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Abstract 

Background 

Mutations arise in the human genome in two major settings: the germline and soma. These 
settings involve different inheritance patterns, chromatin structures, and environmental 
exposures, all of which might be predicted to differentially affect the distribution of 
substitutions found in these settings. Nonetheless, recent studies have found that somatic and 
germline mutation rates are similarly affected by endogenous mutational processes and 
epigenetic factors.  

Results 

Here, we quantified the number of single nucleotide variants that co-occur between somatic 
and germline call-sets (cSNVs), compared this quantity with expectations, and explained noted 
departures. We found that three times as many variants are shared between the soma and 
germline than is expected by independence. We developed a new, general-purpose statistical 
framework to explain the observed excess of cSNVs in terms of the varying mutation rates of 
different kinds substitution types and of genomic regions. Using this metric, we find that more 
than 90% of this excess can be explained by our observation that the basic substitution types 
(such as N[C->T]G, C->A, etc.) have correlated mutation rates in the germline and soma. 
Matched-normal read depth analysis suggests that an appreciable fraction of this excess may 
also derive from germline contamination of somatic samples. 

Conclusion 

Overall, our results highlight the commonalities in substitution patterns between the germline 
and soma. The universality of some aspects of human mutation rates offers insight into the 
potential molecular mechanisms of human mutation. The highlighted similarities between 
somatic and germline mutation rates also lay the groundwork for future studies that distinguish 
disease-causing variants from a genomic background informed by both somatic and germline 
variant data. Moreover, our results also indicate that the depth of matched normal sequencing 
necessary to ensure genomic privacy of donors of somatic samples may be higher than 
previously appreciated. Furthermore, the fact that we were able to explain such a high portion 
of recurrent variants using known determinants of mutation rates is evidence that the 
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genomics community has already discovered the most important predictors of mutation rates 
for single nucleotide variants. 
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Background 

Human mutations arise in two major settings: the germline and soma. Germline mutations 
occur in sperm, eggs, and their progenitor cells and are therefore heritable. Somatic mutations 
occur in other cell types and cannot be inherited by offspring.  

Some somatic and germline mutations matter in health and disease. Critical somatic mutations 
cause cancer. Somatic mutations have also been known to contribute to autoimmunity [1] and, 
rarely, seizure disorders [2]. Certain key germline mutations cause heritable disease; and many 
germline mutations with individually small effects can have a combined [3] impact that 
becomes meaningful, and which may account for 30-70% [4] of the risk for common diseases.  

Nonetheless, in both settings, it is thought that most of the variants that arise are neutral [5] or 
nearly neutral [6], the result of stochastic mutational processes that alter the genome. In the 
germline, which is relatively shielded from the environment, the most active mutational 
processes are endogenous to the cell, such as errors in DNA replication and spontaneous DNA 
damage [7]. In the somatic setting, additional environmental exposures, such as ultraviolet light 
[8] and cigarette smoke are active. Cancerous somatic cells are frequently further deranged 
with cancer-specific defects in DNA repair as a further source of mutations [9]. While some of 
these mutational processes can be identified, others can only be inferred on the basis of 
mutational signatures – patterns in the spectrum of mutations present across samples [10]. 
Mutational processes differ in prevalence across samples, and within samples they have a 
predilection for certain nucleotide contexts. Altogether, genomic sites differ in mutation rate 
depending on the features of those sites, the internal state of the cell [11], and environmental 
exposures.  

The main challenge in identifying and interpreting somatic and germline variants with the 
largest impact in disease is the sheer number of neutral and nearly neutral variants from which 
they must be distinguished [12]. Thus, one core priority in biomedical genomics is to 
understand the patterns these neutral variants take and the mutational processes that lead to 
them. This goal complements activities in evolutionary genomics, which seeks to understand 
how mutation and natural selection have led to the diversity of life. 

In order to better understand the patterns and processes of mutation, there are two kinds of 
facts about the relationship between somatic and germline variants that are useful to learn, for 
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reasons that will become clear. First, it is useful to know how similar somatic and germline 
mutation patterns are to each other. Second, it is useful to know why these patterns have the 
degree of similarity that they do. 

A key reason that it is useful to know how similar somatic and germline mutation patterns are 
to each other has to do with building better models of background mutation rates. Models of 
background mutation rates are used to distinguish disease-causing mutations that are subject 
to evolutionary selection pressure from the range of neutral and nearly neutral variants that 
occur by chance. The accuracy of these models depends on the number of variants used. One 
way to acquire more variants for these models is to aggregate variants across patient samples. 
However, it is only meaningful to aggregate variants across samples that have similar mutation 
patterns. The largest databases of human variants in existence are separated into somatic and 
germline call-sets. If somatic and germline mutation patterns are sufficiently similar, it may be 
possible to aggregate somatic and germline variants together to build very precise background 
mutation models against which to better distinguish disease-causing mutations. Building these 
combined models is a formidable task beyond the scope of this paper, but the first step is to lay 
the groundwork for this possibility by assessing the total similarity between somatic and 
germline mutational processes. 

Understanding why somatic and germline mutation patterns agree with each other to the 
extent that they do is useful for many reasons. First, and most simply, this could highlight 
mutational processes that are shared between the soma and germline. Second, the combined 
model-building described above should be guided by a deeper understanding of the 
relationship between these mutation patterns so that variants can be aggregated in a principled 
way that respects the similarities and differences of somatic and germline mutation patterns. 
Third, attempting to understand why somatic and germline patterns agree can reveal how 
much similarity cannot be accounted for by known factors. This is useful to know because it 
suggests how much or what kinds of unknown determinants of mutation rates are out there 
waiting to be discovered. Fourth, one explanation for similar patterns in somatic and germline 
call-sets is of special importance: germline leakage, the misclassification of germline variants as 
somatic. Germline leakage is a concern both for technical applications and also for the genomic 
privacy of somatic donors [13]. 

A number of studies have been conducted comparing somatic and germline variant patterns 
which have bearing on some of these goals. Milholland et al. found that the mutation rates of 
the basic types of nucleotide substitutions are moderately correlated between the soma and 
germline [14]. Hodgkinson et al. compared the somatic mutation rates by megabase from 3 
cancer patients with human-chimp divergences and found modest correlations by genomic 
region in somatic and germline mutation rates [15]. Chen et al. showed that epigenetic features 
associated with higher (or lower) mutation rates in the soma tend to be associated with higher 
(or lower) germline mutation rates [16]. Rahbari et al. investigated mutational signatures and 
argued that somatic Signatures 1 (spontaneous deamination of 5-methylcytosine) and 5 
(putative but unknown endogenous mutational process) are the only somatically-derived 
signatures detectable in both the germline and soma [17].  
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One approach that has been missing from the literature is a focus on single nucleotide variants 
that are concurrently mutated in the soma and germline. Recurrence of single nucleotide 
variants is attractive because it implicitly aggregates the effect of many of these individual 
determinants found by other studies, can include the effects of undiscovered determinants 
[18], and provides a convenient way of testing the impact of the different determinants of 
mutation rates. It is also particularly well-suited to studying germline leakage because that 
occurs at a single nucleotide scale.  

A historic barrier to single nucleotide variant (SNV)-level recurrence approaches is their 
requirement for a high density of variants called with technical uniformity. This barrier has 
recently been lifted by new data sets. Our SNV-level analysis is made possible by two vast, 
uniformly re-called public data sets of somatic and germline variation: the genome Aggregation 
Database (gnomAD) [19] of 120,000 germline whole exomes and The Cancer Genome Atlas 
(TCGA) [20] of 10,000 somatic whole exomes from cancer patients, which were recently 
harmonized across cancer types [21]. 

 

Results 

Simulated impact of shared mutational processes on shared SNVs 

Before calculating the number of SNVs concurrently mutated between the soma and germline 
(cSNVs), we wanted to establish a baseline for interpreting these numbers. Therefore, we 
conducted simulations to test how unknown mutation processes of various kinds would affect 
the number of shared SNVs (Methods). A simulated mutational process increases or decreases 
the mutation rate of the same random subset of genomic sites in the soma and germline. 
Excess recurrence was detectable either when the fraction of affected bases was moderately 
high or when the mutational process had a large effect on mutation rates (Figure 1). From these 
simulations, we calculated that a mutation process that affects about 1% of the genome must 
increase the mutation rate of the affected bases about 4-fold to increase the number of 
recurrent variants by 5% above expectations. Our power analysis (Methods) indicates that with 
current sample sizes, we are theoretically powered to detect a 0.6% excess of recurrent 
variants; once somatic databases grow to the size of current germline databases, a 0.35% 
excess recurrence could be detected. In contrast, if we were to rely on publicly available de 
novo variants, the minimal detectable excess of cSNVs would need to be 12% above 
expectations, due to their smaller sample size. Both mutation-promoting processes and 
mutation-inhibiting processes led to excess recurrence. These simulations show that recurrence 
analysis is theoretically well-powered to detect the impact of a broad range of shared 
mutational processes that might be active in our somatic and germline data sets. 

 

Many more variants shared between the soma and germline than expected 

Our first goal was to calculate the enrichment of cSNVs over expectations (the cSNV Forbes 
coefficient [22] – see Methods). This quantity has a technical and biological component. To 
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enrich for the biological component, we filtered genomic sites to create a conservative whitelist 
of the most technically unproblematic sites. These sites exclude genomic regions known to be 
prone to technical errors and are uniquely mappable, well-covered, GC-normal, and free of 
common germline polymorphisms. 16,879,845 genomic sites pass all filters, implying a universe 
of 50,639,535 potential SNVs. Of these, 3,339,715 are observed in the germline database 
(gnomAD) and 1,309,369 are observed in the somatic database (TCGA). Under statistical 
independence, it was expected that 86,354 unique SNVs would be simultaneously present in 
gnomAD and TCGA; instead, we observed 268,250 concurrent variants, a 3-fold enrichment 
(Forbes coefficient 3.106, binomial p-value << 5e-324) in our maximally-filtered set. This overall 
enrichment was not sensitive to filtering strategy: with minimal filtering, this coefficient is 2.95. 
The calculated cSNV Forbes coefficient on the filtered set represents our first-pass estimate of 
the total similarity between somatic and germline mutation patterns. Our simulations indicate 
that there are many ways this enrichment could arise (green and orange grid elements of Figure 
1); one example is if the same quarter of the genome was 16-fold more mutable than the rest 
of the genome in both the germline and soma. 

To assess the representativeness of these findings, we calculated the cSNV rate separately for 
each somatic sample, where the cSNV rate of a set of variants from one database is the fraction 
of those variants that co-occur in the second database. We observed that an elevated cSNV rate 
is a pervasive phenomenon, not confined to a few outlier somatic samples (Figure 2).  

 

cSNV enrichment reproduced in non-cancerous somatic samples 

We also repeat the analysis using a set of 385 white-listed SNVs taken from normal somatic 
stem cells [23]. The Forbes coefficient between gnomAD and these normal somatic SNVs was 
4.53, indicating that the overlap between somatic and germline samples is not unique to 
cancer, and may be enhanced in normal tissues, which could reflect the lower burden of 
cancer-specific mutational processes in normal tissues. 

 

Quantity and quality of insertion and deletion calls insufficient for recurrence analysis  

11,909 somatic insertions and 2,417 rare germline insertions pass our filters. It was expected 
that 1.7 of these would have the same start coordinate; instead 27 were observed. Of these, 22 
are flanked by homopolymer repeats of length 4 or greater, which suggests involvement of 
strand slippage either of the in vivo DNA polymerase or in the sequencing reaction.  

36,210 somatic deletions and 6,314 rare germline deletions pass our filters. It was expected 
that 13.5 would have the same start coordinate; 9 were observed. Because of the low counts of 
expected and observed insertions and deletions concurrently mutated in the soma and 
germline, we focused the remainder of the analysis on SNVs. 

 

Some cancer types share variants with the germline more frequently than do others 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/450239doi: bioRxiv preprint 

https://doi.org/10.1101/450239
http://creativecommons.org/licenses/by-nd/4.0/


 6 

The cSNV enrichment was also calculated separately for each cancer type. The observed 
number of cSNVs exceeded expectations in all cancer types, with a minimum Forbes coefficient 
of 1.62 in lung adenocarcinoma and a maximum coefficient of 5.81 in uveal melanoma 
(Supplemental Table 1)(all binomial p-values < 2e-18). The Multi-Center Mutation Calling in 
Multiple Cancers (MC3) project, completed in March 2018, harmonized the TCGA cancer 
cohorts with each other to minimize technical differences between them [21]. The different 
cancer types are, however, subject to different biological sources of mutation; thus, the large 
variation in cSNV enrichment by cancer type suggests that biological factors play some role in 
cSNV enrichment. 

 

Overview of the explanatory model 

Our next goal was to explain the observed excess of cSNVs. Existing binary similarity measures, 
such as the Forbes coefficient of association F = c/e (where c is the number of observed cSNVs 
and e the number of cSNVs expected by independence), are well-suited for quantifying 
departures of observed cSNV counts from expectations under statistical independence. 
However, to explain departures, we developed a statistical framework (Methods) that 
estimates the portion of excess cSNVs that may be accounted for by categorical variables 
associated with both somatic and germline mutation rates.  

Our measure, the partitional dependence of F on categorical variable v (such as nucleotide 
context), is given by  

𝐹𝑝(𝑣) =  1 −
𝑃(𝑣) − 1

𝐹 − 1
 

where P(v), the partition-conditioned Forbes coefficient is given by 

𝑃(𝑣) =  
𝑐

∑ 𝑒𝑖
𝑚
𝑖=1

 

where c is the number of cSNVs, m is the number of factor levels of categorical variable v and 

𝑒𝑖 =  
𝑔𝑖

𝑛𝑖
⁄ ∗

𝑠𝑖
𝑛𝑖

⁄ ∗ 𝑛𝑖 

and where 𝑔𝑖 , 𝑠𝑖, and 𝑛𝑖 are the number of G events, S events, and elements of the ith partition 
of the full domain.  

When 𝐹𝑝(𝑣) = 0, variable v does not account for any observed excess or shortage of shared 

variants.  When 𝐹𝑝(𝑣)  = 1, variable v can account for all of the observed excess or shortage of 

shared variants. 

 

Nucleotide context is a major determinant of variants shared between the soma and 
germline 
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We tested how well nucleotide context can explain excess cSNVs. We initially observed that 
67% of all cSNVs occur at N[C->T]G contexts, which are known [24] to frequently mutate in the 
germline and soma. Our Forbes dependence metric estimated that 92% of the cSNV enrichment 
may be attributed to the high rate of N[C->T]G mutations. Our local Forbes coefficient test 
estimated that N[C->T]G cSNVs and non- N[C->T]G cSNVs occur 4% and 55% more frequently 
than expected, respectively, after conditioning on the base rates of these particular kinds of 
mutation in the germline and soma. Further partitioning potential SNVs into seven types of 
context-related variants (see Table 1 legend) explains 97.2% of cSNV enrichment. Extended 
nucleotide contexts added minimal explanatory value overall, but offered a moderate boost in 
the ability to explain cSNVs outside of N[C->T]G contexts (from 82.5% using seven types of 
nucleotide contexts to 88.6% by treating each of 24,576 heptamers separately). 

Table 1: Excess recurrence is statistically explainable by nucleotide context 

Nucleotide 
context 

Number of 
partitions 

Partition-
conditioned 
score 

Partition 
dependence 

Partition-
conditioned 
score, 
excluding 
N[C->T]G 

Partition 
dependence, 
excluding 
N[C->T]G 

Unpartitioned 1 3.106 NA NA NA 

N[C->T]G vs all 
others 

2 1.168 92.0% 1.553 NA 

Seven Type 7 1.059 97.2% 1.097 82.5% 

Trinucleotide 96 1.064 97.0% 1.098 82.3% 

Pentanucleotide 1536 1.054 97.4% 1.071 87.1% 

Heptanucleotide 24,576 1.051 97.6% 1.063 88.6% 

Seven Type refers to the 7 basic types of variant from Arndt et al. (C->A, C->G, C->T, N[C->T]G , 
T->A, T->C, and T->G after collapsing purine-centered contexts onto their central pyrimidine) 

[40]. The partition-conditioned score gives the excess recurrence over a form of expectations 
that incorporate the fact that different nucleotide contexts have different mutation rates. The 
partition dependence gives the percent of excess recurrent variants that can be statistically 
explained by the different mutation rates of the various partitions. See Methods for details. 

Some pentamers were found to carry more cSNVs than expected after taking into account the 
mutation rate of these pentamers in the soma and germline. The most well-powered outliers 
are listed in Table 2, below.  Three out of four of these outlier pentamers contain a C->A 
mutation within a T-rich context. 

Table 2: Outlier pentamers with high recurrence rates not explained by their average mutation 
rates 

Pentamer Germline cnt Somatic cnt Reference cnt cSNV cnt Local Forbes Coef 
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AT[C->A]TT 2236 5229 45328 374 1.45 

CA[T->C]TG 18256 1337 42592 752 1.31 

TT[C->A]TC 1734 8067 60250 385 1.66 

TT[C->A]TT 2914 11887 68309 821 1.62 

 

The success of nucleotide context at explaining cSNV rates implies that nucleotide contexts 
have correlated mutation rates in the germline and soma, as observed in [14]. We next tested 
this explicitly. The somatic and germline mutation rates by nucleotide context were 
substantially correlated (Table 3). They remained correlated at extended nucleotide contexts, 
which is a novel finding, even after controlling for the central bases. 

Table 3: Correlations between somatic and germline mutation rates by nucleotide context 

Nucleotide Context Somatic-Germline Spearman 
correlation coefficient  

P-Value 

Trimer 0.85 < 2.2e-16 

Trimer, excluding NCG sites 0.83 < 2.2e-16 

Pentamer 0.84 < 2.2e-16 

Pentamer, controlling for 
central 3 bases 

0.31 < 2.2e-16 

Heptamer 0.74 < 2.2e-16 

Heptaner, controlling for 
central 5 bases 

0.15 < 2.2e-16 

 

Signature analysis 

Signature 1 is a ubiquitous pattern in the mutational spectra across cancers; its presence is 
taken to imply the existence of an underlying mutational process that introduces mutations 
with the spectra seen in Signature 1. The mutational process that is the source of Signature 1 
has been previously identified as the spontaneous deamination of 5-methylcytosine [25]; this 
deamination is known to be active in the germline as well. We show that the activity of 
Signature 1 in both the soma and germline helps to explain excess cSNVs. 

We tested whether the prevalence of the various mutational signatures per somatic sample 
could predict the cSNV rate by somatic sample. These prevalences were obtained from Huang 
et al. [26] The most significant correlation was that the prevalence of Signature 1 by somatic 
sample predicts 31% of the variation of cSNV rates by somatic sample (p value < 2e-16) (Figure 
3), which reinforces recent findings that the endogenous mutation process Signature 1 is active 
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in both the soma and germline. Similarly, the median prevalence of Signature 1 by cancer type 
was strongly correlated with the median cSNV rate by cancer type (Figure 4). In this analysis, 
cancer types at the extremes can be rationalized: perhaps lung adenocarcinoma (LUAD) is less 
germline-like because cigarette smoke introduces a very different spectrum of mutations than 
do endogenous processes, and perhaps glioblastoma multiforme (GBM) tumors are more 
germline-like because they are encased within the skull and therefore mostly subject to 
endogenous mutational processes. 

Signature 5 is a common pattern in the mutational spectra across cancers. No underlying 
mutational process has been conclusively identified as the source of Signature 5; therefore, it is 
not conclusively known whether that process is also active in the germline. In [17], it was 
argued that, based on the mutation spectra in the human germline, Signature 5 appears to be 
active in the human germline as well. Somewhat unexpectedly, we find that, if Signature 5 is 
active in both the soma and germline, it does not help explain excess cSNVs. Specifically, we 
found that the prevalence of Signature 5 across somatic samples was not positively associated 
with the samples’ cSNV rates. There are many potential reasons why it might not: Either 
Signature 5 is not as active in the germline as Rahbari et al. estimated, or its action is diffuse 
across many genomic sites, or its prevalence in somatic samples comes at the cost of Signature 
1, which is even more tightly linked to germline mutational processes than is Signature 5. 

The only other signatures whose prevalences were found to significantly positively associate 
with cSNV rates were Signatures 6 and 15 with R-squared 0.024 and 0.012, respectively (p value 
< 2.2e-16). There is no known association of Signatures 6 or 15 with the human germline; 
however, Signature 6 and Signature 15 are the signatures whose nucleotide spectrum is most 
similar to Signature 1 (Pearson’s rho 0.81 and 0.48, respectively). These results suggest that 
mutation rates by nucleotide context are correlated between the soma and germline largely 
because of their shared exposure to Signature 1, with a minor component from similarities 
certain somatically-exclusive signatures have with Signature 1. 

 

Genomic region is a minor determinant of variants shared between the soma and germline 

The effects of genomic region were minor. Similarities in the somatic and germline mutation 
rate by megabase explains only 0.4% of excess cSNVs. (Table 4)  

Table 4: Genomic region explains a small fraction of excess cSNVs.  

Region Number of 
partitions 

Partition-
conditioned 
score 

Partition 
dependence 

Whole Genome 1 3.106 NA 

Chromosome 22 3.107 0.0% 

Megabase 2394 3.097 0.4% 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/450239doi: bioRxiv preprint 

https://doi.org/10.1101/450239
http://creativecommons.org/licenses/by-nd/4.0/


 10 

100kb 14,214 3.084 1.0% 

10kb 54,889 3.076 1.4% 

 

Nonetheless, combining regional features with nucleotide context features explained a greater 
share of excess cSNVs (97.9%) than did nucleotide context alone (97.2%) (Table 5). The 
increased explanatory power of the combined model was not an artifact of the greater number 
of partitions in the combined model, because a dummy combined model, which randomized 
the megabase membership of SNVs, did not lead to any change in explanatory power compared 
to the nucleotide context-only model (97.2% in both cases).   

Table 5: A combined model with region and nucleotide context explains excess cSNVs slightly 
better than nucleotide context-only model 

Bin Number of 
partitions 

Partition-
conditioned 
score 

Partition 
dependence 

Whole Genome 1 3.106 NA 

Seven Type 7 1.059 97.2% 

Megabase 2394 3.097 0.4% 

100kb 14,214 3.084 1.0% 

1MB x Seven Type 16,737 1.054 97.4% 

100kb x Seven Type 98,960 1.044 97.9% 

Dummy.100kb x 
Seven Type 

99,250 1.058 97.2% 

 

Germline contamination appears to be active but predictively redundant 

We used two independent strategies for assessing the extent of germline contamination among 
cSNVs. First, we re-computed the cSNV enrichment rate after replacing gnomAD with denovo-
db [27] as the germline database with which to intersect with TCGA. Denovo-db (version 1.6) 
comprises 7,296 unique SNVs that have been confirmed through parental-offspring trio 
sequencing to have arisen independently in the germline donor and pass our stringent filters. 
De novo germline variants are free of the past inheritance structure that makes accumulated 
germline variants prone to contaminating somatic samples. We find that the cSNV enrichment 
rate is remarkably higher using this database of de novo variants (Forbes coefficient 5.11), 
indicating that germline contamination does not explain a large fraction of the cSNVs observed 
using gnomAD.  
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It is unclear why the Forbes coefficient is so much higher when using de novo variants, but a 
similar enrichment is seen among germline variants present in 5-40 unique gnomAD individuals, 
consistent with a depressed gnomAD Forbes coefficient being a consequence of binarization of 
gnomAD allele counts [28] (see Methods).  

Second, we used a read depth analysis to quantify the amount of germline contamination and 
its impact on the cSNV rate. TCGA makes use of matched normal samples to reduce germline 
contamination when calling somatic variants; that is, for a variant to be called in TCGA as a 
somatic variant, it must not be detected in the germline of the same patient after sampling at 
least 8 reads from the normal sample for that patient at that site. Because of the stochasticity 
of sequencing, the ability of this filter to remove germline contaminants depends on the read 
depth in the matched normal sampled at the site that the somatic variant is called. We find that 
increased read depth in the matched normal is associated with a decreased cSNV rate in 
gnomAD, from 29.4% at a read depth of 8, leveling off to a gnomAD cSNV rate of 21%-22% at a 
read depth of 100 and above. (Figure 5) The leveling off of the cSNV rate at increased normal 
depth suggests that there is no appreciable germline contamination when matched-normal 
read depth exceeds 100.  The fact that there is a higher cSNV rate at lower matched-normal 
read depths suggests that germline contamination inflates the cSNV rate for TCGA variants with 
low depth in the normal. 

From the excess cSNV rate at TCGA sites of low read depth in the matched normal and the 
distribution of read depth, we estimate that there is approximately 1 leaked germline variant 
per strictly-filtered somatic exome, which would explain about 4% of the 268,250 observed 
overlapping variants. This number does not include leaked de novo germline events. 

We next tested whether these putative germline contaminants explained some of the 5% 
excess of cSNVs that could not be explained by nucleotide context. We repeated the nucleotide 
context analysis on a TCGA subset in which all variants had 100 or more reads in the matched 
normal and therefore is likely free from germline contamination. If some of the 5% excess 
cSNVs not explained by nucleotide context are germline contaminants, then the unexplained 
cSNV excess should fall after this filtering step. Instead, we observed that the partition 
conditioned Forbes coefficient did not decrease from the value obtained on the full set (Seven 
Type partition conditioned score of 1.113 on high normal read depth subset, vs 1.059 on full 
data set). This indicates that germline contaminants are redundant with nucleotide context for 
explaining cSNVs. The reason for this redundancy appears to be that leaked germline variants 
have a more germline-like nucleotide context than true somatic variants (results not shown), 
such that analysis by nucleotide context already implicitly models germline contamination.  

 

Sequencing errors do not explain variants shared between the soma and germline 

We next tested whether sequencing errors explained the cSNV rate. Some kinds of sequencing 
errors consistently affect the same genomic sites, such as in repetitive regions. We had 
removed repetitive regions from the analysis. We also excluded sites of common germline 
polymorphisms, which will remove any sequencing errors that consistently affect the same 
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genomics sites. Therefore, we focused on testing for sequencing errors that arise inconsistently. 
TCGA includes a validation set [29] of 24,366 somatic variants from 222 uterine corpus 
endometrial carcinoma samples that underwent targeted resequencing and met our filters. If 
cSNVs result from stochastic sequencing errors, we would expect that the validation rate of 
cSNVs would be lower than of non-cSNV somatic variants. Instead, we find that the validation 
rate of cSNV and non-cSNVs of re-sequenced somatic variants are indistinguishable (99.01% vs 
99.03%), indicating that false-positive stochastic sequencing errors do not explain an important 
fraction of cSNVs. 

 

Discussion 

The primary goal of this study was to quantify and explain similarities in human somatic and 
germline mutation rates through the lens of SNV-level recurrence. We have shown that there 
are three times as many SNVs shared between somatic and germline call-sets than expected by 
independence. Given that the soma and germline involve different inheritance patterns, tissue 
types, exogenous exposures, chromatin states, and replication modalities, this degree of 
overlap was initially surprising. The substantial cross-setting recurrence suggests that there may 
be opportunities to usefully combine somatic and germline variant data for modeling mutation 
patterns, particularly in the cancer types with higher cSNV enrichments (see Supplementary 
Table 1).  

We also show in a statistical (but not necessarily causal) sense that this excess of shared 
variants is mostly explained by similar mutation rates in the germline and soma of basic 
nucleotide contexts, especially the high rate of N[C->T]G variants. In turn, these correlated 
mutation rates are predicted to be a consequence of the shared exposure of the soma and 
germline to mutation Signature 1. Extended nucleotide context, genomic region, and germline 
contamination each explain a small fraction of excess shared variants.   

A 5% excess recurrence could not be explained by these factors alone. Simulations propose 
various ways in which this could be observed; one example would be an un-modeled 
mutational process that increases mutation rates 4-fold on 1% of the genome. The fact that the 
unexplained excess of shared variants is so small relative to the explained portion indicates that 
the genomics community has made great strides in predicting mutation rates in both the soma 
and germline.  Indeed, some of the excess that was unexplained by the model could 
presumably be explained by other discovered factors, such as strand-specificity [30], 
transcription factor occupancy [31], and DNA curvature [32], that were omitted from the model 
for simplicity. Nonetheless, the genomics community’s progress in understanding mutation 
rates is a matter of perspective: while we can explain recurrence at the level of individual SNVs 
very well, (Hodgkinson 2012)[15] found that only 40% of genomic regional differences could be 
explained by known factors. 

Our estimate for the extent of germline contamination is higher than previous estimates (1 
leaked germline event per somatic exome vs 0.1 in the literature [13]). This discrepancy could 
reflect differences in filtering and variant calling strategy, or it could be that our read-depth 
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titration approach is more sensitive than other methods. Alternatively, perhaps matched 
normal read depth correlates with low mutation rates in the germline for reasons unrelated to 
germline contamination. In any case, the estimated level of germline contamination in this set 
of variants remains sufficiently low that it does not risk de-identifying somatic exome donors, 
which would require 30-80 leaked variants per sample by past estimates [33]. The larger 
number of variants present in whole genome samples, however, will make strict filtering more 
important in that setting. 

The fact that de novo variants have a higher cSNV rate than do gnomAD variants may be an 
artifact to the huge sample size of gnomAD and the binarization of allele count data, which 
makes the average mutability of SNVs present at least once in denovo-db should be expected to 
be higher than the average mutability of SNVs present at least once in gnomAD. In support of 
this hypothesis, gnomAD variants present in 5-40 gnomAD individuals, some of which represent 
independent recurrences across patients, have a similarly high cSNV rate as do de novo 
variants. This artifact is a limitation in our approach, but it is necessary because we cannot 
distinguish independently recurring germline SNVs from germline SNVs that are identical by 
descent from a common ancestor (Methods). 

There are various ways that undiscovered determinants of mutation rates could be important 
despite the small noted explanatory gap. Some determinants might have a large effect but not 
consistently act at the same genomic sites. Alternatively, some causal but undiscovered 
determinants could be highly correlated with modeled factors, making their predictive 
contributions redundant. Another possibility is that some important undiscovered determinants 
of mutation rates that increase the correlation between somatic and germline mutation rates 
are offset by other determinants of mutation rates that decrease this correlation. Furthermore, 
we may need to acquire larger data sets including of de novo variants before maximizing the 
signal from coincident SNVs, especially at non-N[C->T]G sites. 

This study focused on SNVs because this is where we had the highest quantity and quality of 
data for recurrence analysis. Insertions, deletions, copy number changes, and structural 
variants may also have interesting patterns when compared between the soma and germline. 

The primary focus of this study is the link between somatic and germline mutation patterns. As 
a whole, this analysis also relates to a more general question in genomics: in a sequencing 
cohort, why do we observe the variants that we do, and not others? For the detection of sites 
with high mutation generation rates, recurrence between human germline and human somatic 
samples is less confounded by common ancestry than germline-only recurrence, less 
confounded by positive selection than somatic-only recurrence [5], is much better-powered 
than recurrence analysis of de novo variants, and does not suffer from the alignment issues that 
affect inter-species recurrence analysis [34]. There are particular aspects of mutation rates that 
will require further investigation to explain, such as differences between the mutation rates of 
genomic regions in the germline genome [35]. Nonetheless, the fact that we can explain 97% of 
somatic-germline recurrence with known factors suggests that the genomics community has 
already identified many of the most important predictors of human mutation rates for single 
nucleotide variants. 
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Conclusion 

Despite their differing inheritance patterns, environmental exposures, and chromatin structure, 
the human soma and germline share a substantial number of variants in common. These shared 
variants can be largely explained by the correlated mutation rates of the basic types of 
nucleotide context in the germline and soma. The fact that we can explain 97% of somatic-
germline recurrence with known factors suggests that the genomics community has already 
identified many of the most important predictors of human single nucleotide variant mutation 
rates more generally. This work informs and encourages the exchange of data and insights 
between the fields of somatic and germline genomics. 

 

Methods 

All statistics were computed using R (version 3.5.1, R Development Core Team, 2018). All R 
code necessary to replicate core results will be made available shortly on the authors’ GitHub 
page. 

 

Simulations 

We used simulations to benchmark the power of our SNV recurrence approach. A random 
subset of sites from a notional reference genome were chosen to be subject to some unknown 
mutational process, which either increased or decreased the mutation rate at those sites. The 
simulations assumed that the same sites were affected in the soma and germline and that the 
mutation rate multiplier of affected sites was the same in the soma and germline. Random 
variants were then drawn according to these relative mutation rates, and the number of 
observed overlaps were compared to expectations under independence. Fixed parameters 
were chosen to resemble the actual eligible genome size and number of somatic and germline 
variants; that is: 50,639,535 potential SNVs, 3,339,715 germline SNVs, and 1,309,369 somatic 
SNVs, implying 86,354 expected cSNVs. Two additional parameters were allowed to vary: the 
fraction of sites affected by the mutation process, and the impact that the mutation process 
had on the mutation rates of affected bases. To efficiently sweep through a broad range of 
possibilities, the fraction of sites affected by the mutation process took on the following values 
in different runs: ½^10, ½^9, ½^8, …, ½^1, 1-½^2, 1-½^3, …, 1-½^10. The mutation rate 
multiplier of affected sites took on the following values in different runs: 2^-7, 2^-6, 2^-5, … 
2^0, 2^1, … 2^7, and all combinations of these parameters were tested. Departures from 
expectations were then calculated using the Forbes coefficient of association.  

Notably, the simplifying assumption that the exact same sites would be affected in soma and 
germline to the same extent is not realistic. Nonetheless, these simulations do have real-world 
significance. There are conceivably many mutation processes with completely orthogonal 
effects on mutation rates in the soma and germline. We were not interested in modeling those 
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processes in this study because they are not expected to lead to an excess of cSNVs and 
therefore do not have value for explaining cSNVs. More importantly, many real mutational 
processes will have correlated but not identical impacts on the soma and germline. We can 
conceive of these real processes as a combination of two distinct mutational processes: one 
with identical impacts on soma and germline and one with orthogonal impacts on soma and 
germline, with only the former component being relevant for explaining cSNVs and being 
modeled in these simulations. 

 

Filtering 

We started with a set of all possible SNVs of the reference genome hg19 and filtered down to a 
conservative universe of potential SNVs. Only autosomes were included because of possible sex 
imbalances between data sets. To minimize artifacts due to mapping errors, we excluded sites 
that overlapped the EncodeDac or EncodeDuke mappability blacklists [36], that are predicted to 
be not uniquely alignable with 24 base pair reads, that fall in repetitive regions such as genomic 
super duplications, simple repeats, and microsatellites, or that are otherwise flagged by 
RepeatMasker [37]. To minimize artifacts due to non-uniform exome capture and coverage, we 
restricted sites to the Broad exome interval list, required sites to have 20 or more reads in 90% 
of gnomAD samples, and excluded sites in which fewer than 30% or more than 70% of the 
surrounding 100 bases are a G or C. To minimize artifacts related to germline contamination 
and sequencing error hot-spots, we removed sites with a gnomAD allele frequency of 0.1% or 
greater. Removing sites of common human polymorphisms also had the advantage of 
effectively removing discrepancies between hg19 and the human ancestral genome. 

Additionally, we only included single-allelic SNVs from gnomAD graded “PASS.” For TCGA, we 
excluded any SNV with the filter “nonpreferredpair” or “oxog.” For denovo-db, we only 
included variants that were obtained through whole exome sequencing.  

 

Binarization 

In all data sets, we mark filtered SNVs as being present or absent in a database, ignoring allele 
count. For gnomAD, allele count is ignored because it is not possible to robustly distinguish 
between recurrent germline alleles that have arisen independently in multiple gnomAD 
patients, vs gnomAD germline alleles that are identical by common descent from a shared 
ancestor. For TCGA and denovo-db, allele count is similarly binarized so as to be consistent with 
the gnomAD processing. This binarization leads to fewer observed excess cSNVs at the most 
mutable genomic sites. In one sense, this binarization is a limitation, but it has a favorable side 
effect of preventing outlier sites from having an outsized impact. 

 

Nucleotide context 
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We used the Rsamtools [38] and GenomicRanges [39] R packages to extract the adjacent 
nucleotides for each potential variant, which were concatenated around the reference and 
alternate allele. Reverse complements were collapsed onto a central pyrimidine; for example 
A[G->T]C was considered an instance of G[C->A]T since wherever one of these trimers is 
present on the positive strand of the genome, the other trimer occurs on the negative strand of 
the genome. 

 

Region 

Genomic regions were calculated by rounding up the variant position to the nearest multiple of 
the bin size before concatenating with the chromosome number. For example, a variant at 
chr1, position 123456 would be labeled with the 100 kb bin chr1_200000. 

 

Germline contamination 

To estimate the number of germline contaminants among cSNVs, we took the baseline cSNV 
rate to be the cSNV rate among somatic variants with at least 200 reads in the matched normal. 
Then for each matched normal read depth less than or equal to 60, we calculated the number 
of variants that would be expected to be cSNVs from the baseline cSNV rate. We subtracted the 
number of baseline-expected cSNVs from the observed number of cSNVs for these variants 
with low read depth to estimate the total number of extra cSNVs that may result from germline 
contamination. 
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Project 
Unique 
Variants 

Expected 
cSNVs 

Observed 
cSNVs 

Forbes 
Coefficient 

UVM 968 64 371 5.81 

COAD 107911 7117 33869 4.76 

PRAD 16393 1081 5107 4.72 

KICH 1475 97 479 4.92 

GBM 33579 2215 10068 4.55 

STAD 100215 6609 30145 4.56 

LGG 18643 1230 5387 4.38 

MESO 1607 106 420 3.96 

READ 30248 1995 8782 4.40 

UCEC 344776 22738 92393 4.06 

PAAD 15568 1027 4226 4.12 

UCS 4809 317 1206 3.80 

PCPG 1297 86 309 3.61 

THYM 1710 113 416 3.69 

ESCA 16717 1102 3838 3.48 

CESC 39745 2621 9255 3.53 

DLBC 2900 191 649 3.39 

THCA 3621 239 777 3.25 

SKCM 198196 13071 38915 2.98 

ACC 5118 338 999 2.96 

BRCA 51779 3415 10105 2.96 

SARC 12056 795 2364 2.97 

HNSC 52421 3457 9543 2.76 

LAML 3546 234 617 2.64 

OV 23382 1542 3936 2.55 

TGCT 1181 78 193 2.48 
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BLCA 71731 4731 11466 2.42 

LIHC 23041 1520 3361 2.21 

KIRC 11436 754 1684 2.23 

CHOL 1236 82 171 2.10 

KIRP 10077 665 1334 2.01 

LUSC 91172 6013 11540 1.92 

LUAD 97501 6430 10425 1.62 

Cancer types are labeled according to the official TCGA codes [41] 
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Figures 

Fig. 1: Simulated mutational processes generate a detectable excess of recurrent variants 
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Unknown, hypothetical mutational processes were simulated to act in a coordinated manner in 
the soma and germline. Each simulated mutational process equally affects the same effectively 
random subset of genomic sites in the soma and germline. This leads to an excess of sites that 
are concurrently mutated in the soma and germline, over expectations by independence (the 
Forbes coefficient). The magnitude of resulting Forbes coefficients (numbered grid squares) 
depends on the fraction of genomic sites subject to the mutational process (x-axis) and the 
mutation rate multiplier (y-axis) of the affected bases relative to unaffected bases. Symmetry 
arises because a mutation-promoting process affecting 25% of the genome is equivalent to a 
mutation-inhibiting process affecting 75% of the genome. 

 

 

 

 

 

 

 

 

Fig 2. Excess cSNVs are broadly distributed across samples 
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These histograms show the observed (purple) and expected (pink) distributions of cSNV rates 
across somatic samples. The observed distribution is strongly right-shifted compared with 
expectations. Here, expectations for each tumor are modeled using a binomial draw, setting the 
number of trials equal to the number of somatic SNVs in the tumor and the success probability 
equal to the constant average germline mutation rate. The peak at 0 in the expected 
distribution reflects the fact that enough tumors have a very small number of mutations that it 
would be expected that some of these tumors would have 0 cSNVs.  

 

 

 

 

 

 

 

 

Fig 3. The prevalence of Signature 1 in a somatic sample predicts its cSNV rate 
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Each point of this scatterplot represents a somatic sample. On the x-axis is the proportion of 
SNVs in that sample that are attributed to mutation Signature 1. On the y-axis is the proportion 
of SNVs in that sample that can also be found in the germline database. Somatic samples with 
fewer than 20 total SNVs are excluded. The trend line is shown in blue: somatic samples with a 
higher prevalence of Signature 1 have a higher rate of cSNVs. 

 

 

 

 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/450239doi: bioRxiv preprint 

https://doi.org/10.1101/450239
http://creativecommons.org/licenses/by-nd/4.0/


 24 

Fig 4. The prevalence of Signature 1 in a TCGA cohort predicts its cSNV rate 

 

Each point represents a cancer cohort. On the x-axis is the proportion of SNVs in that sample 
that are attributed to mutation Signature 1. On the y-axis is the proportion of SNVs in that 
sample that can also be found in the germline database. Cancer types are labeled according to 
the official TCGA codes [41]. 
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Fig. 5: gnomAD overlap rate is highest when TCGA has a low read depth in the matched normal. 

 

Each variant instance in TCGA was called at a particular genomic site in a particular patient’s 
tumor sample. That patient also supplied a genomic sample from normal tissue. The read depth 
in the matched normal at the genomic site where a variant is called in the patient’s tumor is 
theoretically related to the efficiency of removal of germline variants from somatic call-sets. 
Along the x-axis is the matched normal read depth of a set of variants and the y-axis is the 
fraction of those variants that are cSNVs. 
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