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Abstract

Information criteria (ICs) based on penalized likelihood, such as Akaike’s In-

formation Criterion (AIC), the Bayesian Information Criterion (BIC), and sample-

size-adjusted versions of them, are widely used for model selection in health and

biological research. However, different criteria sometimes support different models,

leading to discussions about which is the most trustworthy. Some researchers and

fields of study habitually use one or the other, often without a clearly stated justifi-

cation. They may not realize that the criteria may disagree. Others try to compare

models using multiple criteria but encounter ambiguity when different criteria lead

to substantively different answers, leading to questions about which criterion is

best. In this paper we present an alternative perspective on these criteria that can

help in interpreting their practical implications. Specifically, in some cases the com-

parison of two models using ICs can be viewed as equivalent to a likelihood ratio

test, with the different criteria representing different alpha levels and BIC being a

more conservative test than AIC. This perspective may lead to insights about how

to interpret the ICs in more complex situations. For example, AIC or BIC could be

preferable, depending on the relative importance one assigns to sensitivity versus

specificity. Understanding the differences and similarities among the ICs can make

it easier to compare their results and to use them to make informed decisions.
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Key Points:

• Information criteria such as AIC and BIC are motivated by different theoret-

ical frameworks.

• However, when comparing pairs of nested models, they reduce algebraically

to likelihood ratio tests with differing alpha levels.

• This perspective makes it easier to understand their different emphases on

sensitivity versus specificity, and why BIC but not AIC possesses model se-

lection consistency.

• This perspective is useful for comparisons, but it does not mean that the

information criteria are only likelihood ratio tests. Information criteria can

be used in ways these tests themselves are not as well suited for, such as for

model averaging.
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1 Introduction

Many model selection techniques have been proposed for many different settings

(see Claeskens and Hjort, 2008). Among other considerations, researchers must bal-

ance sensitivity (suggesting enough parameters to accurately model the patterns,

processes, or relationships in the data) with specificity (not suggesting nonexistent

patterns, processes, or relationships). Several of the simplest and most popular

model selection criteria can be discussed in a unified way as log-likelihood functions

with simple penalties. These include Akaike’s Information Criterion (Akaike, 1973,

AIC), the Bayesian Information Criterion (Schwarz, 1978, BIC), the sample-size-

adjusted AIC or AICc of Hurvich and Tsai (1989), the “consistent AIC” (CAIC)

of Bozdogan (1987), and the sample-size-adjusted BIC (ABIC) of Sclove (1987)

(see Table 1). Each of these ICs consists of a goodness-of-fit term plus a penalty

to reduce the risk of overfitting, and each provides a standardized way to balance

sensitivity and specificity. These criteria are widely used in model selection in

many different areas, such as choosing network models for gene expression data in

molecular phylogenetics (Darriba et al., 2012; Edwards et al., 2010; Jayaswal et al.,

2014; Kalyaanamoorthy et al., 2017; Lefort et al., 2017; Luo et al., 2010; Posada and

Buckley, 2004; Posada, 2008, 2009), in selecting covariates for regression equations

(Miller, 2002), and in choosing the number of subpopulations in mixture models

(Nylund et al., 2007). In addition to being used as measures of fit for directly com-

paring models, they are also used as ways of tuning or weighting more complicated

and specialized methods (e.g. Minin et al., 2003; Bouveyron and Brunet-Saumard,

2014) such as automated model search algorithms in high-dimensional modeling

settings where comparison of each possible model separately might be too difficult

(e.g. Wang et al., 2007a). For these reasons, it is widely useful to understand their

rationale and relative performance.

Model selection using an IC involves choosing the model with the best penalized

log-likelihood: that is, the highest value of ` − Anp, where ` is the log-likelihood

of the entire dataset under the model, where An is a constant or a function of

the sample size n, and where p is the number of parameters in the model. For

historical reasons, instead of finding the highest value of ` minus a penalty, this is
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often expressed as finding the lowest value of −2` plus a penalty:

−2`+Anp, (1)

and we follow that convention here. This function is often computed automatically

by computer software. However, to avoid confusion, investigators should be careful

when using statistical software to be sure of what form is being used; in this paper

we use the form in which the smaller IC is better, but if `− Anp is used then the

larger IC is better. Also, the form of the likelihood function and the definition of the

parameters depends on the nature of the model. For example, in linear regression, `

is the multivariate normal log-likelihood of the sample, and −2` becomes equivalent

to n log(MSE) plus a constant, where MSE is the mean of squared prediction errors;

p in this context is the number of regression coefficients. In latent class models, the

likelihood is given by a multinomial distribution, and the parameters may include

the means of each class on each dimension of interest and the sizes of the classes.

Expression (1) is what Atkinson (1980) called the generalized information cri-

terion; in this paper we simply refer to (1) as an IC. Expression (1) is sometimes

replaced in practice by the practically equivalent G2 + Anp, where G2 is the de-

viance, defined as twice the difference in log-likelihood between the current model

and the saturated model, that is, the model with the most parameters which is still

identifiable (e.g., Collins and Lanza, 2010).

In practice, Expression (1) cannot be used directly without first choosing An.

Specific choices of An make (1) equivalent to AIC, BIC, ABIC or CAIC. Thus,

although motivated by different theories and goals, algebraically these criteria are

only different values of An in (1), corresponding to different relative degrees of

emphasis on parsimony, that is, on the number of free parameters in the selected

model (Claeskens and Hjort, 2008; Lin and Dayton, 1997; Vrieze, 2012). Because

the different ICs often do not agree, the question often arises as to which is best to

use in practice.

For example, Miaskowski et al. (2015) recently used a latent class approach to

categorize cancer patients into empirically defined clusters based on the presence

or absence of 13 self-reported physical and psychological symptoms. They then

showed that these clusters differed in terms of other covariates and on quality of life

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/449751doi: bioRxiv preprint 

https://doi.org/10.1101/449751
http://creativecommons.org/licenses/by-nc-nd/4.0/


ratings, and suggested that they might have different treatment implications. Using

BIC, they determined that a model with 4 classes (low physical symptoms and

low psychological symptoms; moderate physical and low psychological; moderate

physical and high psychological; high physical and high psychological) fit the data

best. Their use of BIC was a very common choice and was recommended by work

such as Nylund et al. (2007). It was not an incorrect choice, and we emphasize that

we are not arguing that their results were flawed in any way. However, the AIC,

ABIC, and CAIC, can be calculated from the information they provide in their

Table 1, and if they had used AIC or ABIC it appears that they would have chosen

at least a 5-class model instead. On the other hand, CAIC would have agreed with

BIC. Does this mean that two of the criteria are incorrect and two are correct? We

argue that neither is wrong, even though in their case the authors had to choose

one or the other.

For a similar example using familiar and easily accessed data, consider the fa-

mous “Fisher’s iris data,” a collection of four measurements (sepal length, sepal

width, petal length, petal width) of 50 flowers from each of 3 species of iris (Iris

setosa, Iris versicolor, and Iris virginica). This data, originally collected by An-

derson (1935) and famously used in an example by the influential statistician R.

A. Fisher, is available in the dataset package as part of the base installation in R

(R Core Team, 2017). It is often used for benchmarking and comparing statistical

methods. For example, one can try clustering methods to classify the 150 flowers

into latent classes without reference to the original species label and using only

their measurements, and determine whether the methods correctly separate the

three species. For a straightforward estimation approach (Gaussian model-based

clustering without assuming equal covariance matrices; code is shown in the ap-

pendix), AIC or ABIC choose a 3-class model and BIC or CAIC choose a 2-class

model. In the 3-class model, each of the empirically estimated classes corresponds

almost perfectly to one of the three species, with very few misclassifications (5 of

the versicolor were mistakenly classified as virginica). In the 2-class model, the

versicolor and virginica flowers were lumped together. Agusta and Dowe (2003)

performed this analysis and concluded that BIC performed poorly on this bench-

mark dataset. Most biologists would probably agree with this assessment. However,
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an alternative interpretation might be that BIC was simply being parsimonious,

and that flower dimensions alone might not be enough to confidently separate the

species. A much more detailed look at clustering the iris data, considering many

more possible modeling choices, is found in Kim and Seo (2014). However, this

simple look is enough to discuss the relevant ideas.

In this review we examine the question of choosing a criterion by focusing on

the similarities and differences among AIC, BIC, CAIC, and ABIC, especially in

view of an analogy between their different complexity penalty weights An and the

α levels of hypothesis tests. We especially focus on AIC and BIC, which have been

extensively studied theoretically (Ding et al., 2018; Kadane and Lazar, 2004; Kuha,

2004; Shao, 1997; Vrieze, 2012), and which are not only often reported directly as

model fit criteria, but also used in tuning or weighting to improve the performance

of more complex model selection techniques (e.g., in high-dimensional regression

variable selection; Narisetty and He, 2014; Wang et al., 2007b; Wu and Ma, 2015).

In the following section we review the motivation and theoretical properties of

these ICs. We then discuss their application to a common application of model

selection in medical, health and social scientific applications: that of choosing the

number of classes in a finite mixture (latent class) analysis (e.g., Collins and Lanza,

2010). Finally, we propose practical recommendations for using ICs to extract

valuable insights from data while acknowledging their differing emphases.

1.1 Common Penalized-Likelihood Information Criteria

In this section we review some commonly used ICs. Their formulas, as well as

some of their properties which we describe later in the paper, are summarized for

convenience in Table 1.

1.1.1 Akaike’s Information Criterion (AIC)

First, the AIC Akaike (1973) sets An = 2 in (1). It estimates the relative Kullback-

Leibler (KL) divergence (a nonparametric measure of difference between distribu-

tions) of the likelihood function specified by a fitted candidate model, from the

likelihood function governing the unknown true process that generated the data.

The fitted model closest to the truth in the KL sense would not necessarily be the
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Table 1: Summary of Common Information Criteria
Criterion Penalty Weight Emphasis Likely Kind

of Error

Non-consistent criteria
AIC An = 2 Good prediction Overfitting

AICc An = 2n/(n− p− 1) Good prediction Overfitting

Consistent criteria
ABIC An = ln ((n+ 2)/24) Depends on n Depends on n

BIC An = ln (n) Parsimony Underfitting

CAIC An = ln (n) + 1 Parsimony Underfitting
Notes. AIC = Akaike information criterion. ABIC = adjusted Bayesian information
criterion. BIC = Bayesian information criterion. CAIC = Consistent Akaike informa-
tion criterion. n = sample size (number of subjects). Other criteria include the DIC
(deviance information criterion) which acts as an analog of AIC in certain Bayesian
analyses but is more complicated to compute.

model that best fits the observed sample, since the observed sample can often be

fit arbitrary well by making the model more and more complex. Rather, the best

KL model is the model that most accurately describes the population distribution

or the process that produced the data. Such a model would not necessarily have

the lowest error in fitting the data already observed (also known as the training

sample) but would be expected to have the lowest error in predicting future data

taken from the same population or process (also known as the test sample). This

is an example of a bias-variance tradeoff (see, e.g., Hastie et al., 2009).

Technically, the KL divergence can be written as Et(`t(y)) − Et(`(y)), where

Et is the expected value under the unknown true distribution function, ` is the

log-likelihood of the data under the fitted model being considered, and `t is the

log-likelihood of the data under the unknown true distribution. This is intuitively

understood as the difference between the estimated and the true distribution.

Et(`t(y)) will be the same for all models being considered, so KL is minimized

by choosing the model with highest Et(`(y)). The `(y) from the fitted model is

a biased measure of Et(`(y)), especially if p is large, because a model with many

parameters can generally be fine-tuned to appear to fit a small dataset well, even if

its structure is such that it cannot generalize to describe the process that generated
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the data. Intuitively, this means that if there are many parameters, the fit of the

model to the originally obtained data (training sample) will seem good regardless

of whether the model is correct or not, simply because the model is so flexible.

In other words, once a particular dataset is used to estimate the parameters of a

model, the fit of the model on that sample is no longer an independent evaluation

of the quality of the model. The most straightforward way to address this fit in-

flation would be testing the model on a new dataset. Another good way would

be by repeated cross-validation (e.g., 5-fold, 10-fold or leave-one-out) using the ex-

isting dataset. However, AIC and similar criteria attempt to directly calculate an

estimate of corrected fit (see Hastie et al., 2009; Shao, 1993, 1997).

Akaike (1973) showed that an approximately unbiased estimate of Et(`(y))

would be a constant plus ` − tr(Ĵ−1K̂) (where J and K are two p × p matri-

ces, described below, and tr() is the trace, or sum of diagonal elements). Ĵ is an

estimator for the covariance matrix of the parameters, based on the matrix of sec-

ond derivatives of ` in each of the parameters, and K̂ is an alternative estimator for

the covariance matrix of the parameters, based on the cross-products of the first

derivatives (see Claeskens and Hjort, 2008, pp. 26-7). Akaike showed that Ĵ and

K̂ are asymptotically equal for the true model, so that the trace becomes approxi-

mately p, the number of parameters in the model. For models that are far from the

truth, the approximation may not be as good. However, poor models presumably

have poor values of `, so the precise size of the penalty is less important (Burnham

and Anderson, 2002). The resulting expression `− p suggests using An = 2 in (1)

and concluding that fitted models with low values of (1) will be likely to provide a

likelihood function closer to the truth.

1.1.2 Criteria Related to AIC

When n is small or p is large, the crucial AIC approximation tr(Ĵ−1K̂) ≈ p is too

optimistic and the resulting penalty for model complexity is too weak (Tibshirani

and Knight, 1999; Hastie et al., 2009). In the context of linear regression and time

series models, several researchers (e.g., Sugiura, 1978; Hurvich and Tsai, 1989;

Burnham and Anderson, 2004) have suggested using a corrected version, AICc,

which applies a slightly heavier penalty that depends on p and n; it gives results
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very close to those of AIC when n/p is large. The AICc can be written as 1 with

An = 2n/(n− p− 1). Theoretical discussions of model selection have often focused

on asymptotic comparisons for large n and small p, and AICc gets little attention

in this setting because it becomes equivalent to AIC as n/p → ∞. However, this

equivalence is subject to the assumption that p is fixed and n becomes very large.

Because in many situations p is comparable to n or larger, AICc may deserve more

attention in future work.

Some other selection approaches are asymptotically equivalent for selection pur-

poses to AIC, at least for linear regression. That is, they select the same model

as AIC with high probability if n/p is very high. These include Mallows’ Cp (see

George, 2000), leave-one-out cross-validation (Shao, 1997; Stone, 1977), and the

generalized cross-validation (GCV) statistic (see Golub et al., 1979; Hastie et al.,

2009). Leave-one-out cross-validation involves fitting the candidate model on many

subsamples of the data, each excluding one subject (i.e., participant or specimen),

and observing the average squared error in predicting the extra response. Each

approach is intended to correct a fit estimate for the artificial inflation in observed

performance caused by fitting a model and evaluating it with the same data, and

to find a good balance between bias caused by too restrictive a model and exces-

sive variance caused by a model with too many parameters (Hastie et al., 2009).

These AIC-like criteria do not treat model parsimony as a motivating goal in its

own right, but only as a means to reduce unnecessary sampling error caused by

having to estimate too many parameters relative to n. Thus, especially for large

n, AIC-like emphasize sensitivity more than specificity. However, in many research

settings, parsimonious interpretation is of strong interest in its own right. In these

settings, another criterion such as BIC, described in the next section, might be

more appropriate.

Some other, more ad-hoc criteria are named after AIC but do not derive from

the same theoretical framework, except that they share the form (1). For example,

some researchers (Andrews and Currim, 2003; Fonseca and Cardoso, 2007; Yang

and Yang, 2007) have suggested using An = 3 in expression (1) instead of 2. The

use of An = 3 is sometimes called “AIC3.” There is no statistical theory to motivate

AIC3, such as minimizing KL divergence or any other theoretical construct, but on

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/449751doi: bioRxiv preprint 

https://doi.org/10.1101/449751
http://creativecommons.org/licenses/by-nc-nd/4.0/


an ad hoc basis it has fairly good simulation performance in some settings, being

stricter than AIC but not as strict as BIC. Also, the CAIC, the “corrected AIC”

or “consistent AIC” proposed by Bozdogan (1987), uses An = ln(n) + 1. (It should

not be confused with the AICc discussed above.) This penalty tends to result in a

more parsimonious model and more underfitting than AIC or even than BIC. This

value of An was chosen somewhat arbitrarily as an example of an An that would

provide model selection consistency, a property described below in the section for

BIC. However, any An proportional to ln(n) provides model selection consistency,

so CAIC has no real advantage over the better-known and better-studied BIC (see

below), which also has this property.

Another of the “information criteria” commonly used in model selection, namely

the Deviance Information Criterion (DIC) used in Bayesian analyses (Gibson et al.,

2018; Spiegelhalter et al., 2002), cannot be expressed as a special case of Expression

(1). It has a close relationship to AIC and has an analogous purpose within some

Bayesian analyses (Ando, 2013; Claeskens and Hjort, 2008) but is conceptually and

practically different and more complicated to compute. It is beyond the scope of

this review because it is usually not used in the same settings as the AIC, BIC,

and other common criteria, so it is usually not a direct competitor with them.

1.1.3 Schwarz’s Bayesian Information Criterion (BIC)

In Bayesian model selection, a prior probability is set for each model Mi, and

prior distributions (often uninformative priors for simplicity) are also set for the

nonzero coefficients in each model. If we assume that one and only one model, along

with its associated priors, is true, we can use Bayes’ theorem to find the posterior

probability of each model given the data. Let Pr(Mi) be the prior probability set

by the researcher, and let Pr(y|Mi) be the probability density of the data given

Mi, calculated as the expected value of the likelihood function of y given the

model and parameters, over the prior distribution of the parameters. According to

Bayes’ theorem, the posterior probability Pr(Mi|y) of a model is proportional to

Pr(Mi) Pr(y|Mi). The degree to which the data support Mi over another model

Mj is given by the ratio of the posterior odds to the prior odds:
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Pr(Mi|y)
Pr(Mj |y)

Pr(Mi)
Pr(Mj)

. (2)

If we assume equal prior probabilities for each model, this simplifies to the

“Bayes factor” (see Kass and Raftery, 1995):

Bij =
Pr(Mi|y)

Pr(Mj |y)
(3)

so that the model with the highest Bayes factor also has the higher posterior prob-

ability. Schwarz (1978) and Kass and Wasserman (1995) showed that, for many

kinds of models, Bij can be roughly approximated by exp(− 1
2BICi + 1

2BICj),

where BIC equals Expression (1) with An = ln(n). BIC is also called the Schwarz

criterion. Note that in a Bayesian analysis, all of the parameters within each of the

candidate models have prior distributions representing knowledge or beliefs which

the investigators have about their values before doing the study. The use of BIC

assumes that a relatively noninformative prior is used, meaning that the prior is

not allowed to have a large effect on the estimate of the coefficients (Kass and

Wasserman, 1995; Weakliem, 1999). Thus, although Bayesian in origin, the BIC is

often used in non-Bayesian analyses because it uses relatively noninformative priors

which do not have to be set by the user. For fully Bayesian analyses with infor-

mative priors, posterior model probabilities or the previously mentioned Deviance

Information Criterion (DIC) might be more appropriate.

The use of Bayes factors or their BIC approximation can be more interpretable

than that of significance tests in some practical settings (Beard et al., 2016; Good-

man, 2008; Held and Ott, 2018; Raftery, 1996). BIC is described further in Raftery

(1995) and Wasserman (2000), but critiqued by Gelman and Rubin (1995) and

Weakliem (1999), who find it to be an oversimplification of Bayesian methods.

Indeed, if Bayes factors or the BIC are used in an automatic way for choosing a

single supposedly best model (e.g., setting a particular cutoff for choosing the larger

model), then they are potentially subject to the same criticisms as classic signifi-

cance tests (see Gigerenzer and Marewski, 2015; Murtaugh, 2014). However, Bayes

factors or information criteria, if used thoughtfully, provide a way of comparing the

appropriateness of each of a set of models on a common scale.
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Table 2: An for Common Information Criteria

n AIC ABIC BIC CAIC

10 2.0000 -0.6931 2.3026 3.3026
50 2.0000 0.7732 3.9120 4.9120

100 2.0000 1.4469 4.6052 5.6052
500 2.0000 3.0405 6.2146 7.2146

1000 2.0000 3.7317 6.9078 7.9078
5000 2.0000 5.3395 8.5172 9.5172

10000 2.0000 6.0325 9.2103 10.2103
100000 2.0000 8.3349 11.5129 12.5129

Notes. An = penalty weighting constant. n = sample size (number of subjects). AIC
= Akaike information criterion. ABIC = adjusted Bayesian information criterion. BIC
= Bayesian information criterion. CAIC = Consistent Akaike information criterion.

1.1.4 Criteria Related to BIC

Sclove (1987) suggested a sample-size-adjusted BIC, variously abbreviated as ABIC,

SABIC, or BIC∗, based on the work of Rissanen (1978) and Boekee and Buss (1981).

It uses An = ln((n+2)/24) instead of An = ln(n). This penalty will be much lighter

than that of BIC, and may be lighter or heavier than that of AIC, depending on

n. The unusual expression for An comes from Rissanen’s work on model selection

for autoregressive time series models from a minimum description length perspec-

tive (see Stine, 2004). It is not clear whether or not the same adjustment is still

theoretically appropriate in different contexts, but in practice it is sometimes used

in latent class modeling and seems to work fairly well (see Nylund et al., 2007;

Tein et al., 2013). Table 2 gives the values An for AIC, ABIC, BIC and CAIC

for some representative values of n. It shows that CAIC always has the strongest

penalty function. BIC has a stronger penalty than AIC for reasonable values of n.

The ABIC has the property of usually being stricter than AIC but not as strict as

BIC, which may be appealing to some researchers, but unfortunately it does not

always really “adjust” for the sample size. In fact, for very small n, ABIC has a

nonsensical negative penalty encouraging needless complexity. AICc is not shown

in the table because its An depends on p as well as n.
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1.2 AIC versus BIC and the Concept of Consistent Model

Selection

BIC is sometimes preferred over AIC because BIC is “consistent” (e.g., Nylund

et al., 2007). Assuming that a fixed number of models are available and that one

of them is the true model, a consistent selector is one that selects the true model

with probability approaching 100% as n→∞ (see Rao and Wu, 1989; Zhang, 1993;

Shao, 1997; Yang, 2005; Claeskens and Hjort, 2008).

The existence of a true model here is not as unrealistically dogmatic as it sounds

(Burnham and Anderson, 2004; Kuha, 2004). Rather, the true model can be de-

fined as the simplest adequate model, that is, the single model that minimizes KL

divergence, or the one such model with the fewest parameters if there is more than

one (Claeskens and Hjort, 2008). There may be more than one such model because

if a given model has a given KL divergence from the truth, any more general model

containing it will have no greater distance from the truth. This is because there

is some set of parameters for which the larger model becomes the model nested

within it. However, the theoretical properties of BIC are better in situations in

which a model with a finite number of parameters can be treated as “true” (Shao,

1997). In summary, even though at first the BIC seems fraught with philosophical

problems because of its apparent assumption of that one of the models available is

the “true” one, it is nonetheless well-defined and useful in practice.

AIC is not consistent because it has a non-vanishing chance of choosing an

unnecessarily complex model as n becomes large. The unnecessarily complex model

would still closely approximate the true distribution but would use more parameters

than necessary to do so. However, selection consistency involves some performance

tradeoffs when n is modest, specifically, an elevated risk of poor performance caused

by underfitting (see Pötscher, 1991; Shao, 1997; Shibata, 1986; Vrieze, 2012). In

general, the strengths of AIC and BIC cannot be combined by any single choice

of An (Leeb, 2008; Yang, 2005). However, in some cases it is possible to construct

a more complicated model selection approach that uses aspects of both (see Ding

et al., 2018).

Nylund et al. (2007) seem to interpret the lack of selection consistency as a

flaw in AIC (Nylund et al., 2007, p. 556). However, we argue the real situation
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is somewhat more complicated; AIC is not a defective BIC, nor vice versa (see

Pötscher, 1991; Vrieze, 2012). Likewise, the other ICs mentioned here are neither

right nor wrong, but are simply choices (perhaps thoughtful and perhaps arbitrary,

but still technically valid choices).

2 Information Criteria in Simple Cases

AIC and BIC differ in theoretical basis and interpretation (Aho et al., 2014; Claeskens

and Hjort, 2008; Kuha, 2004; Shmueli, 2010). They also sometimes disagree in prac-

tice, generally with AIC indicating models with more parameters and BIC with less.

This has led many researchers to question whether and when a particular value of

the “magic number” An (Bozdogan, 1987) can be chosen as most appropriate. Two

special cases – comparing equally sized models and comparing nested models – each

provide some insight into this question.

First, when comparing different models of the same size (i.e., number of param-

eters to be estimated), all ICs of the form (1) will always agree on which model is

best. For example, in regression variable subset selection, suppose two models each

use five covariates. In this case, any IC will select whichever model has the highest

likelihood (the best fit to the observed sample) after estimating the parameters.

This is because only the first term in Expression (1) will differ across the candi-

date models, so An does not matter. Thus, although the ICs differ in theoretical

framework, they only disagree when they make different tradeoffs between fit and

model size.

Second, for comparing a nested pair of models, different ICs act like different

α levels on a likelihood ratio test (LRT). For comparing models of different sizes,

when one model is a restricted case of the other, the larger model will typically offer

better fit to the observed data at the cost of needing to estimate more parameters.

The ICs will differ only in how they make this bias-variance tradeoff (Lin and

Dayton, 1997; Sclove, 1987). Thus, an IC will act like a hypothesis test with a

particular α level (Claeskens and Hjort, 2008; Derryberry et al., 2018; Foster and

George, 1994; Murtaugh, 2014; Pötscher, 1991; Söderström, 1977; Stoica et al.,

2004; van der Hoeven, 2005; Vrieze, 2012).

Suppose a researcher will choose whichever of M0 and M1 has the better (lower)
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value of an IC of the form (1). This means that M1 will be chosen if and only if

−2`1+Anp1 < −2`0+Anp0, where `1 and `0 are the fitted maximized log-likelihoods

for each model. Although the comparison of models is interpreted differently in the

theoretical frameworks used to justify AIC and BIC (Aho et al., 2014; Kuha, 2004),

algebraically this comparison is the same as a LRT (Pötscher, 1991; Söderström,

1977; Stoica et al., 2004). That is, M0 is rejected if and only if

−2(`0 − `1) > An(p1 − p0). (4)

The left-hand side is the LRT test statistic (since a logarithm of a ratio of quantities

is the difference in the logarithms of the quantities). Thus, in the case of nested

models an IC comparison is mathematically an LRT with a different interpretation.

The α level is specified indirectly through the critical value An; it is the proportion

of the null hypothesis distribution of the LRT statistic that is less than An.

2.1 Implications of the LRT Equivalence in the Nested Case

For comparing nested maximum-likelihood models satisfying classic regularity

conditions, including classical linear and logistic regression models (although not

necessarily including mixture models; see Chernoff and Lander, 1995; McLachlan

and Peel, 2000) the null-hypothesis distribution of −2(`0 − `1) is asymptotically

χ2 with degrees of freedom (df) equal to p1 − p0. Consulting a χ2 distribution

and assuming p1 − p0 = 1, AIC (An = 2) becomes equivalent to a LRT test at

an α level of about .16 (i.e., the probability of a χ2
1 deviate being greater than 2).

For example, in the case of linear regression, comparing IC’s of otherwise identical

models differing by the presence or absence of a covariate can also be shown to

be mathematically equivalent to a significance test for the regression coefficient of

that covariate (Derryberry et al., 2018).

In the same situation, BIC (with An = ln(n)) has an α level that depends on

n. If n = 10 then An = ln(n) = 2.30 so α = .13. If n = 100 then An = 4.60

so α = .032. If n = 1000 then An = 6.91 so α = .0086, and so on. Thus when

p1 − p0 = 1, significance testing at the customary level of α = .05 is often an

intermediate choice between AIC and BIC, corresponding to An = 1.962 ≈ 4.

However, as p1 − p0 becomes larger, all ICs become more conservative, in order to
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Table 3: Alpha Levels Represented By Common Information Criteria

n AIC ABIC BIC CAIC

Assuming p1 − p0 = 1

10 0.15730 1.00000 0.12916 0.06917
50 0.15730 0.37923 0.04794 0.02667

100 0.15730 0.22902 0.03188 0.01791
500 0.15730 0.08121 0.01267 0.00723

1000 0.15730 0.05339 0.00858 0.00492
5000 0.15730 0.02085 0.00352 0.00204

10000 0.15730 0.01404 0.00241 0.00140
100000 0.15730 0.00389 0.00069 0.00040

Assuming p1 − p0 = 10

10 0.02925 1.00000 0.01065 0.00027
50 0.02925 0.65501 0.00002 < 0.00001

100 0.02925 0.15265 < 0.00001 < 0.00001
500 0.02925 0.00074 < 0.00001 < 0.00001

1000 0.02925 0.00005 < 0.00001 < 0.00001
5000 0.02925 < 0.00001 < 0.00001 < 0.00001

10000 0.02925 < 0.00001 < 0.00001 < 0.00001
100000 0.02925 < 0.00001 < 0.00001 < 0.00001

Notes. n = sample size (number of subjects). AIC = Akaike information criterion.
ABIC = adjusted Bayesian information criterion. BIC = Bayesian information criterion.
CAIC = Consistent Akaike information criterion. p1 = number of free parameters in
larger model within pair being compared. p0 = number of free parameters in smaller
model.

avoid adding many unnecessary parameters unless they are needed. Table 3 shows

different effective α values for two values of p1 − p0, obtained using the R (R Core

Team, 2017) code 1-pchisq(q=An*df,df=df,lower.tail=TRUE) where An is the

An value and df is p1 − p0. AICc is not shown in the table because its penalty

weight depends both on p0 and on p1 in a slightly more complicated way, but will

behave similarly to AIC for large n and modest p0.

2.2 Interpretation of Selection Consistency

The property of selection consistency can be intuitively understood from this

perspective. For AIC, as for hypothesis tests, the power of a test typically increases

with n because `1 and `0 are sums over the entire sample. This is why empirical

studies are planned to have adequate sample size to guarantee a reasonable chance

of success (Cohen et al., 2003). Unfortunately rejecting any given false null hy-
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pothesis is practically guaranteed for sufficiently large n even if the effect size is

tiny. However, the Type I error rate is constant and never approaches zero. On

the other hand, BIC becomes a more stringent test (has a decreasing Type I error

rate) as n increases. The power increases more slowly (i.e., the Type II error rate

decreases more slowly) than for AIC or for fixed-α hypothesis tests because the

test is becoming more stringent, but now the Type I error rate is also decreasing.

Thus, nonzero but practically negligible departures from a model are less likely to

lead to rejecting the model for BIC than for AIC (Raftery, 1995). Fortunately,

even for BIC, the decrease in α as n increases is slow; thus power still increases as

n increases, although more slowly than it would for AIC. Thus, for BIC, both the

Type I and Type II error rates decline slowly as n increases, while for AIC (and for

classical significance testing) the Type II error rate declines more quickly but the

Type I error rate does not decline at all. This is intuitively why a criterion with

constant An cannot be asymptotically consistent even though it may be more pow-

erful for a given n (see Claeskens and Hjort, 2008; Yang, 2005; Derryberry et al.,

2018).

Also, since choosing An for a model comparison is closely related to choosing

an α level for a significance test, it becomes clear that the universally “best” IC

cannot be defined any more than the “best” α; there will always be a tradeoff.

Thus, debates about whether AIC is generally superior to BIC or vice versa, will

be fruitless.

2.3 Interpretation in Terms of Tradeoffs

For non-nested models of different sizes, neither of the above simple cases hold;

furthermore, these complex cases are often those in which ICs are most important

because a LRT cannot be performed. However, it remains the case that An in-

directly controls the tradeoff between the likelihood term and the penalty on the

number of parameters, hence the tradeoff between good fit to the observed data

and parsimony.

Almost by definition, there is no universal best way to decide how to make a

tradeoff. Type I errors are generally considered worse than Type II errors, because

the former involve introducing false findings into the literature while the latter

are simply non-findings. However, Type II errors involve the loss of potentially
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important scientific discoveries, and furthermore both kinds of errors can lead to

poor policy or treatment decisions in practice, especially because failure to rejectH0

is often misinterpreted as demonstrating the truth of H0 (Peterman, 1990). Thus,

researchers try to specify a reasonable α level which is neither too low (causing low

power) nor too high (inviting false positive findings). In this way, model comparison

is much like a medical diagnostic test (see, e.g., Altman and Bland, 1994), replacing

“Type I error” with “false positive” and “Type II error” with “false negative.” AIC

and BIC use the same data but apply different cutoffs for whether to “diagnose”

the smaller model as being inadequate. AIC is more sensitive (lower false-negative

rate), but BIC is more specific (lower false-positive rate). The utility of each

cutoff is determined by the consequences of a false positive or false negative and

by one’s beliefs about the base rates of positives and negatives. Thus, AIC and

BIC could be seen as representing different sets of prior beliefs in a Bayesian sense

(see Burnham and Anderson, 2004; Kadane and Lazar, 2004) or, at least, different

judgments about the importance of parsimony. Perhaps in some examples a more

or less sensitive test (higher or lower An or α) would be more appropriate than in

others. For example, although AIC has favorable theoretical properties for choosing

the number of parameters needed to approximate the shape of a nonparametric

growth curve in general (Shao, 1997), in a particular application with such data

Dziak et al. (2015) argued that BIC would give more interpretable results. They

argued this because the curves in that context were believed likely to have a smooth

and simple shape, as they represented averages of trajectories of an intensively

measured variable on many individuals with diverse individual experiences and

because deviations from the trajectory could be modeled using other aspects of the

model.

However, in practice it is often difficult to determine the α value that a particular

criterion really represents, for two reasons. First, even for regular situations in

which a LRT is known to work well, the χ2 distribution for the test statistic is

asymptotic and will not apply well to small n. Second, in some situations the

rationale for using an IC is, ironically, the failure of the assumptions needed for a

LRT. That is, the test emulated by the IC will itself not be valid at its nominal

α level anyway. Therefore, although the comparison of An to an α level is helpful
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for getting a sense of the similarities and differences among the ICs, simulations

are required to describe exactly how they behave. In the section below we review

simulation results from a common application of ICs, namely the selection of the

number of latent classes (empirically derived clusters) in a dataset.

3 The Special Case of Latent Class Analysis

A common use of ICs is in selecting the number of components for a latent class

analysis (LCA). LCA is a kind of finite mixture model (essentially, a model-based

cluster analysis; McLachlan and Peel, 2000; Lazarsfeld and Henry, 1968; Collins and

Lanza, 2010). LCA assumes that the population is a “mixture” of multiple classes

of a categorical latent variable. Each class has different parameters that define

the distributions of observed items, and the goal is to account for the relationships

among items by defining classes appropriately. LCA is very similar to cluster

analysis, but is based on maximizing an explicitly stated likelihood function rather

than focusing on a heuristic computational algorithm like k-means. Also, some

authors use the term LCA only when the observed variables are also categorical

(as in the cancer symptoms example described above), and use the term “latent

profile analysis” for numerical observed variables (as in the iris example), but we

ignore this distinction here. LCA is also closely related to latent transition (LTA)

models (see Collins and Lanza, 2010), an application of hidden Markov models (see,

e.g., Eddy, 2004) that allows changes in latent class membership, conceptualized

as transitions in an unobserved Markov chain. LCA models are sometimes used

in combination with other models, such as in predicting class membership from

genotypic or demographic variables, or predicting medical or behavioral phenotypes

from class membership (e.g., Bray et al., 2018; Dziak et al., 2016; Lubke et al., 2012).

For a simple latent class analysis without additional covariates, there are two

kinds of model parameters: the sizes of the classes, and the class-specific parame-

ters. For binary outcomes as in the cancer symptoms study, there is a class-specific

parameter for each combination of class and item, giving the probability of endors-

ing this item given membership in this class. For numerical outcomes, the means

and covariance parameters of the vector of items within each class constitute the

class-specific parameters. To fit an LCA model or any of its cousins, an algorithm
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such as EM (Dempster et al., 1977; Gupta and Chen, 2010; McLachlan and Peel,

2000) is often used to alternatively estimate class-specific parameters and predict

subjects’ class membership given those parameters. The user must specify the

number of classes in a model, but the true number of classes is generally unknown

(Nylund et al., 2007; Tein et al., 2013). Sometimes one might have a strong theo-

retical reason to specify the number of classes, but often this must be done using

data-driven model selection.

3.1 ICs for Selecting the Number of Classes

A näıve approach would be to use likelihood ratio (LR) or deviance (G2) tests

sequentially to choose the number of classes and to conclude that the k-class model

is large enough if and only if the (k+1)-class model does not fit the data significantly

better. The selected number of classes would be the smallest k that is not rejected

when compared to the (k + 1)-class model. However, the assumptions for the

supposed asymptotic χ2 distribution in a LRT are not met in the setting of LCA,

so that the p-values from those tests are not valid (see Lin and Dayton, 1997;

McLachlan and Peel, 2000). The reasons for this are based on the fact that H0

here is not nested in a regular way within H1, since a k-class model is obtained

from a (k + 1)-class model either by constraining any one of the class sizes to a

boundary value of zero or by setting the class-specific item-response probabilities

equal between any two classes. That is, an meaningful k-class model is not obtained

simply by setting a parameter to zero in a (k + 1) class model in the way that,

for example, a more parsimonious regression model can be obtained by starting

with a model with many covariates and then constraining certain coefficients to

zero. Ironically, the lack of regular nesting structure that makes it impossible to

decide on the number of classes with an LRT has also been shown to invalidate the

mathematical approximations used in the AIC and BIC derivations in the same way

(McLachlan and Peel, 2000, pp. 202-212). Nonetheless, ICs are widely used in LCA

and other mixture models. This is partly due to their ease of use, even without a

firm theoretical basis. Fortunately, there is at least an asymptotic theoretical result

showing that, when the true model is well-identified, BIC (and hence also AIC and

ABIC) will have a probability of underestimating the true number of classes that
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approaches 0 as sample size tends to infinity (Leroux, 1992; McLachlan and Peel,

2000, p. 209).

3.2 Past Simulation Studies

Lin and Dayton (1997) did an early simulation study comparing the performance

of AIC, BIC, and CAIC for choosing which assumptions to make in constructing

constrained LCA models, a model selection task which is somewhat but not fully

analogous to choosing the number of classes. When a very simple model was used

as the true model, BIC and CAIC were more likely to choose the true model than

AIC, which tended to choose an unnecessarily complicated one. When a more

complex model was used to generate the data and measurement quality was poor,

AIC was more likely to choose the true model than BIC or CAIC, which were likely

to choose an overly simplistic one. They explained that this was very intuitive given

the differing degrees of emphasis on parsimony. Interpreting these results, Dayton

(1998) suggested that AIC tended to be a better choice in LCA than BIC, but

recommended computing and comparing both.

Other simulations have explored the ability of the ICs to determine the correct

number of classes. In Dias (2006), AIC had the lowest rate of underfitting but

often overfit, while BIC and CAIC practically never overfit but often underfit.

AIC3 was in between and did well in general. The danger of underfitting increased

when the classes did not have very different response profiles and were therefore

easy to mistakenly lump together; in these cases BIC and CAIC almost always

underfit. Yang (2006) reported that ABIC performed better in general than AIC

(whose model selection accuracy never got to 100% regardless of n) or BIC or

CAIC (which underfit too often and required large n to be accurate). Fonseca and

Cardoso (2007) similarly suggested AIC3 as the preferred selection criterion for

categorical LCA models.

Yang and Yang (2007) compared AIC, BIC, AIC3, ABIC and CAIC. When the

true number of classes was large and n was small, CAIC and BIC seriously under-

fit, but AIC3 and ABIC performed better. Nylund et al. (2007) presented various

simulations on the performance of various ICs and tests for selecting the number

of classes in LCA, as well as factor mixture models and growth mixture models.
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Overall, in their simulations, BIC performed much better than AIC, which tended

to overfit, or CAIC, which tended to underfit (Nylund et al., 2007, p. 559). How-

ever, this does not mean that BIC was the best in every situation. In most of the

scenarios considered by Nylund et al. (2007), BIC and CAIC almost always selected

the correct model size, while AIC had a much smaller accuracy in these scenarios

because of a tendency to overfit. In those scenarios, n was large enough so that

the lower sensitivity of BIC was not a problem. However, in a more challenging

scenario with a small sample and unequally sized classes, (Nylund et al., 2007, p.

557), BIC essentially never chose the larger correct model and it usually chose one

that was much too small. Thus, as Lin and Dayton (1997) found, BIC may select

too few classes when the true population structure is complex but subtle (for exam-

ple, a small but nonzero difference between the parameters of a pair of classes) and

n is small. Wu (2009) compared the performance of AIC, BIC, ABIC, CAIC, näıve

tests, and the bootstrap LRT in hundreds of simulated scenarios. Performance was

heavily dependent on the scenario, but the method that worked adequately in the

greatest variety of situations was the bootstrap LRT, followed by ABIC and classic

BIC. Wu (2009) argued that BIC seemed to outperform ABIC in the most optimal

situations because of its parsimony, but that ABIC seemed to do better in situa-

tions with smaller n or more unequal class sizes. Dziak et al. (2014) also concluded

that BIC could seriously underfit relative to AIC for small sample sizes or other

challenging situations. In latent profile analysis, Tein et al. (2013) found that BIC

and ABIC did well for large sample sizes and easily distinguishable classes, but AIC

chose too many classes, and no method performed well for especially challenging

scenarios. In a more distantly related mixture modeling framework involving mod-

eling evolutionary rates at different genomic sites, Kalyaanamoorthy et al. (2017)

found that AIC, AICc, and BIC worked well but that BIC worked best.

3.3 Difficulties of Applying Simulation Results

Despite all these findings, is not possible to say which IC is universally best,

even in the idealized world of simulations. What constitutes a “large” or “small”

n, for the purposes of the performance of BIC, depends on the true class sizes

and characteristics, which by definition are unknown. For example, if there are
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many small classes, a larger overall sample size is needed to distinguish them all.

A smaller number of flowers might have been needed in our flower example if there

had been three genera instead of three species, and a larger number might be

needed to distinguish three cultivars or subspecies. Thus, the point at which the n

becomes “large” depends on numerous aspects of the simulated scenario (Brewer

et al., 2016; Dziak et al., 2014). Furthermore, in real data, unlike simulations, the

characteristics of the “true” (data-generating) model are unknown, since the data

have been generated by a natural or experimental process rather than a probability

model. For this reason it may be more helpful to think about which aspects of

performance (e.g., sensitivity or specificity) are most important in a given situation,

rather than talking about the nature of a supposed true data-generating model.

If the goal of having a model which contains enough parameters to describe the

heterogeneity in the population is more important than the goal of parsimony, or if

some classes are expected to be small or similar to other classes but distinguishing

among them is still considered important for theoretical reasons, then perhaps AIC,

AIC3 or ABIC should be used instead of BIC or CAIC. If obtaining a few large and

distinctly interpretable classes is more important, then BIC is more appropriate.

Sometimes, the AIC-favored model might be so large as to be difficult to use or

understand. In these cases, the BIC-favored model is clearly the better practical

choice. For example, in Chan et al. (2007) BIC favored a mixture model with 5

classes, and AIC favored at least 10; the authors felt that a 10-class model would

be too hard to interpret. In fact, it may be necessary for theoretical or practical

reasons to choose a number of classes even smaller than that suggested by BIC. This

is because it is important to choose the number of classes based on their theoretical

interpretability, as well as by excluding any models with so many classes that they

lead to a failure to converge to a clear maximum-likelihood solution (see Bray and

Dziak, 2018; Collins and Lanza, 2010; Pohle et al., 2017).

3.4 Other Methods for Selecting the Number of Classes

An alternative to ICs in latent class analysis and cluster analysis is the use

of a bootstrap test (see McLachlan and Peel, 2000). Unlike the näıve NRT, Ny-

lund et al. (2007) showed empirically that the bootstrap LRT with a given α level

does generally provide a Type I error rate at or below that specified level. Both
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Nylund et al. (2007) and Wu (2009) found that this bootstrap test seemed to per-

form somewhat better than the ICs in various situations. The bootstrap LRT is

beyond the scope of this paper, as are more computationally intensive versions of

AIC and BIC, involving bootstrapping, cross-validation, or posterior simulation

(see McLachlan and Peel, 2000, pp. 204-212). Also beyond the scope of this pa-

per are mixture-specific selection criteria such as the normalized entropy criterion

(Biernacki et al., 1999) or integrated completed likelihood (Biernacki and Celeux,

2000; Rau and Maugis, 2018), or the minimum message length approach of Sil-

vestre et al. (2014). However, the basic ideas in this article will still be helpful in

interpreting the implications of some of the other selection methods. For example,

like any test or criterion, the bootstrap LRT still requires the choice of a tradeoff

between sensitivity and specificity (i.e., by selecting an α level).

4 Discussion

Many simulation studies have been performed to compare the performance of infor-

mation criteria. For small n or difficult-to-distinguish classes, the most likely error

in a simulation is underfitting, so the criteria with lower underfitting rates, such as

AIC, often seem better. For very large n and easily distinguished classes, the most

likely error is overfitting, so more parsimonious criteria, such as BIC, often seem

better. However, the true model structure, parameter values, and sample size used

when generating simulated data determine the relative performance of the ICs in

simulations in a complicated way, limiting the extent to which they can be used

to state general rules or advice (Brewer et al., 2016; Dziak et al., 2014; Emiliano

et al., 2014).

If BIC indicates that a model is too small, it may well be too small (or else fit

poorly for some other reason). If AIC indicates that a model is too large, it may

well be too large for the data to warrant. Beyond this, theory and judgment are

needed. If BIC selects the largest and most general model considered, it is worth

thinking about whether to expand the space of models considered (since an even

more general model might fit even better), and similarly if AIC chooses the most

parsimonious.

AIC and BIC each have distinct theoretical advantages. However, a researcher
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may judge that there may be a practical advantage to one or the other in some

situations. For example, as mentioned earlier, in choosing the number of classes

in a mixture model, the true number of classes required to satisfy all model as-

sumptions is sometimes quite large, too large to be of practical use or even to allow

coefficients to be reliably estimated. In that case, BIC would be a better choice

than AIC. Additionally, in practice, one may wish to rely on substantive theory or

parsimony of interpretation in choosing a relatively simple model. In such cases,

the researcher may decide that even the BIC may have indicated a model that is

too complex in a practical sense, and may choose to select a smaller model that is

more theoretically meaningful or practically interpretable instead (Bray and Dziak,

2018; Pohle et al., 2017). This does not mean that BIC overfit. Rather, in these

situations the model desired is sometimes not the literally true model but simply

the most useful model, a concept which cannot be identified using fit statistics

alone but requires subjective judgment. Depending on the situation, the number

of classes in a mixture model may either be interpreted a true quantity needing to

be objectively estimated, or else as a level of approximation to be chosen for conve-

nience, like the scale of a map. Still, in either case the question of which patterns

or features are generalizable beyond the given sample remains relevant (c.f. Li and

Marron, 2005). In the iris example, there was a consensus correct answer given by

the number of recognized biological species. However, in the cancer symptoms ex-

ample, the latent classes were more a convenient way of summarizing the data than

a reflection of distinct underlying syndromes. If a fifth class had been included,

it might have been something like “moderate physical, moderate psychological”

which probably would not have provided additional insights beyond those which

could be gained by comparing the four classes in the four-class model. Of course,

in some studies, classes or trajectories might represent different biological processes

of distinct clinical importance (e.g., Karlsson et al., 2018), and then it might be

very important not to miss any, but in other cases they may simply be regions in

an underlying multivariate continuum.

One could use the ICs to suggest a range of model sizes to consider for future

study; for example, in some cases one might use the BIC- preferred model as a

minimum size and the AIC-preferred model as a maximum. Either AIC or BIC
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can also be used for model averaging, that is, estimating quantities of interest by

combining more than one model weighted by their plausibility (see Burnham and

Anderson, 2004; Claeskens and Hjort, 2008; Gelman and Rubin, 1995; Hoeting

et al., 1999; Johnson and Omland, 2004; Minin et al., 2003; Posada and Crandall,

2001; Posada and Buckley, 2004).

Although model selection is not an entirely objective process, it can still be a

scientific one (see Gelman and Hennig, 2017). The fact that there is no univer-

sal consensus on a way to choose a model is not a bad thing; an automatic and

uncritical use of an IC is no more insightful than an automatic and uncritical use

of a p-value (Brewer et al., 2016; Emiliano et al., 2014; Gigerenzer and Marewski,

2015). Comparing different information criteria may suggest what range of models

is reasonable. Of course, researchers must explain their methodological choices and

not pick and choose methods simply as a way of supporting a desired outcome (see

Simmons et al., 2011).

A larger question is whether to use ICs at all. If ICs indeed reduce to LRTs

in simple cases, one might wonder why ICs are needed at all, and why researchers

cannot simply do LRTs. A possible answer is flexibility. Both AIC and BIC can

be used to concurrently compare many models, not all of them nested, rather

than just a pair of nested models at a time. They can also be used to weight

the estimates obtained from different models for a common quantity of interest.

These weighting approaches use either AIC or BIC but not both, because AIC

and BIC are essentially treated as different Bayesian priors. While currently we

know of no mathematical theoretical framework for explicitly combining both AIC

and BIC into a single weighting scheme, a sensitivity analysis could be performed

by comparing the results from both. AIC and BIC can also be used to choose

a few well-fitting models, rather than selecting a single model from among many

and assuming it to be the truth (Kuha, 2004). Researchers have also proposed

benchmarks for judging whether the size of a difference in AIC or BIC between

models is practically significant (see Burnham and Anderson, 2004; Murtaugh,

2014; Raftery, 1995); for example, an AIC or BIC difference between two models of

less than 2 provides little evidence for one over the other; an AIC or BIC difference

of 10 or more is strong evidence. These principles should not be used as rigid cutoffs
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(Murtaugh, 2014), but as input to decision making and interpretation. Kadane and

Lazar (2004) suggested that ICs might be used to “deselect” very poor models (p.

279), leaving a few good ones for further study, rather than indicating a single best

model.

Consider a regression context in which we are considering variables A, B, C, D,

and E; suppose also that the subset with the lowest BIC is {A,B,C} with a BIC

of 34.2, while the second-best is {B,C,D} with a BIC of 34.3. A näıve approach

would be to conclude that A is an important predictor and D is not, and then

conduct all later estimates and analyses using only the subset {A,B,C}. If we

had gathered an even slightly different sample, though, we might be just as likely

to make the opposite conclusion. What should we do? Some researchers might

just report one model as being the correct one and ignore the other. However,

this seriously understates the true degree of uncertainty present (Burnham and

Anderson, 2002). Considering more than one IC, such as AIC and BIC together,

could make even more models seem plausible. A simple sequential testing approach

with a fixed α = .05 would seemingly avoid this ambiguity. However, the avoidance

of ambiguity there would be artificial – the uncertainty still exists but is being

ignored.

In many cases, cross-validation approaches can be used as good alternatives

to IC’s. However, they are sometimes more computationally intensive. Also, im-

plementation details of the cross-validation approaches can affect parsimony in an

analogous way to the choice of An (Yang, 2007).

Lastly, both AIC and BIC were developed in situations in which n was assumed

to be much larger than p. None of the ICs discussed here were specifically developed

for situations such as those found in many genome-wide association studies predict-

ing disease outcomes, in which the number of participants (n) is often smaller than

the number of potential genes (p), even when n is in the tens of thousands. The

ICs can still be practically useful in this setting (e.g., Cross-Disorder Group of the

Psychiatric Genomics Consortium, 2013). However, sometimes they might need to

be adapted (see, e.g., Chen and Chen, 2008; Liao et al., 2018; Mestres et al., 2018;

Pan et al., 2016). More research in this area would be worthwhile.
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Code Appendix

The R code below performs the cluster analysis and model selection described above

for the iris data.

library(mclust);

library(datasets);

n <- 150;

ll <- rep(NA,7);

bic.given <- rep(NA,7);

models <- list();

for (k in 1:7) {

temp.model <- Mclust(iris[,1:4],G=k,modelNames="VVV");

p[k] <- temp.model$df;

ll[k] <- temp.model$loglik;

bic.given[k] <- temp.model$bic;

models[[k]] <- temp.model;

}

aic.calculated <- -2*ll + 2*p;

caic.calculated <- -2*ll + (1+log(n))*p;

abic.calculated <- -2*ll + log((n+2)/24)*p;

bic.calculated <- -2*ll + log(n)*p;

print(cbind(aic.calculated,bic.calculated,abic.calculated,caic.calculated));

table(predict(models[[2]])$classification,iris$Species)

table(predict(models[[3]])$classification,iris$Species)
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