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Abstract 
 

BACKGROUND: Vector control is the main intervention in malaria control and elimination 

strategies. However, the development of insecticide resistance is one of the major challenges 

for controlling malaria vectors. Anopheles arabiensis populations in Ethiopia showed 

resistance against both DDT and the pyrethroid deltamethrin. Although a L1014F target-site 

resistance mutation was present in the voltage gated sodium channel of investigated 

populations, the levels of resistance and biochemical studies indicated the presence of 

additional resistance mechanisms. In this study, we used genome-wide transcriptome profiling 

by RNAseq to assess differentially expressed genes between three deltamethrin and DDT 

resistant An. arabiensis field populations (Tolay, Asendabo, Chewaka) and two susceptible 

strains (Sekoru and Mozambique). 

 

RESULTS: Both RNAseq analysis and RT-qPCR showed that a glutathione-S-transferase, 

gstd3, and a cytochrome P450 monooxygenase, cyp6p4, were significantly overexpressed in 

the group of resistant populations compared to the susceptible strains, suggesting that the 

enzymes they encode play a key role in metabolic resistance against deltamethrin or DDT. 

Furthermore, a gene ontology enrichment analysis showed that expression changes of cuticle 

related genes were strongly associated with insecticide resistance, although this did not 

translate in increased thickness of the procuticle.  

 

CONCLUSION: Our transcriptome sequencing of deltamethrin/DDT resistant An. arabiensis 

populations from Ethiopia suggests non-target site resistance mechanisms and pave the way 

for further investigation of the role of cuticle composition in resistance. 

 

Keywords: 

Anopheles arabiensis, RNAseq, metabolic resistance, Ethiopia, pyrethroid, cuticular 

hydrocarbons 
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1. Introduction 1 

 2 
Vector control is the main intervention in malaria control and elimination strategies. 3 

Indoor residual spraying and insecticide-treated nets have made substantial contributions to 4 

the reduction of malaria incidence. 1, 2 However, the development of insecticide resistance in 5 

the major anopheline malaria vectors threatens the global effort to control malaria.3-5 Some 6 

Anopheles gambiae mosquito populations now show resistance to all insecticide classes and 7 

the strengths, and the impact of resistance is escalating every year.6 High levels of insecticide 8 

resistance have also been reported for An. arabiensis in many countries, including Ethiopia 7-9 
11, where we recently surveyed several populations across the country and showed that these 10 

An. arabiensis populations exhibited countrywide resistance against DDT and the pyrethroid 11 

deltamethrin.12  12 

 13 

Understanding the molecular mechanisms underlying resistance has the potential to 14 

aid developing of strategies to prevent and/or delay the spread of insecticide resistance in 15 

malaria vectors including An. arabiensis.13 Resistance mechanisms can be classified into two 16 

mechanisms. Alterations of the target-site, for example by point mutations, which reduce the 17 

susceptibility to pesticides, are known as toxicodynamic mechanisms. Increased 18 

detoxification, decreased penetration, sequestration or increased excretion of insecticides 19 

through qualitative or quantitative changes of enzymes/proteins are known as toxicokinetic 20 

mechanisms. 14, 15 Finally, behavioral mechanisms, such as avoidance of insecticide exposure, 21 

have been proposed as a third resistance mechanism, but up until now no conclusive evidence 22 

has been reported that supports this type of resistance mechanism. 16 23 

 24 

Several variants in the knockdown resistance (kdr) gene, encoding the voltage-gated 25 

sodium channel (VGSC), have been shown to be, or are associated with, pesticide resistance 26 

in malaria vectors. The VGSC is the target-site of pyrethroids and DDT. Pyrethroids are 27 

currently the main insecticide class used to control malaria vectors.3 Several mutations in the 28 

VGSC that confer pyrethroid resistance have been reported in Anopheles vectors. 17 These 29 

result in the substitution of leucine 1014 (TTA) to phenylalanine (TTT) (kdr L1014F) or to 30 

serine (TCA) (kdr L1014S). Additionally, a N1575Y mutation in VGSC was reported to have 31 

a synergistic effect with the L1014F mutation, and has so far has been observed in An. 32 

gambiae and An. coluzzi species 18, 19 , but not in An. arabiensis. A G119S mutation in the 33 

target-site of organophosphates and carbamates, acetyl-choline esterase 1 (AChE1), has been 34 
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described for resistant An. gambiae populations in West-Africa 20, 21, as well as more recently 35 

in An. arabiensis 22. Last, the GABA-gated chloride channel is known as the target of 36 

cyclodienes and resistance mutations (A301S, V332I and T350S) in the gene encoding this 37 

channel (resistance to dieldrin, rdl) were shown to confer cyclodiene resistance in anopheline 38 

populations. 23, 24  39 

 40 

In addition to target-site resistance, cytochrome P450 monooxygenases (P450s) are the 41 

most important enzyme family involved in toxicokinetic resistance mechanisms of insects to 42 

pyrethroids. 3, 17 In many resistant strains of Anopheles species, P450s have been shown to be 43 

overexpressed and able to metabolize pyrethroids25-28. For example, the P450s encoded by 44 

cyp6m2 and cyp6p3, the most widely over-expressed P450s in pyrethroid resistant field 45 

populations of An. gambiae, are both capable of metabolizing pyrethroids.25, 26, 28 In some 46 

cases, overexpressed P450s also confer resistance to insecticide classes other than 47 

pyrethroids. For example, An. gambiae CYP6M2 and CYP6P3 can metabolize the 48 

organochlorine DDT and the carbamate bendiocarb, respectively.29, 30 Further, the P450s 49 

CYP6P4 and CYP4G16 have been associated with pyrethroid resistance in An. arabiensis.31, 50 
32	 Ibrahim et al. 2016 showed that CYP6P4 plays a key role in pyrethroid resistance of An. 51 

arabiensis populations from Central Africa (Chad), and that it can metabolize the pyrethroids 52 

permethrin, bifenthrin and λ-cyhalothrin, but not deltamethrin.31 Another P450, CYP4G16, 53 

has been associated not with pyrethroid metabolism directly, but with the increased 54 

biosynthesis of epicuticular hydrocarbons that delay insecticide uptake.33 Notably, in addition 55 

to epicuticular hydrocarbon enrichment, compositional changes of the cuticle have also been 56 

associated with insecticide resistance and several genes have been associated with the 57 

phenomenon.34 Finally, glutathione-S-transferases (GSTs) are also important enzymes 58 

involved in toxicokinetic resistance mechanisms against pyrethroids.35-38 For example, 59 

Riveron et al. 2014, 2017, showed that allelic variation and higher transcription of GSTe2 60 

confers resistance against permethrin in an An. gambiae population of Benin.35, 36 However, 61 

the role of such GST-based quantitative and qualitative changes has not yet been investigated 62 

in pyrethroid resistant An. arabiensis. 63 

  64 

Recently, we surveyed several An. arabiensis populations from Ethiopia and showed 65 

that all these populations exhibited resistance against DDT and the pyrethroid deltamethrin.12 66 

The frequency of the target-site resistance mutation L1014F in the VGSC was high in some 67 

populations, but resistance levels suggested additional resistance mechanisms, as has been 68 
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observed in other Anopheles species.39-41 In contrast to An. gambiae, only few genome-wide 69 

gene expression studies have investigated insecticide resistance in An. arabiensis 70 

populations32, 42, 43, and none of them focused on Ethiopian populations. In this study, we 71 

performed genome-wide transcriptome profiling (RNAseq, Illumina platform) with three 72 

resistant populations and two reference susceptible An. arabiensis strains from Ethiopia and 73 

identified candidate genes and mechanisms for insecticide resistance in this important malaria 74 

vector. 75 

 76 

2. Materials and methods 77 

2.1. Mosquito populations 78 

An. arabiensis larvae were collected in the South-West part of Ethiopia from a range of 79 

breeding sites: Asendabo (ASN), Chewaka (CHW) and Tolay (TOL) (Figure S1). Larvae 80 

were reared to adults on site in rooms with standard conditions of 25 ± 2oC and a relative 81 

humidity of 80 ± 10% for all three respective sites. Larvae were fed with dog biscuits and 82 

brewery yeast whereas adults were provided a 10% sucrose solution soaked into cotton pads 83 
44. ASN, CHW and TOL were previously shown to be resistant against deltamethrin and DDT 84 
12. Two laboratory strains served as pesticide susceptible populations: an Ethiopian strain 85 

(Sekoru (SEK)), previously described in Alemayehu et al. 2017, and a strain from 86 

Mozambique (MOZ) previously described in Witzig et al. 2014.12, 45 Both laboratory strains 87 

were reared in a similar way as the three Ethiopian populations collected from the field. 88 

 89 

2.2. RNA extraction  90 

Batches of five 3-5-day-old, non-blood-fed An. arabiensis female mosquitoes from each 91 

population (ASN, CHW or TOL) or strain (SEK, MOZ) were preserved in RNAlater 92 

(Ambion, Thermo Fischer Scientific) in a 1.5ml Eppendorf tubes. In total, between eighty to 93 

hundred adult females were collected for each population/strain. All tubes were stored at -80 94 
oC. The field-collected samples were transported on dry ice to the laboratory of Agrozoology, 95 

Department of Plants and Crops (University of Ghent, Belgium). Total RNA was extracted 96 

from batches of ten female mosquitoes using the RNAqueous®-4PCR Total RNA isolation 97 

Kit (Ambion, Thermo Fischer Scientific). RNA was treated with DNase1 and DNase was 98 

inactivated according to the instructions for the RNAqueous®-4PCR Kit. Four biological 99 

replicates were included for each population or laboratory strain. Total RNA samples were 100 
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quantified with a DeNovix DS-11 spectrophotometer (DeNovix, USA) and visualized by 101 

running an aliquot on a 1% agarose gel.  102 

 103 

2.3. RNAseq library preparation and sequencing  104 

Illumina libraries were constructed with the TruSeq Stranded mRNA Library Preparation Kit 105 

with polyA selection (Illumina, USA), and the resulting libraries were sequenced on an 106 

Illumina HiSeq 2500 instrument to generate strand-specific, paired-end reads of length 125 bp 107 

(HiSeq SBS Kit v4 sequencing reagents). Library construction and sequencing was performed 108 

at the High-Throughput Genomics and Bioinformatic Analysis Shared Resource at Huntsman 109 

Cancer Institute (University of Utah, Salt Lake City, UT, USA). According to FastQC version 110 

0.11.446 no reads were tagged as poor quality. The RNAseq expression data generated during 111 

the current study are available in the Gene-Expression Omnibus (GEO) repository with 112 

accession number GSE121006 (reviewer token: qjkreseaxnwjluf).  113 

 114 

2.4. Differential expression and Gene Ontology (GO) enrichment analysis 115 

All reads were aligned to the nuclear genome47 and mitochondrial genome (GenBank 116 

accession: NC_028212) of An. arabiensis using HISAT248 and the following options “--max-117 

intronlen 75000 --rna-strandness RF --known-splicesite-infile splicesites.txt”. The 118 

“splicesites.txt” file was generated from the gene transfer format (GTF) files of the nuclear 119 

and mitochondrial genome of An. arabiensis using a script accompanying the HISAT2 120 

software (hisat2_extract_splice_sites.py). For the nuclear genome, the AaraD1.6 GTF 121 

annotation file was used (13830 genes of which 13452 are protein coding genes, released 25 122 

April 2017 at VectorBase49, https://www.vectorbase.org/organisms/anopheles-123 

arabiensis/dongola/aarad16); for the mitochondrial genome a GTF file was generated from the 124 

GenBank file (NC_028212.1) using the bp_genbank2gff3.pl and gffread script included in the 125 

BioPerl (http://bioperl.org/) and Cufflinks package50, respectively (see File S1 for the An. 126 

arabiensis GTF used for mapping). Resulting BAM files were subsequently sorted by read 127 

name using SAMtools version 1.5.51 Next, read counts per gene were obtained using the 128 

htseq-count script included in the HTSeq package, version 0.9.052, with the following settings 129 

“-i gene_id -t exon -f bam -s reverse.”. Differential gene expression (DE) analyses were 130 

performed using DESeq2 (version 1.12.2).53 Differentially expressed genes (DEGs), as 131 

assessed with a fold change (FC) ≥ 2 and Benjamini-Hochberg adjusted p-value (FDR) < 132 

0.05, were determined between each resistant population and each susceptible strain (six 133 

comparisons in total: ASN vs. MOZ, ASN vs. SEK, CHW vs. MOZ, CHW vs. SEK, TOL vs. 134 
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MOZ and TOL vs. SEK, Figure 2). For the DESeq2 output of all comparisons, a GO 135 

enrichment analysis was performed using the Bioconductor package GOSeq (version 1.24.0) 136 

with FDR = 0.05. The GOSeq package takes into account gene selection bias due to 137 

differences in gene (median transcript) length. GO terms for An. arabiensis nuclear genes 138 

were downloaded from VectorBase (https://www.vectorbase.org/)49 using BioMart, while the 139 

GO terms for An. arabiensis mitochondrial genes were identified using InterProScan version 140 

version 5.25-64.0, available at the EMBL-EBI website 141 

(https://www.ebi.ac.uk/interpro/interproscan.html). 142 

  143 

2.5. Principal component analysis and gene expression heatmap 144 

A Principal Component Analysis (PCA) was performed as described by Love et al. 2015.54 145 

Briefly, read counts were first normalized using the regularized-logarithm (rlog) 146 

transformation implemented in the DESeq2 (version 1.12.2) R-package. A PCA was then 147 

performed using the stats (version 3.3.0), ggbiplot (version 0.55) and ggplot2 (version 2.2.0) 148 

R-packages with the 1000 most variable genes across all RNAseq samples and the ggbiplot 149 

argument ellipse.prob set to 0.95. Gene expression patterns of cuticle related genes were 150 

visualized with heatmaps generated with the relative transcript levels (fold changes) of four 151 

DE analyses (ASN vs. SEK, CHW vs. SEK, TOL vs. SEK and MOZ vs. SEK) with the limma 152 

(version 3.28.21) and gplots (version 3.0.1) packages in the R environment. Cuticle related 153 

genes were selected based on the following InterPro domains: IPR000618 (Insect cuticle 154 

protein), IPR031311 (Chitin-binding type R&R consensus), IPR002557 (Chitin binding 155 

domain), IPR004302 (Cellulose/chitin-binding protein, N-terminal), IPR004835 (Chitin 156 

synthase), IPR031874 (Adult cuticle protein 1) and IPR22727 (Pupal cuticle protein C1). 157 

 158 

2.6. RT-qPCR validation 159 

A subset of An. arabiensis DEGs was selected for RT-qPCR validation. Gene specific RT-160 

qPCR primers were designed using Primer3 v.4.1.0.55 All primer sequences can be found in 161 

Table S1. Total RNA was extracted as described above and cDNA was synthesized with the 162 

Maxima First Strand cDNA synthesis for RT-qPCR kit (Fermentas Life Sciences, Aalst, 163 

Belgium) starting with 2 µg of total RNA as template. Three biological and two technical 164 

replicates were included for each population as well as non-template controls to exclude 165 

sample contamination. The RT-qPCR analysis was performed on a Mx3005P qPCR thermal 166 

cycler (Stratagene, Agilent Technologies, Diegem, Belgium) with Maxima SYBR Green 167 

qPCR Master Mix (2x) and ROX solution (Fermentas Life Sciences) according to the 168 
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manufacturer’s instructions. qPCR run conditions were: 95°C for 10 m followed by 35 cycles 169 

of 95 °C for 15 s, 55 °C for 30 s and 72 °C for 30 s. At the end, a melting curve was generated 170 

from 65 °C to 95 °C, 1 °C per 2 s to check for the presence of a single amplicon. Fourfold 171 

dilution series of pooled cDNA were used to determine the standard curves and amplification 172 

efficiencies for every gene-specific primer pair. Relative expression levels and significant 173 

gene expression differences (one-sided unpaired t-test) were calculated with qbase+ version 174 

3.0.56  175 

 176 

2.7. Analysis of mutations involved in insecticide resistance 177 

The presence of mutations involved in Anopheles sp. resistance against either DDT, 178 

pyrethroids, cyclodienes or organophosphates (I114T and L119F in gste2 (AARA008732)36, 179 
40, L1014C/F/S/W and N1575Y in vgsc (AARA016386) (Musca domestica numbering17, 19, 180 
57), A301S, V332I and T350S in rdl (AARA016354) (Drosophila melanogaster numbering24, 181 
58) and G119S in AChE1 (AARA010659) (Torpedo californica numbering20, 22)) was 182 

investigated by creating a Variant Call Format (VCF) file from the BAM files employed for 183 

analyzing differential gene expression (see above). The BAM files were used as input for 184 

SAMtools version 1.4.151 with the following settings “mpileup -uf --output-tags “AD,DP”. 185 

Subsequently, the SAMtools output was used as input for BCFtools 1.5.151 with the following 186 

settings “call -vc”. The effect of single nucleotide polymorphism (SNPs) and small indels on 187 

coding sequences in genomic regions were predicted using SNPeff v. 4.3t59 with a custom-188 

built An. arabiensis coding sequence database (AaraD1.6 annotation for the A. arabiensis 189 

nuclear genome and NC_028212.1 for the mitochondrial genome) available at VectorBase49. 190 

Mutation frequencies in target-site genes were calculated based on the frequencies of the 191 

reference (“REF”) and alternative (“ALT”) alleles in the allelic depth (“AD”) tag in the 192 

SAMtools output.  193 

2.8. Cuticle measurements with transmission electron microscopy 194 

The cuticle thickness of mosquito legs from the ASN population and the SEK strain was 195 

measured by transmission electron microscopy (TEM), as previously described.33 Only the 196 

procuticle thickness was measured as the epicuticle layer was abraded in more than 95% of 197 

sections during the multiple hexane washes. Only individuals with similar wing size were 198 

selected and further analyzed by TEM. Ultra-thin gold sections of the femur leg segment were 199 

taken from female mosquitoes and observed under a high-resolution JEM 2-100 transmission 200 

electron microscope (JEOL) at an operating voltage of 80 kV. Raw TEM images were analyzed 201 
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in Image J version 1.52e.60 Femur leg sections were taken from five random mosquitoes of each 202 

populations/strain. In total, 25 and 32 sections were measured for SEK and ASN, respectively. 203 

A Mann-Whitney U test (R-framework) was used to test for a significant difference in the 204 

thickness of the leg procuticle. 205 

 206 
 207 
3. Results 208 

 209 
3.1. RNA sequencing 210 

Illumina sequencing generated ~ 95-110 million strand-specific, paired-end reads per sample. 211 

Alignment of RNAseq reads against the An. arabiensis annotation resulted in an overall 212 

percent alignment rate of 89.2±0.7 (mean ± standard error of the mean, SE) across all samples 213 

(Table S2).  214 

 215 

3.2. Principal Component Analysis (PCA) 216 

A PCA using the 1000 most variable genes across all RNAseq samples revealed that 34.7 % 217 

of the total variation could be explained by PC1 while 32.8 % could be explained by PC2 218 

(Figure 1). RNAseq replicates clustered by population/strain, either on PC1 (SEK) or both 219 

PC1 and PC2 (ASN, CHW, MOZ and TOL). RNAseq replicates of two resistant An. 220 

arabiensis populations, ASN and TOL, clustered together and away from those of the two 221 

susceptible strains (SEK and MOZ) while RNAseq replicates of the third resistant population, 222 

CHW, clustered between RNAseq replicates of ASN/TOL populations and RNAseq replicates 223 

of the susceptible SEK strain. 224 

 225 

3.3. Differential gene expression analysis 226 

We used DESeq2 to perform a differential gene expression (DE) analysis ((foldchange (FC) ≥ 227 

2 and a FDR < 0.05) between each resistant An. arabiensis population (ASN, CHW or TOL) 228 

and each of the susceptible An. arabiensis strains (SEK or MOZ). 496, 152 and 602 genes 229 

were overexpressed by two-fold or more, while 286, 109 and 197 An. arabiensis genes were 230 

underexpressed by twofold or more in ASN, CHW and TOL compared to the susceptible 231 

strain SEK, respectively. 936, 460 and 814 genes were overexpressed by twofold or more, 232 

while 798, 576 and 654 genes were underexpressed by twofold or more in ASN, CHW and 233 

TOL compared to the susceptible strain MOZ, respectively (Figure 2, Table S3). Not 234 

surprisingly, the total number of DEGs was lower for the DE analyses between one of the 235 
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resistant populations (ASN, CHW and TOL) and a susceptible strain from the same country 236 

of origin (SEK, Ethiopia) compared to DE analyses using a susceptible strain from a different 237 

country of origin (MOZ, Mozambique). Inspecting the overlap of DEGs between the two DE 238 

analyses (against either SEK or MOZ) performed for each resistant population revealed that 239 

303, 66 and 337 genes were overexpressed and 48, 14 and 29 genes were underexpressed in 240 

ASN, CHW or TOL compared to both SEK and MOZ, respectively. Furthermore, thirty-eight 241 

and four DEGs (hereafter named “core” DEGs) were over- and underexpressed, respectively, 242 

in each resistant population and for each comparison (Figure 2, Figure 3). The 38 243 

overexpressed “core” DEGs coded for 14 uncharacterized proteins, 13 cuticle related proteins 244 

(either with an “insect cuticle protein” domain (IPR000618), a “chitin binding” domain 245 

(IPR002557) or defined as a “cuticle protein” by VectorBase), 2 nicotinic Acetylcholine 246 

Receptor subunits (nAChRs), Yellow-e, chitin synthase, GSTD3, a protein with a protein 247 

kinase domain (IPR011009), a nuclear-pore complex protein, a pyroglutamyl-peptidase, a 248 

thioester containing protein (tep1), a serine-type endopeptidase and a vitamin K-dependent 249 

protein C-like. The four underexpressed “core” DEGS coded for an uncharacterized protein, a 250 

protein (FBN8) with a fibrinogen domain (InterPro domain IPR002181), a G-protein coupled 251 

receptor (GPCR) and a dynein assembly factor. Of particular note, in line with the PCA in 252 

which the replicates of the resistant CHW population clustered most closely to those of the 253 

SEK strain, the CHW population had the lowest number of DEGs (against either SEK or 254 

MOZ) and almost all “core” DEGs (34/38) had a lower fold change in the CHW comparisons 255 

then in ASN or TOL comparisons (Figure 3). Finally, the fold changes of a selection of DEGs 256 

determined by DE analysis was shown to be consistent with those obtained by RT-qPCR 257 

(Figure 4, Figure S2). 258 

 259 
3.4. GO enrichment analysis 260 

A Gene Ontology (GO) enrichment was performed for each DE analysis using GOseq. A list 261 

of over- and underrepresented GOs for each comparison (six in total) can be found in Table 262 

S4. Those GO Molecular Function terms that were significantly overrepresented in both 263 

comparisons of a resistant population (against SEK or MOZ) are shown in Figure 5. For at 264 

least five out of 6 comparisons the GO-terms “structural component of the cuticula” 265 

(GO:0042302), “chitin-binding” (GO:0008061), “serine type endopeptidase” (GO:0004252) 266 

and “heme” (GO:0020037) were significantly overrepresented, while “oxidoreductase 267 

activity” (GO:0016705), “monooxygenase activity” (GO:0004497) and “iron ion binding” 268 

(GO:0005506) were overrepresented in at least one DE analysis of a resistant population. The 269 
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GO enrichment results are also reflected in an expression heatmap of cuticle related genes, 270 

with clear expression pattern differences between the comparison of resistant populations 271 

against SEK and the comparison of MOZ against SEK (Figure S3). 272 

 273 

3.5. Gene expression levels of P450s and GSTs in deltamethrin/DDT resistant An. 274 

arabiensis populations 275 

All significantly overexpressed genes (FDR < 0.05, Table S3) were mined for members of 276 

detoxification gene families known to be involved in metabolic resistance against pyrethroids 277 

(P450s and GSTs, see Introduction). Only gstd3 was significantly overexpressed in each 278 

comparison of a resistant An. arabiensis population against one of the susceptible strains 279 

(SEK or MOZ) (Figure 3, Table S3). Next, we investigated the expression level of genes 280 

encoding Anopheles P450s and GSTs known to metabolize pyrethroids (CYP6M2, CYP6P3, 281 

CYP6P4 and GSTE225, 26, 31, 36). Cyp6m2, cyp6p3 and cyp6p4 were significantly 282 

overexpressed in all comparisons against MOZ (log2FC ranging from 2.2 to 3.6). Cyp6p4 was 283 

significantly overexpressed in the comparison of each resistant strain against SEK, cyp6p3 284 

was significantly overexpressed in the comparison of CHW against SEK (log2FC of 1.0) 285 

while cyp6m2 was not significantly overexpressed in any of the comparisons against SEK. 286 

Gste2 was significantly overexpressed in CHW against MOZ and in the comparisons of ASN 287 

and TOL against either SEK or MOZ (Table S3). A similar trend could be observed for the 288 

expression values obtained by RT-qPCR, with fold changes of cyp6m2, cyp6p3, cyp6p4 and 289 

gste2 being higher in the comparisons against MOZ compared to comparisons against SEK 290 

(Figure 4). Furthermore, we also evaluated the expression of cyp4g16, a gene encoding a 291 

P450 catalyzing epicuticular hydrocarbon biosynthesis. This gene was significantly 292 

overexpressed in all comparisons against MOZ and SEK. RT-qPCR data confirmed cyp4g16 293 

overexpression in the case of ASN or TOL versus SEK. Finally, both RNAseq data and RT-294 

qPCR data showed that cyp4c28, a P450 gene previously shown to be overexpressed in 295 

resistant Anopheles sp. 43, 61, was significantly overexpressed in all comparisons against SEK, 296 

but not against MOZ (Figure 4) 297 

 298 

3.6. Detection of mutations involved in insecticide resistance 299 

The RNAseq reads of all resistant populations and susceptible strains were mined for 300 

mutations involved in resistance against either DDT, pyrethroids, cyclodienes and 301 

organophosphates (Table S5). None of the known gste2 and AChE1 resistance mutations 302 

could be identified in the RNAseq reads of the populations/strains of this study. The L1014F 303 
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mutation in the vgsc (A2532T, codon change of TTA to TTT, in the coding sequence of 304 

AARA016386-RA) was identified in all resistant populations (ASN, CHW and TOL) and the 305 

susceptible SEK strain. Finally, the A301S mutation in Rdl (G886T, codon change of GCA to 306 

TCA, in the coding sequence of AARA016354-RA) was identified in two resistant 307 

populations (CHW and ASN) and in the susceptible SEK strain (Table S5). 308 

 309 

3.7. Procuticle thickness in mosquito legs 310 

The leg procuticle thicknesses of the deltamethrin/DDT resistant population (ASN) and the 311 

susceptible strain (SEK) were 2.40±0.12 µm and 2.41±0.06 µm (mean ± SE), respectively, 312 

and were not significantly different (p > 0.05) (Figure 6).  313 

 314 
4. Discussion 315 

An. arabiensis is one of the dominant vector species of malaria in sub-saharan Africa 316 

including Ethiopia62, where resistance of An. arabiensis against pyrethroids and DDT is 317 

widespread.10 In many Ethiopian An. arabiensis populations an association between the kdr 318 

mutation in the VGSC and resistance to pyrethroids and DDT resistance has been observed. 7, 319 
9, 10, 12 However, a number of studies have also pointed to increased detoxification as 320 

important in resistant populations, as the resistance phenotype is strong, and because kdr 321 

mutations were not fixed at the population level.10, 12 Metabolic resistance has been observed 322 

in other pyrethroid and DDT resistant An. arabiensis populations from East-Africa, but the 323 

putative involvement of genes encoding detoxification enzymes associated with metabolic 324 

resistance was only investigated for populations from Tanzania and Sudan using a whole-325 

genome microarray.32, 42, 43 In this study, we expand our previous work on resistance 326 

monitoring of Ethiopian An. arabiensis populations12 and used Illumina sequencing to 327 

quantify gene expression levels in deltamethrin and DDT resistant An. arabiensis populations 328 

from three different sites in Ethiopia - Asendabo (ASN), Chewaka (CHW) and Tolay (TOL) 329 

and in two deltamethrin and DDT susceptible laboratory strains, MOZ and SEK (Figure 2).  330 

 331 

First, we mined Illumina RNAseq data to assess the prevalence of mutations 332 

previously associated with insecticide resistance in Anopheles species. We also estimated the 333 

frequency of these mutations, but as both gene expression and allele-specific gene expression 334 

can significantly influence the accuracy of allele frequency estimation41, 63 we did not 335 

integrate these results into the discussion section of this study. None of the populations 336 
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harbored mutations in the gste2 gene nor in the AChE1 gene, but in both ASN, CHW and 337 

SEK an A301S mutation in the Rdl gene, associated with resistance against cyclodienes, 338 

could be identified (Table S5, see also Introduction). The presence of the A301S mutation 339 

most likely reflects the long historical use of cyclodienes in malaria vector control.64 In 340 

addition, although Ethiopia banned cyclodienes in 200465, cyclodienes such as endosulfan and 341 

chlordane are still detectable in environmental samples from some regions of Ethiopia.66, 67 In 342 

line with Alemayehu et al. 2017, all three resistant populations (ASN, CHW and TOL) harbor 343 

the kdr mutation L1014F while the N1575Y mutation was absent.12 We also identified the 344 

L1014F mutation in the deltamethrin and DDT susceptible SEK strain (Table S5).  345 

 346 

Because target site mutations are unlikely to fully explain high-level resistance in 347 

Ethiopian populations (10, 12 and see above), we performed a differential gene expression 348 

analysis between each deltamethrin and DDT resistant An. arabiensis population (ASN, CHW 349 

or TOL) and both susceptible strains (SEK or MOZ) (Figure 2). The differential expression 350 

was more pronounced, both in number of DEGs and in magnitude of differential expression, 351 

for the comparison of the Ethiopian resistant populations against MOZ (Figure 2, Table S3). 352 

This might reflect genetic (and expression) variation by distance, as the MOZ strain 353 

originated from Mozambique, while SEK is a strain from Ethiopian. Consistent with a role in 354 

resistance, we found that members of detoxification gene families known to be involved in 355 

metabolic resistance of anopheline mosquitoes against pyrethroids and/or DDT varied in 356 

expression in our study. According to the RNAseq and/or RT-qPCR data, cyp6p4 was 357 

significantly overexpressed in the resistant strains (ASN, CHW or TOL) compared to any of 358 

the susceptible strains (MOZ or SEK) (Figure 4, Table S3). Recently, it has been shown that 359 

CYP6P4 is the major P450 responsible for pyrethroid resistance in a kdr-free population 360 

of An. arabiensis from Chad. However, although it was shown that this P450 could 361 

metabolize several Type I and Type II pyrethroids, it could only bind to deltamethrin and not 362 

metabolize this compound. 31 Thus, the overexpression of cyp6p4 in ASN, CHW and TOL 363 

might be related to resistance against pyrethroids other than deltamethrin. It remains to be 364 

tested whether resistance to such pyrethroids (e.g., permethrin and lambda-cyhalothrin) is 365 

present in these Ethiopian populations.12 Only in CHW, cyp6p3 and cyp6m2 were 366 

significantly overexpressed as compared to both susceptible strains (Figure 4, Table S3). 367 

Previously, An. gambiae CYP6P3 and CYP6M2 were shown to metabolize deltamethrin 368 

and/or DDT, and hence the overexpression of their orthologue in CHW might contribute to 369 

metabolic resistance against these insecticides. 25, 26, 29 In 2014, Riveron et al.  showed that 370 
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An. funestus GSTE2 was able to metabolize DDT. For both ASN and TOL, gste2 was 371 

significantly overexpressed compared to both susceptible strains, suggesting this enzyme 372 

might also play a role in metabolic DDT resistance in Ethiopian An. arabiensis populations. 373 

Last, gstd3 was significantly overexpressed for each comparison of a resistant population 374 

against a susceptible strain (Figure 3, Table S3). Gstd3 overexpression has been reported for 375 

several pyrethroid and DDT resistant Anopheles populations35, 68, 69, but at present the role of 376 

delta class GSTs is thought to be minor compared to those of the epsilon class (e.g., GSTE2, 377 

see above) and functional validation of the interaction between GSTD3 and 378 

DDT/deltamethrin is needed to understand the contribution of this GST towards 379 

DDT/deltamethrin resistance.68 380 

 381 

Including gstd3, 41 genes belonged to the “core DEGs” set that were differentially 382 

expressed in each resistant population and for each comparison (against SEK or MOZ). 383 

Thirteen (32%) of these 41 genes encode cuticular proteins that are overexpressed, while 384 

others encode chitin synthase, yellow-e protein, serine-type endopeptidase, uncharacterized 385 

proteins and two nicotinic acetyl-choline receptors (AChRs) beta subunits (Figure 3). It has 386 

been shown that pyrethroids exert (secondary) non-specific inhibitory effects on nicotinic 387 

AChRs70 and as such their upregulation in the resistant An. arabiensis strains might be a way 388 

to compensate for non-specific nAChR inhibition. To complement our set of “core DEGs”, 389 

we also performed a GO analysis for each DE comparison (Figure 5). In agreement with the 390 

expression analysis of the major detoxification genes involved in deltamethrin/DDT 391 

resistance (see above), GO-terms related to P450 activity were significantly enriched in at 392 

least one of the different DEG sets. In addition, also in line with our set of “core DEGs”, three 393 

GO-terms related to changes in the cuticula were significantly enriched in nearly every DEG 394 

set (Figure 5). This is also reflected in a heatmap of expression changes of cuticle related 395 

genes in deltamethrin/DDT resistant populations ASN, CHW and TOL, as shown in Figure 396 

S3. Higher expression of cuticular genes has previously been reported for pyrethroid resistant 397 

mosquito populations32, 71-75 and in some cases was associated with a thicker cuticula.73, 74 398 

Further, some of these Anopheles cuticular genes were also shown to be expressed in the 399 

limbs, the most frequent site of contact with insecticides.76 Apart from genes encoding 400 

cuticular proteins, cyp4g16, which encodes a P450 that catalyzes epicuticular hydrocarbon 401 

biosynthesis, has also been reported to be frequently overexpressed in insecticide 402 

resistant Anopheles mosquitoes, including An. arabiensis32-34, 42, 73, 77. This has led to the 403 
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suggestion that CYP4G16 plays a role in insecticide resistance via enrichment of the cuticular 404 

hydrocarbon (CHC) content.33  405 

 406 

According to our differential expression analysis (RNAseq and/or RT-qPCR data, see 407 

Figure 4 and Table S3), cyp4g16 was overexpressed as compared to both susceptible strains 408 

in the ASN and TOL populations. Both mechanisms (a greater cuticle thickness by cuticle 409 

protein overexpression or CHC enrichment of the epicuticle) might reduce the penetration rate 410 

of insecticide and may enhance resistance by increasing the time available for metabolic 411 

processes to inactivate the insecticide before it causes target-site inhibition. We therefore 412 

measured the thickness of the procuticle (comprising an exo-, meso- and endocuticle)78 of a 413 

representative resistant population (ASN) and a susceptible strain (SEK). In contrast to 414 

Yahouédo et al. (2017), who found that the procuticle of a resistant An. gambiae strain was 415 

thicker than that of a susceptible strain73, we did not detect a statistical difference between the 416 

average leg procuticle thickness of the resistant population and susceptible strain of this study 417 

(Figure 6). However, in Balabanidou et al. 2016 the epicuticle, layered on top of the 418 

procuticle, was the main contributor to differences in cuticle thickness between pyrethroid 419 

resistant and susceptible populations.33 Unfortunately, we were not able to measure epicuticle 420 

thickness in this study as the epicuticle was not preserved in the majority (> 95%) of the An. 421 

arabiensis leg sections. Alternatively, it could be that the epicuticle of the resistant Ethiopian 422 

An. arabiensis populations has a higher CHC content compared to those of the susceptible 423 

strains, and hence determining CHC levels in both resistant populations and susceptible 424 

strains merits further investigation. On the other hand, in contrast to altered thickness or CHC 425 

levels, it could be that a change in composition of the cuticle is associated with 426 

deltamethrin/DDT resistance, as reviewed by Balabanidou et al.34 For example, a gene 427 

encoding a laccase with a key-role in sclerotization was overexpressed in a resistant Culex 428 

population.79 Strikingly, in our study, the gene yellow-e was overexpressed in each 429 

comparison of a resistant population to each of the susceptible strains (Figure 3). In Tribolium 430 

castaneum, YELLOW-E was shown to have an important role in cuticle 431 

pigmentation/tanning80 and, hence, its overexpression in An. arabiensis populations might 432 

lead to an altered cuticle, possibly reducing the penetration rate of deltamethrin or DDT. 433 

Future work should study the role of cuticle composition as a potential resistance factor in 434 

Ethiopian populations of An. arabiensis. 435 

 436 

 437 
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Figure 1 - PCA analysis of gene expression among insecticide resistant and susceptible populations or 
strains. Three Ethiopian deltamethrin/DDT resistant populations (ASN, CHW and TOL) and two susceptible strains (SEK and MOZ) of An. 
arabiensis are as indicated.  
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Figure 2 - Experimental design and DEGs between three Ethiopian deltamethrin/DDT resistant populations 
and two susceptible strains of An. arabiensis.  
Differential gene expression was assessed between each resistant population (ASN, CHW or TOL) and each susceptible strain (SEK or MOZ) 
(FDR of 0.05, |log2 FC change| ≥ 1). Genes differentially expressed in each comparison of a deltamethrin/DDT resistant population against a 
suscepible strain are referred to as ’core’ differentially expressed genes (‘core’ DEGs). For a list of all DEGs for each comparison, see Table 
S3. 
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Figure 3 - Identity of An. arabiensis ‘core’ DEGs and their fold change between Ethiopian 
deltamethrin/DDT resistant populations (ASN, CHW or TOL) and two susceptible strains (SEK or MOZ).  
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Figure 4 - Expression levels of GST and P450 genes in Ethiopian deltamethrin/DDT resistant populations 
(ASN, CHW or TOL) compared to two susceptible strains (SEK or MOZ) of An. arabiensis. An asterisk indicates 
whether a P450 or GST gene is significantly overexpressed, either based on RNAseq (FDR of 0.05, Table S3) or RT-qPCR data (student's 
unpaired t-test p-value < 0.05). 
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Figure 5 - GO enrichment analysis of DEGs in three Ethiopian deltamethrin/DDT resistant populations 
(ASN, CHW or TOL) compared to two susceptible strains (SEK or MOZ) of An. arabiensis. Heatmap showing 
the FDR of GO categories among DEGs of each comparison of a resistant population against a susceptible strain. A grey colored cell indicates 
that the GO category was not significantly enriched (FDR ≥ 0.05) for a given comparison. Only GO Molecular Function terms that were 
significantly overrepresented in both comparisons of a resistant population against SEK and MOZ are shown. 

 
 
 
 
 
 
 
 
 
 
 
 

&+
:�
YV�
02
=

&+
:�
YV�
6(
.

72
/�Y
V�0
2=

72
/�Y
V�6
(.

$6
1�Y
V�0
2=

$6
1�Y
V�6
(.

LURQ�LRQ�ELQGLQJ

HQGRSHSWLGDVH�LQKLELWRU�DFWLYLW\

PRQRR[\JHQDVH�DFWLYLW\

R[LGRUHGXFWDVH�DFWLYLW\�

KHPH�ELQGLQJ

VHULQHíW\SH�HQGRSHSWLGDVH�DFWLYLW\

FKLWLQ�ELQGLQJ

VWUXFWXUDO�FRQVWLWXHQW�RI�FXWLFOH

íORJ���DGMS�� ��í� íORJ���DGMS�� ��í�
íORJ���DGMS�� ��í� íORJ���DGMS�� ��í�� íORJ���DGMS�� ���í��

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 24, 2018. ; https://doi.org/10.1101/451336doi: bioRxiv preprint 

https://doi.org/10.1101/451336
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6 - Leg procuticle thickness does not differ between a deltamethrin/DDT resistant population and a 
susceptible strain of An. arabiensis 
A: Representative image of a cross section of the femur leg segment (SEK strain). Only the procuticle (indicated by a double headed arrow) 
was measured as the epicuticle was not preserved during preparation of sections. B: Box plot showing the distribution of leg procuticle thickness 
measurements of the deltamethrin/DDT resistant population (ASN) and the deltamethrin/DDT susceptible strain (SEK). Outliers are 
represented as black circular dots. Distributions were compared using a Mann-Whitney U test.  
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 2 
Table S1. List of selected candidate genes for RT-qPCR validation and the used qPCR primer 3 

sequences. 4 

 5 

Table S2. Read statistics for RNAseq samples of Ethiopian deltamethrin/DDT resistant 6 

populations (ASN, CHW and TOL) and two susceptible strains (SEK and MOZ) of An. 7 

arabiensis.  8 

 9 

Table S3. Differentially expressed genes between Ethiopian deltamethrin/DDT resistant 10 

populations (ASN, CHW and TOL) and two susceptible strains (SEK and MOZ) of An. 11 

arabiensis. 12 

 13 

Table S4. GO enrichment analysis of differentially expressed genes between Ethiopian 14 

deltamethrin/DDT resistant populations (ASN, CHW and TOL) and two susceptible strains 15 

(SEK and MOZ) of An. arabiensis.  16 

 17 

Table S5. Ratio of resistance mutations in Ethiopian deltamethrin/DDT resistant populations 18 

(CHW, ASN and TOL) and two susceptible strains (SEK and MOZ) of An. arabiensis.  19 

 20 

Figure S1. Map of Ethiopia showing the collection sites of the three deltamethrin/DDT resistant 21 

An. arabiensis populations. 22 

 23 

Figure S2. RT-qPCR validation of differentially expressed genes between Ethiopian 24 

deltamethrin/DDT resistant populations (ASN, CHW and TOL) and two susceptible strains 25 

(SEK and MOZ). A tilde (~) indicates cuticle related genes. For a description of each gene see 26 

Table S1. 27 

 28 

Figure S3. Expression heatmap of cuticle related genes of An. arabiensis 29 

Cuticle related genes were defined as those genes coding for proteins with one of the following 30 

InterPro domains: IPR000618, IPR031311, IPR31874, IPR002557, IPR22727, IPR004302 or 31 

IPR004835. The log2 transformed gene fold changes of the Ethiopian deltamethrin/DDT 32 

resistant populations ASN, CHW, TOL and the susceptible strain MOZ from Mozambique are 33 

relative to the susceptible SEK strain from Ethiopia. Genes without expression values in all 34 
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four comparisons were excluded from the heatmap. Anopheles arabiensis gene IDs are shown 35 

on the right. 36 

 37 

File S1. Gene Transfer Format (GTF) used for mapping and counting of An. arabiensis RNAseq 38 

reads. 39 

 40 
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