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Abstract 59 

Background: Unique among cnidarians, jellyfish have remarkable morphological and 60 

biochemical innovations that allow them to actively hunt in the water column. One of the first 61 

animals to become free-swimming, jellyfish employ pulsed jet propulsion and venomous 62 

tentacles to capture prey. 63 

Results: To understand these key innovations, we sequenced the genome of the giant Nomura’s 64 

jellyfish (Nemopilema nomurai), the transcriptomes of its bell and tentacles, and transcriptomes 65 

across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of 66 

Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, 67 

marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with 68 

expanded Myosin type II family and venom domains; possibly contributing to jellyfish mobility 69 

and active predation. We also identified gene family expansions of Wnt and posterior Hox genes, 70 

and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, 71 

which together may be related to the unique jellyfish body plan (medusa formation). 72 

Conclusions: Taken together, the jellyfish genome and transcriptomes genetically confirm their 73 

unique morphological and physiological traits that have combined to make these animals one of 74 

the world’s earliest and most successful multi-cellular predators. 75 

 76 

Keywords: Jellyfish mobility, Medusa structure formation, Scyphozoa, de novo genome 77 

assembly. 78 
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Background 80 

Cnidarians, including jellyfish and their predominantly sessile relatives the coral, sea anemone, 81 

and hydra, first appeared in the Precambrian Era and are now key members of aquatic 82 

ecosystems worldwide [1]. Between 500 and 700 million years ago, jellyfish developed novel 83 

physiological traits that allowed them to become one of the first free-swimming predators. The 84 

life cycle of the jellyfish includes a small polypoid, sessile stage which reproduces asexually to 85 

form the mobile medusa form that can reproduce both sexually and asexually [2]. The class 86 

Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a 87 

bell and venomous tentacles used for hunting and defense [3]. Jellyfish medusae feature a 88 

radially symmetric body structure, powered by readily identifiable cell types such as motor 89 

neurons and striated muscles that expand and contract to create the most energy-efficient 90 

swimming method in the animal kingdom [4, 5]. Over 95% water, jellyfish are osmoconformers 91 

that use ion gradients to deliver solutes to cells and tissues where sodium and calcium ions 92 

activate the muscle contractions that power their propulsion. Notably, many jellyfish species can 93 

survive in habitats with varying levels of salinity and are successful in low-oxygen environments, 94 

allowing them to bloom even in dead zones [6]. These innovations have allowed them to 95 

colonize aquatic habitats across the globe both in brackish and marine environments, spanning 96 

the shallow surface waters to the depths of the seas.  97 

 98 

Results and discussion 99 

Jellyfish genome assembly and annotation 100 

Here, we present the first de novo genome assembly of a jellyfish (Nemopilema nomurai). It 101 

resulted in a 213 Mb genome comprised of 255 scaffolds and an N50 length of 2.71 Mb, 102 
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containing only 1.48 % gaps (Additional file 1: Tables S2 and S3). The Nemopilema hybrid 103 

assembly was created using a combination of short and long read sequencing technologies, 104 

consisting of 38.2 Gb Pacific Biosciences (PacBio) single molecule real time sequencing (SMRT) 105 

reads, along with 98.6 Gb of Illumina short insert, mate-pair, and TruSeq synthetic long reads 106 

(Additional file 1: Figures S3-S5; Tables S4-S7). The resulting assembly shows the longest 107 

continuity among cnidarian genomes (Additional file 1: Table S9). We predicted 18,962 protein-108 

coding jellyfish genes by combining de novo (using medusa bell and tentacle tissue 109 

transcriptomes) and homologous gene prediction methods (Additional file 1: Tables S10 and 110 

S11). This process recovered the highest number of single-copy orthologous genes [7] among all 111 

published non-bilaterian metazoan genome assemblies to date (Additional file 1: Table S12). A 112 

total of 21.07% of the jellyfish genome was found to be made up of transposable elements, 113 

compared to those of Acropora digitifera (9.45%), Nematostella vectensis (33.63%), and Hydra 114 

magnipapillata (42.87%) (Additional file 1: Table S13). 115 

We compared the Nemopilema genome to other cnidarian genomes, all of which are from 116 

predominantly sessile taxa, to detect unique Scyphozoa function (active mobility), physical 117 

structure (medusa bell), and chemistry (venom). We also performed transcriptome analyses of 118 

both Nemopilema nomurai and the Sanderia malayensis jellyfish across three medusa tissue 119 

types and four developmental stages. 120 

 121 

Evolutionary analysis of the jellyfish  122 

To identify jellyfish-specific evolutionary traits, we examined gene family expansions and 123 

contractions across one unicellular holozoan and eleven metazoans using 15,255 orthologous 124 
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gene families (see Additional file 1: Section 4.1). Of these, 7,737 were found in Nemopilema and 125 

4,156 were shared by all four available cnidarian genomes (Nemopilema nomurai, Hydra 126 

magnipapillata [8], Acropora digitifera [9], and Nematostella vectensis [10]; Fig. 1a). A 127 

phylogeny constructed using these orthologs revealed a monophyletic cnidarian clade that 128 

diverged from the metazoan stem prior to the evolution of the bilaterians (Fig. 1b; Additional file 129 

1: Figure S7). To determine how many genes appeared in every evolutionary era in the genome 130 

of Nomura's jellyfish, we also evaluated the evolutionary age of the protein-coding genes. 131 

Grouping jellyfish genes into 3 broad evolutionary eras, we observed that while the majority 132 

(80%) of genes are ancient (older than 741 Mya), a few (~3%) are of an intermediate age (741 - 133 

239 Mya) and some (17%) are young (239 Mya to present; Fig. 1c; Additional file 1: Figure S10). 134 

Interestingly, normalizing the number of genes by the age and length of evolutionary era 135 

suggests that gene turnover is highest near the present time. In total, the Nemopilema genome 136 

contained 67 expanded and 80 contracted gene families compared to the common ancestor of 137 

Nemopilema and Hydra (Fig. 1b; see Additional file 1: Section 4.2). Gene Ontology (GO) terms 138 

related to sensory perception were under-represented in the Cnidaria lineage compared to 139 

Bilateria, accurately reflecting cnidarian’s less complex sensory system (Additional file 1: Tables 140 

S14 and S15). However, neurotransmitter transport function (GO:0005326, P = 1.66E-16) was 141 

significantly enriched in Nemopilema compared to other cnidarians (Additional file 1: Tables 142 

S16 and S17), likely due to the balance and visual structures, such as the statocyst and ocelli, that 143 

are more elaborate in the mobile medusa than in sessile polyps [11]. 144 

 145 

Genomic context and muscle associated genes  146 
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Jellyfish have two primary muscle types: the epitheliomuscular cells, which are the predominant 147 

muscle cells found in sessile cnidarians; and the striated muscle cells located in the medusa bell 148 

that are essential for swimming. To understand the evolution of active-swimming in jellyfish, we 149 

examined their codon bias compared to other metazoans by calculating the guanine and cytosine 150 

content at the third codon position (GC3) [12, 13] (Additional file 1: Figure S13). It has been 151 

suggested that genes with high level of GC3 are more adaptable to external stresses (e.g., 152 

environmental changes) [14]. Among the high-scoring top 100 GC3 biased genes, the regulation 153 

of muscle contraction and neuropeptide signaling pathways GO terms were specific to 154 

Nemopilema (Additional file 4). Calcium plays a key role in the striated muscle contraction in 155 

jellyfish, and the calcium signaling pathway (GO:0004020, P = 5.60E-10) showed a high level of 156 

GC3 biases specific to Nemopilema. Nemopilema top 500 GC3 genes were enriched in GO terms 157 

associated with homeostasis (e.g. cellular chemical homeostasis and sodium ion transport), 158 

which we speculate is essential for the activation of muscle contractions that power the 159 

jellyfish’s mobile predation (see Additional file 1: Section 5.1).  160 

Since cnidarians have been reported to lack titin and troponin complexes, which are critical 161 

components of bilaterian striated muscles, it has been suggested that the two clades 162 

independently evolved striated muscles [15]. A survey of genes that encode muscle structural 163 

and regulatory proteins in cnidarians showed a conserved eumetazoan core actin-myosin 164 

contractile machinery shared with bilaterians (Additional file 1: Table S23). However, like other 165 

cnidarians, Nemopilema lacks titin and troponin complexes, which are key components of 166 

bilaterian striated muscles. Also, γ-syntrophin, a component of the dystroglycan complex, was 167 

absent in both Nemopilema and Hydra. However, Nemopilema do possess α/β-Dystrobrevin and 168 

α/ε-Sarcoglycan dystroglycan-associated costamere proteins, indicating that several components 169 
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of the dystroglycan complex were lost after the Scyphozoa-Hydrozoa split. It was suggested that 170 

Hydra undergone secondary simplifications relative to Nematostella, which has a greater degree 171 

of muscle-cell-type specialization [8]. Compared to Hydra and Nematostella, Nemopilema shows 172 

intermediate complexity of muscle structural and regulatory proteins between Hydra and 173 

Nematostella. 174 

 175 

Medusa bell and tentacle transcriptome profiling  176 

Jellyfish medusa bell and tentacles are morphologically distinct and perform discrete 177 

physiological functions [16, 17]. We generated bell and tentacle transcriptomes from 178 

Nemopilema and the smaller Sanderia malayensis, which can be grown in the laboratory, to 179 

assess developmental regulation (Additional file 1: Table S20). Enrichment tests of highly 180 

expressed genes showed that muscle-associated functional categories (e.g. muscle myosin 181 

complex and muscle tissue morphogenesis) were enriched in the bell (Fig. 2a; see Additional file 182 

5). Myosins comprise a superfamily of motor proteins and play a critical role in muscle 183 

contraction and are involved in a wide range of motility processes in Eukaryotes. Critically, the 184 

Myosin II family proteins, found in cells of both striated muscle tissue and smooth muscle tissue, 185 

are responsible for producing contraction in muscle cells [18]. Cnidarians possess both 186 

epitheliomuscular cells and striated muscle cells. Striated muscle is a critical component of the 187 

subumbrella of the medusa bell, where its fast contractions power the unique propulsion-based 188 

swimming of the jellyfish. We found that type II Myosin heavy chain (MYH) and Myosin light 189 

chain (MYL) gene families were highly expressed in the bell, and are closely associated with 190 

striated and smooth muscle cells [15]. Interestingly, Nemopilema also showed the largest copy 191 
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numbers of MYH and MYL genes among non-bilaterian metazoans (Fig. 2c; see Additional file 192 

1: Section 5.3), and six of the seven MYH genes and 12 out of 21 MYL genes showed higher 193 

expression in the bell than the tentacles with very high ~8.8 and ~17-fold increase on average, 194 

respectively (Fig. 2d). These results suggest that the combinations of copy number expansion of 195 

type II Myosin gene families and high expression of muscle associated genes confirmed that 196 

muscles in medusa bell are an important determinant of jellyfish motility.  197 

Conversely, gene expression analyses of the tentacles revealed high RNA expression levels of 198 

neurotransmitter associated functional categories (ion channel complex, postsynapse, and 199 

neurotransmitter receptor activity; Fig. 2b); consistent with the anatomy of jellyfish tentacles, 200 

which contain the sensory cells and a loose plexus of the neuronal subpopulation at the base of 201 

the ectoderm [19]. 202 

 203 

Body patterning in the jellyfish  204 

There has been much debate surrounding the early evolution of body patterning in the metazoan 205 

common ancestor, particularly concerning the origin and expansion of Hox and Wnt gene 206 

families [20-22]. In total, 83 homeodomains were found in Nemopilema, while 41, 120, and 148 207 

of homeodomains were found from Hydra, Acropora, and Nematostella, respectively (Additional 208 

file 1: Table S24). Five of the eight Hox genes in Nemopilema are of the posterior type that are 209 

associated with aboral axis development [22] and clustered with Nematostella’s posterior Hox 210 

genes, HOXE and HOXF (Additional file 1: Figures S18-S20). Though absent in Hydra and 211 

Acropora, synteny analyses of ParaHox genes in Nemopilema show that the XLOX/CDX gene is 212 

located immediately downstream of GSX in the same tandem orientation as those in 213 
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Nematostella, suggesting that XLOX/CDX was present in the cnidarian common ancestor and 214 

subsequently lost in some lineages (Additional file 1: Figure S21). Hox related genes, EVX and 215 

EMX, are also present in Nemopilema, although they are absent in Hydra. Given the large 216 

amount of ancestral diversity in the Wnt genes, it has been proposed that Wnt signaling 217 

controlled body plan development in the early metazoans [23]. Nemopilema possesses 13 Wnt 218 

orthologs representing 10 Wnt subfamilies (Additional file 1: Figure S22; Table S25). Wnt9 is 219 

absent from all cnidarians, likely representing losses in the cnidarian common ancestor. 220 

Cnidarians have undergone dynamic lineage specific Wnt subfamily duplications, such as Wnt8 221 

(Nematostella and Acropora), Wnt10 (Hydra), and Wnt11, and Wnt16 (Nemopilema). It has been 222 

proposed that a common cluster of Wnt genes (Wnt1–Wnt6–Wnt10) existed in the last common 223 

ancestor of arthropods and deuterostomes [24]. Our analyses of cnidarian and bilaterian genomes 224 

revealed that Acropora also possess this cluster, while Nemopilema and Hydra are missing Wnt6, 225 

suggesting loss of the Wnt6 gene in the Medusozoa common ancestor (Additional file 1: Figure 226 

S23). Taken together, the jellyfish have comparable number of Hox and Wnt genes to other 227 

cnidarians, but the dynamic repertoire of these gene families suggests that cnidarians have 228 

evolved independently to adapt their physiological characteristics and life cycle. 229 

 230 

Polyp to medusa transition in jellyfish 231 

The polyp-to-medusa transition is prominent in jellyfish compared to the other sessile cnidarians. 232 

To understand the genetic basis of the medusa structure formation in the jellyfish, we compared 233 

transcriptional regulation between cnidarians and across jellyfish developmental stages (see 234 

Additional file 1: Sections 7.1 and 7.2). We assembled the Sanderia transcripts using six pooled 235 

samples of transcriptomes (Additional file 1: Table S26). The assembled transcripts had a total 236 
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length of 61 Mb and resulted in 58,290 transcript isoforms and 43,541 unique transcripts, with a 237 

N50 of 2,325 bp. On average, 87% of the RNA reads were aligned to into the assembled 238 

transcripts (Additional file 1: Table S27), indicating that the transcript assembly represented the 239 

majority of sequenced reads. Furthermore, the composition of the protein domains contained in 240 

the top 20 ranks was quite similar between Nemopilema and Sanderia (Additional file 1: Table 241 

S28). To obtain differentially expressed genes for each stage, we compared each stage with the 242 

previous or next stage in the life cycle of the jellyfish. The polyp stage, which represents a 243 

sessile stage in the jellyfish life cycle, showed enriched terms related to ion channel activity and 244 

energy metabolism (regulation of metabolic process, and amino sugar metabolic process; 245 

Additional file 1: Table S29). Active feeding in the polyp stimulates asexual proliferation either 246 

into more polyps or metamorphosis to strobila [25]. Since anthozoans do not form a medusa, the 247 

strobila asexual reproductive stage is an important stage in which to study the metamorphosis 248 

from polyp to medusa. In this stage, GO terms related to amide biosynthetic and metabolic 249 

process were highly expressed compared to the polyp stage (Additional file 1: Table S30). It has 250 

been reported that RF-amide and LW-amide neuropeptides were associated with metamorphosis 251 

in cnidarians [26-28]. However, we could not confirm this finding in our strobila and ephyra 252 

stage comparisons. In our system, the gene expression patterns of the two stages are quite 253 

similar. In the ephyra, the released mobile stage, GO terms involving amide biosynthetic and 254 

metabolic process were also highly expressed compared to the merged medusa stage (Additional 255 

file 1: Table S31). In the medusa, extracellular matrix, metallopeptidase activity, and immune 256 

system process terms were enriched (Additional file 1: Table S32), consistent with the 257 

physiology of their bell, tentacles, and oral arm tissue types. 258 
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Polyp-to-medusa metamorphosis was previously shown to be strongly associated with CL390 259 

and retinoid X receptor (RXR) genes in the Aurelia aurita jellyfish [29]. Interestingly, CL390 260 

was not found in Nemopilema or other published cnidarians, suggesting that it may be an 261 

Aurelia-specific strobilation inducer gene. However, we confirm that RXR is present in 262 

Nemopilema, and absent from cnidarians without a prominent medusa stage (Additional file 1: 263 

Figure S24). Retinoic acid (RA) signaling plays a central role during vertebrate growth and 264 

development [30], where it regulates transcription by interacting with the RA receptor (RAR) 265 

bound to RA response elements (RAREs) of nearby target genes [31]. Of the genes in the RA 266 

signaling pathway, Nemopilema possess ADH and RALDH enzymes that metabolize retinol to 267 

RA, and RXR and RAREs to activate transcription of the target gene (Fig. 3a). We discovered 268 

1,630 Nemopilema RAREs regions with an average distance of 13 Kbp to the nearest gene (Fig. 269 

3b; Additional file 1: Tables S33 and S34). Interestingly, four posterior Hox genes of 270 

Nemopilema were located within ±10 Kbp from RAREs, which is unique among the non-271 

bilaterian metazoans (Fig. 3c). Together these findings suggest that retinoic acid signaling was 272 

present in early metazoans for regulating target genes with RXR and RAREs, and that RXR and 273 

RAREs may play a critical role for polyp-to-medusa metamorphosis [29] 274 

 275 

Identification of toxin related domains in jellyfish 276 

Jellyfish produce complex mixtures of proteinaceous venoms for active prey capture and defense 277 

[32]. We identified abundant toxin domains in Nemopilema when compared to the non-bilaterian 278 

metazoan gene sets in the Tox-Prot database [33]. In total, 69 out of 136 toxin domains aligned 279 

to non-bilaterian metazoans; of these 69 toxin domains, 53 were found in Nemopilema 280 

(Additional file 1: Table S35). Expectedly, the Nemopilema genome contains the largest number 281 
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of venom or toxin associated domains of the included non-bilaterian metazoans. These domains 282 

include Reprolysin (M12B) family zinc metalloprotease (PF01421), Kazal-type serine protease 283 

inhibitor domain (PF07648), phospholipase A2 (PF05826), and ShK domain-like (PF01549) 284 

domains (Fig. 4). Compared to the common ancestor of Nemopilema and Hydra, Nemopilema 285 

showed expanded gene families associated with metallopeptidase activities (GO:0008237, P = 286 

1.99E-16). In particular, Reprolysin (M12B) family zinc metalloproteases are enzymes that 287 

cleave peptides and comprise most snake venom endopeptidases [34]. Furthermore, it has been 288 

reported that serine protease inhibitor and ShK domains were abundantly found in the 289 

transcriptomes of both the cannonball jellyfish (Stomolophus meleagris), and the box jellyfish 290 

(Chironex fleckeri)[35, 36], and phospholipase A2 is well-characterized toxin-related enzyme, 291 

which is critical to the production of venom components, found in the class Scyphozoa [37]. 292 

 293 

Conclusions 294 

A unique branch on the tree of life, jellyfish have evolved remarkable morphological and 295 

biochemical innovations that allow them to actively hunt using pulsed jet propulsion and 296 

venomous tentacles. While the expansion and contraction of distinct families reflect the 297 

adaptation to salinity and predation and the convergent evolution of muscle elements, the 298 

Nemopilema genome strikes a balance between the conservation of many ancient genes and an 299 

innovative potential reflected in significant number of new genes that appeared since 300 

Rhizostomeae emerged. The Nemopilema nomurai genome has provided clues to the genetic 301 

basis of the innovative structure, function, and chemistry that have allowed this distinctive early 302 

group of predators to colonize the waters of the globe. 303 
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Methods 305 

Sample preparation 306 

A medusa Nemopilema nomurai was collected at the Tongyeong Marine Science Station, KIOST 307 

(34.7699 N, 128.3828 E) on Sep. 12, 2013. The Sanderia malayensis samples were obtained 308 

from Aqua Planet Jeju Hanwha (Seogwipo, Korea) for transcriptome analyses of developmental 309 

stages since Nemopilema cannot be easily grown in the laboratory. The DNA and RNA 310 

preparation of Nemopilema and Sanderia are described in the Additional file 1: Section 1.1. 311 

Species identification of Nemopilema was confirmed by comparing the MT-COI gene of five 312 

species of jellyfish. We aligned Nemopilema Illumina short reads (~400 bp insert-size) to the 313 

MT-COI gene of Chrysaora quinquecirrha (NC_020459.1), Cassiopea frondosa (NC_016466.1), 314 

Craspedacusta sowerbyi (NC_018537.1), and Aurelia aurita (NC_008446.1) jellyfish with 315 

BWA-MEM aligner [38]. Consensus sequences for each jellyfish were generated using 316 

SAMtools [39]. The consensus sequence from C. sowerbyi was excluded due to low coverage. 317 

We conducted multiple sequence alignment using MUSCLE [40] and ran the MEGA v7 [41] 318 

neighbor joining phylogenetic tree (gamma distribution) with 1,000 bootstrap replicates. 319 

Mitochondrial DNA phylogenetic analyses confirmed the identification of the Nemopilema 320 

sample as Nemopilema nomurai. 321 

 322 

Genome sequencing and scaffold assembly 323 

For the de novo assembly of Nemopilema, PacBio SMRT and five Illumina DNA libraries with 324 

various insert sizes (400bp, 5 Kb, 10 Kb, 15 Kb, and 20 Kb) were constructed according 325 

manufacturers’ protocols. The Illumina libraries were sequenced using a HiSeq2500 with read 326 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449082doi: bioRxiv preprint 

https://doi.org/10.1101/449082
http://creativecommons.org/licenses/by/4.0/


17 

 

length of 100 bp (400 bp, 15 Kb, and 20 Kb) and a HiSeq2000 with read length of 101 bp (5 Kb 327 

and 10 Kb). Quality filtered PacBio subreads were assembled into distinct contigs using the 328 

FALCON assembler [42] with various read length cutoffs. To extend contigs to scaffolds, we 329 

aligned the Illumina long mate-pair libraries (5 Kb, 10 Kb, 15 Kb, and 20 Kb) to contig sets and 330 

extended the contigs using SSPACE [43]. Gaps generated by SSPACE were filled by aligning 331 

the Illumina short-insert paired-end sequences using GapCloser [44]. We also generated TSLRs 332 

using an Illumina HiSeq2000, which were aligned to scaffolds to correct erroneous sequences 333 

and to close gaps using an in-house script. Detailed genome sequencing and assembly process 334 

are provided in Additional file 1: Section 2.2. 335 

 336 

Genome annotation 337 

The jellyfish genome was annotated for protein-coding genes and repetitive elements. We 338 

predicted protein-coding genes using a two-step process, with both homology and evidence-339 

based prediction. Protein sequences of the sea anemone, hydra, sponge, human, mouse, and fruit 340 

fly from the NCBI database, and Cnidaria protein sequences from the NCBI Entrez protein 341 

database were used for homology-based gene prediction. Two tissue transcriptomes from 342 

Nemopilema were used for evidence-based gene prediction via AUGUSTUS [45]. Final 343 

Nemopilema protein-coding genes were determined using AUGUSTUS with exon (from 344 

homology-based gene prediction) and intron (from evidence-based gene prediction) hints. 345 

Repetitive elements were also predicted using Tandem Repeats Finder [46] and RepeatMasker 346 

[47]. Details of the annotation process are provided in Additional file 1: Sections 3.1 and 3.2. 347 

 348 
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Gene age estimation 349 

Phylostratigraphy employs BLASTP-scored sequence similarity to estimate the minimal age of 350 

every protein-coding gene. The protein sequence is used to query the NCBI non-redundant 351 

database and detect the most distant species in which a sufficiently similar sequence is present, 352 

and inferring that the gene is at least as old as the age of the common ancestor [48]. For every 353 

species, we use the NCBI taxonomy. The timing of most divergence events is estimated using 354 

TimeTree [49] and the Encyclopedia of Life [50]. To facilitate detection of sequence similarity, 355 

we use the e-value threshold of 10-3. We evaluate the age of all proteins whose length is equal or 356 

greater than 40 amino acids. We count the number of genes in each phylostratum, from most 357 

ancient (PS 1) to newest (PS 11). To see broad evolutionary patterns, we aggregate the counts 358 

from several phylostrata into 3 broad evolutionary eras: ancient (PS 1-5, cellular organisms to 359 

Eumetazoa, 4,204 Mya - 741 Mya), middle (PS 6-7, Cnidaria to Scyphozoa, 741 Mya - 239 Mya) 360 

and young (PS 8-11, Rhizostomeae to Nemopilema nomurai, 239 Mya to present). 361 

 362 

Comparative evolutionary analyses 363 

Orthologous gene clusters were constructed to examine the conservation of gene repertoires 364 

among the genomes of the Nemopilema nomurai, Hydra magnipapillata, Acropora digitifera, 365 

Nematostella vectensis, Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, Homo 366 

sapiens, Trichoplax adhaerens, Amphimedon queenslandica, Mnemiopsis leidyi, and Monosiga 367 

brevicollis using OrthoMCL [51]. To infer a phylogeny and divergence times, we used RAxML 368 

[52] and MCMCtree [53], respectively. A gene family expansion and contraction analysis was 369 

conducted using the Café program [54]. Domain regions were predicted by InterProScan [55] 370 
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with domain databases. Details of the comparative analysis are provided in Additional file 1: 371 

Sections 4.1-4.4. 372 

 373 

Transcriptome sequencing and expression profiling 374 

Illumina RNA libraries from Nemopilema nomurai and Sanderia malayensis were sequenced 375 

using a HiSeq2500 with 100 bp read lengths. Since there is not a reference genome for S. 376 

malayensis, we de novo assembled a pooled six RNA-seq read set using the Trinity assembler 377 

[56]. Quality filtered RNA reads from Nemopilema and Sanderia were aligned to the 378 

Nemopilema genome assembly and the assembled transcripts, respectively, using the TopHat [57] 379 

program. Expression values were calculated by the Fragments Per Kilobase Of Exon Per Million 380 

Fragments Mapped (FPKM) method using Cufflinks [57], and differentially expressed genes 381 

were identified by DEGseq [58]. Details of the transcriptome analysis are presented in 382 

Additional file 1: Sections 5.2 and 7.1. 383 

 384 

Hox and ParaHox analyses 385 

We examined the homeodomain regions in Nemopilema using the InterProScan program. Hox 386 

and ParaHox genes were identified in Nemopilema by aligning the homeodomain sequences of 387 

human and fruit fly to the identified Nemopilema homeodomains. We considered only domains 388 

that were aligned to both the human and fruit fly. We also used this process for Acropora, Hydra, 389 

and Nematostella for comparison. Additionally, we added one Hox gene for Acropora and two 390 

Hox genes for Hydra, which are absent in NCBI gene set, though they were present in previous 391 
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study [21, 59]. Hox and ParaHox genes of Clytia hemisphaerica, a hydrozoan species with a 392 

medusa stage, were also added based on a previous study [60]. Finally, a multiple sequence 393 

alignment of these domains was conducted using MUSCLE, and a FastTree [61] maximum-394 

likelihood phylogeny was generated using the Jones–Taylor–Thornton (JTT) model with gamma 395 

option. 396 

 397 

Wnt gene subfamily analyses 398 

Wnt genes of Nematostella and Hydra were downloaded from previous studies [23, 62], and 399 

those of Acropora were downloaded from the NCBI database. Wnt genes in Nemopilema were 400 

identified using the Pfam database by searching for "wnt family" domains. A multiple sequence 401 

alignment of Wnt genes was conducted using MUSCLE, and aligned sequences were trimmed 402 

using the trimAl program [63] with “gappyout” option. A phylogenetic tree was generated using 403 

RAxML with the PROTGAMMAJTT model and 100 bootstraps. 404 

 405 

Abbreviations 406 

SMRT, Single molecule real time sequencing; TSLR, TruSeq synthetic long reads; 407 
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Fig. 1 Gene family relationships of cnidarian and metazoan species. a Venn diagram of the 

number of unique and shared gene families among four cnidarian genomes. b Gene family 

expansions and contractions in the Nemopilema genome. Numbers designate the number of gene 

families that have expanded (red, +) and contracted (blue, -) after the split from the common 

ancestor. c The proportion of Nemopilema genes in each evolutionary era. While most 

Nemopilema genes (~80%) are ancient (~1,877 Mya), a few (~3%) are of intermediate age (~659 

Mya) and a significant fraction (~17%) are relatively young (~147 Mya). 

 

Fig. 2 Gene expression patterns of medusa bell and tentacle tissues and expansion of myosin 

heavy chain genes in jellyfish. a P-value heatmap of enriched GO categories using highly 

expressed genes in medusa bell tissue. Greater than 2-fold and 4-fold higher expression in 

medusa bell than tentacles are shown in each column. Only shared GO categories between N. 

nomurai and S. malayensis are shown. b P-value heatmap of enriched GO categories using 

highly expressed genes in tentacle tissue. c Unrooted Le-Gascuel model tree of myosin heavy 

chain genes using BLAST best hit method. d Expression pattern of MYH and MYL genes in 

Nemopilema. Genes that are not expressed in both tentacles and medusa bell were excluded. 

 

Fig. 3 Retinoic acid signaling pathway and RAREs in Nemopilema. a Schematic of the retinoic 

acid signaling pathway in humans. Blue denotes presence of the gene and/or element in Cnidaria. 

Red denotes presence only in Nemopilema among the published cnidarians. b The distribution of 

distances between the RAREs and the nearest gene. The distance was calculated by identifying 

its proximity to transcription start site (TSS) of the genes. The gene count was calculated for 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/449082doi: bioRxiv preprint 

https://doi.org/10.1101/449082
http://creativecommons.org/licenses/by/4.0/


27 

 

each non-overlapping 1 Kb bin across a range of -100 Kb to 100 Kb. c The RAREs located 

nearby posterior Hox genes in Nemopilema. 

 

Fig. 4 Phylogenetic analysis of venom related domains in non-bilaterian metazoans. Five venom 

domains (PF01421, PF01549, PF07648, PF00068, and PF05826) are represented in four circular 

dendrograms. Two phospholipase A2 domains (PF00068 and PF05826) were merged into one 

circular dendrogram (bottom right) and shadings on branches and nodes (sky-blue) in 

phospholipase A2 denote the PF05826 domain. 
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Additional files 

Additional file 1: Supplementary figures, tables, and methods. This document contains 

additional supporting evidence for this study that are presented in form of supplemental figures 

and tables. 

Additional file 2: Supplementary data. Protein domain annotation statistics. 

Additional file 3: Supplementary data. List of gene clusters evolving faster in the Nemopilema 

nomurai genome. 

Additional file 4: Supplementary data. Gene ontology and KEGG enrichment result of top 100 

and 500 GC3 genes in Nemopilema nomurai. 

Additional file 5: Supplementary data. Gene ontology enrichment result of highly expressed 

genes in Nemopilema nomurai and Sanderia malayensis. 
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