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Abstract

Information criteria (ICs) based on penalized likelihood, such as Akaike’s In-

formation Criterion (AIC), the Bayesian Information Criterion (BIC), and sample-

size-adjusted versions of them, are widely used for model selection in health and

biological research. However, different criteria sometimes support different models,

leading to discussions about which is the most trustworthy. Some researchers and

fields of study habitually use one or the other, often without a clearly stated justifi-

cation. They may not realize that the criteria may disagree. Others try to compare

models using multiple criteria but encounter ambiguity when different criteria lead

to substantively different answers, leading to questions about which criterion is

best. In this paper we present an alternative perspective on these criteria that can

help in interpreting their practical implications. Specifically, in some cases the com-

parison of two models using ICs can be viewed as equivalent to a likelihood ratio

test, with the different criteria representing different alpha levels and BIC being a

more conservative test than AIC. This perspective may lead to insights about how

to interpret the ICs in more complex situations. For example, AIC or BIC could be

preferable, depending on the relative importance one assigns to sensitivity versus

specificity. Understanding the differences and similarities among the ICs can make

it easier to compare their results and to use them to make informed decisions.

1 Introduction 1

Many model selection techniques have been proposed for different settings (for re- 2

views see Miller, 2002; Pitt and Myung, 2002; Zucchini, 2000; Johnson and Omland, 3

2004). Among other considerations, researchers must balance sensitivity (suggest- 4

ing enough parameters to accurately model the patterns, processes, or relationships 5

in the data) with specificity (not suggesting nonexistent patterns, processes, or rela- 6

tionships). Several of the simplest and most popular model selection criteria can be 7

discussed in a unified way as log-likelihood functions with simple penalties. These 8

include Akaike’s Information Criterion (Akaike, 1973, AIC), the Bayesian Infor- 9

mation Criterion (Schwarz, 1978, BIC), the sample-size-adjusted AIC or AICc of 10

Hurvich and Tsai (1989), the “consistent AIC” (CAIC) of Bozdogan (1987), and 11
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the sample-size-adjusted BIC (ABIC) of Sclove (1987) (see Table 1). Each of these 12

ICs consists of a goodness-of-fit term plus a penalty to reduce the risk of overfitting, 13

and each provides a standardized way to balance sensitivity and specificity. 14

Applying an IC involves choosing the model with the best penalized log-likelihood: 15

that is, the highest value of `−Anp, where ` is the log-likelihood, An is a constant 16

or a function of the sample size n, and p is the number of parameters in the model. 17

For historical reasons, instead of finding the highest value of ` minus a penalty, this 18

is often expressed as finding the lowest value of −2` plus a penalty: 19

−2`+Anp, (1)

and we follow that convention here. Expression (1) is what Atkinson (1980) called 20

the generalized information criterion; in this paper we simply refer to (1) as an 21

IC. Expression (1) is sometimes replaced in practice by the practically equivalent 22

G2+Anp, where G2 is the deviance, defined as twice the difference in log-likelihood 23

between the current model and the saturated model, that is, the model with the 24

most parameters which is still identifiable (e.g., Collins and Lanza, 2010). 25

In practice, Expression (1) cannot be used directly without first choosing An. 26

Specific choices of An make (1) equivalent to AIC, BIC, ABIC or CAIC. Thus, 27

although motivated by different theories and goals, algebraically these criteria are 28

only different values of An in (1), corresponding to different relative degrees of 29

emphasis on parsimony, that is, on the number of free parameters in the selected 30

model (Claeskens and Hjort, 2008; Lin and Dayton, 1997; Vrieze, 2012). Because 31

the different ICs often do not agree, the question often arises as to which is best 32

to use in practice. In this paper we examine this question by focusing on the 33

similarities and differences among AIC, BIC, CAIC, and ABIC, especially in view of 34

an analogy between their different complexity penalty weights An and the α levels of 35

hypothesis tests. We especially focus on AIC and BIC, which have been extensively 36

studied theoretically (Pötscher, 1991; Atkinson, 1980; Kuha, 2004; Zhang, 1993; 37

Ding et al., 2018; Shao, 1997; Kadane and Lazar, 2004; Vrieze, 2012), and which 38

are often used not only in their own right but as tuning criteria to improve the 39

performance of more complex model selection techniques (e.g., in high-dimensional 40

regression variable selection Wu and Ma, 2015; Narisetty and He, 2014; Wang 41
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Table 1: Summary of Common Information Criteria
Criterion Penalty Weight Emphasis Likely Kind

of Error

Non-consistent criteria
AIC An = 2 Good prediction Overfitting

Consistent criteria

ABIC An = ln
(
n+2
24

)
Depends on n Depends on n

BIC An = ln (n) Parsimony Underfitting

CAIC An = ln (n) + 1 Parsimony Underfitting

et al., 2007). The AIC and BIC are widely used in many important applications in 42

bioinformatics, including in molecular phylogenetics (Posada, 2008; Darriba et al., 43

2012; Jayaswal et al., 2014; Kalyaanamoorthy et al., 2017; Lefort et al., 2017). 44

In the following section we review the motivation and theoretical properties of 45

these ICs. We then discuss their application to a common application of model 46

selection in medical, health and social scientific applications: that of choosing the 47

number of classes in a latent class analysis (e.g., Collins and Lanza, 2010). Finally, 48

we propose practical recommendations for using ICs to extract valuable insights 49

from data while acknowledging their differing emphases. 50

Common Penalized-Likelihood Information Criteria 51

In this section we review some commonly used ICs. Their formulas, as well as 52

some of their properties which we describe later in the paper, are summarized for 53

convenience in Table 1. 54

Akaike’s Information Criterion (AIC) 55

First, the AIC Akaike (1973) sets An = 2 in (1). It estimates the relative Kullback- 56

Leibler (KL) divergence (a nonparametric measure of difference between distribu- 57

tions) of the likelihood function specified by a fitted candidate model, from the 58

likelihood function governing the unknown true process that generated the data. 59

The fitted model closest to the truth in the KL sense would not necessarily be the 60

model that best fits the observed sample, since the observed sample can often be 61
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fit arbitrary well by making the model more and more complex. Rather, the best 62

KL model is the model that most accurately describes the population distribution 63

or the process that produced the data. Such a model would not necessarily have 64

the lowest error in fitting the data already observed (also known as the training 65

sample) but would be expected to have the lowest error in predicting future data 66

taken from the same population or process (also known as the test sample). This 67

is an example of a bias-variance tradeoff (see, e.g., Hastie et al., 2001). 68

Technically, the KL divergence can be written as Et(`t(y)) − Et(`(y)), where 69

Et is the expected value under the unknown true distribution function, ` is the 70

log-likelihood of the data under the fitted model being considered, and `t is the 71

log-likelihood of the data under the unknown true distribution. This is intuitively 72

understood as the difference between the estimated and the true distribution. 73

Et(`t(y)) will be the same for all models being considered, so KL is minimized 74

by choosing the model with highest Et(`(y)). The `(y) from the fitted model is 75

a biased measure of Et(`(y)), especially if p is large, because a model with many 76

parameters can generally be fine-tuned to appear to fit a small dataset well, even if 77

its structure is such that it cannot generalize to describe the process that generated 78

the data. Intuitively, this means that if there are many parameters, the fit of the 79

model to the originally obtained data (training sample) will seem good regardless 80

of whether the model is correct or not, simply because the model is so flexible. 81

In other words, once a particular dataset is used to estimate the parameters of a 82

model, the fit of the model on that sample is no longer an independent evaluation of 83

the quality of the model. The most straightforward way to address this fit inflation 84

would be by cross-validation on a new sample, but AIC and similar criteria attempt 85

to achieve something similar when there is no other sample (see Shao, 1993, 1997). 86

Akaike (1973) showed that an approximately unbiased estimate of Et(`(y)) 87

would be a constant plus ` − tr(Ĵ−1K̂) (where J and K are two p × p matri- 88

ces, described below, and tr() is the trace, or sum of diagonal elements). Ĵ is 89

an estimator for the covariance matrix of the parameters, based on the matrix of 90

second derivatives of ` in each of the parameters, and K̂ is an estimator based 91

on the cross-products of the first derivatives (see Claeskens and Hjort, 2008, pp. 92

26-7). Akaike showed that Ĵ and K̂ are asymptotically equal for the true model, so 93
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that the trace becomes approximately p, the number of parameters in the model. 94

For models that are far from the truth, the approximation may not be as good. 95

However, poor models presumably have poor values of `, so the precise size of the 96

penalty is less important (Burnham and Anderson, 2002). The resulting expres- 97

sion `− p suggests using An = 2 in (1) and concluding that fitted models with low 98

values of (1) will be likely to provide a likelihood function closer to the truth. AIC 99

is discussed further by Burnham and Anderson (2002, 2004) and Kuha (2004). 100

Criteria Related to AIC. When n is small or p is large, the crucial AIC 101

approximation tr(Ĵ−1K̂) ≈ p is too optimistic and the resulting penalty for model 102

complexity is too weak (Tibshirani and Knight, 1999; Hastie et al., 2001). In the 103

context of regression and time series models, several researchers (e.g., Sugiura, 104

1978; Hurvich and Tsai, 1989; Burnham and Anderson, 2004) have suggested using 105

a corrected version, AICc, which applies a slightly heavier penalty that depends 106

on p and n; it gives results very close to those of AIC when n is large relative to p. 107

For small n, Hurvich and Tsai (1989) showed that AICc sometimes performs better 108

than AIC. Theoretical discussions of model selection often focus on the advantages 109

and disadvantages of AIC versus BIC, and AICc gets little attention because it 110

is asymptotically equivalent to AIC. However, this equivalence is subject to the 111

assumption that p is fixed and n becomes very large. Because in many situations 112

p is comparable to n or larger, AICc may deserve more attention in future work. 113

Some other selection criteria are asymptotically equivalent to AIC, at least for 114

linear regression. These include Mallows’ Cp (see George, 2000), leave-one-out 115

cross-validation (Shao, 1997; Stone, 1977), and the generalized cross- validation 116

(GCV) statistic (see Golub et al., 1979; Hastie et al., 2001). Leave-one-out cross- 117

validation involves fitting the candidate model on many subsamples of the data, 118

each excluding one subject (i.e., participant or specimen), and observing the average 119

squared error in predicting the extra response. Each approach is intended to correct 120

a fit estimate for the artificial inflation in observed performance caused by fitting a 121

model and evaluating it with the same data, and to find a good balance between bias 122

caused by too restrictive a model and excessive variance caused by too rich a model 123

(Hastie et al., 2001). Model parsimony is not a motivating goal in its own right, 124

but is a means to reduce unnecessary sampling error caused by having to estimate 125
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too many parameters relative to n. Thus, especially for large n, sensitivity is likely 126

to be treated as more important than specificity. If parsimonious interpretation is 127

of interest in its own right, another criterion such as BIC, described in the next 128

section, might be more appropriate. 129

The Deviance Information Criterion used in Bayesian analyses (Spiegelhalter 130

et al., 2002; Gibson et al., 2018) is beyond the scope of this paper because it cannot 131

be expressed as a value of An in Expression (1). However, it has some relationship 132

to AIC and has an analogous purpose (Claeskens and Hjort, 2008; Ando, 2013). 133

Other ICs are named after AIC but do not derive from the same theoretical 134

framework, except that they share the form (1). For example, some researchers 135

(Andrews and Currim, 2003; Fonseca and Cardoso, 2007; Yang and Yang, 2007) 136

have suggested using An = 3 in expression (1) instead of 2. The use of An = 3 is 137

sometimes called “AIC3.” There is no statistical theory to motivate AIC3, such 138

as minimizing KL divergence or any other theoretical construct, but on an ad hoc 139

basis it has fairly good simulation performance in some settings, being stricter than 140

AIC but not as strict as BIC. Also, the CAIC, the “corrected” or “consistent” AIC 141

proposed by Bozdogan (1987), uses An = ln(n)+1. (It should not be confused with 142

the AICc discussed above.) This penalty tends to result in a more parsimonious 143

model and more underfitting than AIC or BIC, and it is therefore not very similar 144

to AIC. This value of An was chosen somewhat arbitrarily as an example of an 145

An that would provide model selection consistency, a property described below 146

in the section for BIC. However, any An proportional to ln(n) provides model 147

selection consistency, so CAIC has no real advantage over the better-known and 148

better-studied BIC (see below), which also has this property. 149

Schwarz’s Bayesian Information Criterion (BIC) 150

In Bayesian model selection, a prior probability is set for each model Mi, and

prior distributions (often uninformative priors for simplicity) are also set for the

nonzero coefficients in each model. If we assume that one and only one model, along

with its associated priors, is true, we can use Bayes’ theorem to find the posterior

probability of each model given the data. Let Pr(Mi) be the prior probability set

by the researcher, and let Pr(y|Mi) be the probability density of the data given
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Mi, calculated as the expected value of the likelihood function of y given the

model and parameters, over the prior distribution of the parameters. According to

Bayes’ theorem, the posterior probability Pr(Mi|y) of a model is proportional to

Pr(Mi) Pr(y|Mi). The degree to which the data support Mi over another model

Mj is given by the ratio of the posterior odds to the prior odds:

Pr(Mi|y)
Pr(Mj |y)

Pr(Mi)
Pr(Mj)

.

If we assume equal prior probabilities for each model, this simplifies to the “Bayes

factor” (see Kass and Raftery, 1995):

Bij =
Pr(Mi|y)

Pr(Mj |y)

so that the model with the highest Bayes factor also has the higher posterior prob- 151

ability. Schwarz (1978) and Kass and Wasserman (1995) showed that, for many 152

kinds of models, Bij can be roughly approximated by exp(− 1
2BICi + 1

2BICj), 153

where BIC equals Expression (1) with An = ln(n), especially if a certain “unit 154

information” prior is used for the coefficients. The use of Bayes factors has been 155

argued to be more interpretable than that of significance tests in some practical 156

settings (Raftery, 1996; Goodman, 2008; Beard et al., 2016) although with some 157

caveats (see Gigerenzer and Marewski, 2015; Murtaugh, 2014). Thus the model 158

with the highest posterior probability is likely to be the one with lowest BIC. BIC 159

is described further in Raftery (1995) and Wasserman (2000), but critiqued by Gel- 160

man and Rubin (1995) and Weakliem (1999), who find it to be an oversimplification 161

of Bayesian methods. BIC can also be called the Schwarz criterion. 162

BIC is sometimes preferred over AIC because BIC is “consistent” (e.g., Nylund 163

et al., 2007). Assuming that a fixed number of models are available and that one 164

of them is the true model, a consistent selector is one that selects the true model 165

with probability approaching 100% as n → ∞ (see Rao and Wu, 1989; Zhang, 166

1993; Shao, 1997; Yang, 2005; Claeskens and Hjort, 2008). The existence of a true 167

model here is not as unrealistically dogmatic as it sounds (Burnham and Anderson, 168

2004; Kuha, 2004). Rather, the true model can be defined as the smallest adequate 169

model, that is, the single model that minimizes KL divergence, or the smallest such 170
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model if there is more than one (Claeskens and Hjort, 2008). There may be more 171

than one such model because if a given model has a given KL divergence from the 172

truth, any more general model containing it will have no greater distance from the 173

truth. This is because there is some set of parameters for which the larger model 174

becomes the model nested within it. However, the theoretical properties of BIC 175

are better in situations in which a model with a finite number of parameters can 176

be treated as “true” (Shao, 1997). 177

AIC is not consistent because it has a non-vanishing chance of choosing an 178

unnecessarily complex model as n becomes large. The unnecessarily complex model 179

would still closely approximate the true distribution but would use more parameters 180

than necessary to do so. However, selection consistency involves some performance 181

tradeoffs when n is modest, specifically, an elevated risk of poor performance caused 182

by underfitting (see Shibata, 1986; Shao, 1997; Pötscher, 1991; Vrieze, 2012). In 183

general, the strengths of AIC and BIC cannot be combined by any single choice 184

of An (Leeb, 2008; Yang, 2005). However, in some cases it is possible to construct 185

a more complicated model selection approach that uses aspects of both (see Ding 186

et al., 2018). 187

Criteria Related to BIC. Sclove (1987) suggested a sample-size-adjusted 188

BIC, variously abbreviated as ABIC, SABIC, or BIC∗, based on the work of Ris- 189

sanen (1978) and Boekee and Buss (1981). It uses An = ln((n+ 2)/24) instead of 190

An = ln(n). This penalty will be much lighter than that of BIC, and may be lighter 191

or heavier than that of AIC, depending on n. The unusual expression for An comes 192

from Rissanen’s work on model selection for autoregressive time series models from 193

a minimum description length perspective (see Stine, 2004). It is not clear whether 194

or not the same adjustment is still theoretically appropriate in different contexts, 195

but in practice it is sometimes used in latent class modeling and seems to work 196

fairly well (see Nylund et al., 2007; Tein et al., 2013). 197

2 Information Criteria in Simple Cases 198

The above shows that AIC and BIC differ in theoretical basis. They also often 199

disagree in practice, generally with AIC indicating models with more parameters 200

and BIC with less. This has led many researchers to question whether and when a 201
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particular value of the “magic number” An (Bozdogan, 1987) can be chosen as most 202

appropriate. Two special cases – comparing equally sized models and comparing 203

nested models – each provide some insight into this question. 204

First, when comparing different models of the same size (i.e., number of param- 205

eters to be estimated), all ICs of the form (1) will always agree on which model is 206

best. For example, in regression variable subset selection, suppose two models each 207

use five covariates. In this case, any IC will select whichever model has the highest 208

likelihood (the best fit to the observed sample) after estimating the parameters. 209

This is because only the first term in Expression (1) will differ across the candi- 210

date models, so An does not matter. Thus, although the ICs differ in theoretical 211

framework, they only disagree when they make different tradeoffs between fit and 212

model size. 213

Second, for comparing a nested pair of models, different ICs act like different 214

α levels on a likelihood ratio test (LRT). For comparing models of different sizes, 215

when one model is a restricted case of the other, the larger model will typically offer 216

better fit to the observed data at the cost of needing to estimate more parameters. 217

The ICs will differ only in how they make this bias-variance tradeoff (Lin and 218

Dayton, 1997; Sclove, 1987). Thus, an IC will act like a hypothesis test with a 219

particular α level (Söderström, 1977; Teräsvirta and Mellin, 1986; Pötscher, 1991; 220

Claeskens and Hjort, 2008; Foster and George, 1994; Stoica et al., 2004; van der 221

Hoeven, 2005; Vrieze, 2012; Murtaugh, 2014). 222

Suppose a researcher will choose whichever of M0 and M1 has the better (lower) 223

value of an IC of the form (1). This means that M1 will be chosen if and only if 224

−2`1+Anp1 < −2`0+Anp0, where `1 and `0 are the fitted maximized log-likelihoods 225

for each model. Although the comparison of models is interpreted differently in the 226

theoretical frameworks used to justify AIC and BIC (Aho et al., 2014; Kuha, 2004), 227

algebraically this comparison is the same as a LRT (Söderström, 1977; Stoica et al., 228

2004; Pötscher, 1991). That is, M0 is rejected if and only if 229

−2(`0 − `1) > An(p1 − p0). (2)

The left-hand side is the LRT test statistic (since a logarithm of a ratio of quantities 230

is the difference in the logarithms of the quantities). Thus, in the case of nested 231
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models an IC comparison is mathematically an LRT with a different interpretation. 232

The α level is specified indirectly through the critical value An; it is the proportion 233

of the null hypothesis distribution of the LRT statistic that is less than An. 234

For many kinds of models, the asymptotic null-hypothesis distribution of−2(`0− 235

`1) is asymptotically χ2 with degrees of freedom (df) equal to p1 − p0. Consult- 236

ing a χ2 table and assuming p1 − p0 = 1, AIC (An = 2) becomes equivalent to 237

a LRT test at an α level of about .16 (i.e., the probability of a χ2
1 deviate being 238

greater than 2). In the same situation, BIC (with An = ln(n)) has an α level that 239

depends on n. If n = 10 then An = ln(n) = 2.30 so α = .13. If n = 100 then 240

An = 4.60 so α = .032. If n = 1000 then An = 6.91 so α = .0086, and so on. Thus 241

when p1 − p0 = 1, significance testing at the customary level of α = .05 is often 242

an intermediate choice between AIC and BIC, corresponding to An = 1.962 ≈ 4. 243

However, as p1 − p0 becomes larger, all ICs become more conservative, in order to 244

avoid adding many unnecessary parameters unless they are needed. Table 2 shows 245

different effective α values for two values of p1 − p0, obtained using the R (R De- 246

velopment Core Team, 2010) code 1-pchisq(q=An*df,df=df,lower.tail=TRUE) 247

where An is the An value and df is p1−p0. AICc is not shown in the table because 248

its penalty weight depends both on p0 and on p1 in a slightly more complicated 249

way, but will behave similarly to AIC for large n and modest p0. 250

The property of selection consistency can be intuitively understood from this 251

perspective. For AIC, as for hypothesis tests, the power of a test increases with 252

n. Thus, rejecting any given false null hypothesis is practically guaranteed for 253

sufficiently large n even if the effect size is tiny. However, the Type I error rate 254

is constant and never approaches zero. On the other hand, BIC becomes a more 255

stringent test (has a decreasing Type I error rate) as n increases. The power 256

increases more slowly (i.e., the Type II error rate decreases more slowly) than for 257

AIC or for fixed-α hypothesis tests because the test is becoming more stringent, 258

but now the Type I error rate is also decreasing. Thus, nonzero but practically 259

negligible departures from a model are less likely to lead to rejecting the model 260

for BIC than for AIC (Raftery, 1995). Fortunately, even for BIC, the decrease in 261

α as n increases is slow; thus power still increases as n increases, although more 262

slowly than it would for AIC. Thus, for BIC, both the Type I and Type II error 263
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Table 2: Alpha Levels Represented By Common Information Criteria
n AIC ABIC BIC CAIC

Assuming p1 − p0 = 1

10 0.15730 1.00000 0.12916 0.06917
50 0.15730 0.37923 0.04794 0.02667

100 0.15730 0.22902 0.03188 0.01791
500 0.15730 0.08121 0.01267 0.00723

1000 0.15730 0.05339 0.00858 0.00492
5000 0.15730 0.02085 0.00352 0.00204

10000 0.15730 0.01404 0.00241 0.00140
100000 0.15730 0.00389 0.00069 0.00040

Assuming p1 − p0 = 10

10 0.02925 1.00000 0.01065 0.00027
50 0.02925 0.65501 0.00002 < 0.0001

100 0.02925 0.15265 < 0.0001 < 0.0001
500 0.02925 0.00074 < 0.0001 < 0.0001

1000 0.02925 0.00005 < 0.0001 < 0.0001
5000 0.02925 < 0.0001 < 0.0001 < 0.0001

10000 0.02925 < 0.0001 < 0.0001 < 0.0001
100000 0.02925 < 0.0001 < 0.0001 < 0.0001

rates decline slowly as n increases, while for AIC (and for classical significance 264

testing) the Type II error rate declines more quickly but the Type I error rate does 265

not decline at all. This is intuitively why a criterion with constant An cannot be 266

asymptotically consistent even though it may be more powerful for a given n (see 267

Claeskens and Hjort, 2008; Yang, 2005; Kieseppä, 2003). 268

Nylund et al. (2007) seem to interpret the lack of selection consistency as a flaw 269

in AIC (Nylund et al., 2007, p. 556). However, the real situation is more com- 270

plicated; AIC is not a defective BIC, nor vice versa (see Kieseppä, 2003; Shibata, 271

1981, 1986; Pötscher, 1991; Vrieze, 2012). Likewise, the other ICs mentioned here 272

are neither right nor wrong, but are simply choices (perhaps thoughtful and per- 273

haps arbitrary, but still technically valid choices). Since choosing An for a model 274

comparison is closely related to choosing an α level for a significance test, the uni- 275

versally “best” IC cannot be defined any more than the “best” α; there will always 276

be a tradeoff. Thus, debates about whether AIC is generally superior to BIC or 277

vice versa, will be fruitless. 278

For non-nested models of different sizes, neither of the above simple cases hold; 279

furthermore, these complex cases are often those in which ICs are most important 280
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because a LRT cannot be performed. However, it remains the case that An has a 281

powerful effect on the tradeoff between the likelihood term and the penalty on the 282

number of parameters, hence the tradeoff between good fit to the observed data 283

and parsimony. 284

Almost by definition, there is no universal best way to decide how to make a 285

tradeoff. Sometimes the relative importance of sensitivity or specificity depends on 286

the decisions to be made based on model predictions. For example, in theoretical 287

research Type I error is considered to be more serious because it is a false statement 288

rather than simply a failure to reject a null hypothesis. However, in some envi- 289

ronmental or epidemiological decision-making contexts, the decision corresponding 290

to Type II error might be much more harmful to public health than that which 291

would correspond to a Type I error, requiring increased attention to uncertainty 292

about the adequacy of null hypothesis (Peterman, 1990; Andorno, 2004). In this 293

way, one could characterize the comparison of models by analogy to a medical di- 294

agnostic test (see, e.g., Altman and Bland, 1994), replacing “Type I error” with 295

“false positive” and “Type II error” with “false negative.” AIC and BIC use the 296

same data but apply different cutoffs for whether to “diagnose” the smaller model 297

as being inadequate. AIC is more sensitive (lower false-negative rate), but BIC is 298

more specific (lower false-positive rate). The utility of each cutoff is determined 299

by the consequences of a false positive or false negative and by one’s beliefs about 300

the base rates of positives and negatives. Thus, AIC and BIC could be seen as 301

representing different sets of prior beliefs in a Bayesian sense (see Burnham and 302

Anderson, 2004; Kadane and Lazar, 2004) or, at least, different judgments about 303

the importance of parsimony. For example, although AIC has favorable theoretical 304

properties for choosing the number of parameters needed to approximate the shape 305

of a nonparametric growth curve in general (Shao, 1997), in a particular application 306

with such data Dziak et al. (2015) argued that BIC would give more interpretable 307

results. They argued this because the curves in that context were believed likely 308

to have a smooth and simple shape, as they represented averaged trajectories of 309

an intensively measured variable on individuals with diverse individual experiences 310

and because deviations from the trajectory could be modeled using other aspects 311

of the model. 312

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449751doi: bioRxiv preprint 

https://doi.org/10.1101/449751
http://creativecommons.org/licenses/by-nc-nd/4.0/


As a caveat, if a researcher wishes to consider practical consequences of decisions 313

based on model choices directly, it may be much more satisfactory to explicitly use 314

Bayesian decision theory rather than simply choosing a value of Expression An in 315

(1) (see, e.g., Claxton et al., 2000; Gelman and Rubin, 1995). Also, in practice it is 316

often difficult to determine the α value that a particular criterion really represents, 317

for two reasons. First, even for regular situations in which a LRT is known to work 318

well, the χ2 distribution for the test statistic is asymptotic and will not apply well 319

to small n. Second, in some situations the rationale for using an IC is, ironically, 320

the failure of the assumptions needed for a LRT. That is, the test emulated by 321

the IC will itself not be valid at its nominal α level anyway. Therefore, although 322

the comparison of An to an α level is helpful for getting a sense of the similarities 323

and differences among the ICs, simulations are required to describe exactly how 324

they behave. In the section below we review simulation results from a common 325

application of ICs, namely the selection of the number of latent classes (empirically 326

derived clusters) in a dataset. 327

3 The Special Case of Latent Class Analysis 328

A common use of ICs is in selecting the number of components for a latent class 329

analysis (LCA). LCA is a kind of finite mixture model (essentially, a model-based 330

cluster analysis; McLachlan and Peel, 2000; Lazarsfeld and Henry, 1968; Collins 331

and Lanza, 2010). LCA assumes that the population is a “mixture” of multiple 332

classes of a categorical latent variable. Each class has different parameters that 333

define the distributions of observed items, and the goal is to account for the rela- 334

tionships among items by defining classes appropriately. In this section we consider 335

LCA as described in Collins and Lanza (2010), although ICs are also used for more 336

complex mixture models and clustering applications (e.g., Wang et al., 2012; Ye 337

et al., 2015). LCA is very similar to cluster analysis, but is based on maximizing 338

an explicitly stated likelihood function rather than focusing on a heuristic compu- 339

tational algorithm like k-means. Also, some authors use the term LCA only when 340

the observed variables are also categorical, and use the term “latent profile anal- 341

ysis” for numerical observed variables, but we ignore this distinction here. LCA 342

is also closely related to latent transition (LTA) models (see Collins and Lanza, 343
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2010), an application of hidden Markov models (see, e.g., Eddy, 2004) that allows 344

changes in latent class membership, conceptualized as transitions in an unobserved 345

Markov chain. LCA models are sometimes used in combination with other models, 346

such as in predicting class membership from genotypic or demographic variables, 347

or predicting medical or behavioral phenotypes from class membership (e.g., Lubke 348

et al., 2012; Dziak et al., 2016; Bray et al., 2018). To fit an LCA model or any of 349

its cousins, an algorithm such as EM (Dempster et al., 1977; McLachlan and Peel, 350

2000; Gupta and Chen, 2010) is often used to alternatively estimate class-specific 351

parameters and predict subjects’ class membership given those parameters. The 352

user must specify the number of classes in a model, but the true number of classes 353

is generally unknown. (Nylund et al., 2007; Tein et al., 2013). Sometimes one 354

might have a strong theoretical reason to specify the number of classes, but often 355

this must be done using data-driven model selection. 356

A näıve approach would be to use likelihood ratio (LR) or deviance (G2) tests 357

sequentially to choose the number of classes and to conclude that the k-class model 358

is large enough if and only if the (k+1)-class model does not fit the data significantly 359

better. The selected number of classes would be the smallest k that is not rejected 360

when compared to the (k + 1)-class model. However, the assumptions for the 361

supposed asymptotic χ2 distribution in a LRT are not met in the setting of LCA, 362

so that the p-values from those tests are not valid (see Lin and Dayton, 1997; 363

McLachlan and Peel, 2000). The reasons for this are based on the fact that H0 364

here is not nested in a regular way within H1, since a k-class model is obtained 365

from a (k + 1)-class model either by constraining any one of the class sizes to a 366

boundary value of zero or by setting the class-specific item-response probabilities 367

equal between any two classes. That is, an meaningful k-class model is not obtained 368

simply by setting a parameter to zero in a (k + 1) class model in the way that, 369

for example, a more parsimonious regression model is obtained by constraining 370

certain coefficients in a richer model to zero. Ironically, the lack of regular nesting 371

structure that makes it impossible to decide on the number of classes with an LRT 372

has also been shown to invalidate the mathematical approximations used in the 373

AIC and BIC derivations in the same way (McLachlan and Peel, 2000, pp. 202- 374

212). Nonetheless, ICs are widely used in LCA and other mixture models. This is 375
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partly due to their ease of use, even without a firm theoretical basis. Fortunately, 376

there is at least an asymptotic theoretical result showing that, when the true model 377

is well-identified, BIC (and hence also AIC and ABIC) will have a probability of 378

underestimating the true number of classes that approaches 0 as sample size tends 379

to infinity (Leroux, 1992; McLachlan and Peel, 2000, p. 209). 380

Lin and Dayton (1997) did an early simulation study comparing the performance 381

of AIC, BIC, and CAIC for choosing which assumptions to make in constructing 382

constrained LCA models, a model selection task which is somewhat but not fully 383

analogous to choosing the number of classes. When a very simple model was used 384

as the true model, BIC and CAIC were more likely to choose the true model than 385

AIC, which tended to choose an unnecessarily complicated one. When a more 386

complex model was used to generate the data and measurement quality was poor, 387

AIC was more likely to choose the true model than BIC or CAIC, which were likely 388

to choose an overly simplistic one. They explained that this was very intuitive given 389

the differing degrees of emphasis on parsimony. Interpreting these results, Dayton 390

(1998) suggested that AIC tended to be a better choice in LCA than BIC, but 391

recommended computing and comparing both. 392

Other simulations have explored the ability of the ICs to determine the correct 393

number of classes. In Dias (2006), AIC had the lowest rate of underfitting but 394

often overfit, while BIC and CAIC practically never overfit but often underfit. 395

AIC3 was in between and did well in general. The danger of underfitting increased 396

when the classes did not have very different response profiles and were therefore 397

easy to mistakenly lump together; in these cases BIC and CAIC almost always 398

underfit. Yang (2006) reported that ABIC performed better in general than AIC 399

(whose model selection accuracy never got to 100% regardless of n) or BIC or 400

CAIC (which underfit too often and required large n to be accurate). Fonseca and 401

Cardoso (2007) similarly suggested AIC3 as the preferred selection criterion for 402

categorical LCA models. 403

Yang and Yang (2007) compared AIC, BIC, AIC3, ABIC and CAIC. When the 404

true number of classes was large and n was small, CAIC and BIC seriously under- 405

fit, but AIC3 and ABIC performed better. Nylund et al. (2007) presented various 406

simulations on the performance of various ICs and tests for selecting the number 407
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of classes in LCA, as well as factor mixture models and growth mixture models. 408

Overall, in their simulations, BIC performed much better than AIC, which tended 409

to overfit, or CAIC, which tended to underfit (Nylund et al., 2007, p. 559). How- 410

ever, this does not mean that BIC was the best in every situation. In most of the 411

scenarios considered by Nylund et al. (2007), BIC and CAIC almost always selected 412

the correct model size, while AIC had a much smaller accuracy in these scenarios 413

because of a tendency to overfit. In those scenarios, n was large enough so that 414

the lower sensitivity of BIC was not a problem. However, in a more challenging 415

scenario with a small sample and unequally sized classes, (Nylund et al., 2007, p. 416

557), BIC essentially never chose the larger correct model and it usually chose one 417

that was much too small. Thus, as Lin and Dayton (1997) found, BIC may select 418

too few classes when the true population structure is complex but subtle (for exam- 419

ple, a small but nonzero difference between the parameters of a pair of classes) and 420

n is small. Wu (2009) compared the performance of AIC, BIC, ABIC, CAIC, näıve 421

tests, and the bootstrap LRT in hundreds of simulated scenarios. Performance was 422

heavily dependent on the scenario, but the method that worked adequately in the 423

greatest variety of situations was the bootstrap LRT, followed by ABIC and classic 424

BIC. Wu (2009) argued that BIC seemed to outperform ABIC in the most optimal 425

situations because of its parsimony, but that ABIC seemed to do better in situa- 426

tions with smaller n or more unequal class sizes. Dziak et al. (2014) also concluded 427

that BIC could seriously underfit relative to AIC for small sample sizes or other 428

challenging situations. In latent profile analysis, Tein et al. (2013) found that BIC 429

and ABIC did well for large sample sizes and easily distinguishable classes, but AIC 430

chose too many classes, and no method performed well for especially challenging 431

scenarios. In a more distantly related mixture modeling framework involving mod- 432

eling evolutionary rates at different genomic sites, Kalyaanamoorthy et al. (2017) 433

found that AIC, AICc, and BIC worked well but that BIC worked best. 434

Despite all these findings, is not possible to say which IC is universally best, 435

even in the idealized world of simulations. Rather, the true parameter values and 436

n used when generating simulated data determine the relative performance of the 437

ICs. For small n, the most likely error in a simulation is underfitting, so the criteria 438

with lower underfitting rates, such as AIC, often seem better. For larger n, the 439
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most likely error is overfitting, so more parsimonious criteria, such as BIC, often 440

seem better. Unfortunately, the point at which the n becomes “large” depends on 441

numerous aspects of the situation. Furthermore, all of these findings have limited 442

usefulness in real data, where the truth is unknown. It may be more helpful to 443

think about which aspects of performance (e.g., sensitivity or specificity) are most 444

important in a given situation. 445

If the goal of having a sufficiently rich model to describe the heterogeneity in the 446

population is more important than parsimony, or if some classes are expected to be 447

small or similar to other classes but distinguishing among them is still considered 448

important for theoretical reasons, then perhaps AIC, AIC3 or ABIC should be 449

used instead of BIC or CAIC. If obtaining a few large and distinctly interpretable 450

classes is more important, then BIC is more appropriate. Sometimes, the AIC- 451

favored model might be so large as to be difficult to use or understand. In these 452

cases, the BIC-favored model is clearly the better practical choice. For example, in 453

Chan et al. (2007) BIC favored a mixture model with 5 classes, and AIC favored at 454

least 10; the authors felt that a 10-class model would be too hard to interpret. In 455

fact, it may be necessary for theoretical or practical reasons to choose a number of 456

classes even smaller than that suggested by BIC. This is because it is important to 457

choose the number of classes based on their theoretical interpretability, as well as 458

by excluding any models with so many classes that they lead to a failure to converge 459

to a clear maximum-likelihood solution (see Collins and Lanza, 2010; Pohle et al., 460

2017; Bray and Dziak, 2018). 461

An alternative to ICs in latent class analysis and cluster analysis is the use 462

of a bootstrap test (see McLachlan and Peel, 2000). Unlike the näıve NRT, Ny- 463

lund et al. (2007) showed empirically that the bootstrap LRT with a given α level 464

does generally provide a Type I error rate at or below that specified level. Both 465

Nylund et al. (2007) and Wu (2009) found that this bootstrap test seemed to per- 466

form somewhat better than the ICs in various situations. The bootstrap LRT is 467

beyond the scope of this paper, as are more computationally intensive versions of 468

AIC and BIC, involving bootstrapping, cross-validation, or posterior simulation 469

(see McLachlan and Peel, 2000, pp. 204-212). Also beyond the scope of this pa- 470

per are mixture-specific selection criteria such as the normalized entropy criterion 471
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(Biernacki et al., 1999) or integrated completed likelihood (Biernacki and Celeux, 472

2000; Rau and Maugis, 2018). However, the basic ideas in this article will still be 473

helpful in interpreting the implications of some of the other selection methods. For 474

example, like any test or criterion, the bootstrap LRT still requires the choice of a 475

tradeoff between sensitivity and specificity (i.e., by selecting an α level). 476

4 Discussion 477

If BIC indicates that a model is too small, it may well be too small (or else fit 478

poorly for some other reason). If AIC indicates that a model is too large, it may 479

well be too large for the data to warrant. Beyond this, theory and judgment are 480

needed. If BIC selects the largest and most general model considered, it is worth 481

thinking about whether to expand the space of models considered (since an even 482

more general model might fit even better), and similarly if AIC chooses the most 483

parsimonious. 484

AIC and BIC each have distinct theoretical advantages. However, a researcher 485

may judge that there may be a practical advantage to one or the other in some 486

situations. For example, as mentioned earlier, in choosing the number of classes in a 487

mixture model, the true number of classes required to satisfy all model assumptions 488

is sometimes quite large, too large to be of practical use or even to allow coefficients 489

to be reliably estimated. In that case, BIC would be a better choice than AIC. 490

Additionally, in practice, one may wish to rely on substantive theory or parsimony 491

of interpretation in choosing a relatively simple model. In such cases, the researcher 492

may decide that even the BIC may have indicated a model that is too complex in a 493

practical sense, and may choose to select a smaller model that is more theoretically 494

meaningful or practically interpretable instead (Pohle et al., 2017; Bray and Dziak, 495

2018). This does not mean that BIC overfit. Rather, in these situations the model 496

desired is sometimes not the literally true model but simply the most useful model, 497

a concept which cannot be identified using fit statistics alone but requires subjective 498

judgment. Depending on the situation, the number of classes in a mixture model 499

may either be interpreted a true quantity needing to be objectively estimated, or 500

else as a level of approximation to be chosen for convenience, like the scale of a 501

map. Still, in either case the question of which patterns or features are generalizable 502
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beyond the given sample remains relevant (c.f. Li and Marron, 2005). 503

A larger question is whether to use ICs at all. If ICs indeed reduce to LRTs 504

in simple cases, one might wonder why ICs are needed at all, and why researchers 505

cannot simply do LRTs. A possible answer is flexibility. Both AIC and BIC can be 506

used to concurrently compare many models, not just a pair at a time, or to weight 507

the estimates obtained from different models for a common quantity of interest. 508

These weighting approaches use either AIC or BIC but not both, because AIC and 509

BIC are essentially treated as different Bayesian priors. While currently we know 510

of no mathematical theoretical framework for explicitly combining both AIC and 511

BIC into a single weighting scheme, a sensitivity analysis could be performed by 512

comparing the results from both. AIC and BIC can also be used to choose a few 513

well-fitting models, rather than selecting a single model from among many and 514

assuming it to be the truth (Kuha, 2004). Researchers have also proposed bench- 515

marks for judging whether the size of a difference in AIC or BIC between models 516

is practically significant (see Burnham and Anderson, 2004; Raftery, 1995; Mur- 517

taugh, 2014); for example, an AIC or BIC difference between two models of less 518

than 2 provides little evidence for one over the other; an AIC or BIC difference of 519

10 or more is strong evidence. These principles should not be used as rigid cutoffs 520

Murtaugh (2014), but as input to decision making and interpretation. Kadane and 521

Lazar Kadane and Lazar (2004) suggested that ICs might be used to “deselect” 522

very poor models (p. 279), leaving a few good ones for further study, rather than 523

indicating a single best model. One could use the ICs to suggest a range of model 524

sizes to consider for future study; for example, in some cases one might use the 525

BIC- preferred model as a minimum size and the AIC-preferred model as a maxi- 526

mum. AIC and BIC can also both be used for model averaging, that is, estimating 527

quantities of interest by combining more than one model weighted by their plau- 528

sibility (see Posada and Crandall, 2001; Posada and Buckley, 2004; Claeskens and 529

Hjort, 2008; Johnson and Omland, 2004; Gelman and Rubin, 1995; Hoeting et al., 530

1999; Burnham and Anderson, 2004). Despite these many worthwhile options, it 531

is still important to remember an automatic and uncritical use of an IC is no more 532

insightful than an automatic and uncritical use of a p-value. 533

Lastly, both AIC and BIC were developed in situations in which n was assumed 534
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to be much larger than p. None of the ICs discussed here were specifically developed 535

for situations such as those found in many genome-wide association studies pre- 536

dicting disease outcomes, in which the number of participants (n) is often smaller 537

than the number of potential genes (p), even when n is in the tens of thousands. 538

The ICs can still be practically useful in this setting (e.g., Cross-Disorder Group 539

of the Psychiatric Genomics Consortium, 2013). However, sometimes they might 540

need to be adapted (see, e.g., Chen and Chen, 2008; Pan et al., 2016; Mestres et al., 541

2018). More research in this area would be worthwhile. 542
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Kieseppä, I. A. (2003). AIC and large samples. Philosophy of Science, 70, 1265–

1276.

Kuha, J. (2004). AIC and BIC: Comparisons of assumptions and performance.

Sociological Methods and Research, 33, 188–229.

Lazarsfeld, P. F. and Henry, N. W. (1968). Latent structure analysis. Houghton

Mifflin, Boston.

Leeb, H. (2008). Evaluation and selection of models for out-of-sample prediction

when the sample size is small relative to the complexity of the data-generating

process. Bernoulli , 14, 661–690.

Lefort, V., Longueville, J. E., and Gascuel, O. (2017). SMS: Smart model selection

in PhyML. Molecular Biology and Evolution, 34, 2422–2424.

Leroux, B. G. (1992). Consistent estimation of a mixing distribution. Annals of

Statistics, 20, 1350–1360.

Li, R. and Marron, J. S. (2005). Local likelihood SiZer map. Sankhyā: The Indian
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