
 

 

 

1 

  

Abstract— Advances in molecular oncology research 
culminated in the development of targeted therapies that act on 
defined molecular targets either on tumor cells directly (such as 
inhibitors of oncogenic kinases), or indirectly by targeting the 
tumor microenvironment (such as anti-angiogenesis drugs). 
These therapies can induce strong clinical responses, when 
properly matched to patients. Unfortunately, most targeted 
therapies ultimately fail as tumors evolve resistance. Tumors 
consist not only of neoplastic cells, but also of stroma, whereby 
“stroma” is the umbrella term for non-tumor cells and 
extracellular matrix (ECM) within the tumor 
microenvironment, possibly excluding immune cells1. We know 
that tumor stroma is an important player in the development of 
resistance. We also know that stromal architecture is spatially 
complex, differs from patient to patient and changes with 
therapy. However, to this date we do not understand the link 
between spatial and temporal changes in stromal architecture 
and response of tumors to therapy, in space and time. In this 
project we sought to address this gap of knowledge using a 
combination of mathematical and statistical modeling, 
experimental in vivo studies, and analysis of clinical samples in 
therapies that target tumor cells directly (in lung and breast 
cancers) and indirectly (in kidney cancer). This knowledge will 
inform therapy choices and offer new angles for therapeutic 
interventions. Our main question is: how does spatial 
architecture of stroma impact the emergence or evolution of 
resistance to targeted therapies, and how can we use this 
knowledge clinically? 

I. INTRODUCTION 

Tumors are complex, abnormal tissues, comprised of nests 
of tumor cells surrounded by stroma. The stroma is the 
connective tissue, composed of cancer-associated fibroblasts 
(CAFs), extracellular matrix (produced primarily by CAFs), 
vasculature, lymphatics and immune cells. A growing body of 
pre-clinical studies indicates that stroma in general, and CAFs 
in particular, can have profound impacts on tumor growth, 
progression and therapy responses2-4. Physical barriers 
imposed by stroma can restrain tumor growth and progression. 
Stroma provides therapy protection in a wide range of targeted 
therapies5,6. This protection is mediated by paracrine pro-
survival signals acting over short distance; therefore, spatial 
patterns of stroma and cancer cell localization are expected to 
have a profound impact on stromal protection. Yet, the specific 
architecture of the stroma is generally ignored during clinical 
diagnosis and therapy decision-making. The major reason for 
this omission is that we lack approaches to extract meaning 
from the relevant data, despite almost universal availability of 
data on stromal content and spatial CAF-distribution in 
diagnostic clinical samples. The situation is further 
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complicated by the fact that stroma is spatially complex and 
heterogeneous and dynamically changing during disease 
progression and therapy response. This lack of attention to 
tumor stroma is also fully applicable to clinical diagnostics and 
decision-making in clear cell renal cell carcinoma (ccRCC), an 
aggressive epithelial malignancy. Despite availability of 
targeted therapy directed against neoplastic cells directly 
(mTOR inhibitors) or indirectly (anti-angiogenic agents), late 
stage ccRCC remains incurable7,8.  The different stages of this 
disease show distinct stromal architectures (Figure 1). 

We explored several computational and mathematical 
modeling approaches, in order to address the following 
hypothesis. Within tumors, such as ccRCCs, the abundance 
and spatial distribution of stroma, and of CAFs in particular 
(“stromal architecture”), impacts tumor growth, risk of 
progression and response to targeted therapies. Thus, we 
sought to decipher the geometry and impact of cancer’s 
stromal architecture through the development of novel 
quantitative analyses. Our analyses focused on positioning of 
cancer-associated fibroblasts (CAFs). In the future, these 
analyses could be extended to the topology of other important 
stromal cells that often reside in the tumor microenvironment, 
as well as to immune cells, e.g. T-cells and macrophages9. 

 
Figure 1: Low (A) and high (B) grade clear cell renal cell carcinoma 
(ccRCC), in which the stromal architectures are markedly different. 
Collagen/fibroblast in pink (light shaded), cancer cell nuclei in dark. Both 
content and distribution of fibroblasts are different between grades.  

II. APPROACHES AND RESULTS 

CAFs shape tumor growth and therapy response, but key 
mechanisms of these processes are elusive: we lack 
quantitative methods to account for dynamical spatial 
distribution of CAFs and ecological interactions between 
CAFS and tumor10. Studies that integrate experimental and 
clinical data with mathematical modeling will inform spatial 
ecological processes. Such work could deepen our 
understanding of the impact of CAFs on tumor evolution in 
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space and time, inform clinical choice of treatment regimens 
in both adjuvant and neoadjuvant settings, and offer novel 
angles for therapeutic interventions. To these ends, we here 
explored different approaches that could elucidate how spatial 
information of stroma and cancer cells can be analyzed, and 
how one could gain understanding in their temporal evolution 
through modeling.  

A. Geometry and distribution of cells 
As a first step, we wanted to gain some understanding about 
the nature and impact of different geometrical arrangements 
between at least two different cell types that can be observed 
in tissues. As shown in Figure 2 (A and B), tumors might 
indeed evolve very different stromal architectures and 
resulting clustering of cells. While at this point it is unclear 
whether this emerges as a direct or indirect effect of CAFs 
themselves on tumor cells, we wanted to know how spatial 
measurements in the simplest settings determine the cell-to-
CAF distance distributions. Cell populations surrounded by a 
layer of CAFs, or a regularly patterned “CAF-grid”, would 
result in rather different distributions (Figure 2 C and D).  

 
Figure 2: A, B: Two example images from mouse tumors from Marysyk et 
al.11, where tumor areas enriched in CAFs are shown in blue, and cancer cells 
are shown in purple. These two very different stromal geometries were shown 
to emerge in rather different tumors. C, D: Different geometries of CAFs lead 
to markedly different distributions of CAFs-cancer cell distances. Thus, if 
CAFs provide benefits to tumor cells during targeted treatment, these 
distance-statistics can have important consequences for the tumor.   

Further, one could then use labeled tumor imaging 
information to initialize digitalized versions that could serve 
as the starting point for statistical, computational and 
mathematical analyses and predictions (Figure 3 A and B). 
Indeed, in an example of breast tumor tissue, proliferating 
cells could be found in closer proximity to CAFs (Figure 3 C 
and D). All together, these examples highlight the need to 
establish better norms of tumor image scoring that then serve 

to initialize predictive modeling. As the following three 
examples show, such modeling can be entirely computational, 
entirely analytical, or in hybrid form, and thus highlight 
different important aspects of the dynamics of non-genetically 
driven therapy resistance acquisition in spatially 
heterogeneous tumors.  

 
Figure 3: Cellular behavior in relation to stromal presence. A: Fluorescently-
stained cancer tissue slide, blue: CAFs, green: proliferating cancer cells, red: 
non-proliferating cancer cells. B: Computational analysis of minimal 
distances (red), using a pre-defined radius of cancer cell-CAF interactions 
(gray). C: Proliferating cells’ distance to the nearest CAF. D: Non-
proliferating cells’ distance to the nearest CAF.  

B. The dynamics of stromal architecture: Agent-based off-
lattice approach 

As a next step, we present an agent-based computational 
model, which has allowed us to determine the impact of 
fibroblast location on the evolution of pre-existing resistance 
to treatment in a growing or homeostatic tumor cell 
population. Our model contains two populations of tumor 
cells, labelled “sensitive” and “resistant”. Under homeostatic 
conditions, resistant cells have a lower growth rate than 
sensitive cells. Cells proliferate stochastically, with 
proliferation times uniformly distributed around a specified 
average growth rate. Under an assumption of contact-
inhibition, cells may only proliferate if there is sufficient 
space, which (in this example) can only be made available by 
cell death. 
The treatment we considered inhibits the proliferation of the 
sensitive tumor cell population, while leaving the resistant 
population unaffected. This confers an evolutionary 
advantage on the resistant cell population after treatment. 
However, we critically assumed that sensitive cells are able to 
resist the treatment in the presence of substances provided by 
CAFs, for example called Fibroblast Growth Factor, FGF. We 
here assume that FGF exists at sufficient concentrations to 
encourage sensitive cell proliferation only within a specified 
radius of a fibroblast, hence giving sensitive cells the 
advantage over their resistant counterparts when they are 
within 4 cell widths of a fibroblast.  
We seeded the domain with a fixed number of fibroblasts, and 
varied their spatial distribution between simulation runs over 
time. Such initial distributions could be obtained from tumor 
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images, as shown in Figure 4A—this will be a critical step in 
using agent-based modeling to simulate, test and validate 
evolutionary models and assumptions about CAF mediated 
resistance evolution. However, certain extremes of CAF 
distributions could also be explored: Figure 4 shows two 
manually generated stromal architectures as initial conditions 
for simulations. Our model was then used to simulate these 
cancer cell populations forward in time (with the CAF 
distribution being static). This shows that highly structured 
stromal architectures, e.g. in which fibroblasts are distributed 
in distinct clusters, permit the resistant cell population to 
achieve dominance much more quickly than more diverse 
stromal structures. Figure 4C shows the results of this time-
forward modeling applied to a range of stromal architectures, 
indicating that random CAF distributions suppress resistant 
cells for longer than their more highly structured counterparts. 

 
Figure 4: Off-lattice agent-based computation approach (using Chaste: An 
Open Source C++ Library for Computational Physiology and Biology12) in 
two dimensions. A: obtaining physically observed distributions of CAFs 
from fluorescence imaging (same as Fig. 3 A), to initialize the model. B: two 
examples of differing stromal architecture at the beginning of the simulation 
(left: “sparse grid”, right: “circles”). CAFs were assumed to evolve very 
slowly and not move. Treatment was “on” all the time, giving an advantage 
to resistant cells However, we also assumed that CAFs mitigate the selective 
pressure, e.g. via Fibroblast Growth Factor, at least within a radius of 4 cells. 
C: graphs showing the proportion of sensitive tumor cells in the population 
over time after treatment that started at t = 10. Resistant cells dominate the 
population much more quickly when stromal architecture, i.e. the CAFs, 
forms larger structures (e.g. circles, clusters, grids). Random CAF placement 
leads to slower extinction of sensitive cells. 

C. An ordinary differential equation approach to explore 
CAF mediated protection against targeted therapy  

Tumor response to targeted therapy within a tumor is affected 
by the interactions between cancer cells and local 
microenvironments, including cancer-associated fibroblasts 
(CAFs). The intercellular communication between cancer and 

fibroblasts can be mediated by secreted growth factors or 
cytokines that may protect cancer cells surrounded by 
fibroblasts from therapy effects13. In order to gain valuable 
analytical insights, we designed an ordinary differential 
equation (ODE) model to describe dynamic tumor-stroma 
interactions in response to targeted therapy.  
The tumor is classified into two subpopulations with respect 
to their sensitivity to targeted therapy. The tumor consists of 
sensitive (𝑆) and resistant (𝑅) cells.  The stroma is implicitly 
defined in the model as a means to classify sensitivity 
populations further into two sub-populations. That is, we 
further refined the sensitive cell population as being sensitive 
and close to fibroblasts (𝑆#) and sensitive but away from 
fibroblasts (𝑆$). In absence of therapy, both sensitive cell 
populations,  𝑆$ and 𝑆#, grow at the same rate (𝑔&), while the 
resistant cells 𝑅 grow at smaller rate (𝑔&  > 𝑔'). We 
introduced a global density-dependence effect: the three 
populations share a carrying capacity 𝐾, representing the 
maximum packing capacity of the tumor at hand, which could 
be co-determined by other microenvironmental factors (such 
as angiogenic factors), and by the current number of dominant 
driver mutations (resistance mechanisms not included). By 
fixing 𝐾, we focus on short term evolution (e.g. during 
treatment), as clearly in the long term the whole tumour could 
grow further. The effect of fibroblast migration between the 
sensitive populations (𝑆$ and 𝑆#) is modeled by introducing 
transition rates 𝛼 and 𝛽, with 𝛼 = 𝛽 (Figure 5).  
The three populations die at rates of 𝛿$, 𝛿# and 𝛿', 
respectively (which could be equal in absence of therapy). We 
then assumed that targeted therapy induces significant cell 
deaths of 𝑆$. During therapy, resistance to the therapy thus 
emerges at a small rate, possibly due to stochastic alteration 
(epigenetic changes, cell-signaling changes, mutations, etc.) 
in the sensitive cells away from fibroblasts (𝑆$ → 𝑅 with a 
rate, 𝛾). All these dynamics can be cast into the following 
ordinary differential equations: 
 

(1)  𝑑𝑆$
𝑑𝑡

= 𝑔& 11 −
𝑆$ + 𝑆# + 𝑅

𝐾
5 𝑆$ − (𝛼 + 𝛾)𝑆$ + 𝛽𝑆# − 𝛿$𝑆$ 

(2)  𝑑𝑆#
𝑑𝑡

= 𝑔& 11 −
𝑆$ + 𝑆# + 𝑅

𝐾
5 𝑆# + 𝛼𝑆$ − 𝛽𝑆# − 𝛿#𝑆#  

and  
(3)  𝑑𝑅

𝑑𝑡
= 𝑔' 11 −

𝑆$ + 𝑆# + 𝑅
𝐾

5𝑅 + 𝛾𝑆$ − 𝛿'𝑅 

This nonlinear dynamical system is schematically drawn in 
Figure 5 A. Figure 5 B depicts a typical temporal response of 
these three populations upon targeted therapy. 𝑆# and 𝑅 are 
more protected than 𝑆$ under the pressure of the targeted 
therapy which is accounted by 𝛿#,' < 𝛿&. However, 𝑅 grows 
in limited fashion in a short-term period due to the initial 
absence of resistant cells (𝑅(𝑡 = 0) = 0) and the modeled 
“cost of resistance” (𝑔' < 𝑔&). For many choices of the model 
parameters, total population (or tumor size; 𝑆$ + 𝑆# + 𝑅) 
decreases initially, because of the decline of 𝑆$ (especially 
when 𝑆$(0) ≫ 𝑆#(0)). However, tumor regrows soon after 
due to both the fast growth of sensitive cells close to CAFs, 
𝑆#(𝑡) and the emergence of resistant cells 𝑅(𝑡). The tumor 
eventually relapses. We focused on time to relapse following 
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targeted therapy. In this example, we defined the time taken 
to reach to 120% of the initial tumor size as the relapse time. 
We thus observed the effect of initial proportion of 𝑆# on 
treatment relapse time. As expected, the more cells are 
protected by fibroblasts at the initial time (𝑆#(0) ≫ 𝑆$(0), 
with 𝑅(0) = 0), the sooner the cancer relapses (Figure 5 C). 

 
Figure 5: A: Schematic of the ODE two-compartment model in which therapy 
sensitive cells can be shielded if they are close enough to CAFs, see also 
Equations (1)-(3). B: simulation histories of SA (sensitive cells away from 
CAFs), SF (sensitive cells close to CAFs), R (resistant cells), and summation 
of them with the relapse in the example (blue, “Total”). Parameters: 
(gS,gR,K)=(1,0.5,100), (dA,dF,dR)=(2,0.05,0.05),(a=b,g)=(0.05,0.01), and 
(SA(0),SF(0),R(0))=(0.8,0.2,0). C: Relapse times for different initial 
population structures (SF(0): x-axis, SA(0)=1- SF(0), R(0)=0). For each 
structure, distribution of 100 simulations with 100 random transition rates 
(chosen from uniform distributions: a~U[0,1], g~U[0,1])  are shown by each 
box/whisker plot. The values for all the other parameters are same with the 
panel B. The time unit, 6 months, is consistent to the doubling time of renal 
cell carcinoma14. 

D. Insights from a compartmentalized public goods game 
Another approach that is computationally less involved than 
a full agent-based model, and might thus lend itself to fast 
dynamical forecasting of heterogeneous tumor cell-CAF 
populations, is the compartmentalized public goods game 
approach. While public goods-relationships might be seen as 
a way to describe intrinsic tumor cell interactions (e.g. among 
producers and free-riders15), here the public good emerges in 
a more complex fashion. Vascular Endothelial Growth Factor 
(VEGF) is provided by CAFs and drives tumor growth or 
protects from therapy. In addition, CAF stimulating FGF is 
provided by producer cells, leading to an interaction pattern 
in which CAFs are necessary but not sufficient providers of 
protection from therapy. All tumor cells are sensitive to 
treatment, but the more CAFs are in a cell’s vicinity, the lower 

the detrimental effect of treatment, which in turn is influenced 
by the number of producer cells. In this sense, cells close to 
CAF that produce stimulating factors can be labeled 
“resistant”—they are protected from therapy’s detrimental 
effects. To implicitly incorporate space into this model, we 
considered a finite-compartment approach16,17. In some 
compartments, cells are close to many CAFs and if they are 
in those compartments with few CAFs and few producer cells, 
the benefits of the public goods take less and less effect, or 
vanish entirely if no CAFs are present.  

 
Figure 6: Compartmentalized public goods game approach to predict how 
therapy might induce higher numbers of sensitive cells near CAFs. A, top: 
Frequency-dependent selection and spatial reshuffling, CAFs in green, public 
good producer cells in red, passive free-riders in gray. A, bottom: Dynamics 
of selection and spatial/compartmental mixing. B: Dynamics within 
compartments, whereby resistant cells emerge if public good and CAFs are 
available. C: Distribution of CAFs near sensitive cells before and after 
selection, before therapy. D: Distribution of CAFs near sensitive cells before 
and after selection, after therapy. 

We simulated this model forward in time such that within one 
time-step, each compartment would experience (i) cell 
competitive expansion in resistant and sensitive cells during 
therapy, which depended on the number of CAFs present, and 
(ii) a random reshuffling, corresponding to cell migration and 
spatial heterogeneity. This dynamic is shown in Figure 6 A. 
Importantly, as shown in the equations in Figure 6 B, public 
good-mediated competition was strongest when the system 
was close to homeostatic carrying capacity, whereby each cell 
type could also proliferate and die according to their context-
independent birth and death rates. In this approach, the 
presence of CAFs modulated the maximally achievable 
carrying capacity. More CAFs in one compartment would 
decrease the density-dependent effect implied by the carrying 
capacity, a form of K-selection18. Selection and therapy would 
then shift the typical number of CAFs near any sensitive cell 
(Figure 6 C, D).  

III. SUMMARY AND OUTLOOK 

We have explored how spatial heterogeneity in cancer-
associated fibroblasts can affect tumor cell dynamics, and 
how such interactions could be modeled dynamically, in order 
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to understand tumor-stroma co-evolution under targeted 
therapy.  
In an off-lattice agent-based approach, we could incorporate 
tumor imaging of CAFs and proliferating or non-proliferating 
cancer cells to get a first sense of the impact of spatial stromal 
distributions on the extinction rate of treatment sensitive cells. 
This revealed that highly clustered CAF distributions might 
be optimal protectors of sensitive cells and subsequently act 
as drivers of resistance emergence and therapy failure.  
Our analytical calculations have also revealed that tumors 
with more cells that are close to CAFs at the beginning of 
therapy may relapse faster. In addition, a compartment-based 
approach that implemented frequency-dependent selection in 
form of a cellular public goods game among cancer cells and 
between cancer cells and CAFs. This approach also showed 
that treatment might select for proximity to CAFs among 
sensitive cell populations, or stimulate CAF recruitment.  
Future research should especially focus on identifying the 
heterogeneous spatial nature of stromal protection as 
observed in different cancer types and stages. On the other 
hand, dynamical inference from different tumor and treatment 
stages, but within the same patients, should be used to obtain 
insights into possible cellular interaction mechanisms that 
might be critical to gauging therapy success, or even render 
stromal architecture as an important co-determinant for 
targeted treatment administration and multi-drug 
considerations. Future effort should also be devoted to 
describe quantitatively and experimentally the connection 
between mechanical properties of the tumor 
microenvironment and the selective pressures that emerge 
from them19.  
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