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Accurate and comprehensive extraction of information from high-dimensional single cell 
datasets necessitates faithful visualizations to assess biological populations. A state-of-the-art 
algorithm for non-linear dimension reduction, t-SNE, requires multiple heuristics and fails to 
produce clear representations of datasets when millions of cells are projected. We developed 
opt-SNE, an automated toolkit for optimal t-SNE parameter selection that utilizes Kullback-
Liebler divergence evaluation in real time to tailor the early exaggeration and overall number 
of gradient descent iterations in a dataset-specific manner. The precise calibration of early 
exaggeration together with opt-SNE adjustment of gradient descent learning rate dramatically 
improves computation time and enables high-quality visualization of large cytometry and 
transcriptomics datasets, overcoming limitations of analysis tools with hard-coded parameters 
that often produce poorly resolved or misleading maps of fluorescent and mass cytometry data. 
In summary, opt-SNE enables optimal data resolution in t-SNE space and more precise data 
interpretation.  
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Visual exploration of high-dimensional data is imperative for the comprehensive analysis of single 
cell datasets. Fluorescence, mass and sequencing-based cytometric data analysis requires tools that 
are able to reveal the combinations of proteomic and/or transcriptomic markers that define complex 
and diverse cell phenotypes in a mixed population. While traditional biaxial data presentation via 
expert-driven gating is still the standard analysis method for cytometry data to date, with the advent 
of the modern multi-parameter era an analysis tool that can accurately and comprehensively 
visualize multi-dimensional data is direly needed to relieve the current cytometry data-processing 
bottleneck. 

To date, multiple dimensionality reduction techniques have been applied to cytometry data with 
variable success. Linear methods, such as principal component analysis (PCA) which generates a 
low-dimensional representation of data with a linear mapping matrix, are mostly unsuitable for 
cytometry data visualization as such techniques cannot faithfully present the non-linear 
relationships in the data. t-Distributed Stochastic Neighbor Embedding (t-SNE) is a state-of-the-art 
dimensionality reduction algorithm for non-linear data representation that creates a low-
dimensional distribution, or a ‘map’, of high-dimensional data 1,2. Conspicuous groupings of 
datapoints, or ‘islands’, correspond to observations that are similar in the original high-dimensional 
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space and help to visualize the general structure and heterogeneity of a dataset. t-SNE was 
developed as a machine learning technique for a broad range of data types and has been adopted 2 
for single-cell applications. When t-SNE embeds single cell data, the islands represent cells with 
similar phenotypes, as defined by a cytometric or genomic signature, thereby allowing to reveal 
biological data structure and to surface important differences between samples and/or subject 
groups 3. 

In addition, t-SNE maps are used to categorize single cell data into relevant biological 
populations for downstream quantification, achievable through expert-guided filtering (‘gating’)4 
or unsupervised clustering of the map 5-7. Cytometry clustering algorithms that directly interrogate 
high-dimensional data, such as FlowSOM 8 and PhenoGraph 9, are often used in conjunction with 
t-SNE maps to present annotated clusters to the viewer.  

A limitation of t-SNE in its current form is its inability to scale to datasets with large numbers 
of observations 7,10. This restrains t-SNE’s utility for cytometry datasets that often include millions 
of observations (‘events’) routinely collected for phenotypic analysis. Unlike PCA, t-SNE learns 
the embedding non-parametrically, and hence new pieces of data cannot validly be added to an 
existing analysis, necessitating the whole dataset to be analyzed within one computation. When the 
full dataset is comprised of multiple samples, each representing a subject in a large cohort or an 
independent experimental condition, retaining statistically significant representation of small 
subpopulations in each sample requires inflating the dataset size 11. However, even within a single 
measurement, subsampling the data risks preventing rare subsets from being identified. These 
limitations cannot be overcome via application of the currently understood best practices for t-SNE 
use. Not only are large datasets computationally expensive to analyze, but also the resulting t-SNE 
maps provide poor visualization and incomprehensive representation of high-dimensional data. As 
a result, upon finding initial poor t-SNE visualizations from large datasets, researchers often resort 
to either subsampling their data to the very limit of detection of rare populations 12 or to exporting 
specific populations from their dataset, thus compromising the ‘unbiased’ data analysis 
approach13,14.  

Although t-SNE has been widely adopted by the scientific community, to our knowledge no 
rigorous theoretical or empirical testing of t-SNE for cytometry applications has been performed. 
In 2013, Amir et al first reported the use of t-SNE (or viSNE, as it was renamed 3) on mass 
cytometry data; since then, t-SNE has been implemented in the majority of commercial and open-
source platforms for cytometry analysis (FlowJo, Cytobank, FCSExpress, cytofkit, etc). In most 
implementations, few or no adjustments were made to the Barnes-Hut t-SNE algorithm for the 
requirements of cytometry datasets; the default and hard-coded parameter settings that were 
originally tested and optimized with non-cytometry datasets like CIFAR (image dataset) or MNIST 
(handwritten digits) are retained in these cytometry programs. Developing rigorous methodology 
to release the full potential of t-SNE for single cell data comprehension is the primary motivation 
for this work.  

In this study, we first assessed the behavior of t-SNE computation with routinely used settings 
that match common best practices, and then iteratively modified parameters of embedding to 
identify conditions that ensure optimal visualization. As a result of this work, we propose a new 
method to automatically find optimal t-SNE parameters via fine-tuning of the early exaggeration 
stage of t-SNE embedding in real time. We call our approach opt-SNE, for optimal t-SNE. We find 
that our adjustments can tremendously shorten the number of iterations required to obtain 
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visualizations of large cytometry datasets with superior quality. Our approach also eliminates the 
need for trial-and-error runs intended to empirically find the optimal selection of t-SNE parameters, 
potentially saving hundreds of hours of computation time per research project.  
 
Materials and methods  

Datasets. All datasets used in the study are summarized in Table 1. 

 
Table 1. Datasets used in this manuscript 
Dataset Data 

type 
Details References 

Mass41parameter Mass 
cytometry 

41 parameter dataset (14 parameters 
used for embedding) of 1 million 
datapoints concatenated from 5 
samples of human bone marrow cells 

15 

Flow18parameter Flow 
cytometry 

18 parameter dataset (11 parameters 
used for embedding) of 1 million 
datapoints concatenated from 2 
samples of human PBMC 

16 

Flow20M Flow 
cytometry 

18 parameter dataset (15 parameters 
used for embedding) of 20 million 
datapoints concatenated from 27 
samples of human PBMC 

Panel based on 16 

10X Genomics scRNA-
seq 

Single cell gene expression data of 
E18 mouse brain pre-processed into 
20 PCA projections used for t-SNE 
embedding 

https://support.10xge
nomics.com/single-
cell-gene-
expression/datasets 
and 17 

van Unen et al Mass 
cytometry 

18 parameter dataset (14 parameters 
used for embedding) of 5.22 million 
datapoints concatenated from 104 
samples of human peripheral blood 
mononuclear cells (PBMC) and gut 
biopsy cells 

7 

 
Primary samples. Flow18parameter and Flow20M data were collected as described 18 with minor 
modifications of the flow cytometry reagent list. Study protocols were approved by the institutional 
review boards and all subjects provided written informed consent. The committee that approved 
the research protocol was the Boston University Institutional Review Board, IRB# H-33095. 
 
Data pre-processing. Singlet events from several data recordings were digitally concatenated and 
a randomly subsampled file of 1,000,000 mass 15 or flow cytometry 16 events was created and used 
for analyses of the mass41parameter and flow18parameter datasets. All observations from 27 
recordings of flow cytometry data were concatenated to generate the flow20M dataset. All 
observations from 104 recordings of mass cytometry data 7 were concatenated to generate the van 
Unen et al dataset.  
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All flow cytometry data were compensated with acquisition-defined compensation matrices. Prior 
to t-SNE analysis, all cytometry data were transformed using asinh (all mass cytometry data and 
flow14parameter data) or biexponential (flow20M) transformation. Light scatter parameters were 
log-transformed. 
 
Data analysis. A desktop C++ Barnes-Hut implementation of t-SNE for Mac OS was used for most 
t-SNE analyses 2. All datasets were embedded in 2D space. Original code was edited to allow user 
input for early exaggeration stop iteration, perplexity, total number of iterations, early exaggeration 
factor value, and learning rate value. KLD value and t-SNE coordinates were reported during each 
iteration or as frequently as requested. To allow generation of visually comparable t-SNE maps, 
the same random seed value was used and all experiments were repeated with several values of 
random seed. We did not observe noticeable differences in reported results between runs initiated 
with different seed values. For cross-validation and to benchmark against standard platforms, we 
utilized cloud-based Cytobank 19, FlowJo V10.3-10.5 and FlowJo V9.9.6. Cytobank and FlowJo 
platforms were used to generate FCS files and graphical outputs from tabular data. FIt-SNE (Fast 
Fourier Transform-accelerated Interpolation-based t-SNE 20 plugin for FlowJo was used as 
indicated. Logs of t-SNE runs were batch-processed with VBA scripts and analyzed with GraphPad 
Prism 7. Expert-guided (manual) analysis of cell populations was performed in FlowJo 10.3-10.5 
as described previously for specific datasets 15,18 or as explained below and used for map 
annotations as cluster classifiers.  

For scRNAseq analysis, we used SeqGeq 1.3 package. We used PCA projections provided in 
10X Genomics dataset to calculate the t-SNE embedding and annotated it using marker genes for 
major cell types. Louvain cluster classification was adopted from the SCANPY data analysis study 
17 

The quality of the embeddings was assessed by a nearest neighbor (NN) classifier strategy as 
described in previous reports on t-SNE accuracy evaluation 1,2,10. Briefly, for each observation, the 
k nearest neighbors (by Euclidean distance) were calculated using the 2D coordinates of the t-SNE 
map and the class assigned by expert gating was compared to the most common class of its k 
neighborhood. The rate of correct matches was tallied and represented as the overall nearest 
neighbor accuracy. The accuracy was also calculated on a per-class basis; different values for k 
(1,10,20,30,40,50) were reported. 

  
The standard t-SNE configuration for cytometry applications. As described in detail in van der 
Maaten 2014, t-SNE computes low-dimensional coordinates of high-dimensional data resulting in 
similar and dissimilar data points in the raw data space placed proximally and at a distance, 
respectively, in the dimensionally reduced map. This map placement is achieved via t-SNE 
modeling the probabilities as a Gaussian distribution around each data point in the high-
dimensional space and modeling the target distribution of pairwise similarities in the lower-
dimensional space using Cauchy distribution (Student t-distribution with 1 degree of freedom). 
Then, the Kullback-Liebler Divergence (KLD) between the distributions is iteratively minimized 
via gradient descent. The gradient computation is essentially an N-body simulation problem with 
attractive forces (approximated to nearest neighbors using vantage-point trees) pulling similar 
points together and repulsive forces (approximated at each iteration using the Barnes-Hut 
algorithm) pushing dissimilar points apart.  
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An important part of t-SNE gradient descent computation is the “early exaggeration” (EE) that 
was proposed by van der Maaten and Hinton (2008) to battle the “overcrowding” artifact of 
embedding. With EE, all probabilities modeling distances in high-dimensional space are multiplied 
by a factor (early exaggeration factor, EEF, or a) for the duration of the first (typically 250, or 25% 
of the total number of) iterations. EE coerces data to form tight and widely separated clusters in the 
map and is considered to enable the map to find a better global structure.  

Multiple software platforms incorporate t-SNE algorithm specifically for analysis of cytometry 
data, including commonly used cytometry analysis desktop packages (FlowJo, FCS Express), and 
the cloud-based analysis platform Cytobank. Also, implementations of t-SNE are available as open-
source packages in popular programming languages such as R (rtsne) and Python (sci-kit learn). 
Most of implementations wrap or re-write original C++ code of Barnes-Hut t-SNE (van der Maaten, 
2014) and produce comparable analysis results upon direct comparison. Here, we customized the 
standard t-SNE C++ code to implement the parameter adjustments described in this work and 
published this customization as an open source solution to enable the research community to use 
this optimized t-SNE algorithm. Also, the equivalent adjustments of t-SNE have been made 
available as a cloud application from Omiq and integrated into FlowJo and SeqGeq programs.  

 
Results.  

The standard t-SNE configuration fails to visualize large datasets. The t-SNE algorithm can be 
guided by a set of parameters that finely adjust multiple aspects of the t-SNE run 21. However, 
cytometry data analysis software often locks or severely restrains the tunability of those parameters, 
likely to provide a simplified, ‘one-size-fits-all’ solution for t-SNE use in the software packages. 
Although each software platform has a unique combination of possible adjustments, most allow 
changes to both the number of iterations and to the perplexity (a soft measure for the number of 
nearest neighbors considered for each data point). 

The datasets used throughout this study include at least 1 million datapoints of fluorescent or 
mass cytometry data and are therefore considerably larger than the smaller (< 5x105) datasets 
previously reported in benchmark studies of cytometry algorithmic tools 22. Cytometry datasets 
larger than approximately 5x105 events are generally observed to produce poor quality t-SNE maps 
and are therefore usually subsampled prior to analysis.  

Empirically, cytometrists have observed that increasing the number of iterations of t-SNE 
computation results in better quality maps. We hypothesized that the resolution of t-SNE maps 
created from higher event counts could be dramatically improved via fine-tuning of t-SNE 
parameters. We first directly tested the relationship between iteration number and map quality by 
running two datasets (mass41parameter and flow18parameter, as described in Table 1) at the 
default 1000 iterations per run and with an “extended” 3000 iteration computation (Fig. 1A, B). To 
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aid visualization in Fig 1 and the following figures maps are overlaid with color-coded populations 
derived from expert-driven (‘manual’) gating of the same dataset which serves as a ground-truth 
basis for data classification. As expected, 1000-iteration runs produced maps with poor 
visualization (overall 1-NN accuracy of embedding was 65% and as low as 18% for certain 
populations). Specifically, massive overlaps and random fragmentation of populations were 
observed. In contrast, the 3000-iteration runs resulted in maps with defined “islands” comprised of 
clearly isolated populations and no random fragmentations (overall 1-NN accuracy of embedding 
96%; see Suppl. Table 1 for the detailed results of accuracy evaluations). Therefore, these findings 
are in agreement with the concept of a higher number of iterations resulting in higher quality t-SNE 
maps.  
 
KLD plateau phase resolves global cluster structure in t-SNE visualization. In order to 
determine the cause of the difference in cluster resolution between the “default” and “extended” t-
SNE runs, we examined the behavior of KLD over the duration of t-SNE embeddings (Fig 1C). As 
expected, the KLD value was inflated during the EE since EEF is factored into gradient and KLD 
value calculation 1. The EE is applied over 250 iterations in the “default” (red line, Fig. 1C, 1000 
iterations) t-SNE configuration and 750 iterations in the “extended” run with 3000 iterations (black 
line Fig. 1C, 3000 iterations) since most platforms have EE scaled to 25% of total iteration number. 

Notably, the KLD did not immediately minimize at the start of the EE in both the “default” and 
“extended” t-SNE runs; instead, the graph of KLD over time is a plateau that is followed by a curve 
that captures the incremental decrease of KLD, indicating the gradient descent. In the “default” run, 
the plateau was interrupted when the EE was stopped and KLD dropped, then continued with a 
non-exaggerated value of KLD.  

According to van der Maaten and Hinton, EE was introduced as a “trick” to improve resolution 
of the global structure of the data visualization that would not otherwise converge to separated 
clusters. As the suboptimal quality of the 1000-iteration t-SNE maps shown in Fig. 1A, B 
demonstrates poor global structure resolution, we hypothesized that by increasing the total 
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iterations an analyst who uses t-SNE via conventional cytometry analysis platforms may 
inadvertently increase the number of EE iterations and this specific alteration may be the cause of 
the improvement in map visualization. To test this hypothesis, we compared multiple 2000- or 
3000-iteration runs that differed in timing of the EE stop (Fig. 2A) by plotting the embedding at 
the iteration both when the EE stops and at later iterations, thus assessing the effects of EE and our 
perturbations on both mass cytometry (Fig. 2A) and flow cytometry (Fig. 2B) data visualization.  

We found notable differences in map quality between the shorter and longer EE runs. Although 
the map after EE200/total3000 iterations appears visually superior than EE250/total1000 (Fig 1A, 
B) and could be considered a successful visualization, ground-truth labeling indicated that cluster 
fragmentation is present in both maps. When cluster fragments were plotted on a biaxial plot against 
parameters that were used in the t-SNE dimension reduction, we were not able to identify 
parameters that immediately contributed to their fragmentation (Suppl. Fig. 1).  
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Conversely, tight clusters that form at the end of the plateau remain mostly unchanged as long 
as the EE is being applied to the computation (Fig 2 A, B). The KLD minimization in that case 
could be explained by the gradual shrinking of the 2D space (data not shown). Once EE is removed, 
the attractive forces within each cluster are weakened and the local structure of the data is fully 
resolved within each cluster. Overall, these observations suggest that the EE stage of the gradient 
descent is essential for data clustering while the non-exaggerated descent results in resolution of 
local structures.  

 
Real-time monitoring of the KLD plateau results in optimal quality of t-SNE maps. We 
have demonstrated that when the EE is too short, cell clusters continue to be resolved 
simultaneously with the local structure of each cluster being unfolded, leading to fragmented, 
overlapped or deformed “islands” in the resulting map (Fig. 2). Due to these results, we constructed 
an equation to find optimal EE timing. Specifically, we tracked the relative rate of KLD change 
(KLDRCN = 100% *((KLDN-1 – KLDN)/ KLDN-1) where N is the iteration number) and identified 
the local maximum of KLDRC (maxKLDRC) (Fig. 3A). Since KLD is computed at each iteration, 
the maxKLDRC ‘sensor’ can be easily added to the algorithm programmatically and would stop 
EE at the next iteration past maxKLDRC. For the mass41parameter dataset of 1M datapoints, the 
maxKLDRC was detected at iteration 705 (Fig. 3A). Next, we ran t-SNE with an EE stop at iteration 
706 and sampled map development at 706, 1.5x706, 2x706, 2.5x706 and 3x706 iterations (Fig 3B). 
As expected, at the maxKLDRC iteration the map contained the primordial clusters only; it was 
well shaped at 2 x max KLDRC and there was no visible improvement in map quality past that step 
and the visualization was very similar to the EE750/3000 map at Fig. 1A. When compared to the 
map created with ‘default’ settings of EE taking 25% of the run yet computed with the same number 
of iterations (1410), the maxKLDRC-triggered t-SNE produced visually and KLD-wise superior 
results within the similar computation time, and it also eliminated extensive trial-and-error 
calibration of t-SNE parameters (Fig. 3C). We propose a conservative approach to finalize the 
embedding automatically when (KLDN-1 – KLDN) < KLDN/10,000. Alternatively, t-SNE projection 
output can be evaluated in real time to justify the termination of embedding.  
 
Moderate adjustments of EE factor and perplexity do not impact visualization. Once 
we found EE to be crucial for map optimization, we next examined if the value of the EE factor a 
can also be tuned to improve the results of t-SNE. We made a user-accessible in our C++ t-SNE 
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code since it is hard-coded in the original Barnes-Hut C++ t-SNE implementation and all 
aforementioned results were obtained with default value of a = 12. We chose the parameters 
defined above (a = 12, EE = 706 iterations, 1410 iterations total) as our baseline for comparison 
since they provided optimal balance of map quality versus computation time. First, we tested how 
the optimization would proceed without EE (a = 1). We expected the run to fail or produce 
extremely crowded results as explained in the original t-SNE report 1; however, we did not see 
much overlap in cluster positioning, probably due to the substantial number of map iterations run 
(Fig 4B). Nevertheless, the resulting map showed a lot of fragmentation proving to be an extreme 
case of an interrupted plateau phase. Even when run for as many as 3000 iterations, the 
fragmentation could not be remedied, again demonstrating the necessity of EE.  

As expected, higher values of a lead to much higher KLD during EE, however, the KLD values 
were	similar	at 2000 iterations when a	varied	between	4	and	60	(Fig.	4A). Larger a prolonged the 
plateau phase and became detrimental for KLD values when over 100. Visually a = 200 results in 
a distorted map with smaller populations lost. Therefore, we suggest that for cytometry applications 
the a parameter may remain unchanged and set to 12, as suggested in van der Maaten 2014, or 
reverted to a = 4, as originally proposed in van der Maaten and Hinton (2008) since per our results 
any value between 4 and 20 leads to comparable outcomes. 

Increased perplexity has been proposed to be an intuitively beneficial method for visualization 
improvement since it translates to a larger number of considered nearest neighbors and hence a 
more accurate approximation of attractive forces, while decreased perplexity can completely fail 
the visualization 21. KLD values for runs with varying perplexity cannot be directly compared since 
the KLD value is related to perplexity; however, KLD records over time do not show that increased 
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perplexity results in faster resolution of clusters (Fig 4C) or cleaner data visualization (Fig 4D). 
However, while changing a does not affect t-SNE computation time, perplexity is linearly related 
to the time and memory required to create the embedding (data not shown). Although we and others 
have found some benefits of perplexity increases to map quality in otherwise suboptimal t-SNE 
runs, optimizing the EE step as described above and further in this work does not leave much space 
for improvement with perplexity tuning (Fig 4E).  

 

Learning step size is a key parameter to ensure t-SNE visualization of large datasets. The 
step size in t-SNE gradient descent is updated at each iteration per Jacobs adaptive learning rate 
scheme 23. This method increases the learning rate in directions in which the gradient is stable. A 
conservative initial value of 200 is hard-coded into most platforms. We hypothesized that larger 
datasets may stay longer on KLD plateau due to the number of iterations it takes to build up a 
sufficient learning rate step size. To evaluate this possibility, we titrated the step size h while 
observing the KLD with fixed EE=1000 iterations in Mass41parameter dataset. In agreement with 
our hypothesis, h = 25 and h = 50 runs failed to resolve from KLD plateau within 1000 iterations 
of EE (Fig. 5A) and h = 200 finished the plateau in ~700 iterations as previously shown. With 
further increases in h, we found that not only are progressively fewer iterations required to complete 
the plateau, but also that the final KLD of the maps scored at lower values. KLD is directly related 
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to the quality of visualization since it reflects the faithfulness of representation of high-dimensional 
data in t-SNE space; therefore, lower KLD values indicate superior visualization quality.  

We continued to see improvement in plateau duration and KLD values with higher h values up 
to h ~ 64,000, a value that is drastically far from the “default” h = 200 setting (note that in most 
platforms, h is restricted to ranges below 3,000) (Fig. 5B). At h ~ 256,000 we observed irregular 
peaks in KLD graph indicating that the prescribed step size rendered gradient descent ineffective. 
However, using lower values of h we were able to converge the map with lowest KLD values at a 
fraction of time when limiting the EE step to 200 and even 100 iterations despite the 106 size of the 
dataset (Fig. 5C). Visual inspection of the embedded maps over the range of h values agrees with 
KLD values (Fig 5D). 

In a recent publication, Linderman and Steinerberger 24 prove that in general t-SNE embedding 
will not converge if a product of EE factor a and of fixed learning rate step size h is larger than the 
number of datapoints n (i.e. if ah >	n). Since we employ an adaptive learning rate, our selection of 
initial h value is more forgiving; however, in our experiments we found the optimal settings of h to 
be close to h = n / 12 for computations where a = 12. Therefore, we propose to initiate the gradient 
descent with h = n / a to create optimal t-SNE visualization (Fig 5E).  

 
Opt-SNE allows optimal embedding of massive datasets. We implemented all proposed 
techniques including: (1) a dataset-specific automated early exaggeration step controlled by the 
KLDRC sensor, (2) an optimal learning rate step size, and (3) a KLDRC-driven embedding 
termination into a single workflow labeled ‘opt-SNE’, for ‘optimized t-Stochastic neighbor 
embedding’. To test the performance of opt-SNE, we used a 20.1 x 106 event fluorescent cytometry 
dataset concatenated from two independent batches of PBMC samples (N=27) stained with a 
variation of the OMIP-037 fluorescent cytometry panel 18 that allows detailed assessment of naïve 
and memory CD4+ and CD8+ T cells, NK cells and gd T cells (Fig. 6A). The embedding completed 
in 770 iterations with only 73 iterations required to pass the EE step (Suppl. Fig. 3) and resulted in 
clear separation of cell clusters as evaluated by cell type annotation (Fig 6C). The majority of 
clusters appear to be populated by cells from all subjects with the exceptions of several populations 
that contained sample-unique debris features (Fig 6B, dashed arrows), confirming an absence of 
batch effects. A detailed breakdown of identified populations is presented in Fig 6C that shows 
subsets of CD4+ and CD8+ T cells, NK cells, gd T cells, B cells, and monocytes. Importantly, B 
cell and monocyte lineage markers were detected together with a viability dye in a dump channel 
in this panel and therefore cannot be gated accurately via traditional biaxial plot analysis. However, 
opt-SNE identified them in high-dimensional space through the combination of several surface 
labels and light scatter characteristics, and each was successfully clustered into populations that 
were minimally mixed with dead cells. Use of the standard t-SNE algorithm completely failed to 
reveal the structure of the multi-million event flow cytometry dataset, even with several thousands 
of iterations (Fig 6D). 

In order to test the suitability of opt-SNE for applications beyond flow and mass cytometry, we 
analyzed a 1.3x106 cell single-cell RNA-seq dataset of mouse embryonic brain cells published by 
10X Genomics. We used pre-calculated PCA projections included in the dataset to generate opt-
SNE maps that we compared with 10X standard t-SNE embedding (Fig 6E). 10X used EE = 
1000/total 4000 iterations of standard t-SNE while we used opt-SNE settings with h = 97,959, EE 
= 66/total 885 iterations (Suppl. Fig. 2). Non-immune single cell transcriptomics data are more 
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difficult to interpret with ground-truth classes since much fewer scRNA-seq markers can be easily 
interpreted for population identification. Therefore, we utilized both single gene classification and 
classification through the Louvain algorithm clustering using the Scanpy Python package 17 to 
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annotate the data. While opt-SNE and t-SNE both capture the macro-structure illustrated by gene 
overlays, several Louvain clusters (3, 18, 19, 25, 28) appear partially or completely overlapped by 
other clusters in standard t-SNE but not in the opt-SNE embedding. Therefore, opt-SNE allowed 
equivalent or superior resolution of single cell transcriptomics data as with standard t-SNE but with 
~5x smaller iteration time (885 iterations of opt-SNE vs 4000 iterations of standard t-SNE).  

HSNE (hierarchical SNE) is a t-SNE adaptation that was recently reported to facilitate analysis 
of large datasets by constructing a hierarchy of embeddings that can be explored from the overview 
of ‘landmark’ populations up to a single-cell level or resolution 7. We applied opt-SNE to the 5.2 
million point dataset that was reported in HSNE analysis of mass cytometry data, and compared 
opt-SNE visualization to the full resolution level of HSNE embedding (Fig. 6G, Suppl. Fig. 3). In 
the CD4+ subset, opt-SNE visualization revealed two groups of CD4+CD28- cells likely 
representing terminally differentiated memory CD4+ T cells 25 with different levels of CCR7 
expression that may reflect distinct differentiation states of the two populations. While HSNE 
allowed identification of CD4+CD28-CCR7- cells, it was unable to visualize CD4+CD28-CCR7+ 
cells as a single cluster and projected these cells sparsely in the CD4+ island (Fig.6I, left). Also, 
both algorithms projected heterogenous expression of CD56 in CD4+CD28-CCR7- cells, but 
HSNE embedding did not resolve separate CD56+ and CD56- clusters within CD4+CD28-CCR7- 
cells, loosely mapping them to the poles of the single round cluster (Fig. 6I, right). On the contrary, 
opt-SNE embedding visualized both the CD56+ and CD56- clusters and disparate CD45RA 
expression within each cluster, revealing distinct phenotypes for the control and diseased subject 
groups (Fig. 6H). Also, opt-SNE demonstrated that the CD56+CD45RA- cells in the cluster 
originate from several subjects with Crohn’s disease (Fig. 6H). In summary, these results confirm 
that opt-SNE embedding provides superior visualization quality for complex cytometry data.  

 
Discussion  
 
Visual exploration of data drives hypothesis formation and/or serendipitous discoveries; 

therefore, t-SNE is an extremely valuable tool for data comprehension. It is often used to facilitate 
data perception when hypothesis generation is automated by robust computational methods 8,26. 
Comparison of t-SNE embeddings from multiple experimental conditions, timepoints, or subjects 
is invaluable to visualize sample-to-sample differences including disease hallmarks and 
longitudinal observations 27. t-SNE is also valuable for quality assessment of data, when abnormal 
clustering could be traced back to sample preparation, data acquisition and preprocessing artifacts 
28. Therefore, batch embedding of multiple experimental points is essential for sample comparison 
and can only be enabled when t-SNE accommodates large datasets.  

t-SNE was first introduced in cytometry research as a tool to visualize CyTOF data, since 
fluorescence-based high-parameter datasets were less common at that time. With recent advances 
in instrumentation and reagent availability, flow cytometry datasets with >20 parameters are 
quickly becoming prevalent and even standard in the field29-31, yet the proper data assessment tools 
are lacking for general use. DNA-barcoded antibodies have been recently utilized to allow 
simultaneous protein-epitope and transcriptome measurements in single cells 32 thus expanding the 
repertoire of traditional cytometry methods that could employ t-SNE as a staple method of data 
visualization and presentation.  
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One approach to large dataset t-SNE embedding is to model visualization with a subset of 
datapoints curated 7,33 or randomly selected (as implemented in cytometry data analysis platforms 
such as FCS Express and Gemstone) from the nearest neighbor graph. Such techniques may fail to 
project extremely rare datapoints, as demonstrated by CD4+CD28-CCR7+ cells that were 
identified with opt-SNE, but not HSNE in van Unen et al dataset (Fig. 6). This T cell subset was 
significantly less abundant in subjects with severe inflammatory conditions including Crohn’s 
disease as compared to controls (Suppl. Fig. 3), marking this population as extremely rare. On the 
other hand, the CD4+CD28-CCR7-, while also low in frequency in most PBMC samples (<1% of 
all CD4+ cells), was likely successfully clustered by HSNE because two of the 11 Crohn disease 
subjects in the dataset showed an unusually high frequency of this population (40.7% and 31.0% 
of all CD4+ cells), allowing it to be well represented in the kNN graph of the full dataset.  

Several attempts to successfully apply t-SNE-like methods to massive datasets have been 
recently reported including aforenoted HSNE 7,33,34, LargeVis 10 and net-SNE 35. However, these 
improved methods, when applied to large datasets, often require/benefit from considerable 
computational resources; for instance, the LargeVis study was performed on a 512Gb RAM, 32 
core station. However, routine data analysis in a typical research laboratory should be possible with 
less available resources. We have not explicitly focused on computational efficiency in this work 
since we benchmarked the algorithm against itself with no specific emphasis on shortening 
computation time, which occurred due to the fewer number of iterations required to complete the 
data embedding with our adjustments. However, we have addressed several aspects of computation 
efficiency. For public use, we released an opt-SNE modification of multicore t-SNE C++ 
implementation (See Data and Software Availability) since the original Barnes-Hut t-SNE does not 
employ multi-threading. FIt-SNE, a recently published alternative to Barnes-Hut t-SNE that uses 
fast Fourier transform for much faster computation of repulsive forces approximation 20, renders 
opt-SNE even more feasible on personal computers; when we combined our automated opt-SNE 
setup with FIt-SNE approximation in the van Unen dataset analysis (Fig. 6G-H), it was completed 
in about two hours on a 16Gb RAM personal notebook with 2 cores. Notably, we have not observed 
differences in embedding quality between embeddings generated with fast Fourier transform versus 
Barnes-Hut approximations when opt-SNE was used to control the visualization (Suppl.Fig.4 and 
data not shown). All other analyses performed in this manuscript were performed using Barnes-
Hut approximation on personal computers with the exception of the 20M embedding that required 
~60Gb RAM at its peak and was run for several days on a multicore workstation using SeqGeq 
implementation of opt-SNE. Therefore, we expect opt-SNE to be applicable for existing or future 
adaptations of t-SNE even if alternative methods of computation are utilized 20,36 provided that they 
retain the core principles of t-SNE embedding. A promising approach that may be integrated with 
opt-SNE is the smart EE adjustment implemented in A-tSNE (approximated t-SNE)34 algorithm 
where EE is removed gradually and on a per-point basis. Cytosplore, a novel software platform that 
includes HSNE and A-tSNE, allows the analyst to interactively initiate the local refinement of the 
map, resulting a significant improvement in computation time7. 

Similar to other types of biological data, the structure of cytometry data is difficult to project 
due to its mixed nature, often comprised of cluster-like, manifold-like and/or hierarchical 
components 28,37. In this paper we propose multiple techniques that are essential for optimal t-SNE 
data projection and are all germane to the fine-tuning of the early exaggeration stage of t-SNE 
embedding. EE facilitates cluster formation on a 2D plane 1 and serves as a necessary compromise 
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that allows clusters to escape the crowding effect. We designed an efficient measure to ensure that 
the cluster-like global structure of the data is fully revealed during the EE stage by monitoring the 
KLD output of the embedding in real time. As indicated by the lower KLD values of opt-SNE 
embedding where EE was limited to fewer iterations (Fig. 5E), prolonged amplification of the 
attractive forces that drive tight cluster formation in EE may be detrimental for the manifold-like 
local data structure represented by signal distributions that are continuous with background signal. 
These ‘continuum expression’ molecules include the proteins used to define classic immune cell 
subsets, as well as those linked with activation and/or exhaustion and markers indicating disease 
phenotypes38. Conversely, the non-exaggerated stage of t-SNE allows local data structures to be 
revealed. 1. Therefore, cytometry data analysis would be missing valuable information if we limited 
t-SNE applicability to finding only well separated clusters, especially since other techniques would 
perform that task better and faster. However, some workflows call for t-SNE pre-processing to 
facilitate extraction of cluster features from multidimensional data 5,39. In those cases, it may be 
helpful to adapt the opt-SNE toolkit to terminate the embedding calculation immediately at the EE 
stop iteration and re-assess the high-dimensional structure within each cluster. Alternatively, a ‘late 
exaggeration approach’ 20 can be cautiously applied to create very tight clusters, although in our 
experience this approach was only marginally beneficial for global structure representation but 
detrimental for local structure (data not shown).  

It is advisable to note that certain data structures, such as cluster hierarchy, cannot be revealed 
with t-SNE 40,41. t-SNE accessibility in cytometry analysis software lead to its not infrequent misuse 
with cytometry data, evident when the cluster-like structure is not prominent in the map. Therefore, 
the features identified from t-SNE embedding in its current form should be verified with alternative 
methods when possible for confirmational purposes. Im et al also suggest that if a continuous 
manifold structure exists in the data, large perplexity values may cause artificial breaks 
(overclustering) 41. The perplexity values commonly used in cytometry analysis are on the lower 
end of the suggested range for efficient clustering, as it is often advised to scale the number of 
nearest neighbors to the average cluster size 42; however, if computationally feasible, higher 
perplexity values might facilitate feature preservation for markers whose expression is not 
bimodally distributed. 

In summary, we believe that opt-SNE is a powerful optimization toolkit that removes major 
limitations of t-SNE use for cytometric datasets and could thus potentiate novel data-driven 
findings in single cell research.  
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Data and software Availability 
All code including the open source multicore t-SNE C++ implementation, usage instructions, 
flow18parameters and mass41parameters datasets, and the cloud version of opt-SNE are available 
at http://www.omiq.ai/opt-SNE  (the C++ code with a Python wrapper is available from 
https://github.com/omiq-ai/Multicore-opt-SNE).  
Van Unen et al dataset is available at http://flowrepository.org/id/FR-FCM-ZYRM. 
10X Genomics 1.3M scRNA-seq dataset is available at https://support.10xgenomics.com/single-
cell-gene-expression/datasets 
 
To facilitate availability to flow cytometry and scRNA-seq data analysts, opt-SNE has been 
incorporated into FlowJo version ≥ 10.5.2 and SeqGeq version ≥ 1.4. At the time of this 
publication, this option was considered experimental and therefore hidden, but users can enable it 
by adding <DRPlatform showAutoLearning="1" /> to the FlowJo10.prefs (or 
SeqGeq.prefs) XML file. It will be fully integrated and available by default in future releases of 
FlowJo and SeqGeq. 
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Supplementary Figure 2. KLD and KLDRC graphs for opt-SNE embedding of flow20M dataset (A) and 10X Genomics 
1.3 million datapoints scRNA-seq dataset (B). 
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