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ABSTRACT 20 

Cycles, such as seasons or tides, characterize many systems in nature. Overwhelming evidence 21 

shows that climate change-driven alterations to environmental cycles—such as longer seasons—22 

are associated with phenological shifts around the world, suggesting a deep link between 23 

environmental cycles and life cycles. However, life history evolution in cyclical environments 24 

remains surprisingly not well understood. Here I build a general demographic framework and ask 25 

how life history strategies optimize fitness when the environment perturbs a structured 26 

population cyclically, and how strategies should change as cyclicality changes. I show that cycle 27 

periodicity alters optimality predictions of classic life history theory because repeated cycles 28 

have rippling selective consequences over time and generations. Notably, fitness landscapes that 29 

relate environmental cyclicality and life history optimality vary dramatically depending on which 30 

trade-offs govern a given species. The model tuned with known life history trade-offs in a marine 31 

intertidal copepod T. californicus successfully predicted life history variation across natural 32 

populations spanning a gradient of tidal periodicities. This framework shows how changes in 33 

environmental cycles can drive variation—without complex assumptions of individual responses 34 

to cues such as temperature—thus expanding the range of life history diversity explained by 35 

theory and providing a basis for adaptive phenology.  36 
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INTRODUCTION 37 

Natural populations in all systems must survive environmental fluctuations. Biologists have long 38 

known that a particularly common and powerful mode of fluctuations in nature is cyclical, such 39 

as seasons. Species around the planet exhibit predictable and sensitive life history transitions that 40 

are tightly associated with seasonal cycles, also referred to as phenology. Environmental cycles 41 

in fact occur beyond just the timescale of seasons, such as daily, tidal, lunar, flood, fire and 42 

decadal oscillations, and life histories of species are often associated with cycles at these 43 

timescales as well [1–6]. Despite the ubiquity of cycles in nature, and clear empirical evidence of 44 

the importance of cycles for life histories, we lack a general theory of how life history evolution 45 

is shaped by cycles. 46 

 Over the last few decades perturbations to environmental cycles due to climate change 47 

have driven dramatic life history changes such as phenological timing in many species [7–15]. In 48 

fact, phenological shifts are widely regarded as the most conspicuous and rapid consequence of 49 

climate change across marine, freshwater, and terrestrial systems [14]. Notably, different species’ 50 

phenologies are shifting in different directions, creating phenological mismatches with profound 51 

consequences on ecosystem function and health [7,11,16–19]. Disparate case studies of shifts 52 

that typically invoke individual-level responses to environmental cues such as temperature may 53 

be limited in their potential to explain general evolutionary forces due to system-specific 54 

idiosyncrasies. On the trailing edge of rapidly accumulating empirical evidence of shifts, 55 

questions regarding general mechanisms of life history evolution in cyclical environments have 56 

emerged to the forefront of theoretical population biology, biodiversity, and climate change 57 

science [20–22].  58 
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  A first step in understanding the mechanics of life history evolution in cyclical 59 

environments may be to conceptualize cycles as sequential arrivals of harsh conditions whose 60 

periodicity is not reciprocally affected by local ecological dynamics. An example is the arrival of 61 

winter in seasonal systems. A typical consequence of such cyclical events for a population is 62 

heightened mortality as well as some perturbation to population structure (e.g. seedling mortality 63 

in plants [23]). This consequence not only reduces population size at a given time, but also 64 

impacts the long-term trajectory and fitness of the population [24,25]. It follows that, if periodic 65 

disturbance is an inherent feature of a habitat, fitness is determined by how well a resident 66 

population survives repeated demographic perturbations at regular intervals. 67 

 Population ecologists have long been interested in demographic dynamics in variable 68 

environments, including cyclically variable environments [22,26–31]. Life history theorists, on 69 

the other hand, have classically focused on how time-invariant (i.e. constant) perturbations on 70 

age-, size- or stage-classes of populations, mediated by trade-offs between biological processes, 71 

shape life history strategies broadly [32–36]. For example, theory predicts that heightened 72 

juvenile mortality should induce the evolution of reduced reproductive effort. Such predictions 73 

have been widely tested empirically, and effects are often strong, rapid, and heritable [37–42]. So 74 

far, modern models of life history evolution that do incorporate time-variance in the environment 75 

have mainly focused on how optimality predictions are altered by stochasticity (i.e. randomly 76 

variable environments), which yield convenient analytical probabilistic conclusions [22,31,43–77 

45]. What is not well understood is how life histories are generally shaped by non-random cycles, 78 

despite biological attention to fundamentally cyclical environments such as seasonal systems 79 

[22], and the fact that parametric changes to cycles such as season length are repeatedly 80 

associated with life history changes across systems.  81 
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Here I explore the general relationship between periodicity of cycles and life history 82 

optimization. By taking a demographic life history theory approach I address the ultimate causal 83 

mechanism behind phenological traits and their shifts, given that phenology is fundamentally a 84 

study of how life cycle transitions are fit to environmental cycles and proximate causes of 85 

phenological expression, such as response to temperature cues, vary widely across systems [20].  86 

I hypothesize that rates of life cycle transitions relative to cycle periodicity, balanced by 87 

trade-offs between current and future investments considering impending arrivals of predictable 88 

population perturbations, determine fitness. Thus I expect the period length of cycles to influence 89 

the consequences of trade-offs and shape evolutionary predictions of life history rates. I analyze 90 

these predictions by calculating which life history strategy in a population confers maximum 91 

fitness in a given periodic regime, and then studying how that optimal life history changes as 92 

periodicity changes. I explore how various trade-off assumptions impact these optimality curves 93 

to understand how different species in nature—whose life histories are in reality shaped by 94 

different sets of trade-offs—may be differentially affected by the same change in periodic regime. 95 

Next I test my theoretical predictions in the copepod Tigriopus californicus (Copepoda: 96 

Harpacticoida), a crustacean found in rock pools in the supralittoral (upper tidal) zone along the 97 

North American Pacific coast. Populations are disturbed periodically by wave-wash at high tide, 98 

and experience population decline and heightened juvenile mortality periodically. Periodicity of 99 

disturbance varies among populations depending on regional tidal patterns and pool height on the 100 

shore. T. californicus provides an ideal system to study life history variation in cyclical systems 101 

across populations due to its short generation time and short disturbance cycles, the rare 102 

opportunity to sample from homogenized whole populations, and ease of quick sampling and 103 

trait measurements yielding large amounts of within- and across-population data. Across 19 104 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450387doi: bioRxiv preprint 

https://doi.org/10.1101/450387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6  

 

natural populations of T. californicus in two regions of northern Washington I ask: do 105 

disturbance cycle periodicity and known trade-offs together predict life history variation across 106 

populations? 107 

 108 

METHODS 109 

Model construction.  110 

I consider continuous-time dynamics of a stage-structured population and impose stage-specific 111 

mortalities at given periodicities (full model description in Supporting Information, section 1). 112 

First, I describe a population in two stages of broad relevance: juveniles and reproducing adults. 113 

I express dynamics in abundances of the two stages as a system of ordinary differential equations 114 

dJ/dt = - (μ+d)J + fA and dA/dt = µJ - γA, that can be expressed as matrix M:  115 

� � ���� � �	 

� ��� (1) 

where J is juveniles, A is adults, µ  is the rate at which juveniles mature into reproducing adults, d 116 

is background mortality of juveniles, f is the reproductive rate of adults, and γ is background 117 

mortality of adults. Then, via eigendecomposition of M, I express the solution at time t as: 118 
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(2) 

where v���� is the jth element of the ith eigenvector corresponding to eigenvalue λ� of M. This 119 

solution describes simple structured population dynamics in an undisturbed environment, but by 120 

eigendecomposing the system I isolate t which will eventually allow me to study demographic 121 

dynamics as a direct function of period length between disturbances. To make the solutions 122 
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explicit with respect to period T, I let t = T, and at time T multiply the structure by SJ and  SA 123 

which correspond to juvenile- and adult-specific survival associated with disturbance. The 124 

combined system can be expressed as the matrix P (S10): 125 
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Matrix-multiplying initial abundances by P would thus give stage structure after existing in a 126 

constant environment for time T and experiencing a disturbance event that incurs stage-specific 127 

mortalities. More interestingly, I use this framework to ask: what are the consequences of 128 

different combinations of life history traits on the fitness of a population given that it resides in 129 

disturbance regime T?  130 

 131 

Fitness.  132 

The dominant eigenvalue (λ) of a population transition matrix is a widely used measure of 133 

relative fitness because it represents how well the population will perform in the long run 134 

compared to other hypothetical populations with different life history strategies [25,36]. This 135 

metric, equivalent to ‘r’ in demography and life history theory, does not capture consequences of 136 

short-term transient dynamics [46,47], but has been useful for drawing broad life history 137 

evolution predictions and conceptualizing relative fitness that match well with empirical 138 

observations [24,25,36]. In stochastic environments fluctuations in instantaneous growth rates 139 

may lead λ to give inaccurate evolutionary predictions. In systems that can be modelled by 140 

periodic switching between environments, however, eigenvalues and eigenvectors of the matrix 141 

product of constituent matrices describing the different environmental states can be used for 142 

demographic and life history analyses in exactly the same way as they are used in time-invariant 143 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450387doi: bioRxiv preprint 

https://doi.org/10.1101/450387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8  

 

theory [25,48]. My matrix P is equivalent to periodic models since the system switches between 144 

an undisturbed phase and disturbance, and the switching periodicity and population matrix 145 

elements do not fluctuate randomly (see Supporting Information, section 3, Fig. S1 for 146 

simulation results). Thus, here I use the dominant eigenvalue of P (hereafter referred to as λP) as 147 

the measure of relative fitness to compare the theoretical performance of life history strategies in 148 

a periodically time-variant framework, and characterize general selective pressures on life 149 

history strategies as a function of cycle periodicity.  150 

 151 

Life history trade-offs. 152 

Life history evolution is a matter of optimization because limited resources must be allocated 153 

into various biological processes involving trade-offs [36,49]. The exact shapes of trade-off 154 

functions in organisms are famously difficult to measure, let alone justify in model assumptions 155 

[49,50]. Here I take a conservative approach and assume simple linear trade-offs to investigate 156 

general patterns in optimality as a function of the environment without making more complex 157 

physiological assumptions. To express a trade-off between any two traits in the construction of a 158 

fitness landscape, I computationally set the vector of the range of values of one trait in 159 

decreasing order as the other increases, imposing a negative slope between the two traits. When 160 

two traits do not trade off, one of the traits remains at the mean of its range as the other varies 161 

through its own range. I varied the combinatory inclusions of trade-offs among the four key 162 

parameters to create model variants and investigate their relative fit to the data.  163 

 164 

Fitness landscapes and optimal life history strategies.  165 
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All realizations of P—and thus the construction of fitness landscapes—must be constrained 166 

within the space of the interacting life history parameters, μ, d, f, and γ. In this presentation I 167 

constrained the space with known T. californicus life history ranges and trade-offs to 168 

demonstrate one example of the usage of this framework, but constraints can be set flexibly to 169 

represent any given species (see Supporting Information, section 2.5 for descriptions and 170 

citations for parameterization).  171 

Using λP I construct fitness landscapes for μ and f simultaneously for each model. Here I 172 

focus on μ and f because they are life history traits for which I can collect large amounts of 173 

paired data in T. californicus, but it should be noted that fitness landscapes can be created for any 174 

life history trait in the original system of differential equations. For each landscape, I scan across 175 

the range of µ  or f for a given value of T, while varying all other traits according to trade-off 176 

relationships included in the given model. Therefore I construct a vertical gradient of relative λP 177 

per T. To construct a landscape, I calculate gradients of relative λP across the horizontal axis of T. 178 

The optimal trait per T is the trait that maximizes λP per T. Finally, to get the curve of optimal 179 

trait values across the axis of T I track values associated with maximum λP across T.  180 

 181 

Empirical investigation in Tigriopus californicus. 182 

Tigriopus californicus is a copepod found widely along the North American Pacific coast (see 183 

Supporting Information, section 2.1 for detailed description of natural history). Dense 184 

populations reside in rock pools above the intertidal zone at varying heights [51–53], which 185 

accordingly experience tide cycle disturbance at varying periodicities. When tide levels 186 

cyclically reach pool heights and waves wash through pools, T. californicus cling onto the rocky 187 

benthos in order to prevent being flushed down to open water or to the lower intertidal zone [53]. 188 
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If they are washed down, predators that do not occur in T. californicus pools feed on them 189 

quickly, and re-colonization of T. californicus into the pools appear to be low [53,54]. Despite 190 

clinging, tidal disturbance was shown to always decrease population size, and in particular, incur 191 

heightened juvenile mortality (Supporting Information, section 3, Fig. S3).  192 

I sampled 19 isolated populations across two sites in northern Washington, USA (Neah 193 

Bay, Friday Harbor) in order to capture a wide gradient of disturbance periodicities (see 194 

Supporting Information, sections 2.2-2.4 for detailed description of data collection). I quantified 195 

the periodicity of tidal disturbance in each pool via timeseries analysis of pool temperature data 196 

over 4 months at 5-minute intervals, taking abnormal drops in temperature as signals of wave 197 

flush (see Supporting Information, section 2.2). I siphoned entire isolated populations out of rock 198 

pools, and subsampled individuals after homogenizing them, to get representative population 199 

samples. I reared 30 mating pairs captured from each population in common garden settings. In 200 

these lines I measured rate of maturity (μ in the model) and rate of reproduction (f in the model) 201 

(see Supporting Information, section 2.4 for detailed description of trait measurements). 202 

 203 

Likelihood and model fitting.  204 

I calculated the log-likelihoods of the optimality curves of the two focal life history traits μ and f 205 

produced by each model variant given the variance and covariance of the μ and f data. Each 206 

model is a different trade-off model (Supporting Information, Fig. S2, Table S2). Every model 207 

has the same number of estimated parameters because they only differ in how the parameters 208 

trade off in the construction of the fitness landscapes, which is included computationally by 209 

aligning parameter range sequences in reverse order. Therefore model selection criteria that 210 

penalize number of parameters such as AIC were not used. Each model produces optimality 211 
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curves of μ and f (dominant eigenvalue of matrix P) given trade-off relationships, across values 212 

of disturbance period (T). I searched for the maximum log-likelihood of each model given μ and 213 

f data simultaneously within the space of SA≥SJ and compared maximum log-likelihoods of the 214 

13 model variants.  215 

 216 

RESULTS 217 

Cycle periodicity alters optimal life history predictions.  218 

Classic life history theory balances costs and benefits of key biological investments such as 219 

development, reproduction, and survival to predict fitness profiles of life history traits [36,55,56]. 220 

Here I incorporated these classic balance considerations but imposed cyclical perturbations to 221 

population structure and asked if the evolutionary consequences of the balances change as a 222 

function of cycle periodicity. Using this framework, I analyzed the role of cost (slope of trade-off, 223 

Fig. 1A) on the fitness profile of a life history trait (maturation rate) in two scenarios: one in 224 

which period length is long enough (e.g. to fit more than 10 generations in a period) that the 225 

effect of discrete cycles on the evolution of life history rates should be small (Fig. 1B), and 226 

another in which period length is at a relevant timescale to generation time (Fig. 1C). The former 227 

approaches classic formulations of optimal life history predictions based on trade-offs alone [55]. 228 

The latter shows that external periodic perturbations significantly change optimality predictions. 229 

In the latter scenario all trade-off cost assumptions predict higher optimal values of maturation 230 

rate compared to the former. The spread of fitness profiles is also larger in the latter scenario, 231 

which may suggest weaker selection or higher variability of maturation rate within a population. 232 

Lastly, and most interestingly, the relationship between trade-off cost and optimality is exactly 233 

reversed between the two scenarios: the lowest cost case produces the lowest optimal maturation 234 

rate under long periods but the highest optimum under short periods, and vice versa. These 235 
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results show that cyclical perturbations significantly alter classic predictions of optimal life 236 

history that are solely based on trade-offs. 237 

 238 

Figure 1. Three hypothetical cost functions between μ—rate at which juveniles mature into reproducing 239 

adults—and f— adult fecundity—are analyzed while keeping linear trade-offs between μ and f with their 240 

respective stage-specific background survival rates (d and γ) constant. Colors of cost functions (A) 241 

correspond to colors of fitness profiles of μ in (B) and (C). Dashed lines in (B) and (C) show peaks of 242 

fitness profiles which correspond to optimal values of μ. Periodicity of cyclical perturbation to population 243 

structure is set to be much greater than generation time in (B), and at a relevant time scale (<generation 244 

time) in (C). Under short periods (C), all cost functions produce higher optimal μ values, wider fitness 245 

profiles, and an exactly reversed relationship between cost and optimality compared to long periods (B). 246 

 247 

Periodicity and trade-offs interact to produce diverse life histories.  248 

Optimal life history varies nonlinearly as a function of disturbance cycle period, even with 249 

assumptions of simple linear trade-offs between traits (Fig. 2). For example, with stage-250 
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structured mortality under disturbance and trade-offs between maturation and background adult 251 

survival, predicted maturation and fecundity increase rapidly with increasing periodicity at low 252 

periods, but change little at high periods (Supporting Information, section 3, Fig. S2C).  253 

Shapes of optimality curves (optimal life history vs. period) can vary dramatically 254 

depending on which trade-offs are included. For example, maturation rate and fecundity are 255 

expected to evolve in opposite ways as periodicity changes when maturation rate trades off with 256 

background juvenile survival and fecundity (Supporting Information, section 3, Fig. S2G) 257 

compared to when maturation rate trades off with fecundity and background adult survival 258 

(Supporting Information, section 3, Fig. S2I). Similarly, maturation rate and fecundity increase 259 

together under maturation-background adult survival trade-off (Supporting Information, section 260 

3, Fig. S2C), but decline together under background juvenile-adult survival trade-off (Supporting 261 

Information, section 3, Fig. S2E) or fecundity-background adult survival trade-off (Supporting 262 

Information, section 3, Fig. S2F), and are insensitive to environmental cycle change under 263 

maturation-background juvenile survival trade-off (Supporting Information, section 3, Fig. S2A). 264 

In the next section I show that the model that includes known trade-offs in T. californicus has the 265 

highest likelihood given T. californicus-specific life history data; but it is important to note that 266 

no one model is necessarily better than another in a general sense because different species in 267 

nature will have different levels of complexity and rank order of trade-offs between life history 268 

traits [55,49,57].  269 

Overall, these results support the hypothesis that, beyond the long-accepted 270 

understanding that the mean and variance of population structure perturbations shape life history 271 

variation [24,34,35,39], periodicity of such perturbations plays an important role in life history 272 

variation.  273 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 23, 2018. ; https://doi.org/10.1101/450387doi: bioRxiv preprint 

https://doi.org/10.1101/450387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14  

 

 274 

Figure 2. Example fitness landscapes of two focal life history traits, μ (rate of maturity) and f 275 

(reproductive rate) which assumes lower juvenile survival with each disturbance event (SA = 0.9, SJ = 276 

0.6), and trade-offs between μ and f, between μ and d, and between f and γ. Heat shows normalized 277 

fitness of a life history strategy compared to all other strategies in a disturbance regime (T). Curves track 278 

the optimal (maximum fitness) life history trait across T. 279 

 280 

Tigriopus trade-offs predict life history variation across a periodicity gradient.  281 

Temperature time series analyses confirmed that there is a broad range of disturbance cycle 282 

periodicities across T. californicus pools across the two regions (Supporting Information, section 283 

2.1; section 3, Fig. S3A, B; section 4, Table S1). These sampled pools provided a gradient of 284 

periodic regimes against which I tested optimal life history predictions. Daily temperature 285 

regimes, which may contribute to life history differences [58,59], were not significantly different 286 

among pools of varying periodicity regimes across the two regions (Supporting Information, 287 

section 3, Fig. S4). Disturbance always caused higher juvenile mortality than adult mortality in 288 

subsampled disturbance events, with mean juvenile mortality of 41% and mean adult mortality of 289 

6% (Supporting Information, section 3, Fig. S3C).  290 

 291 
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 292 

Figure 3. Mean (±se) values of the two focal life history traits μ and f across 19 T. californicus 293 

populations, against mean disturbance period determined by timeseries analysis of wave disturbance 294 

signals in each pool. Curves are optimal life history functions across periodicity (T) fit simultaneously to 295 

μ and f. 296 

 297 

Life history traits shift as disturbance period changes across T. californicus populations 298 

(Fig. 3), following model predictions (Fig. 2). The best model (likelihood maximizing when μ 299 

and f are fit simultaneously) was the one that assumed trade-offs between maturation rate and 300 

fecundity, between maturation and juvenile survival, and between fecundity and adult survival 301 

(Table 1), consistent with known trade-offs in T. californicus (Supporting Information, section 302 

2.1). While the fit of the model to the data does not elucidate the selective strength of cyclical 303 

disturbance on life histories, the statistical support demonstrates that the hypothesis based on 304 

optimization in cyclical environments is consistent with the data and cannot at this time be 305 

rejected. Finally, model variants with double or tertiary trade-off assumptions generally fit better 306 

than ones with only single trade-offs (Supporting Information, section 3, Fig. S2; section 4, 307 

Table S2). These comparisons among model variants suggest that multidimensional trade-off 308 

relationships—which are typically avoided in empirical measurements or model assumptions of 309 

life history evolution [49,50], but gaining some attention [60,61]—may actually be important in 310 
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predicting life history optimization in cyclical environments because trade-off consequences 311 

change as a function of cycle period. 312 

 313 

Table 1. Rank-ordered top five model variants with their life history trade-off assumptions  314 

Model (Trade-off) Log-likelihood 
d ↔ μ ↔ f ↔ γ 441.771 
μ ↔ f ↔ γ 441.709 
d ↔ μ ↔ f 441.527 
d ↔ f ↔ γ 441.120 
μ ↔ f 431.774 

 315 

Arrows denote trade-offs between life history traits. Model variants have different trade-off inclusions, 316 

but have the same number of estimated parameters because linear trade-offs were included 317 

computationally by setting parameter ranges of those traits in opposing (increasing vs. decreasing) order. 318 

Therefore model comparison criteria that penalize number of parameters were not needed. Likelihoods 319 

are based on simultaneous fitting of μ and f. See Supporting Information, section 4, Table S2 for the full 320 

list of models.  321 

 322 

DISCUSSION 323 

Ecologists have long assumed that environmental cycles are important for life cycle-324 

related traits. But growing knowledge of phenological shifts have generated confusion regarding 325 

how environmental cycles shape life history strategies and thus transition rates of life cycle 326 

phases. Various species in the same community undergoing the same change in seasonal cycles 327 

often exhibit phenological shifts in opposite directions, suggesting an interaction between 328 

external cycles and internal mechanisms of life history optimization. My framework addresses 329 

how the consequence of trade-offs, a fundamental driver of life history evolution, is influenced 330 

by cycles. Results show that environmental cycles can significantly alter traditional predictions 331 

of life history evolution that are based on assumptions of population structure perturbations and 332 

trade-offs alone. A version of the model tuned with known T. californicus trade-offs successfully 333 
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predicted the shape of life history variation across natural periodicity regimes, demonstrating the 334 

power of this mechanistic framework. 335 

Varying trends in phenological shifts among species in fact offer current, global 336 

examples of the creation of life history variation. They provide a hidden opportunity to address a 337 

fundamental puzzle in ecology and evolution: why are life histories diverse in nature? Here I 338 

show that the interaction between environmental cycles and life history trade-offs is a simple 339 

mechanism that can account for large variations in life histories. First, due to the non-linear 340 

relationships between cycle period and optimal traits, the same magnitude of period change can 341 

induce different magnitudes of life history evolution between two populations of a species that 342 

are in different cyclical regimes (Fig. 2). Second, different trade-offs produce varying shapes of 343 

optimality curves (Supporting Information, section 3, Fig. S2), and thus the same change in 344 

period can induce an increase, decrease, or no change in a life history trait for different species in 345 

the same system depending on what trade-offs are biologically important for those species. 346 

Environmental cycle periodicity is diverse across systems (such as growing season lengths across 347 

a latitudinal gradient), and trade-off architectures among populations and species vary widely 348 

due to physiological constraints, environmental conditions, and reaction norms [49]. Combined, 349 

cycles and trade-offs can produce a wide array of predicted life history strategies. Testing this 350 

mechanism in species that are controlled by different trade-offs, either across populations in 351 

different cyclical regimes or within a single population through time in a habitat undergoing a 352 

change in cycle periodicity—for instance due to climate change—will provide fruitful avenues 353 

for further exploring this perspective. 354 

 355 

Stochasticity, ESS models, and gene flow.  356 
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Cycles in nature, of course, are not perfectly periodic. The present study focuses on the 357 

consideration of period, or interval length between autocorrelated events. The mechanistic 358 

influence of fundamentally cyclical environments on life history evolution is noticeably 359 

understudied compared to probabilistic expectations in stochastic environments [22], even 360 

though regular cycles on various time scales are common in nature. Periodic models can be used 361 

to address a real aspect of nature that is difficult or impossible to address explicitly with 362 

stochastic models: cyclicality. Here, I take advantage of the fact that periodic models allow the 363 

use of matrix properties such as the dominant eigenvalue to infer relative fitness within a 364 

fluctuating system [25,48] and analyze conditions for optimization. By doing so I uncover a 365 

novel mechanistic relationship between cyclicality and life history evolution. However, 366 

cyclicality and stochasticity are both important aspects of nature. For instance, stochastic 367 

fluctuations in instantaneous population growth rate can significantly modify evolutionary 368 

trajectories predicted by time-invariant or periodic theoretical assumptions [46,47,62]. Studying 369 

the relative influences of periodicity and stochasticity on optimal strategy, and on how quickly a 370 

population evolves to its predicted optimal strategy, are the obvious next steps that will add more 371 

richness to the perspective offered here.  372 

Optimality curves in my model framework are attractors that represent evolutionary 373 

stable strategies (ESS) because I take the long-run growth rate of populations (dominant 374 

eigenvalue of P) as the measure of fitness as is commonly done in demography and life history 375 

theory. ESS models are useful for the purpose of predicting general directions of selection over a 376 

long term.ESS models take a non-genetic perspective on broad selective forces, although a 377 

genetical justification for optimization of a quantitative trait is given by the fact that a mutation 378 

can invade the population if it confers a higher r on its carriers [24]. Optimization models and 379 
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quantitative genetics models are approximately equal for constrained multivariate systems [63]. 380 

In T. californicus, selection on optimal life histories may be obscured if high gene flow among 381 

nearby populations exists due to wave transport. However, colonization rates and genetic 382 

exchange have been repeatedly observed to be low in this system [64–66], and demographic 383 

dynamics given high mortality rates caused by tidal disturbance likely out-scale population 384 

genetic dynamics on the time scale of tide cycles. In this study I deliberately chose populations 385 

that were deemed to be well isolated given field observations. But the level of gene flow may 386 

vary depending on locality due to habitat characteristics, and may contribute to some of the 387 

variance within populations and deviations of population means from ESS predictions. 388 

Nonetheless, my model fitting results suggest that ESS assumptions predict T. californicus life 389 

histories reasonably well given a population’s periodic regime. 390 

 391 

Trade-off functions.  392 

Trade-offs between traits can be nonlinear, and multidimensional architectures of trade-offs can 393 

be extremely difficult to measure [49,57,50]. Here I have taken the conservative approach of 394 

assuming linear trade-offs among modeled life history variables to focus on the demonstration 395 

that consequent optimality curves across periodicity are nonlinear, and that a diverse set of 396 

optimality curves can be produced with different trade-offs. The simple linear assumption still 397 

performs well, at least with T. californicus life history data from my sample populations. 398 

However to test this framework further in different species, different functions can and should be 399 

used if the relationship between two traits is known to be nonlinear.  400 

 401 

Links to evolution of seasonal phenologies.  402 
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In seasonal environments cyclical arrival of harsh meteorological conditions (e.g. winter) can 403 

incur large demographic perturbations and thus strongly influence population dynamics [67,68]. 404 

Here I show that if periodic arrivals of disturbance incur significant demographic perturbations, 405 

the costs of having non-optimal life history strategies ripple across generations and cycle periods; 406 

thus, cyclical perturbations play an important role in driving the evolution of life history 407 

transition rates.  408 

Period is not the only parameter of cycles, however. Particularly for seasons, cycle 409 

amplitude may also shape phenologies in important ways, and is shifting with climate change in 410 

many natural systems (e.g. seasonal CO2 cycle amplitude [69,70]). Amplitude of seasonal cycles 411 

may play two roles for evolution. First, amplitude is associated with intensity of disturbance, 412 

which can be explored with survivorship functions in my theoretical framework. If the pattern of 413 

stage-specific mortality associated with cyclical disturbance is clear, such as in T. californicus 414 

and many seasonal species, then heightened intensity of cyclical disturbance will likely increase 415 

strength of selection. Second, amplitude reflects the rate of environmental change within cycle 416 

phases. Rate of change may be important for cue-detection and plastic responses. For example 417 

many plants in seasonal environments are well known for tracking growing degree-days as a way 418 

of taking cues on the passing of the seasons [71]. In my theoretical framework, cyclical 419 

disturbances arrive without warning and simply incur repeated penalties on individuals and 420 

cohorts that had non-optimal life history strategies for the given regime. In reality there may be a 421 

number of continuously changing environmental variables in T. californicus pools such as 422 

salinity, and I cannot exclude the possibility that, like plants, birds, or many aquatic invertebrates, 423 

T. californicus possess biological mechanisms to use cues from continuously changing 424 

parameters to plastically alter their phenotypes. Nonetheless, it is notable that a simple 425 
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framework that does not include the possibility of plastic responses predicts variation in life 426 

histories as a function of periodicity, in what are likely continuously changing habitats. Future 427 

phenological work should consider the relative roles of demographic influences such as those 428 

discussed here and plastic response to cues that can be tracked along continuous cycles. 429 

When considering phenological evolution in cyclical environments, the relative scaling of 430 

life cycles and environmental cycles becomes important. For instance, a perennial species must 431 

endure multiple seasonal cycle periods per generation. An annual species’ generation on the 432 

other hand fits within a single cycle period. In both cases, consequences of fitness-related 433 

phenotypes in one generation carry over to subsequent generations via intergenerational trade-434 

offs in life histories [36], but the trajectory of evolution may differ between the two because of 435 

the number of cycle periods a generation experiences. Further, the model framework presented 436 

here assumes overlapping generations but many annual organisms have non-overlapping 437 

generations and synchronous phenologies. The evolutionary consequences of non-overlapping 438 

generations and synchronization in a population in cyclical environments should be explored 439 

further. 440 

Phenology is the study of how life cycle schedules are fit to environmental cycles. A 441 

phenological trait is a manifestation of the aggregate life history strategy of a species [16], and 442 

expression timings of traits are ultimately controlled by transition rates between life history 443 

stages [20]. Phenological studies typically measure one representative phenotype such as 444 

flowering time in association with proximate drivers such as temperature or precipitation. But 445 

phenotypes covary and therefore one must consider trade-offs and competing selective forces 446 

with a whole-life perspective in order to understand the evolution of cyclical phenological traits. 447 

Here I placed such connections in the general context of environmental cycles, of which the 448 
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annual seasonal cycle is one example, and tested mechanistic predictions on the relatively short 449 

timescale of tide cycles which yielded large amounts of data across many cycle periods and 450 

generations quickly. This framework provides a basis for analyzing, comparing, and predicting 451 

adaptive phenological shifts in changing seasonal environments. 452 
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