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Abstract

How do people perceive and communicate structure? We investigate this question by

letting participants play a communication game, where one player describes a pattern,

and another player redraws it based on the description alone. We use this paradigm to

compare two models of pattern description, one compositional (complex structures built

out of simpler ones) and one non-compositional. We find that compositional patterns

are communicated more effectively than non-compositional patterns, that a

compositional model of pattern description predicts which patterns are harder to

describe, and that this model can be used to evaluate participants’ drawings, producing

human-like quality ratings. Our results suggest that natural language can tap into a

compositionally structured pattern description language.

Keywords: Communication games; Cultural transmission; Compositionality;

Function learning
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Communicating compositional patterns

Introduction

Humans see patterns everywhere, and eagerly communicate them to one another.

However, little is known formally about how we communicate patterns, what kinds of

patterns are easier or harder to communicate, and how we reconstruct patterns from

natural language. This paper seeks to bridge this gap by combining a pattern

communication game with a mathematical model of pattern description (Quiroga,

Schulz, Speekenbrink, & Harvey, 2018; Schulz, Tenenbaum, Duvenaud, Speekenbrink, &

Gershman, 2017).

Consider the graphs shown in Figure 1, which plot time series of CO2 emission,

airline passenger volume, search frequency for the term “gym membership.”

Experiments suggest that humans perceive these graphs as compositions of simpler

patterns, such as lines, oscillations, and smoothly changing curves (Quiroga et al., 2018;

Schulz, Tenenbaum, et al., 2017). For example, there is seasonal variation in passenger

volume (a periodic component with time-dependent amplitude), superimposed on a

linear increase over time.

As described in more detail in the next section, we can formalize this idea using a

pattern description language consisting of functional primitives and algebraic operations

that compose them together. By defining a probability distribution over this description

language, we can express an inductive bias for certain kinds of functions—in particular,

functions that can be described with a small number of compositions (Duvenaud, Lloyd,

Grosse, Tenenbaum, & Ghahramani, 2013; Lloyd, Duvenaud, Grosse, Tenenbaum, &

Ghahramani, 2014; Schulz, Tenenbaum, et al., 2017). In other words, the “mental”

description length of a function relates to the complexity of its encoding in the

compositional pattern description language.

Here we extend this idea one step further, asking whether there is a

correspondence between the pattern description language and natural language

descriptions of functions. We proceed in three steps. First, we ask participants to

describe functions sampled from compositional or non-compositional distributions.
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Figure 1 . (Colour online) Examples of compositional patterns.
Left: Monthly average atmospheric CO2 concentrations collected at the Mauna Loa
Observatory in Hawaii from 1960-2010. Center: Number of airline passengers from
1960-2010, originally collected by Box, Jenkins, Reinsel, and Ljung (2015). Right:
Google queries for “Gym membership” from 2002-2012 in the city of London.

Second, we asked a separate group of participants to redraw the original function using

only the description. Third, we ask another group of participants to rate how well each

drawing corresponds to the original. We hypothesized that compositional functions

would be easier to reconstruct compared to non-compositional functions, under the

assumption that the former allow for a mental description that can be more easily

encoded into natural language and decoded back into the function space.

A compositional pattern description language

Our model of pattern description is based on a Gaussian Process (GP) regression

approach to function learning (C. Rasmussen & Williams, 2006; Schulz, Speekenbrink,

& Krause, 2017). A GP is a collection of random variables, any finite subset of which is

jointly Gaussian. A GP defines a distribution over functions. Let f : X → R denote a

function over an input space X that maps to real-valued scalar outputs. This function

can be modeled as a random draw from a GP:

f ∼ GP(m, k). (1)
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The mean function m specifies the expected output of the function given input x, and

the kernel function k specifies the covariance between outputs.

m(x) = E[f(x)] (2)

k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] . (3)

We follow standard convention in assuming a prior mean of 0 (C. Rasmussen &

Williams, 2006).

All positive semi-definite kernels are closed under addition and multiplication,

allowing us to create richly structured and interpretable kernels from well-understood

base components. We use this property to construct a class of compositional kernels

(Duvenaud et al., 2013; Lloyd et al., 2014; Schulz, Tenenbaum, et al., 2017). To give

some intuition for this approach, consider again the C02 data in Figure ??. This

function is naturally decomposed into a sum of linearly increasing component and a

seasonally periodic component. The compositional kernel captures this structure by

summing a linear and periodic kernel.

Compositional GPs have been used to model complex time series data (Duvenaud

et al., 2013), as well as to generate automated natural language descriptions from data

(Lloyd et al., 2014), an approach coined the “automated statistician” (Ghahramani,

2015). Although it is frequently assumed that people will easily understand the

generated description of the “automated statistician”, it is not known whether

compositional patterns are indeed more communicable.

We follow the approach developed in Schulz, Tenenbaum, et al. (2017), using three

base kernels that define basic structural patterns: a linear kernel that can encode

trends, a radial basis function kernel that can encode smooth functions, and a periodic

kernel that can encode repeated patterns (see Tab. 1). These kernels can be combined

by either multiplying or adding them together. In previous research, we found that this

compositional grammar can account for participants’ behavior across a variety of

experimental paradigms, including pattern completions, change detection, and working
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memory tasks (Schulz, Tenenbaum, et al., 2017). We fix the maximum number of

combined kernels to be three and do not allow for repetition of kernels in order to

restrict the complexity of inference (see next section).

Table 1
Base kernels in the compositional grammar.

Name Definition

Linear k(x,x′) = (x− θ1)(x′ − θ1)

Radial basis k(x,x′) = θ2
2 exp

(
− (x−x′)2

2θ2
3

)
Periodic k(x,x′) = θ2

4 exp
(
− 2 sin2(π|x−x′|θ5)

θ2
6

)

We compare the compositional model to a non-compositional GP model based on

spectral mixture kernels. This model is derived from the fact that any stationary kernel

can be expressed as an integral using Bochner’s theorem. Letting τ = x− x′ ∈ RP , then

k(τ ) =
∫
RP
e2πis>τψ(ds). (4)

If ψ has a density S(s), then S is the spectral density of k; S and k are Fourier duals

(C. Rasmussen & Williams, 2006). Thus, a spectral density over the kernel space fully

defines the kernel. Furthermore, every stationary kernel can be expressed as a spectral

density. Wilson and Adams (2013) showed that the spectral density can be

approximated by a mixture of Q Gaussians, such that

k(τ ) =
Q∑
q=1

wq
P∏
p=1

exp
(
−2π2τ 2

pυ
p
q

)
cos

(
2πτpµ(p)

q

)
, (5)

where the qth component has mean vector µq =
(
µ(1)
q , . . . , µ(P )

q

)
and a covariance matrix

Mq = diag
(
υ(1)
q , . . . , υ(P )

q

)
. This model has comparable expressivity compared to the

compositional model, but does not encode structure explicitly. Wilson, Dann, Lucas,

and Xing (2015) have used this model to reverse-engineer “human kernels” in standard

function learning tasks.
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Modeling function learning

We model human pattern description using a Bayesian inference over functions

with a GP prior, an approach that has been successfully applied to a range of

experimental data (Griffiths, Lucas, Williams, & Kalish, 2009; Lucas, Griffiths,

Williams, & Kalish, 2015; Wu, Schulz, Speekenbrink, Nelson, & Meder, 2017). Given an

observed pattern D = {xn, yn}Nn=1, where yn ∼ N (f(xn), σ2) is a draw from the latent

function, the posterior predictive distribution for a new input x∗ is also normally

distributed, where

E[f(x∗)|D] = k>∗ (K + σ2I)−1y (6)

V[f(x∗)|D] = k(x∗,x∗)− k>? (K + σ2I)−1k∗, (7)

are the mean and variance respectively. The term y = [y1, . . . , yN ]>, K is the N ×N

matrix of covariances evaluated at each pair of observed inputs, and

k∗ = [k(x1,x∗), . . . , k(xN ,x∗)] is the covariance between each observed input and the

new input x∗.

We use a Bayesian model comparison approach to evaluate how well a particular

kernel captures the data, while accounting for model complexity. Assuming a uniform

prior over kernels, the posterior probability favoring a particular kernel is proportional

to the marginal likelihood of the data under that model. The log marginal likelihood for

a GP with hyper-parameters θ is given by:

log p(y|X, θ) := −1
2y
>(K + σ2

nI)−1y − 1
2 log |K + σ2

nI| −
n

2 log 2π. (8)

where the dependence of K on θ is left implicit. The hyper-parameters are chosen to

maximize the log-marginal likelihood, using gradient-based optimization

(C. E. Rasmussen & Nickisch, 2010).
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Generating patterns

We use the same patterns as in Schulz, Tenenbaum, et al. (2017). These patterns

were generated from both compositional and non-compositional (spectral mixture)

kernels. The compositional patterns were sampled randomly from a compositional

grammar by first randomly sampling a kernel composition and then sampling a function

from that kernel, whereas the non-compositional patterns were sampled from the

spectral mixture kernel, where the number of components was varied between 2 and 6

uniformly. A subset of these sampled patterns were then chosen so that compositional

and non-compositional functions were matched based on their spectral entropy and

wavelet distance (Goerg, 2013), leading to a final set of 40 patterns.

Pattern communication game

Our study assessed how well different patterns can be communicated in a free

form communication game (i.e., without any restrictions on participants’ description

lengths or word usage). The study consisted of three parts: description, drawing, and

quality rating. Participants were recruited from Amazon Mechanical Turk, and no

participant was allowed to participate in more than one part. The study was approved

by Harvard ethic’s review board.

Part 1: Eliciting descriptions

31 participants (6 female, mean age=34.91, SD=10.25) took part in the

description study. Participants sequentially saw 6 different patterns, represented as

graphs which they had to describe afterwards. Three of the patterns were randomly

sampled from the 20 compositional patterns without replacement, and three were

sampled from the non-compositional pool of patterns. The order of the presented

patterns was determined at random. On every trial, participants first saw a pattern for

10 seconds, after which the pattern disappeared. The pattern was shown to them as 100

equidistant points indicating a function on a canvas (see Fig. 3). After the pattern

disappeared, participants had to describe it using as many words as they liked.
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Participants were told that we would pass on their descriptions to someone else who

would then have to redraw the patterns without ever having seen them.

Two judges independently rated the descriptions1 on a scale from 1 (bad

descriptions) to 5 (great descriptions). The agreement between the two judges was

sufficiently high, with a inter-rater correlation of r(29) = 0.46, t = 2.45, p = .02,

BF = 3.8. We then retained the descriptions with average rating higher than 3, giving

14 “describers” and a total pool of 31 different patterns. Sixteen of these patterns were

compositional, and fifteen were non-compositional. All participants were paid $2 for

their participation.

Part 2: Drawing the patterns

We recruited 49 participants (21 females, mean age=33.6, SD=9.6) for the

drawing part of the experiment. In this part, participants only saw the descriptions of

the patterns and had to redraw them by placing dots on an empty canvas. Below the

canvas, participants saw the descriptions of the patterns, which they knew had been

written by a past participant. Participants were told that they could place any number

of dots onto the canvas, but had to place at least 5 dots to draw a pattern before they

could submit their drawings. Each participant received the 6 descriptions written by a

randomly-matched participant from the description part, i.e. they were paired with one

of the top 14 “describers” from the first part of the study. Participants were paid $2 for

their participation.

Part 3: Rating the quality of the drawings

104 participants (35 females, mean age= 37.7, SD=8.6) were recruited to rate the

quality of participants’ performance in the previous parts. Participants were told the

rules of the game the previous participants had played. They then had to rate 30

randomly sampled drawings, where the drawings were always presented right next to

the original pattern. Participants did not see the descriptions that lead to the eventual

1 All descriptions can be found online: https://ericschulz.github.io/comcompresps.pdf
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drawings, but rather only had to evaluate how much the drawing resembled the original,

i.e. how well they thought two participants performed in one round of the game. They

did this by entering values on a slider from 0 (bad performance) to 100 (great

performance). We paid participants $1 for their participation.

Results

Figure 3 shows three examples of participants’ descriptions and drawings for both

compositional and non-compositional patterns. We first assessed whether participants

in the description part of the study entered longer descriptions for the compositional

than the non-compositional patterns. This analysis revealed no significant difference

between the two kinds of patterns (t(30) = 0.15, p = .88, d = 0.03. BF = 0.2). Next,

we assessed whether participants in the drawing part of the study used more dots to

redraw compositional than non-compositional patterns. This also showed no difference

between the two kinds of patterns (t(49) = 1.00, p = .32, d = 0.14, BF = 0.2).

Although one might conclude from these analyses that the descriptions and

redrawings were relatively similar across the two pattern classes, inspection of which

words frequently appeared in the compositional descriptions but not the

non-compositional descriptions (and vice versa; see Fig. 2) revealed that compositional

descriptions often included more abstract words such as “mountain”, “repeat” or

“valley”, whereas non-compositional descriptions used words such as “start”, “bottom”

or “top”, likely describing exactly how to draw a particular shape. These qualitative

differences are accompanied by quantitative effects, as we describe next.

We next analyzed the quality of participants’ drawings. In order to compare the

two, we used polynomial smoothing splines to connect the dots. The splines were forced

to go through every point on the canvas such that the original and redrawn patterns

have the same length. Our results also hold even if we just use the raw points or other

methods of extracting the patterns such as generalized additive models (see Supporting

Information). We then calculated the absolute difference (absolute error) between the

original and the redrawn patterns. This difference was larger for non-compositional
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Figure 2 . (Color online.) Left: Words that were used more than twice in the
compositional but not the non-compositional descriptions. Right: Words that were
used more than twice in the non-compositional but not the compositional descriptions.
Size represents the frequency for each word over all participants and descriptions.

than for compositional patterns (Fig. 4a; t(49) = 2.43, p = .01, d = 0.34, BF = 4.1),

indicating that participants were more accurate at redrawing compositional patterns.

The absolute distance between two patterns might not be the best indicator of

performance, because two patterns can look alike but still show a large absolute

difference (e.g., if the redrawn pattern is smaller than the original, or if one pattern is

just slightly shifted to either side). We therefore also applied a distance measure that

takes into account these possible deviations by assessing the similarity of two patterns

based on their differences after performing a Haar wavelet transform. The idea behind

this similarity measure is to replace the original pattern by its wavelet approximation

coefficients, and then to measure similarity between these coefficients (see Supporting

Information, Montero, Vilar, et al., 2014). Technicalities aside, this measure is robust to

scaling and shifting of the patterns. We have previously verified that it corresponds well

with participants’ similarity judgments when comparing two patterns (Schulz,

Tenenbaum, et al., 2017). Analyzing participants’ performance using this measurement

(Wavelet distance) showed an even stronger advantage for compositional patterns

(Fig. 4b; t(49) = 3.02, p = .004, d = 0.43, BF = 11.7).
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Figure 3 . (Color online.) Examples of descriptions and drawings. Figures show
the 3 best (based on the quality ratings) unique drawings for both compositional (upper
panel in orange) and non-compositional (lower panel in blue) patterns. The upper rows
always show the original pattern, the middle rows show the descriptions, and the
bottom rows show the redrawn patterns.

Next, we looked at the quality ratings collected in the third part of our study. We

estimated a linear-mixed effects model with random intercepts for each describer-drawer

pair and each rater. Compositional patterns were rated more highly than

non-compositional patterns (Fig. 4c; β = 4.5, SE = .75 t(2989) = 5.9, p < .001,

BF > 100).

We also assessed how well both models captured the difficulty of communicating

the different patterns, as well as participants’ quality ratings. First, we assessed whether

the likelihood of each model, when fitted to the original patterns, was predictive of how

communicable that pattern was. The idea behind this analysis was that, if participants

were really using one of the two models to extract and compress patterns, then how well

this model can compress the patterns (as measured by the likelihood given the data)
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Figure 4 . (Colour online) Difference between compositional and
non-compositional functions. Colors indicate the type of pattern. Red dots show
the mean, along with the 95% confidence interval. a: Absolute error between original
and redrawn patterns. b: Wavelet distance between original and redrawn patterns. c:
Rated quality shown as 100-Rating to transform it to a distance measure (i.e. lower
values are better).

should be related to how well people can communicate it. We therefore fitted a set of

multi-level regression models with the previously used error measures as the dependent

variables, and the log-likelihood for each pattern as estimated by both compositional

and non-compositional models as the independent variables. We also included a random

intercept, as participants might vary systematically in their ability to redraw the

described pattern. The resulting fixed effects regression coefficients (Table 2) showed

the same pattern for both error measurements: there was a significant effect for the

compositional but not the non-compositional log-likelihoods. This means that patterns

that were easier to compress by the compositional model were also easier to

communicate for participants. This was not true for the non-compositional model.

Finally, we applied the same regression approach, using the log-likelihood as the

independent variable, to predict the quality ratings collected in the third part of the

study. The idea behind this analysis is that if participants were indeed using one of the

two models to evaluate the quality of the drawings, then they should evaluate the

likelihood of the drawing to have been produced by the same generative process as the

original drawing. Only the compositional model significantly predicted participant’s

ratings in part 3 (Table 2 and Fig. 4c). This suggests that participants assessed the
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Table 2
Results of multi-level regression. Columns show the standardized regression estimates
for modeling the absolute error, the wavelet distance error, or participants’ quality
ratings as the dependent variable. Significant effects (p < 0.05) are flagged by asterisks.
Standard errors of the coefficients are displayed below each coefficient in brackets.

Absolute Error Wavelet Distance Quality Ratings

Intercept 27.70∗∗ 3.26∗∗ 36.69∗∗
(0.63) (0.07) (3.06)

Compositional -1.50∗ -0.21∗∗ 4.26∗∗
(0.54) (0.06) (1.17)

Non-compositional -0.71 -0.07 0.56
(0.54) (0.06) (1.16)

**p < .001, *p < .01

quality of the drawings based on how well they could be described by similar

compositions as the original patterns.

Discussion

We investigated how people perceive and communicate patterns in a pattern

communication game where one participant described a pattern and another participant

used this description to redraw the pattern. Our results provide evidence that

compositional patterns are more communicable, that a compositional model better

captures participants’ difficulty in communicating patterns, and that participants’

quality ratings when evaluating the performance of other participants are also best

captured by a compositional model. Taken together, these results suggest that there is

an interface between natural language and the compositional pattern description

language uncovered by our earlier work (Schulz, Tenenbaum, et al., 2017).

We are not the first to study how patterns are transmitted from one person to

another. Kalish, Griffiths, and Lewandowsky (2007) let participants learn and

reproduce functional patterns in an “iterated learning” paradigm. In this paradigm,

participants drew functions which were then passed onto the next person, who then had

to redraw them, and so forth. The results of this study showed that participants

converged to linear functions with a positive slope, even if they started out from linear
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function with a negative slope or just random dots. A key difference from our study is

that Kalish et al. (2007) did not ask participants to generate natural language

descriptions. Another difference is that in iterated learning studies, the object of

interest is typically the stationary distribution, which reveals the learner’s inductive

biases (Griffiths & Kalish, 2007; Kirby & Hurford, 2002). We have not attempted to

simulate a Markov chain to convergence, so our study does not say anything about the

stationary distribution. Here we ask whether particular pattern classes are more or less

communicable. Schulz, Tenenbaum, et al. (2017) provides a systematic investigation

into the nature of inductive biases in function learning, supporting the claim that these

inductive biases are compositional in nature.

There are two important limitations of the current work, which point the way

towards future research. First, we do not have a computational account of how patterns

are encoded into natural language. Based on work in machine learning (Lloyd et al.,

2014), one starting point is to assume that people first infer a structural description of

the pattern, and then “translate” this structural description into natural language.

Although the work of Lloyd et al. (2014) shows how to do this for the compositional GP

model, the natural language descriptions are highly technical, and therefore a rather

poor match for lay descriptions of patterns. As the word clouds in Fig. 2 illustrate,

people seem to make use of more metaphorical language when describing compositional

functions—a property not captured by the austere statistical descriptions of Lloyd and

colleagues. What we need is a kind of pattern “vernacular” that maps coherently

(though perhaps approximately) to the structural description.

The second limitation of our work is that we do not have a computational account

of how descriptions are decoded into patterns for redrawing. One natural hypothesis is

that this is essentially a reverse of the process described above: natural language

descriptions are first translated into structural descriptions, which can then be plugged

into the GP model to a generate the mean function or sample from the posterior.

Both of these limitations might be addressed in a data-driven way by using

machine learning tools to find invertible mappings from structural descriptions to
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natural language. In particular, we could treat this as a form of structured output

prediction, a supervised learning problem in which the inputs and outputs are both

multi-dimensional. Modern structured output prediction algorithms have developed a

variety of ways to exploit the structured nature of linguistic data (e.g., Daumé,

Langford, & Marcu, 2009; Tsochantaridis, Joachims, Hofmann, & Altun, 2005). These

algorithms have not yet been applied to human pattern description.

Conclusion

The idea that concepts are represented in a “language of thought” is pervasive in

cognitive science (Fodor, 1975; Piantadosi, Tenenbaum, & Goodman, 2016), and we

have previously shown that human function learning also appears to be governed by a

structured “language” of functions (Gershman, Malmaud, & Tenenbaum, 2017; Schulz,

Tenenbaum, et al., 2017). Specifically, people decompose complex patterns into

compositions of simpler ones, ultimately producing a structural description of patterns

that allows them to effectively perform a variety of tasks, such as extrapolation,

interpolation, compression, and decision making. The results in this paper suggest that

the availability of a structural description can also be used to communicate patterns in

natural language. Because non-compositional functions are less effectively encoded into

a structural description, they are disadvantaged in terms of accurate pattern

communication. This finding provides new insight into how a language of thought

might mediate translation between vision, language, and action.

Supporting Information

Data, descriptions and analysis code

All data, analysis script and experimental code can be found online at:

https://github.com/panchoqv/function_communication

All descriptions, originals and redrawn patterns can be found online at:

https://ericschulz.github.io/comcomppats.pdf
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Statistical tests

We report all statistics using both frequentist and Bayesian tests. Frequentist

tests are presented alongside their effect sizes, i.e. Cohen’s d (Cohen’s d; Cohen, 1988).

Bayesian statistics are expressed as Bayes factors (BFs). A Bayes factor quantifies the

likelihood of the data under the alternative hypothesis HA compared to the likelihood of

the data under the null hypothesis H0. For example, a BF of 10 indicates that the data

are 10 times more likely under HA than under H0; a BF of 0.1 indicates that the data

are 10 times more likely under H0 than under HA. We use the “default” Bayesian t-test

as proposed by Rouder and Morey (2012) for comparing independent groups, using a

Jeffreys-Zellner-Siow prior with its scale set to
√

2/2. The Bayes factor for the

correlation between the judges’ ratings is based on Jeffrey’s test for linear correlation as

put forward by Ly, Verhagen, and Wagenmakers (2016).

Wavelet transform similarity measure

The discrete wavelet Haar transform performs a scale-wise decomposition of a

pattern in such a way that most of the energy of the data can be represented by a few

coefficients. The main idea behind this measure is to replace the original series by its

wavelet approximation coefficients a, and then to measure the dissimilarity between the

wavelet approximations. We use the R-package TSclust (Montero et al., 2014) to find

the appropriate scale of the transform. We then measured the dissimilarity between two

patterns x1 and x2 by the Euclidean distance at the selected scale:

d(x1,x2) = ||a1 − a2||.

Assessing other distance measures

We also compared compositional and non-compositional patterns using two other

distance measure. The first one is the absolute distance of the actual points participants

put onto the canvas and the closest points (on the x-axis) of the true patterns. This

measure led to a smaller error for compositional than for non-compositional patterns

(t(49) = 3.38, p = .001, d = 0.48, BF = 20.9). The second one is the absolute distance
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between two generalized additive models (Hastie, 2017), one fitted to participants’

drawings and one to the true underlying pattern. In contrast to the smoothing lines

used in the main text, this regression was not forced to go through every point, but

rather to be a more compact representation of the drawn patterns. Using this distance

measure, we found the same result as before, with a smaller error for compositional

than non-compositional patterns (t(49) = 2.72, p = .009, d = 0.38, BF = 4.1). We

therefore conclude that compositional patterns are more communicable than

non-compositional patterns, independent of the distance measure.
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