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Abstract 31 

Autism spectrum disorders (ASD) are neurodevelopmental conditions that are influenced by 32 

genetic factors and encompass a wide-range and severity of symptoms. The details of how 33 

genetic variation contributes to variable symptomatology are unclear, creating a major challenge 34 

for translating vast amounts of data into clinically-useful information. To determine if variation 35 

in ASD risk genes correlates with symptomatology differences among individuals with ASD, 36 

thus informing treatment, we developed an approach to calculate the likelihood of genetic 37 

dysfunction in Gene Ontology-defined biological processes that have significant 38 

overrepresentation of known risk genes. Using whole-exome sequence data from 2,381 39 

individuals with ASD included in the Simons Simplex Collection, we identified likely damaging 40 

variants and conducted a clustering analysis to define subgroups based on scores reflecting 41 

genetic dysfunction in each process of interest to ASD etiology. Dysfunction in cognition-related 42 

genes distinguished a distinct subset of individuals with increased social deficits, lower IQs, and 43 

reduced adaptive behaviors when compared to individuals with no evidence of cognition-related 44 

gene dysfunction. In particular, a stop-gain variant in the pharmacogene encoding 45 

cycloxygenase-2 was associated with having an IQ<70 (i.e. intellectual disability), a key 46 

comorbidity in ASD. We expect that screening genes involved in cognition for deleterious 47 

variants in ASD cases may be useful for identifying clinically-informative factors that should be 48 

prioritized for functional follow-up. This has implications in designing more comprehensive 49 

genetic testing panels and may help provide the basis for more informed treatment in ASD. 50 

51 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449819doi: bioRxiv preprint 

https://doi.org/10.1101/449819


3 
 

Introduction 52 

Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions 53 

characterized by core symptoms that include impairments in social interactions, delays in 54 

language development and expression of repetitive interests and/or behaviors(1). ASDs manifest 55 

along a wide distribution of core symptom severity, and numerous different comorbidities are 56 

highly prevalent [e.g., intellectual disability(2), gastrointestinal issues(3)]. Evidence supports 57 

contributions from different types of common and rare genetic variation – including inherited 58 

and de novo single nucleotide variants (SNVs), small insertions or deletions (In/Dels), and large 59 

insertions or deletions (CNVs) – in hundreds of genes(4, 5). The already large, and rapidly 60 

expanding, landscape of genetic factors involved in expression of ASD makes it difficult to 61 

determine how results from genetic studies can translate into clinically-useful information(6-8). 62 

A crucial step toward using genetics to inform more effective, personalized approaches for 63 

treatment of individuals with ASD is to better understand how variation in implicated genes 64 

influences expression of core symptoms and comorbidities. 65 

While there are more than one hundred implicated genes, many function in the same 66 

biological process(9, 10). Dysfunction in genetic mechanisms encoding different biological 67 

functions may contribute independently to increase risk for ASD. For example, one study 68 

observed that a subset of individuals with ASD had de novo and rare, inherited variants in 69 

synaptic genes but not chromatin modification genes, while another subset had these types of 70 

variants in chromatin modification genes but not synaptic genes(11). If some individuals with 71 

ASD have dysfunction in a particular biological process while others have dysfunction in a 72 

separate process, then it may be possible to use genetic data to inform a more personalized (i.e., 73 

precision medicine) approach to treatment of symptoms. However, the study mentioned above, 74 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449819doi: bioRxiv preprint 

https://doi.org/10.1101/449819


4 
 

and others, have not observed a relationship between genetic and phenotypic differences(11, 12). 75 

As such, it is difficult to determine if distinguishing dysfunction across different underlying 76 

biological processes is clinically useful. Notably, previous studies have focused largely on 77 

evaluating contributions from specific types of genetic variants (e.g., solely de novo and rare 78 

variants, or common variants) to explain phenotypic differences(11-16). A more holistic 79 

approach that incorporates all relevant risk variation is better situated to ask how overall genetic 80 

risk is related to particular symptom profiles that are unique to the individual(17, 18). 81 

Furthermore, to enable use of disparate genetic information in personalized medicine 82 

approaches for ASD, ability to predict functional effects of a given variant on the ASD risk gene 83 

and encoded protein is essential and may require functional analysis to test(19). While functional 84 

study of every suspected ASD risk variant is desirable in the long-term, reliance on such a 85 

strategy is not feasible if genetic findings are to be rapidly translated in the clinic. It may be more 86 

immediately useful to have computational approaches which incorporate evidence from multiple 87 

sources to allow for more thorough in silico predictions from patient data to help pinpoint 88 

specific genes and variants that should be prioritized for functional follow-up(20-22). 89 

To determine if current genetic evidence could help explain variability in ASD 90 

symptoms, and ultimately inform treatment approaches, we developed an approach to calculate 91 

the likelihood that a biological process with overrepresentation of ASD candidate genes is 92 

dysfunctional. We evaluated the approach using whole-exome sequencing and phenotype data 93 

from the Simons Simplex Collection (SSC)(23). We hypothesized that incorporating evidence 94 

from all possible types of genetic variation to calculate cumulative risk of dysfunction overall in 95 

biological processes would identify underlying mechanisms contributing to differences in 96 

symptomatology among individuals with ASD. We also expected that careful evaluation of the 97 
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current genetic evidence would be useful to recognizing ASD-related variants that are already 98 

clinically-actionable as many individuals carry pharmacogenetics variants which influence how a 99 

patient responds to a drug(24). 100 

Materials and Methods 101 

Identification of Genetic Mechanisms Relevant to ASD 102 

To assess the influences of predicted dysfunction in overall biological processes, we 103 

compiled a list of ASD candidate genes using the Autism Informatics Portal (AutDB, 104 

http://autism.mindspec.org/autdb/Welcome.do)(25), which is continuously updated with manual 105 

annotations as new scientific literature is published. As the goal was to determine if any genes 106 

evidenced to have a relationship with ASD were useful to understanding symptom variability 107 

and informing personalized treatment approaches, all genes were considered regardless of the 108 

strength of evidence supporting an association with ASD (December 2017 update). Official Gene 109 

Symbols were converted to Ensembl IDs using the Gene ID Conversion Tool available in the 110 

database for annotation, visualization and integrated discovery (DAVID)(26). Ensembl IDs for a 111 

subset of these genes could not be converted via DAVID and were manually identified by 112 

searching the Ensembl database. Gene set overrepresentation analyses were run on all candidate 113 

genes for ASD using the classic algorithm and Fisher’s exact test from the TopGO package in 114 

R(27). Overrepresented processes were interrogated to identify terms representing processes 115 

useful to ASD etiology (‘unique terms’; Table S1). Processes were considered biologically 116 

meaningful unique terms if they represented the initial process in each GO hierarchy that was 117 

system-, organ-, tissue-, or organelle-specific (e.g., ‘GO:0007399=nervous system 118 

development’). GO term definitions were based on AmiGO version 1.8, GO version 2018-01-01. 119 

Calculation of Overall Biological Process Dysfunction 120 
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Variants identified using whole-exome sequencing available for a total of 2,392 121 

individuals with ASD whose data were included in the Simons Simplex Collection (SSC) 122 

dataset(23) are provided by the Simons Foundation Autism Research Initiative and WuXi 123 

NextCODE: A Contract Genomics Organization (https://www.wuxinextcode.com/). The SSC 124 

represents the largest collection of simplex autism families, with one affected child and at least 125 

one unaffected sibling, collected to date(23). Data are made available to approved researchers via 126 

the Sequence Miner Tool 5.24.7. Gender discrepancies were first identified using the ‘Sex 127 

Check’ report builder in Sequence Miner. This algorithm evaluates both the ratio of 128 

heterozygous SNPS on the X chromosome compared to autosomes and coverage of the Y 129 

chromosome gene, SRY. Seven individuals with unclear gender assignments, 2 individuals with 130 

47,XYY and one individual with 47,XXX were excluded from analyses. Genome-wide 131 

genotyping and whole-exome sequence data for all but one individual in the evaluated dataset 132 

(n=2,381) was previously interrogated to identify de novo and rare, inherited copy number 133 

variants (CNVs)(11, 28). The final analysis dataset included 2,381 individuals who were 4-18 134 

years old at the time of data collection. The dataset was 86% male and 79% parent-reported 135 

white (Table S2). 136 

Variation Annotation queries were performed in Sequence Miner (29) to identify single 137 

nucleotide variants (SNVs) and short insertions or deletions (<200bp; In/Dels) located in protein 138 

coding gene transcripts that had Variant Effect Predictor(29) consequences that were highly 139 

likely to be damaging to the encoded protein product (i.e., splice site alterations, gains or losses 140 

of stop codons, loss of start codons, or frameshifts). We considered variants were called by either 141 

the Genome Analysis Toolkit (GATK)(30) or FreeBayes(31) software across all 22 autosomes 142 

and both sex chromosomes. Quality Control thresholds included depth ≥8 reads and genotype 143 
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quality for variant calls of ≥20(32). Variants flagged as ‘LowQuality’ as indicated by GT Filter 144 

criteria were excluded.  145 

The final list of variants passing QC, that were predicted by VEP to be very likely to be 146 

damaging, were interrogated to identify those located in transcripts for ASD risk genes (included 147 

the Autism Informatics Portal) that were protein coding (Table S3). Notably, the Sequence Miner 148 

platform reports Ensembl IDs for each gene in the query output. While these were used to ensure 149 

the appropriate VEP predictions and help search the current Ensembl database, some of the 150 

Ensembl IDs provided with this platform were outdated and are now represented by new IDs. As 151 

such, both Ensembl IDs and gene names were cross-referenced to compare those provided by 152 

Sequence Miner and those mapped using DAVID and manual searches. Discrepancies were 153 

further interrogated to verify that the VEP prediction was not based on a variant location in an 154 

alternate transcript that is not supported by evidence in Ensembl. 155 

There is substantial variability in pathogenicity predictions depending on the algorithm 156 

employed (e.g., based on variant location, evolutionary conservation, protein 157 

structure/function)(21, 33). Therefore, to more completely assess the likelihood of a variant 158 

being damaging and ultimately resulting in a dysfunctional protein product, nine different variant 159 

prediction algorithms were run on all of the variants pulled from Sequence Miner using filter-160 

based annotation from ANNOtate VARiation (ANNOVAR) software(34). In silico prediction 161 

algorithms included: 1) Sorts Intolerant From Tolerant (SIFT)(35), 2) Polymorphism 162 

Phenotyping v2 (Polyphen-2) HVAR(36), 3) Mutation Taster(37), 4) Mutation Assessor(38), 5) 163 

Likelihood Ratio Test (LRT)(39), 6) FATHMM-MKL(40), 7) PROVEAN, 8) MetaLR(41), and 164 

9) Mendelian Clinically Applicable Pathogenicity (M-CAP)(42). Genomic locations of variants 165 

available from Sequence Miner are based on Human Genome Build GRCh37/hg19; all analyses 166 
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were conducted based on these genomic locations. Each prediction algorithm uses different 167 

nomenclature to denote variant predictions. To allow for cross-comparison of results from 168 

different predictors, scores were recoded as either benign (B), damaging (D), or unknown (U) as 169 

follows: SIFT: damaging (D)=D, tolerant (T)=B; Polyphen2 HVAR probably damaging (D)=D, 170 

possibly damaging (P)=U, benign (B)=B; LRT: deleterious(D)=D, unknown(U)=U, 171 

neutral(N)=B, Mutation Taster: disease causing automatic(A)=D, disease causing(D)=D, 172 

polymorphism(N)=B, polymorphism automatic(P)=B; Mutation Assessor: predicted functional 173 

(H, M)=D, predicted non-functional (L, N)=B; FATHMM-MKL: damaging(D)=D, 174 

neutral(N)=B; PROVEAN: deleterious(D)=D, neutral(N)=B; MetaLR: damaging(D)=D, 175 

tolerant(T)=B; M-CAP: pathogenic(D)=D, benign(T)=B. 176 

We developed the following equation to calculate the likelihood that a variant was 177 

damaging to the function of the encoded protein product: 178 

 LDV CR FD Z= × ×    179 

Where =LDV the likelihood that the variant is damaging; =CR the number of variant callers 180 

that called the variant (based on GATK and FreeBayes software); ( )( ) ( )1 ) / 1= − + +FD D B N  181 

where =D the number of in silico prediction algorithms that called the variant damaging, =B182 

the number of algorithms that called the variant benign, =N   the total number of algorithms that 183 

provided a prediction for the variant, and 1 =  a constant to account for the fact that variants were 184 

preselected according to variant effect predictions indicating a high potential to be deleterious to 185 

at least one gene transcript based on the genetic location; and =Z zygosity where heterozygous 186 

calls=1 and homozygous calls=2. To reduce the likelihood of false positive calls overly 187 

influencing genetic risk scores, variants were weighted such that if only one variant caller 188 

recognized the base pair alteration compared to reference 0.5=CR  . If the variant was called by 189 
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both the GATK and FreeBayes callers 1=CR . FD scores ranged from -0.8-1.0; however, as the 190 

goal was to identify variants that were more likely to be deleterious, all negative scores were 191 

recoded to zero. Regarding zygosity for sex chromosomes, as it is difficult to determine which X 192 

chromosome is inactivated using the data available, female individuals with heterozygous 193 

variants on the X chromosome were weighted the same as autosomal variants. In addition, for X 194 

chromosome variants called as heterozygous in males, those located within Pseudoautosomal 195 

Regions (PAR) were weighted the same as autosomal variants. Male heterozygous X 196 

chromosome variants located outside of PAR1 and PAR2 were considered homozygous and 197 

were weighted as such in genetic risk scores. 198 

Hg19 genomic locations of rare, inherited and validated, de novo CNVs previously 199 

reported in Sanders et al., 2015(11) and Krumm et al., 2015(28) that encompassed coding and 200 

regulatory regions of protein coding transcripts for ASD candidate genes were pulled from 201 

supplemental data included in these publications. Bedtools(43) was used to identify regions of 202 

overlap between CNVs reported across the previously published studies. Gene-based annotations 203 

in ANNOVAR were used to identify CNVs that encompassed portions of the coding (i.e., 204 

exonic, splice-site) and proximal promoter (i.e., 5’-UTR) regions (Tables S4-S5). CNVs were 205 

given weights equal to SNVs and In/Dels with the strongest likelihood of being damaging based 206 

on the distribution of FD scores described above and variant weights for all CNVs were set 207 

equal to 1. The currently published data for CNVs report only the presence of a deletion or 208 

duplication in a particular genomic region but not the predicted number of copies; however 209 

deletions were expected to occur on only one chromosome(11, 28). Deletions and amplifications 210 

were assumed to occur on only one chromosome. In addition, while some CNVs were not 211 

reported for the same evaluated individual, the analysis datasets across the two prior publications 212 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449819doi: bioRxiv preprint 

https://doi.org/10.1101/449819


10 
 

did not completely overlap. Therefore, whether or not both studies reported the CNV was not 213 

included in variant weights. 214 

Separate genetic risk scores were then calculated for each individual to assess the 215 

likelihood of dysfunction in overall genetic mechanisms that represented unique GO-defined 216 

biological processes with overrepresentation of ASD candidate genes. We developed the 217 

following equation to calculate the likelihood of genetic dysfunction in biological processes: 218 

( ) ( ) ( )
( )

1 2 1

1

/
⎛ ⎞× + × + × +
⎜ ⎟= ∑
⎜ ⎟×⎝ ⎠L

GeneA GeneA GeneA GeneA GeneB GeneB
v X v X v X

X GeneZ GeneZ
v X

LDV EBP LDV EBP LDV EBP
DBP nvBPx

LDV EBP
219 

  220 

Where =XDBP  Dysfunction of Biological Process X and is the sum of the products of 221 

GeneA
vnLDV = the likelihood that variant n is damaging to gene A, and GeneA

XEBP  = the sum of the 222 

frequencies of the GO evidence codes, across all genes assigned to biological process X, that 223 

were used to assign gene A to biological process X (Fig. S1) plus the number of assigned child 224 

terms for biological process X, divided by the total number of child terms available for biological 225 

process X. nvBPx = the number of variants assigned to biological process X. We expected that a 226 

gene having more than one likely damaging variant was increased evidence that the encoded 227 

protein product was dysfunctional. Furthermore, the size of the transcripts was not correlated 228 

with the number of variants identified in the gene (R2=2.0x10-4). Therefore, we did not correct 229 

for multiple variants per gene. 230 

Clustering of Biological Process Dysfunction Scores 231 

To cluster individuals based on overall genetic risk, we used an approach that we 232 

previously developed and showed was capable of identifying genetically-meaningful subgroups 233 

in ASD (44). Briefly, the correlation structure across the genetic risk scores was determined by 234 
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calculating pairwise Spearman’s rank correlation coefficients. As score ranges varied by 235 

biological process, all scores were transformed into Hazen percentile ranks to be more 236 

comparable. To help ensure that correlated genetic risk scores did not overly influence results, 237 

Gower dissimilarity matrices were calculated using correlation-based weights with the ‘FD’ 238 

package v1.0-12 in R(45). The threshold for non-independence of genetic risk scores was 239 

ρ�≥�0.50, or moderate to strong correlation(46). Correlated scores were weighted to allow for 240 

only partial contributions to analyses. The ‘clValid’ package v0.6-6 in R was used to evaluate 241 

different methods for internal validity using connectivity, silhouette width, and the Dunn index 242 

while partitioning the dissimilarity matrix into anywhere from 2 to 5 clusters(47). Clustering 243 

methods that are available for evaluation in the clValid package include: 1) agglomerative 244 

hierarchical, 2) partitioning around medoids, 3) self‐organizing tree algorithm, 4) model‐based, 245 

5) divisive hierarchical, and 6) fuzzy k-means. The final clustering solution was performed using 246 

the agglomerative hierarchical method via the ‘cluster’ package v2.0.7-1 in R(48). Final cluster 247 

solution validity was assessed by performing 1,000 data permutations and comparing clustering 248 

of real versus permuted genetic risk scores with the Adjusted Hubert‐Arabie Rand index(49). 249 

Sensitivity and regression analyses were performed to determine if dysfunction in any particular 250 

biological process was important to definition of the final cluster solutions. Chi-square tests were 251 

used to determine if having variants with 0>LDV  in any particular gene was associated with 252 

assignment of individuals to genetic clusters. 253 

Differences in ASD-Related Phenotype Variables Based on Genetic Subgroup 254 

Phenotype variables representing quantitative or ordinal severity measures for symptoms 255 

assessed in the SSC standard phenotype battery and medical history intakes were downloaded 256 

directly from SFARI Base (https://base.sfari.org/) and were available for the majority of the ASD 257 
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probands included in the genetic data analyses (99.66%, n=2,373). For more information on 258 

symptom severity measurements used for the SSC see Fischbach and Lord, 2010(23). When 259 

available, normalized z-scores or age-standardized scores were used. Head circumferences were 260 

transformed to z‐scores by standardizing for age and sex using a typically developing 261 

population(50). Sleep duration was determined using current answers to the question “On 262 

average, how many hours/night [does your child sleep]?” obtained from the medical history 263 

intakes as described in our previous study(51). Student’s t-tests were used to compare mean 264 

scores for symptom severity measures, that were available for at least half of the analysis dataset, 265 

between the individuals assigned to genetic clusters. Age was not associated with measures that 266 

were significantly different between clusters (p≥0.43). For measures with sex-specific 267 

differences, additional t-tests were conducted that were stratified by sex. Chi-square tests were 268 

used to determine if having variants with 0>LDV  in any particular gene was associated with 269 

assignment to the genetic clusters. Logistic regression was used to test if having variants with 270 

0>LDV  in cluster-associated genes was associated with: 1) individuals with ASD compared to 271 

unaffected siblings in all races and only in white individuals, 2) increased risk for intellectual 272 

disability (IQ<70) or reports of irritable bowel syndrome while adjusting for gender and race. 273 

False discovery rate was controlled for using the Benjamini-Hochberg procedure(52). 274 

Principal Component Analysis (PCA) was conducted while applying correlation-based 275 

weights to allow only partial contributions of moderately-strongly correlated phenotype variables 276 

(ρ�≥�0.50), similar to that described for clustering of genetic risk scores. Phenotype variables 277 

were transformed to Hazen percentile ranks prior to PCA. PCA was conducted without scaling as 278 

variables did not contribute equal weights. The number of dimensions of the PCA was estimated 279 
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via cross-validation. PCA was then performed on percentile ranked phenotype data using the 280 

‘FactoMineR’ package v1.41 in R(53). 281 

Results 282 

Novel Approach Calculates Dysfunction in Biological Processes Underlying ASD 283 

At the time of these analyses, there were 989 different protein coding ASD risk genes 284 

included in the Autism Informatics Portal (December 2017 update). 2,482 Gene Ontology 285 

(GO)(54, 55) biological processes defined for humans were overrepresented for ASD risk genes 286 

based on a significance threshold of p<0.05; 16 terms had the lowest possible p-values (p<1x10-287 

30; Fig. 1, Table S1). Of the 16 top overrepresented terms, four GO terms – nervous system 288 

development (GO:0007399), synaptic signaling (GO:0099536), cognition (GO:0050890), and 289 

regulation of membrane potential (GO:0042391) – represented unique processes. There were 400 290 

ASD candidate genes with evidence for involvement in at least one of these four biological 291 

processes. The genes that remained unassigned to any process were overrepresented in the 292 

chromosome organization process (GO:0051276, p=7.10x10-12; Fig. 1, Table S1). An additional 293 

82 genes were evidenced to be involved in chromosome organization. There were no unique 294 

biological processes with evidence of overrepresentation for the remaining 507 unassigned ASD 295 

candidate genes (Table S1, Fig. S2). The overlap in ASD risk genes assigned the five 296 

overrepresented biological processes representing unique terms is shown in Figure S3A. 297 

There were 2,077 unique SNVs and In/Dels predicted by Variant Effect Predictor (VEP) 298 

to be damaging (Table S3). Predictions of variant effects based on nine other algorithms that use 299 

information in addition to genetic location indicated that 730 of the 2,077 variants were more 300 

often predicted damaging compared to benign (i.e., 0>LDV ). The majority of the individuals 301 

in the analysis dataset (n=2,295, 96.35%) had a variant with 0>LDV  in an ASD risk gene. On 302 
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average, there were ~15 variants [µ=14.6(5.3)] observed per individual that was predicted to be 303 

damaging more often than benign, and ~11 different [µ=11.3, (4.2)] ASD candidate genes per 304 

person with possibly damaging variants. None of the variants that were de novo were predicted 305 

to be benign and inherited variants were more often predicted to be damaging if the consequence 306 

related to a frameshift, splice-site alteration, or incorporation of a premature stop codon (Fig. 2). 307 

Screening data reported in previous studies(11, 28) for de novo and rare, inherited structural 308 

variation in the SSC dataset identified 572 unique Copy Number Variants (CNVs) encompassing 309 

coding regions or proximal promoter elements of 354 ASD candidate genes (Tables S4-S5). 310 

There were 546 individuals in the analysis dataset with ≥1 CNV that was likely to cause 311 

dysfunction in ≥1 ASD candidate gene; 292 CNVs encompassed more than one gene. In total, 312 

there were 751 currently implicated genes with either a SNV, In/Del or CNV with 0>LDV . Of 313 

these, 355 were assigned to at least one unique process that was overrepresented for ASD risk 314 

genes (Fig. S3B). 315 

Most individuals in the dataset (98.1%) had evidence indicating genetic dysfunction in 316 

more than one of the evaluated biological processes. There were five individuals with evidence 317 

for dysfunction only in nervous system development, 35 with evidence for dysfunction only in 318 

chromosome organization, and five with no evidence for dysfunction in any of the evaluated 319 

processes. Scores for dysfunction in nervous system development, synaptic signaling, and 320 

regulation of membrane potential were moderately to strongly correlated. Scores reflecting 321 

dysfunction in cognition and chromosome organization were weakly correlated with each other 322 

and other scores (Fig. 3A). 323 

A clustering analysis was then performed on XDBP scores reflecting the likelihood of 324 

genetic dysfunction in each of the five unique biological processes. Agglomerative hierarchical 325 
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clustering identified two valid subgroups of individuals (nCluster 1=1,485, nCluster2=896) (Fig. 3B, 326 

Fig. S4). This solution was significantly different from clustering permuted datasets 327 

(HubertArabieRandIndex=-1.2x10-4), further evidence supporting validity of the clustering 328 

analysis. Sensitivity analyses indicated that scores reflecting genetic dysfunction in the cognition 329 

biological process had the strongest influence on the stability of the clusters (Fig. 3C). Notably, 330 

all of the individuals assigned to the smaller cluster had evidence of dysfunction in genes 331 

involved in cognition (‘cognition gene dysfunction cluster’) while none of the individuals 332 

assigned to the larger cluster had evidence for dysfunction in these genes (Fig. 3D). 333 

Three Cognition Genes are Associated with Distinct ASD Genetic Subgroup 334 

Of the 61 cognition genes with likely damaging variants identified in the SSC dataset, 335 

there were three genes (PTGS2, ABCA7, and SHANK3) that were strongly associated with 336 

assignment to the cognition gene dysfunction cluster (Table 1A, Table S6). There were 196 337 

individuals who were heterozygous for a stop-gain variant in exon 4 (rs200314986; transcript 338 

ENST00000367468.9:c.366C>A, ENSP00000356438.5:p.Tyr122Ter) of the prostaglandin-339 

endoperoxide synthase 2 (PTGS2) gene, which results in a shortened transcript that is missing 340 

the final 6 exons. This variant was more frequent in individuals with ASD compared to 341 

unaffected siblings (Table 1B). There were 17 different likely damaging variants observed in 280 342 

individuals in the ATP Binding Cassette Subfamily A Member 7 (ABCA7) gene. These included 343 

six frameshifts, four splice-sites, four stop-gains, one stop-loss, one inherited deletion of the first 344 

11 exons (CNV size=18.7kb), and one inherited amplification encompassing exons 27-40 (CNV 345 

size=4.5kb). For the SH3 and multiple ankyrin repeat domains 3 (SHANK3) gene, there were 294 346 

individuals who were heterozygous for a splice-site variant (rs150909992) that changes the 5' 347 
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end of an intron in transcript variant ENST00000445220.2, and two individuals with de novo 348 

CNVs that deleted the entire coding region (CNV sizes>3Mb). 349 

Individuals with Cognition Gene Variants Have More Severe Symptoms 350 

Among the 27 ASD-related symptom measures that were available for at least half of the 351 

dataset (Table S7), the severity of social impairment based on teacher reports on Social 352 

Responsiveness Scales (SRS-TR), intelligence quotient (IQ) scores, personal and social skills 353 

measured using composite standard scores from the Vineland Adaptive Behavior Scales, 354 

receptive vocabulary measured via the Peabody Picture Vocabulary Test, and the severity of 355 

ASD-related abnormalities exhibited by 36 months of age (i.e., Developmental Abnormality 356 

scores) from the Autism Diagnostic Interview-Revised (ADI-R) were different between the 357 

genetic clusters (Fig. 4A, Table S8A). After false discovery rate corrections, the observations that 358 

individuals with dysfunction in cognition genes had increased severity of social impairment 359 

reported by teachers on the SRS-TR and reduced IQs remained significant (Fig 4A, Table S8A). 360 

Notably, both nonverbal and verbal IQ scores were lower in the genetic subgroup defined by 361 

dysfunction in cognition genes (Fig 4A, Table S8B). Sex-stratified mean comparisons indicated 362 

that differences between the genetic clusters for SRS-TR scores and verbal IQs were more 363 

significant in males compared to females (Table S8C). 364 

To determine how much of the overall variability in ASD symptomatology was explained 365 

by symptoms that were different between the genetically distinct subgroups, principal 366 

components analysis (PCA) was conducted, while adjusting for correlated variables, on 367 

phenotype data from the subset of the dataset with all evaluated measures (n=543). Five principal 368 

components (PCs) were able to define the majority of the variability in symptoms (cumulative 369 

percentage of variance=46.97%). Of the 27 measures evaluated, teacher reports on SRS-TR were 370 
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the 5th strongest contributor to the cumulative variability defined by the first component of the 371 

data (Fig. 4B, Fig. S5). The strongest correlation for SRS-TRs (ρ=0.39) was with the variable 372 

which contributed the most to explaining the phenotypic heterogeneity defined by PC1, social 373 

and communication impairment observed via the Autism Diagnostic Observation Schedule (Fig. 374 

4C, Figs. S5-S6). Full scale IQs were the 6th strongest contributor to the variability defined by 375 

PC1 (Fig. 4B, Fig. S5). Full scale IQ scores were moderately correlated with scores for dexterity 376 

(Purdue Pegboard Test, ρ=0.45; Fig 4C) and language acquisition (non-word repetition task, 377 

ρ=0.48; Fig. 4C) which were the 3rd and 4th largest contributors to PC1, respectively (Fig. S5). 378 

Of the top three genes associated with assignment to the ‘cognition dysfunction cluster’, 379 

the stop-gain variant in the PTGS2 gene was associated with increased risk for having an IQ 380 

score reflecting intellectual disability (Table 2A) and reports of comorbid irritable bowel 381 

syndrome, when adjusting for sex and race (Table 2B). The majority of the individuals with 382 

ASD, and all of the unaffected siblings with the variant inherited it from at least one parent. 383 

There were six individuals with ASD whose parents did not appear to have the variant. 384 

Discussion 385 

Novel Approach Identified Clinically-Relevant Genes to Prioritize for Functional Follow-up 386 

Beginning with all 989 ASD candidate genes included in the December 2017 update of 387 

the AutDB Autism Informatics Portal, our approach identified a subset of 61 genes involved in 388 

cognition that were useful to defining a cluster of individuals with more severe teacher reported 389 

social impairment, lower IQ scores, and reduced daily living skills. We then identified three 390 

genes (i.e., PTGS2, ABCA7, and SHANK3) with likely damaging variants that were strongly 391 

associated with this ASD subgroup. This helped us to pinpoint the specific gene and variant that 392 

was associated with expression of important comorbidities in ASD, including intellectual 393 
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disability and irritable bowel syndrome. In particular, a stop-gain variant in the PTGS2 gene 394 

(rs200314986) encoding Cycloxygenase-2 (COX2) – a target for non-steroidal anti-inflammatory 395 

drugs (NSAIDs) – was more frequent in individuals with ASD compared to unaffected siblings. 396 

The support for PTGS2 as a candidate gene for ASD resides in the results of a small gene-centric 397 

association study(56). As such, it is considered to have weak evidence for an association with 398 

ASD based on the cumulative strength of evidence for individual variants in that gene as defined 399 

in the AutDB Autism Informatics Portal. Our work provides additional support not only for a 400 

relationship between the PTGS2 gene and ASD risk but also for increased risk of intellectual 401 

disability in ASD. Notably, the encoded enzyme is involved in serotonergic synaptic 402 

transmission and oxytocin signaling, which are known to be impaired in some individuals with 403 

ASD(57-60). While not this specific variant, there are 13 other pathogenic variants reported in 404 

this gene (https://www.ncbi.nlm.nih.gov/clinvar/) relating to developmental abnormalities. 405 

PTGS2 is also considered a very important pharmacogene by PharmGKB and has strong 406 

implications for functional follow-up studies and eventual translation to improve clinical care(61, 407 

62). There are a number of variants reported in this gene that have been shown to influence 408 

individual response to NSAIDs in the typically developing population(61). Given the evidence 409 

that long-term use of NSAIDs has been linked to gastrointestinal issues(63), we also tested for 410 

and observed that individuals with the PTGS2 stop-gain variant had increased risk for reports of 411 

irritable bowel syndrome. It is possible that drugs that selectively inhibit COX-2, as well as 412 

traditional NSAIDs that target COX-2 and COX-1 (e.g., ibuprofen) may be less effective in 413 

individuals with this loss-of-function variant. This indicates that it may be useful to test for the 414 

rs200314986 variant in individuals with ASD to help improve treatment for pain and avoid 415 

exacerbation of gastrointestinal issues. 416 
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Variants in ABCA7 were not strongly associated with ASD. Notably, there were 17 417 

different likely damaging variants identified in this gene. This suggests that ABCA7 may be more 418 

tolerant to loss of function mutations. We looked at loss intolerance scores (pLI), available via 419 

DECIPHER (https://decipher.sanger.ac.uk/) which assess the probability that a gene is intolerant 420 

to a loss of function mutation(64). These scores indicate that ABCA7 may tolerate deleterious 421 

variants (pLI=0.0). In comparison, there was only one stop-gain variant in PTGS2 and three 422 

different variants (one splice-site and two CNVs) in SHANK3. PTGS2 and SHANK3 are 423 

predicted to be extremely intolerant (pLI for both genes=1.00) to loss of function mutations. 424 

Unexpectedly, SHANK3 variants were associated with decreased risk for ASD. SHANK3 425 

is considered a strong candidate gene for ASD and haploinsufficiency of SHANK3 is implicated 426 

in Phelan-McDermid syndrome which is often comorbid with ASD and characterized by delayed 427 

speech and intellectual disability(65). Notably, as we conducted gene-based tests our results were 428 

likely driven by a splice-site variant (rs150909992) that was observed to be heterozygous in 294 429 

individuals, and not by the two CNVs. The splice-site variant was identified based on the VEP 430 

consequence from a previous assembly of the reference human genome (GRCh37.p13). This 431 

variant was not predicted by any of the other algorithms tested. In the most recent update of 432 

Ensembl (GRCh38.p10), this variant is no longer predicted to be a splice-site variant for a 433 

protein coding transcript of SHANK3. The transcript it affects corresponds to SHANK3-202 434 

which is now evidenced to encode a non-coding RNA. It is possible that this variant has no effect 435 

on the SHANK3 protein, which may explain why we did not see significant effects of having a 436 

likely damaging variant in SHANK3 on risk for ASD or intellectual disability. It may instead 437 

have regulatory effects on other genes, as there is evidence that some non-coding RNAs are 438 

functional(66), and it is located in a promoter flanking region which is active in neuronal 439 
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progenitor cells (ENSR00000147759). This is an excellent example of why it is important to 440 

consider that solely using the genetic location of the variant is potentially misleading in the ever-441 

changing landscape of human genetics. 442 

Multiple Prediction Algorithms are Necessary for Efficient Identification of Damaging Variants 443 

By evaluating damaging variant predictions from multiple algorithms, we were able to 444 

identify the variants (whether de novo or inherited, rare or common) in ASD risk genes with 445 

more evidence to be damaging to the encoded protein function. It is unclear what the optimal 446 

approach is for in silico prediction of the likelihood a genetic variant is damaging to the encoded 447 

protein product(21, 33, 67). Predictions from available tools vary widely when applied to the 448 

same variant as they employ different algorithms and use different training data to determine the 449 

accuracy of predictions(68). As such, it is highly advisable to combine predictions from multiple 450 

tools to assess the overall likelihood a variant is damaging(69). We observed that ~13% of the 451 

SNVs and In/Dels that were expected to have a negative consequence on the encoded protein 452 

based on genetic location (i.e., the VEP prediction) were more often predicted to be benign by 453 

algorithms that incorporated additional information (e.g., the frequency of the variant in 454 

populations with no evidence of disease, the level of conservation of the genetic region across 455 

species). As such, if we had chosen to focus solely on VEP consequence predictions, we would 456 

have overestimated the likelihood of genetic dysfunction in the evaluated biological process. In 457 

addition, over half of the variants (52%) that were located in a genetic region that was likely to 458 

be damaging were not given predictions by any other algorithm. This is possibly because the 459 

variant being evaluated has not been observed in the populations that are used for training 460 

prediction algorithms. As such, it is currently difficult to determine the likelihood that an 461 

extremely rare variant is damaging without conducting functional follow-up studies. Only 0.14% 462 
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of the variants that VEP predicted to be highly likely of damaging the protein product based on 463 

the location in the coding region of the gene were predicted to be damaging by all of the other 464 

nine prediction algorithms evaluated. Fortunately, as the field of in silico variant prediction 465 

continues to develop novel methods, focused on advances like mapping variants to three-466 

dimensional protein structures(70), predictions should become more accurate and variant 467 

prioritization more efficient. 468 

Evidence of Intra-Individual Genetic Dysfunction in Multiple Biological Processes 469 

The majority of the evaluated individuals had a variant in an ASD candidate gene that 470 

was predicted more often to be damaging compared to benign. By using these variants to 471 

calculate dysfunction in overall biological processes, we also observed that the majority of 472 

individuals had evidence of dysfunction in more than one process important to ASD etiology. 473 

The unique terms that were selected reflect validations of results from previous studies 474 

implicating genes involved in neural development, synaptic signaling, and chromosome 475 

packaging(10, 11). In addition, ASD risk genes were overrepresented in processes that encode 476 

the mental activities related to thinking, learning and memory (i.e., cognition) and regulate the 477 

difference in electric potential between the intra- and extra-cellular environments (i.e., regulation 478 

of membrane potential). While all of these processes had some degree of overlap in genes with 479 

likely damaging variants, there were also genes with variants that were uniquely assigned to only 480 

one process suggesting some genetic factors influencing these processes are distinct. Not 481 

surprisingly, individuals with more evidence for genetic dysfunction in development of the 482 

nervous system also had more evidence for dysfunction in the regulation of membrane potential 483 

and synaptic signaling. Dysfunction in genes influencing chromosome organization appeared 484 

independent from other processes. This provides additional support that mechanisms of 485 
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chromosome organization may contribute independently from genes influencing neurological 486 

function to increase risk for ASD(10, 11). Notably, predicted dysfunction in cognition genes 487 

robustly identified a genetically-distinct subgroup of individuals with ASD. Many of these genes 488 

are evidenced to be involved in human cognition because they are implicated in intellectual 489 

disability, dementia, executive function, long-term memory, and a number of aspects of learning 490 

(for details see http://amigo.geneontology.org/amigo/term/GO:0050890). These genes may be 491 

particularly relevant to developing more comprehensive genetic screening panels for ASD. 492 

Individuals with More Cognition Gene Dysfunction Have More Severe ASD Symptoms 493 

The genetic subgroup defined primarily based on evidence of cognition gene dysfunction had 494 

increased severity of social impairment as measures via teacher reports on the Social 495 

Responsiveness Scale (SRS-TR)(71). Previous studies of families with more than one child 496 

diagnosed with ASD (i.e., multiplex) have observed that SRS scores are heritable, and linked to 497 

loci on a number of different chromosomes(72-74). SRS scores are observed to have differential 498 

distributions when comparing male and female individuals with ASD(72), and simplex versus 499 

multiplex families(75). Our results indicate that genetic factors influence social impairment 500 

measured via the SRS in simplex families, primarily in males. It is not clear why the 501 

observations are limited to teacher reports and do not extend to parent reports on the SRS-PR. 502 

We observed weaker correlations between parent and teacher reports on the SRS than has been 503 

previously reported(76). It is possible that these results reflect the highly variable symptom 504 

severity of the subjects in the SSC as concordance between teacher and parent reports is 505 

influenced by severity of ASD with higher concordance as ASD severity increases(77). 506 

Moreover, many studies have observed that parents rate their children as being more impaired 507 

compared to teachers possibly due to the context of the social setting in which the child is being 508 
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observed(78). Notably, teacher reports on the SRS-TR were more correlated with social affect 509 

measured on the Autism Diagnostic Observation Schedule (ρ=0.39) when compared to SRS-PR 510 

parent reports (ρ=0.21) suggesting better agreement between teacher-reported and clinician-511 

observed social impairment on average. Notably, PCA indicated that clinician-observed 512 

social/communication deficits measured via the Autism Diagnostic Observation Schedule 513 

(ADOS) were the largest contributors to the overall variability in quantitative ASD-related 514 

symptoms measured in the evaluated dataset and SRS-TR scores were among the top five. 515 

Verbal and nonverbal IQ scores were also reduced in individuals with evidence of 516 

cognition gene dysfunction compared to those without. This was independent of social 517 

impairment measured via the SRS-TR, suggesting that individuals with more social impairment, 518 

and lower nonverbal and verbal IQ [as opposed to an ‘IQ split’(79)] have genetic differences 519 

compared to individuals with less social and intellectual impairment or discordance between 520 

these two measures (e.g., higher IQs with more social impairment). Previous studies have also 521 

observed that social deficits ascertained by the SRS are generally unrelated to IQ(71, 80). 522 

Limitations 523 

Notably, many ASD candidate genes with likely damaging variants were assigned to 524 

more than one unique biological process. Therefore, to calculate scores for dysfunction in overall 525 

processes, genes with likely damaging variants were weighted to account for 1) the level of 526 

evidence supporting assignment of the gene to the biological process of interest, and 2) the 527 

proportion of the child terms of the unique biological process to which the gene was also 528 

assigned. For each gene assigned to a particular biological process, GO provides evidence codes 529 

that indicate the type of evidence supporting this assignment 530 

(http://www.geneontology.org/page/guide-go-evidence-codes). It is unclear what should be 531 
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considered the most reliable sources of evidence supporting assignment of genes to GO Terms. 532 

While experimental evidence would be preferred, it is potentially biased, as this code will likely 533 

be assigned more often to genes that are directly evaluated for a role in the process of interest 534 

and not genes that have yet to be experimentally assessed for a role in the process. The majority 535 

of genes are assigned to terms based on computational predictions that have been observed to be 536 

generally reliable in the absence of experimental data(81). To avoid bias in gene process 537 

assignment, weights were calculated for each gene to account for the level of evidence it was 538 

correctly assigned to the process. It is possible that this approach under- or over-estimated the 539 

level of biological process dysfunction.  540 

It is also possible that by focusing on currently implicated ASD risk genes we did not 541 

take into account all evidence for genetic dysfunction in a process. Future work aimed at 542 

understanding genetic contributions to overall process dysfunction, regardless of the underlying 543 

evidence of genetic risk for ASD may help detect more robust differences in ASD-related 544 

symptoms. In lieu of these potential limitations, the approach we developed helped identify the 545 

variants in ASD risk genes with more evidence to be damaging to the encoded protein function. 546 

This approach was also able to identify subsets of candidate genes with common underlying 547 

biology that are dysfunctional in individuals with ASD and related to differences in 548 

symptomatology. Notably, an inherited stop-gain variant in PTGS2 was prioritized which has 549 

strong implications for functional follow-up studies and may be a novel treatment target. This 550 

work constitutes a translational bioinformatics approach beneficial to gleaning clinically-useful 551 

information from whole-exome data and could be adapted and applied to identification of 552 

clinically-relevant genetic factors for a number of complex human disorders. 553 

 554 
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Supplemental Data description: 555 

Supplemental Data include six figures and eight tables. 556 
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Figure Legends 569 

Figure 1. Selection of unique biological processes with overrepresentation of ASD 570 
candidate genes for further study. Shown is the distribution of significant terms in the GO 571 
structure for biological processes (GO:0008150). Terms highlighted in yellow indicate unique 572 
terms selected due to their place in the hierarchy and meaningfulness to ASD etiology. Terms 573 
highlighted in blue indicate significant processes considered too broad to be meaningful and 574 
green indicates significant child terms with complete genetic overlap to unique terms. Sig=the 575 
number of ASD candidate genes assigned to the process, Exp=the expected number of genes 576 
assigned by chance. *denotes terms that were significant at Fisher’s exact FDR<1.0x10-30 577 
following the primary analysis of all 989 ASD risk genes, ** denotes terms that were significant 578 
at Fisher’s exact FDR ranging from 3.5x10-17 to 7.1x10-12 following the secondary analysis run 579 
on genes unassigned to the top processes. Black lines connect terms that regulate each other, blue 580 
lines connect terms that are part of each other. 581 

 582 
Figure 2. Proportion of VEP consequences predicted to be damaging based on nine 583 
prediction algorithms. Inherited variation resulting in frameshifts, splice-site and stop gains 584 
were more often predicted damaging compared to benign, while variants predicted to cause the 585 
loss of either stop or start sites were equally or more often predicted to be benign. De novo 586 
variants, regardless of the consequence were more often damaging. 587 
 588 
Figure 3. Clustering individuals based on overall biological process dysfunction. A) 589 
Correlation across scores reflecting dysfunction in biological processes with overrepresentation 590 
of ASD candidate genes indicates many individuals have dysfunction in >1 process. B) 591 
Clustering identified two distinct subgroups of individuals with more similar scores for overall 592 
biological process dysfunction (agglomerative coefficient=0.96). C) Sensitivity analyses indicate 593 
removing the scores had the strongest effect on stability of the clustering solution. APN=average 594 
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proportion of non-overlap, AD=average distance, ADM=average distance between means, 595 
FOM=figure of merit. D) Evidence of dysfunction in genes involved in cognition primarily 596 
defined separation of individuals into either cluster 1 (no cognition gene dysfunction) or cluster 2 597 
(cognition gene dysfunction). 598 
 599 
Figure 4. Relationship between genetic and phenotypic differences. A) T-tests comparing 600 
differences in the 27 quantitative ASD-related symptom measures between genetic clusters 601 
identified that social impairment was more severe and IQs and daily living skills were reduced in 602 
the cognition gene dysfunction cluster. B) Principal components analysis, while adjusting for 603 
correlations, of all 27 symptom measures identified that symptoms that were different between 604 
the genetic clusters majorly contributed to overall phenotype variability (as defined by 605 
Dimension 1). Black indicates symptom differences that remained significant (FDR≤0.04) 606 
following multiple testing correction, gray indicates symptom differences based on an unadjusted 607 
significance threshold (p≤0.03), and unlabeled arrows indicate symptoms that were not different 608 
but had strong contributions to phenotype variability. C) Significant (p<0.05) correlations are 609 
shown indicating that absolute values for many symptoms that were different between genetic 610 
clusters were correlated with those contributing majorly to overall phenotype variability. 611 
  612 
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Tables: 613 
Table 1A. Genes associated with the cognition gene dysfunction cluster 614 

Genetic 
Cluster 

PTGS2 ABCA7 SHANK3 

No Variant Variant No Variants Variants No Variants Variants 

Cluster 1 
Observed 

1,485 0 1,485 0 1,485 0 

Expected 1,363 122 1310 175 1,300 185 

Cluster 2 
Observed 

700 196 616 280 600 296 

Expected 822 74 791 105 785 111 

Total 2185 196 2,101 280 2085 296 

Pearson χ2 353.98 525.91 560.23 

Fisher’s exact <1.0x10-32 <1.0x10-32 <1.0x10-32 

Table 1B. Association of cluster-associated cognition genes with Autism Spectrum Disorder 615 

Of the 61 genes used to calculate CognitionDBP scores, A) three genes were significantly associated 616 

with assignment of individuals to the cluster with evidence for dysfunction in cognition genes 617 
(i.e., Genetic Cluster 2). B) In particular, a variant in PTGS2 was more frequent in individuals 618 
with ASD compared to unaffected siblings. Tests were conducted in all individuals and only in 619 
individuals with white race reported to account for potential influences of population 620 
stratification. †Odds ratios denote the likelihood for an individual to have an ASD diagnosis 621 
given the presence of any likely damaging variant in SHANK3, or ABCA7, or the T-allele (i.e. a 622 
stop-gain variant) in PTGS2. 623 
 624 
 625 
 626 

ASD Diagnosis 
PTGS2 ABCA7 SHANK3  

No 
Variant 

Variant 
No 

Variants 
Variants 

No 
Variants 

Variants Total 

All Reported Races 
ASD 2,185 196 2,101 280 2,085 296 2,381 

Unaffected Siblings 1,700 100 1,602 198 1,431 396 1,800 
Odds Ratio (95%C.I.)† 1.52 (1.18, 1.97) 1.08 (0.88, 1.31) 0.55 (0.46, 0.65)  

p-value 5.0x10-4 2.4x10-1 <1.0x10-5  
FDR 7.5x10-4 2.4x10-1 3.0x10-5  

Reported White Race 
ASD 1,644 184 1,634 194 1,594 234 1,828 

Unaffected Siblings 1,280 85 1,240 125 1,095 270 1,365 
Odds Ratio (95%C.I.)† 1.69 (1.28, 2.23) 1.18 (0.92, 1.50) 0.60 (0.49, 0.72)  

p-value 1.0x10-4 9.7x10-2 <1.0x10-5  
FDR 1.5x10-4 9.7x10-2 3.0x10-5  
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Table 2A. Association of cognition gene variants with intellectual disability in ASD 627 
 628 

 629 

 630 
 631 
 632 
 633 

 634 
Table 2B. Association of PTGS2 variant with irritable bowel syndrome in ASD  635 

Cognition Gene Chr z (df=2264) Odds Ratio (95%C.I.) p-value 

PTGS2 1q31.1 3.10 
5.38 (1.85, 15.58) 0.002 
2.01 (1.70, 2.33)Het 
2.94 (2.59, 3.30)Hom 

 All tests were adjusted for sex and race. A) Odds ratios denote the risk for having a full scale IQ 636 
score <70 (n=690) compared to a full scale IQ ≥70 (n=1,638) given any likely damaging variant 637 
in the tested gene. Likely damaging variants were defined as those that were more often 638 
predicted damaging when comparing results from 10 different prediction algorithms. More than 639 
one of these variants was identified in ABCA7 and SHANK3. For PTGS2, results of ordered 640 
logistic regression are shown testing effects of heterozygosity (het) or homozygosity (hom) for a 641 
stop-gain variant. df=degrees of freedom.; Chr=chromosomal location of gene. B) Odds ratios 642 
denote increased risk for an individual to have reports of irritable bowel syndrome (n=17) given 643 
the stop-gain variant in PTGS2. 644 

645 

Cognition 
Gene 

Chr z (df=2262) Odds Ratio (95%C.I.) p-value 

PTGS2 1q31.1 2.05 
1.40 (1.02, 1.92) 

0.040 2.08 (1.75, 2.40)Het 

3.01 (2.65, 3.38)Hom 
ABCA7 19p13.3 1.07 1.16 (0.88, 1.53) 0.287 

SHANK3 22q13.33 1.56 1.24 (0.95, 1.62) 0.119 
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Figure 1. Selection of unique biological processes with overrepresentation of ASD candidate genes for further study. Shown is the distribution 

of significant terms in the GO structure for biological processes (GO:0008150). Terms highlighted in yellow indicate unique terms selected due to 

their place in the hierarchy and meaningfulness to ASD etiology. Terms highlighted in blue indicate significant processes considered too broad to be 

meaningful and green indicates significant child terms with complete genetic overlap to unique terms. Sig=the number of ASD candidate genes 

assigned to the process, Exp=the expected number of genes assigned by chance. *denotes terms that were significant at Fisher’s exact FDR<1.0x10-30 

following the primary analysis of all 989 ASD risk genes, ** denotes terms that were significant at Fisher’s exact FDR ranging from 3.5x10-17 to 

7.1x10-12 following the secondary analysis run on genes unassigned to the top processes. Black lines connect terms that regulate each other, blue lines 

connect terms that are part of each other. 
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Figure 2. Proportion of VEP consequences predicted to be damaging based on nine prediction 

algorithms. Inherited variation resulting in frameshifts, splice-site and stop gains were more often 

predicted damaging compared to benign, while variants predicted to cause the loss of either stop or start 

sites were equally or more often predicted to be benign. De novo variants, regardless of the consequence 

were more often damaging. 
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Figure 3. Clustering individuals based on overall biological process dysfunction. A) Correlation across scores reflecting dysfunction in biological 
processes with overrepresentation of ASD candidate genes indicates many individuals have dysfunction in >1 process. B) Clustering identified two 
distinct subgroups of individuals with more similar scores for overall biological process dysfunction (agglomerative coefficient=0.96). C) Sensitivity 
analyses indicate removing the scores had the strongest effect on stability of the clustering solution. APN=average proportion of non-overlap, 
AD=average distance, ADM=average distance between means, FOM=figure of merit. D) Evidence of dysfunction in genes involved in cognition 
primarily defined separation of individuals into either cluster 1 (no cognition gene dysfunction) or cluster 2 (cognition gene dysfunction). 
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Figure 4. Relationship between genetic and phenotypic 

differences. A) T-tests comparing differences in the 27 quantitative 

ASD-related symptom measures between genetic clusters 

identified that social impairment was more severe and IQs and 

daily living skills were reduced in the cognition gene dysfunction 

cluster. B) Principal components analysis, while adjusting for 

correlations, of all 27 symptom measures identified that symptoms 

that were different between the genetic clusters majorly 

contributed to overall phenotype variability (as defined by 

Dimension 1). Black indicates symptom differences that remained 

significant (FDR≤0.04) following multiple testing correction, gray 

indicates symptom differences based on an unadjusted significance 

threshold (p≤0.03), and unlabeled arrows indicate symptoms that 

were not different but had strong contributions to phenotype 

variability. C) Significant (p<0.05) correlations are shown indicating 

that absolute values for many symptoms that were different 

between genetic clusters were correlated with those contributing 

majorly to overall phenotype variability. 
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