cut 

into 5-m transverse sections, deparaffinized, exposed for 10 min to 3% H2O2 in 90% 

methanol and then heated for 10 min in 10 mM sodium citrate, pH 6.0, for antigen 

retrieval. Tissue sections were blocked with 5% donkey serum (017-000-121, Jackson 

ImmunoResearch) for 1 h at room temperature and then incubated with goat anti-CCSP 

(a gift from Dr. Barry Stripp, Cedars-Sinai, 1:2000) diluted in blocking solution at 4°C 

overnight. Secondary antibody-horseradish peroxidase (HRP)-labeled donkey anti-goat 

(705-035-003, Jackson ImmunoResearch, 1:500) was incubated for 1 h at room 

temperature. Tissue sections were then washed with PBS, dehydrated and mounted 

with VectaMount (Vector Laboratories).  
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In situ hybridization and immunofluorescence. In situ RNA detection was performed 

using the RNAscope detection kit (Advanced Cell Diagnostics, Hayward, CA) according 

to the manufacturer’s instructions. Briefly, lungs were inflated and fixed with 10% NBF 

for 30 h at room temperature and then embedded in paraffin. Tissue blocks were cut 

into 5-m sections, deparaffinized, and pretreated with heat and protease before 

hybridization with the target oligonucleotide probes: murine Munc18a (Probe-Mm-

Stxbp1, 521961), Munc18b (Probe-Mm-Stxbp2, 536201) and Munc18c (Probe-Mm-

Stxbp3, 536191). The positive control probe was Ppib (peptidylprolyl isomerase B, 

313911) and the negative control probe was DapB (4-hydroxy-tetrahydrodipicolinate 

reductase from Bacillus subtilis, 310043). Preamplifier, amplifier and fluorescent-labeled 

oligonucleotides were then hybrized sequentially. RNAscope signal was imaged at the 

axial bronchus, between lateral branches 1 and 2 (30). Images were acquired using a 

confocal microscope (A1plus, Nikon) with a 40× NA 1.3 objective lens. For analysis, the 

number of dots per secretory or ciliated cell were counted using ImageJ (56). Since dot 

intensity represents transcript amount, brighter and/or bigger dots were counted twice. 

More than 70% of the dots were scored as singlets. Scoring all the doublets as singlets 

can only result in a 4% error. 

 

Immunofluorescence was performed using antibodies against goat CCSP (1:2000) and 

mouse acetylated tubulin (T6793 MilliporeSigma, 1:2000). Secondary antibodies were 

species-specific donkey anti-IgG coupled with Alexa Fluor 488 (A21202) and Alexa 

Fluor 647 (A21447) (1:1000, Invitrogen).  
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Airway epithelial mucin content by PAFS staining and image analysis. Mucous 

metaplasia was induced in the airways of mice by sensitizing mice to ovalbumin (OVA) 

(20 μg OVA Grade V, 2.25 mg alum in 0.9% saline, pH 7.4; MilliporeSigma) 

administered by i.p. injection once weekly, for 3 weeks. Sensitized mice were exposed 

for 20 min to an aerosol challenge of 2.5% (wt/vol) OVA in 0.9% saline supplemented 

with 0.02% (vol/vol) antifoam A silicon polymer (MilliporeSigma) daily for five days via 

an Aerotech II compressed gas nebulizer (Biodex, New York) in the presence of room 

air supplemented with 5% CO2. Three days after the last OVA aerosol exposure, half of 

the mice in each group were exposed for 10 min to an aerosol of 100 mM ATP 

(MilliporeSigma) in 0.9% NaCl to induce mucin secretion, then sacrificed after 20 min. 

Lungs were harvested, inflated and fixed in 10% NBF, embedded in paraffin and 

sectioned into a single transverse 5 m cut of the axial airway of the left lung, between 

the lateral branches 1 and 2 (30). Sections were deparaffinized, rehydrated, and then 

stained with periodic acid fluorescent Schiff reagent (PAFS). Images were acquired 

using an upright microscope (Olympus BX 60) with a 40× NA 0.75 objective lens and 

intracellular mucin was measured around all the circumferential section of the axial 

bronchus using ImagePro (Media Cybernetics, Bethesda, MD). Data are presented as 

the epithelial mucin volume density, signifying the measured volume of mucin overlying 

a unit area of epithelial basal lamina, derived as described (57). Images were analyzed 

by investigators blinded to mouse genotype and treatment.  
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Agarose gel Western blot for mucin. Lungs were perfused by intracardiac injection of 2 

ml PBS until blanched, then homogenized in 1 ml of 6 M guanidinium buffer containing 

protease inhibitors and incubated for two days at 4°C. Lysates were centrifuged at 

19,000 g and the supernatants were then dialyzed overnight at 4°C against PBS in 

Slide-A-Lyzer 2K MWCO 3 ml cassettes (Thermo Fisher Scientific). Protein 

concentrations were determined using a bicinchoninic acid protein assay kit (Thermo 

Fisher Scientific) and then the samples were incubated with 20 Kunitz DNase 

(LS002139, Worthington) for 15 min at 37°C and reduced with 10 mM DTT 

(MilliporeSigma) for 10 min at 95°C in loading buffer (5% glycerol, 0.1% SDS, 0.0025% 

bromophenol blue, 0.6 M urea, 10 mM Tris-HCl, 0.5 mM EDTA, pH 8). Samples were 

electrophoresed through a 0.8% agarose/0.1% SDS hydrogel, and the gel was then 

soaked in 10 mM DTT for 20 min, then the samples were transferred by vacuum onto a 

PVDF membrane. Membranes were washed in PBS and blocked with 5% nonfat milk in 

PBS/0.05% Tween before probing with lectin UEA-1 conjugated to HRP (1:1000, L8146, 

MilliporeSigma) in blocking solution to detect fucosylated Muc5ac (30), or with 

monoclonal antibody MDA-3E1 raised by us against peptide 

TTCQPQCQWTKWIDVDYPSS in blocking solution (1:1500) to detect Muc5b (20). 

Secondary antibody for Muc5b was goat anti-mouse conjugated to HRP (1:5000, 

Thermo Fisher Scientific), and the chemiluminescence signal was detected with ECL 

Western Blotting Substrate (Thermo Fisher Scientific). Relative protein amounts were 

determined for each sample using ImageJ (NIH) against a standard curve run for each 

gel (Figure S4). 
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Electron microscopy and stereology. Slight mucous metaplasia was induced in mice 

with one dose of 0.2 μg of IL-13 instilled intrapharyngeally on day 1 of the experiment in 

order to achieve optimal visualization of mucin granules. Mice were then anesthetized 

and sacrificed on day 5. Lungs were excised, fixed in 2.5% glutaraldehyde in 0.1 M 

sodium cacodylate buffer (pH 7.2), containing 20 mM calcium chloride for 2 h, followed 

by a 1 h post-fixation in buffered 1% osmium tetroxide. The fixed left lung was then 

sectioned into a single transverse cut of the axial airway between lateral branches 1 and 

2 and embedded in Embed 812 epoxy resin (14120 EMS). Sections of 100 nm 

thickness were stained with uranyl acetate and lead citrate and were viewed at 8200× 

magnification in a Tecnai 12 transmission electron microscopy. Secretory cells were 

randomly selected and imaged, and at least 19 images were used per mouse. Vv and 

Sv were obtained with randomly placed dot and line grids (line pairs, 64 tiles) on the cell 

profiles (58). To measure the relative electron lucency of mucin granules, a cycloid 

stereological grid with circles of 30 pixels in diameter was randomly superimposed on 

the images. At least 5 circles that fell on nuclear heterochromatin and electron-lucent 

extracellular space were selected, and their grayscale value (0–255) was recorded. 

These values were used to set a linear scale for each image. Then at least 30 random 

circles that fell on granules were recorded using that scale. These data were recorded 

and the appropriate bin range and histogram distribution was calculated. 

 

Mucin transcript quantitative RT-PCR analysis. Total RNA was extracted from whole 

lung (RNeasy mini kit; Qiagen) and reverse-transcribed (iSCRIPT, Bio-Rad). 

Quantitative PCR was carried out for each cDNA sample in triplicates with qPCR master 
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mix (Quanta Biosciences) and 6-carboxyfluorescein-labeled probes for Muc5b 

(Mm00466391_m1), Muc5ac (Mm01276725_g1) and -actin (Mm02619580_g1; all from 

Thermo Fisher Scientific) on a ViiA 7 RT PCR System (Applied Biosystems). Results 

were expressed as Ct (normalized for -actin) (59). 

 

Lung lavage. This was performed by instilling and collecting 1 ml of PBS through a 

tracheostomy (20-gauge cannula). Total leukocyte count was determined using a 

hemocytometer, and differential count by cytocentrifugation of 200 μl of lavage fluid at 

300 g for 5 min. Cytospins were stained by Wright-Giemsa for microscopic morphologic 

cell identification and counting. 

 

Mucociliary clearance. Mucociliary clearance was measured as the elimination of 

fluorescent microspheres from the lungs over time. Mice were anesthetized with 

urethane (2 mg/g, i.p.) and tracheostomized with a blunt beveled 18 gauge Luer stub 

adapter (Becton, Dickinson). Using a microsprayer (Penn-Century), 25 l of PBS/0.1% 

Tween containing 7.43x104 of 4.19 m fluorescent microspheres (Bangs Laboratories) 

were loaded at the lung carina through the tracheostomy. Lungs were harvested either 

immediately (time 0) or mice were mechanically ventilated with a flexiVent (Scireq, 

Canada) to guarantee uniform ventilation. Lungs were harvested after 30 min, 

homogenized with 1.5 g of 1.3 mm chrome steel beads (BioSpec) and 1 ml of 

PBS/0.1% Tween using a Mini-Bead Beater (BioSpec) at 4800 rpm for 3 min. 

Fluorescent microspheres were then manually counted using a hemocytometer. 
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Total bacterial 16S rDNA qPCR. Lungs were harvested and bacterial genomic DNA was 

extracted and analyzed at Baylor College of Medicine by methods developed for the 

NIH-Human Microbiome Project (60, 61). Briefly, bacterial genomic DNA was extracted 

using a PowerSoil DNA Isolation Kit (MO BIO Laboratories, California) following the 

manufacturer’s instructions. Extracted DNA concentrations were measured by Qubit 

(Life Technologies) for subsequent normalization of quantitative PCR results (qPCR). 

qPCR sample analysis was performed in a 7500 Fast Real-Time PCR System. The 

qPCR primers (1369F-1492R) target regions flanking V9 of the 16S rRNA gene (62). A 

standard curve was made using a serially diluted plasmid that contains nucleotides 

1369 to 1492 of an E. coli 16S rRNA gene, and concentrations of the samples were 

calculated from CT values using the equation generated from plotting the standard 

curve. All samples were run in triplicate, including the standard curve, a set of non-

template controls (NTC), and inhibitor controls (known positives + unknown DNA).  

 

16S rRNA gene compositional analysis. The 16S rDNA V4 region was amplified by PCR 

and sequenced in the MiSeq platform (Illumina) using the 2x250 bp paired-end protocol 

yielding pair-end reads that overlap almost completely. The primers used for 

amplification contain adapters for MiSeq sequencing and dual-index barcodes so that 

the PCR products may be pooled and sequenced directly (63), targeting at least 10,000 

reads per sample. The read pairs are demultiplexed based on the unique molecular 

barcodes, and reads are merged using USEARCH v7.0.1001 (64) allowing zero 

mismatches and a minimum overlap of 50 bases. Merged reads are trimmed at first 

base with Q5. In addition, a quality filter is applied to the resulting merged reads, and 
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reads containing above 0.05 expected errors are discarded. 16S rRNA gene sequences 

were assigned into Operational Taxonomic Units (OTUs) or phylotypes at a similarity 

cutoff value of 97% using the UPARSE algorithm. OTUs were then mapped to an 

optimized version of the SILVA Database (65, 66) containing only the 16S v4 region to 

determine taxonomies. Abundances were recovered by mapping the demultiplexed 

reads to the UPARSE OTUs.  

 

Lumenal occlusion in an allergic asthma model. Airway mucus plugging was measured 

by modifications, as follows, of a method we have described previously (12). Lungs 

were fixed by immersion, to avoid displacement of lumenal mucus by inflation, in 

methanol-based Carnoy’s solution (methacarn), to minimize changes in mucus volume, 

for 48 h at 4°C. Lungs were then excised, and the right caudal lobe (Figure 6, B and 

figure S6, B), or every lobe (Figure S6, A), was embedded in paraffin. For Figure S6, A 

and Figure S6, B, a 5 m section was obtained every 500 m starting from the most 

caudal point of the lobe. For Figure 6, B, a 5 m section was obtained every 1000 m 

section of the right caudal lobe, yielding 4 sections per lung. Slides were then 

deparaffinized, rehydrated, and stained with PAFS. Images were acquired using an 

upright microscope (Olympus BX 60) with a 20× NA 0.5 lens objective. For 

quantification, the cross-sectional area of the lumenal mucus was traced (Figure 6, B), 

and the airway cross-sectional area was also traced to calculate the occlusion fraction 

(Figure S6, A and figure S6, B), using ImageJ (NIH). 
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Lung mechanics. Respiratory resistance was analyzed using a flexiVent system 

(Scireq). Mice were anaesthetized with urethane (3 mg/g by i.p. injection, a dose 

sufficient for 2 h of sedation even though experiments last less than 30 min), and 

paralyzed with succinylcholine chloride (5 mg by i.p. injection followed by continuous i.p. 

infusion at 20 μg/g∙min). Mice were tracheostomized with a blunt beveled 18-gauge 

Luer-Stub adapter and ventilated at 150 breaths/min, 10 μl/g, against 2-3 cm H2O 

positive end-expiratory pressure. Respiratory resistance was assessed at baseline and 

in response to four incremental doses of methacholine (MCh) (1, 3, 10 and 30 mg/ml) 

administered by an in-line ultrasonic nebulizer (4-6 μm, Aerogen, Ireland). Total 

respiratory resistance was calculated by averaging eight values measured after each 

dose of MCh for each mouse. 

 

Lumenal occlusion and emphysema in the -ENaC-Tg model of cystic fibrosis. Lungs 

were fixed with 10% NBF and the left lobes were cut in transverse sections starting at 

the level of the hilum and then every 2 mm from rostral to caudal, yielding 2-4 slices. All 

slices were embedded in paraffin, and a 5 m section was obtained from each slice. 

Sections were then stained with Alcian Blue-Periodic Acid Schiff (AB-PAS) (67). Whole 

lung section images were obtained in an Olympus BX61VS scanner with a BX81 stage 

and UPlanSApo 20× NA 0.75 objective lens; scanning conditions were kept constant 

among specimens. Lumenal occlusion was quantified as in Fig. 5, B from the first 2 

sections of each mouse. Emphysema was measured using D2, the equivalent mean 

diameter, computed from measurement of airspace area, and weighted for variance and 

for skewness towards large spaces (68), from 10 high magnification non-continuous 
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images (1134 × 1134 pixels), equidistant from the center of the section and excluding 

airways, selected from the sections used in Figure 6, B. 

 

Statistics. All statistical analyses were performed using GraphPad Prism 7.0 with P<0.05 

considered statistically significant. Exact P values and n values for each sample are 

included in each figure legend. Statistical analysis was performed using one-way 

ANOVA followed by Tukey’s post hoc test for multiple pair-wise comparisons, and 

Student’s t test or Mann-Whitney U test after determining normality of the data using 

D’Agostino-Pearson omnibus K2 test. A Kolmogorov-Smirnov test was used for Figure 

S5, D. Values that did not reach significance were not noted. After determining that the 

expression and secretory function of Munc18 proteins in floxed mice was equivalent to 

WT, the primary endpoint for studies of secretion, clearance and obstruction was of 

differences between airway deletant mice and their floxed littermates. 

 

Study approval. All mice were kept in pathogen-free facilities and handled in 

accordance with the Institutional Animal Care and Use Committees of The University of 

Texas MD Anderson Cancer Center, The Texas A&M University Health Science Center 

Institute of Bioscience and Technology and The University of North Carolina. 
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Figure 1. Generation of Munc18b conditional deletant mice. (A) Exon 1 of the 
Munc18b gene was flanked by two loxP sites (red flags) via homologous recombination. 
Herpes simplex virus thymidine kinase (yellow) was used for negative selection. Zeocin 
(red) and puromycin (green) resistance genes flanked by two loxP (M2) sites (green 
flags), removed by Cre in embryonic stem cells, and a neomycin resistance gene 
(orange) flanked by two FRT sites (blue flags), removed by Flp recombination, were 
used for positive selection. Exon 1 was removed by Cre recombination in mice. (B) 
Table showing embryos of different genotypes harvested at various days of embryonic 
(E) development after generating a full KO by crossing the mouse in (A) to a Zp3-Cre 
mouse. (C) Litter size after crossing floxed mouse in (A) to a CCSPiCre mouse to 
generate a conditional deletant mouse specific for airway epithelium are compared to 
their floxed littermates (n=50-52 per group). (D) Weight at 3 weeks of age by Munc18b 
conditional deletants and their floxed littermates (n=50-52 per group).  
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Figure 2. In situ hybridization of Munc18 isoforms. Representative images of in situ 
hybridization with fluorescent-labeled riboprobes (shown in red), specific for murine 
Munc18a (A), Munc18b (B) and Munc18c (C). Sections are from naïve (uninflamed) 
lungs of floxed and conditional deletant mice. CCSP was used as a secretory cell 
marker (purple) and acetylated tubulin as a ciliated cell marker (green). Graphs show 
quantification of dots per cell type, per genotype, for each probe. Scale bar=30 µm. (n=3 
mice per group). (A) Secretory vs ciliated (18aF/F), P=0.03; secretory (18aF/F) vs 
secretory (18aD/D), P=0.0038; ciliated (18aF/F) vs ciliated (18aD/D), P=0.0254. (B) 
Secretory vs ciliated (18bF/F), P=0.0012; secretory (18bF/F) vs secretory (18bD/D), 
P=0.0002; ciliated (18bF/F) vs ciliated (18bD/D), P=0.0253. (C) Secretory (18cF/F) vs 
secretory (18cD/D), P=0.0017; ciliated (18cF/F) vs ciliated (18cD/D), P=0.0004, Student’s 
two-tailed t test. #, P<0.05 between cell types; *, P<0.05 within cell type. 
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Figure 3. Stimulated mucin secretion measured by residual intracellular mucin 
content. (A) High-magnification views of representative fields of PAFS-stained 
bronchial airways from mice sensitized and challenged with ovalbumin to increase 
mucin production (OVA+/ATP-, top row), then exposed to aerosolized 100 mM ATP to 
stimulate mucin secretion (OVA+/ATP+, bottom row). Scale bar=20 µm. (B) 
Quantification of the volume density (expressed as nl mucin per mm2 basement 
membrane) of intracellular mucin in mice with or without ATP stimulation as in (A) 
(representative experiment of three separate experiments with all genotypes, n=5-8 
mice per group). 18a/bD/D (ATP-) vs WT (ATP-), P<0.0001, vs 18aF/F (ATP-), P<0.0001, 
vs 18bF/F (ATP-), P<0.0001, Tukey test. 18bD/D (ATP+) vs 18bF/F (ATP+), P<0.0001; 
18a/bD/D (ATP+) vs WT (ATP+), P<0.0001, vs 18aF/F (ATP+), P=0.0001, vs 18bF/F 

(ATP+), P<0.0001, Student’s two-tailed t test. (C) The percentage of mucin released for 
each genotype (three independent experiments like those in (B), combined). 18bD/D vs 
18bF/F, P<0.0001; 18a/bD/D vs WT, P=0.001, vs 18aF/F, P<0.0001, vs 18bF/F, P<0.0001, 
Mann-Whitney test. Box plots, line=median; box=25th-75th percentile; whiskers=5th-95th 
percentile for this and all subsequent figures. *, P<0.05 vs floxed littermate; #, P<0.05 
vs WT. 
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Figure 4. Baseline mucin secretion measured by spontaneous intracellular mucin 
accumulation. (A) High-magnification views of representative fields of PAFS-stained 
bronchial airways from naïve mice. Scale bar=20 µm. (B) Quantification of the volume 
density of spontaneous intracellular mucin accumulation (n=5-18 mice per group, three 
independent experiments combined). 18aD/D vs 18aF/F, P=0.0243; 18a/bD/D vs WT, 
P<0.0001, vs 18aD/D, P=0.0008, Student’s two-tailed t test. (C) Representative 
immunoblot of 50 µg of whole lung lysates from naïve mice probed for Muc5b. (D) 
Densitometric analysis of immunoblot shown in (C) derived from standard curve (Fig. 
S4) (AU, arbitrary units) (n=5-7 mice per group). 18aD/D vs WT, P=0.0079; 18a/bD/D vs 
WT, P=0.0025, Mann-Whitney test. *, P<0.05 vs floxed littermate; #, P<0.05 vs WT. 
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Figure 5. Airway mucus occlusion and airway hyperreactivity of Munc18b 
conditional deletant mice in an allergic asthma model. (A) Representative cross-
sections of airways fixed with methacarn to preserve mucus volume and stained with 
PAFS. Mice were treated with IL-13 to induce mucin production and then stimulated 
with aerosolized 150 mM methacholine (Mch) to stimulate mucin secretion and smooth 
muscle contraction. Scale bar=50 µm. (B) Cross-sectional area of lumenal mucus in the 
right caudal lobe measured at 1000 µm intervals. (n=5-9 mice per group, representative 
experiment, >100 airways per group quantified). 18bD/D vs 18bF/F, P=0.0002; Muc5ac-/- 
vs 18bF/F, P=0.0378, Student’s two-tailed t test. (C) Total respiratory system resistance 
(Rrs) at increasing doses of nebulized Mch in mice treated with or without IL-13 (n=6-14 
per group, three independent experiments combined). Line, mean; error bar, SEM. (D) 
Fold-change Rrs at the highest dose of nebulized Mch (30 mg/ml) from (C). Each 
genotype is normalized to its own baseline measured with nebulized saline. 18bD/D vs 
18bF/F, P=0.0018; Muc5ac-/- vs 18bF/F, P=0.0044, Student’s two-tailed t test. *, P<0.05 
vs floxed littermate. Bar, mean; error bar, SEM.  
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Figure 6. Airway mucus occlusion and emphysema of Munc18b conditional 
deletant mice in a cystic fibrosis-like model. Munc18bF/F and Munc18bD/D mice were 
crossed or not to b-ENaC-overexpressing transgenic (ENaC) mice. (A) Representative 
transverse left lung sections stained with AB-PAS. Scale bar=300 µm. (B) Cross-
sectional area of lumenal mucus was quantified. (n=8-16 mice per group). ENaC-18bD/D 
vs ENaC-18bF/F, P=0.0013, Mann-Whitney test. (C) Emphysema was assessed as the 
equivalent mean diameter, D2. (n=8-16 mice per group). ENaC-18bD/D vs ENaC-18bF/F, 
P=0.0009, Student’s two-tailed t test. (D) Total inflammatory cell numbers from lung 
lavage fluid (n=8-16 mice per group). *, P<0.05 vs floxed littermate. 
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