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 2 

ABSTRACT 35 

Small RNAs (sRNAs) post-transcriptionally regulate mRNA targets, typically under conditions of 36 

environmental stress. Although hundreds of sRNAs have been discovered in diverse bacterial 37 

genomes, most sRNAs remain uncharacterized, even in model organisms. Identification of 38 

mRNA targets directly regulated by sRNAs is rate-limiting for sRNA functional characterization. 39 

To address this, we developed a computational pipeline that we named SPOT for sRNA-target 40 

Prediction Organizing Tool. SPOT incorporates existing computational tools to search for sRNA 41 

binding sites, allows filtering based on experimental data, and organizes the results into a 42 

standardized report. SPOT sensitivity (Correctly Predicted Targets/Total Known Targets) was 43 

equal to or exceeded any individual method when used on 12 characterized sRNAs.  Using 44 

SPOT, we generated a set of target predictions for the sRNA RydC, which was previously 45 

shown to positively regulate cfa mRNA, encoding cyclopropane fatty acid synthase. SPOT 46 

identified cfa along with additional putative mRNA targets, which we then tested experimentally. 47 

Our results demonstrated that in addition to cfa mRNA, RydC also regulates trpE and pheA 48 

mRNAs, which encode aromatic amino acid biosynthesis enzymes. Our results suggest that 49 

SPOT can facilitate elucidation of sRNA target regulons to expand our understanding of the 50 

many regulatory roles played by bacterial sRNAs.  51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448696doi: bioRxiv preprint 

https://doi.org/10.1101/448696
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

IMPORTANCE 61 

Small RNAs (sRNAs) regulate gene expression in diverse bacteria by interacting with mRNAs to 62 

change their structure, stability or translation. Hundreds of sRNAs have been identified in 63 

bacteria, but characterization of their regulatory functions is limited by difficulty with sensitive 64 

and accurate identification of mRNA targets. Thus, new robust methods of bacterial sRNA target 65 

identification are in demand. Here, we describe our Small RNA-target Prediction Organizing 66 

Tool, which streamlines the process of sRNA target prediction by providing a single pipeline that 67 

combines available computational prediction tools with customizable results filtering based on 68 

experimental data.  SPOT allows the user to rapidly produce a prioritized list of predicted sRNA-69 

target mRNA interactions that serves as a basis for further experimental characterization. This 70 

tool will facilitate elucidation of sRNA regulons in bacteria, allowing new discoveries regarding 71 

the roles of sRNAs in bacterial stress responses and metabolic regulation. 72 

  73 
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INTRODUCTION 74 

Bacterial small RNAs (sRNAs) range in size from 30 to 300 nucleotides (nts). Regulation of 75 

mRNA targets by sRNAs via base-pairing dependent mechanisms alters translation or mRNA 76 

stability (1, 2). Most of the time, base-pairing interactions involve the 5’ or 3’ untranslated region 77 

(UTR) of the target mRNA but can also involve sites within the coding region of the target 78 

mRNA. Small RNA-dependent translational repression often occurs via interactions that directly 79 

interfere with ribosome binding to the mRNA. However, sRNAs have also been shown to 80 

activate mRNA targets through various mechanisms, including interference with mRNA decay 81 

(3, 4). In recent years it has become evident that sRNAs are ubiquitous and play an important 82 

role in mediating and regulating many basic cellular processes and stress responses. Hundreds 83 

of small RNAs have been identified in numerous bacterial species such as Bacillus subtilis (5), 84 

Listeria monocytogenes (6), and Salmonella enterica (7, 8). With the advancement of current 85 

technologies, the number of sRNAs identified in diverse organisms will surely increase. 86 

Consequently, there is a pressing need to develop new and better tools for sRNA 87 

characterization. In particular, there is a need for methods to address a major rate-limiting step 88 

in novel sRNA functional characterization, which is high-fidelity identification of mRNA targets.   89 

A variety of computational and experimental methods have been used to predict and 90 

validate sRNA-mRNA target interactions. The computational tools currently available for sRNA 91 

target prediction, such as TargetRNA (9), sTarPicker (10), IntaRNA (11, 12), and CopraRNA 92 

(13), albeit powerful, have their limitations, the most problematic of which is the high rate of 93 

false positives. TargetRNA, sTarPicker, and IntaRNA all scan the entire genome and search for 94 

putative targets based on interaction hybridization energies. CopraRNA uses the same 95 

methodology as IntaRNA for predicting targets based on thermodynamic favorability of the 96 

interactions but goes a step further and also considers the conservation of those interactions 97 

across species, giving more weight to predictions that are conserved (13). When CopraRNA, 98 

IntaRNA, and TargetRNA were used in a side-by-side comparison, CopraRNA was found to 99 
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have the highest positive predictive value (PPV) of 44% and reported the lowest rate of false-100 

positives for known sRNAs across 18 enterobacterial species (14). Although CopraRNA 101 

possesses the highest PPV out of all tools, there were still substantial false positives reported. 102 

Moreover, CopraRNA is limited to identifying conserved sRNA-target RNA interactions and 103 

cannot identify species-specific interactions. As a result, caution should be used with these 104 

individual algorithms and they are frequently used in tandem with other target identification 105 

methods (14). 106 

 Experimental methods, including transcriptomic studies, have often been used to identify 107 

sRNA candidate targets. Transcriptomics methods uncover gene expression changes caused 108 

by absence or overproduction of an sRNA. While microarrays and RNA-sequencing have been 109 

successfully used to deduce sRNA targets, in many cases, separating direct effects from 110 

indirect effects is laborious and time-consuming. Moreover, the data obtained from 111 

transcriptomic studies can only reveal targets that are expressed under the specific growth 112 

conditions examined. As such, bona fide target genes that are poorly expressed or that are 113 

regulated by mechanisms that do not result in a substantial change in mRNA stability may be 114 

missed as sRNA targets. To address these issues, affinity purification methods have been 115 

developed to enhance identification of sRNA-mRNA interacting partners. For example, RIL-Seq 116 

(RNA interaction by ligation and sequencing) (15) identifies sRNA-mRNA partners that bind to 117 

the RNA chaperone Hfq (16) by co-immunoprecipitation, ligation, deep sequencing and analysis 118 

of RNA chimeras, which often represent true interacting partners. MAPS (MS2-affinity 119 

purification coupled with RNA-sequencing) (17) uses sRNA “bait” that is tagged with an MS2 120 

aptamer and can be purified by interaction with the MS2 coat protein. RNA targets that are 121 

copurified with the sRNA bait are then identified by deep sequencing. Even with the variety of 122 

tools available for sRNA target identification, it is still not entirely clear which tools are the most 123 

effective for sRNA target identification.  124 
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In order to streamline the use of multiple existing sRNA prediction algorithms, we 125 

developed a software pipeline called SPOT (sRNA-target Prediction Organizing Tool) that uses 126 

several algorithms in parallel to search for sRNA-mRNA interactions. The software collates 127 

predictions and allows integration of experimental data using customizable results filters. First, 128 

we used two well-characterized E. coli sRNAs, SgrS (18) and RyhB (19, 20), to assess the 129 

effectiveness of SPOT as the targets of these sRNAs are well defined. Next, we extended the 130 

application of the SPOT pipeline to UTRs of mRNAs to identify potential sRNAs involved in 131 

regulation. We then applied the same parameters and analyses to a less characterized E. coli 132 

sRNA, RydC. Employing a combinatorial approach through SPOT predictions and experimental 133 

validation, we were able to identify two new RydC targets, pheA and trpE, which were 134 

downregulated and upregulated, respectively, by RydC.  135 

MATERIALS AND METHODS 136 

Software pipeline 137 

A software pipeline was constructed in PERL to provide a single interface for running four 138 

sRNA-mRNA target prediction algorithms in parallel and collating their results (Fig. 1). Source 139 

codes for TargetRNA2 v2.01 (9), sTarPicker (10), IntaRNA v1.0.4 (12), and CopraRNA v 1.2.9 140 

(13) were downloaded and installed on a multicore local server. The pipeline is comprised of 4 141 

steps described briefly here. 142 

1. Reference genome files are retrieved from RefSeq or local customized genome files can 143 

be used, provided they are in an appropriate RefSeq format (GBK file or PTT and FNA files). 144 

2. Simultaneous searches are initiated for TargetRNA2, sTarPicker, and IntaRNA according 145 

to user defined search parameters (e.g., window size, seed size, significance cutoffs). 146 

Optionally, if RefSeq IDs and corresponding sRNA sequences from related genomes are 147 

provided, a CopraRNA search is initiated. 148 

3. The pipeline tracks the progress of each job and once each search is completed the raw 149 

results files are read into memory. 150 
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4. User-defined results filtering parameters are applied (e.g., list with known binding 151 

coordinates, differential expression, operon data) and the raw results in memory are collated 152 

into a unified report. 153 

The collated results report includes Excel-formatted data tables, functional enrichment 154 

predictions for consensus mRNA targets as well as binding plots. Both the collated results and 155 

individual search results can be downloaded once the job is complete. In addition, users can 156 

elect to have an email notification sent when the job is complete. The pipeline also includes an 157 

option to re-run the results collation steps using different results filters. This enables users to 158 

make minor adjustments to the results reporting without waiting for the individual searches to be 159 

re-run. 160 

The SPOT program and installation instructions are available on GitHub 161 

(https://github.com/phdegnan/SPOT). In addition, an Amazon Web Service (AWS) cloud 162 

Amazon Machine Image (AMI) with all of the required software installed is available (search for  163 

SPOTv1). The SPOT User Manual is also included in Supplementary Material. 164 

Generation of test data sets 165 

Known sRNA-mRNA interactions were collected from ecocyc.org (21), the literature, and 166 

experiments herein for 12 sRNAs with ≥4 confirmed targets: RyhB (b4451, RF00057), Spot42 167 

(spf, b3864, RF00021), SgrS (b4577, RF00534), RybB (b4417, RF00110), FnrS (b4699, 168 

RF01796), GcvB (b4443, RF00022), OmrA (b4444, RF00079), CyaR (b4438, RF00112), MicA 169 

(b4442, RF00078), MicF (b4439, RF00033), DicF (b1574, RF00039), and RydC (b4597, 170 

RF00505) (Table S1). The confirmed sRNA-mRNA binding interactions were used as true 171 

positives, to investigate the reliability and sensitivity of the pipeline. 172 

In order to test CopraRNA, homologs for the 12 E. coli MG1655 sRNAs were identified in 173 

related genomes using Infernal (22). For all sRNAs excluding DicF, the genomes of E. 174 

fergusonii ATCC 35469 (NC_011740), Citrobacter koseri ATCC BAA-895 (NC_009792), and 175 

Salmonella enterica sv. Typhimurium LT2 (NC_003197) were queried with the Infernal algorithm 176 
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and each covariance model. For the sRNA DicF, a phylogenetically restricted sRNA, E. coli 177 

O157:H7 str. Sakai (NC_002695) and E. coli str. APEC O1 (NC_008563) were queried. In 178 

cases where genomes encoded ≥1 prediction (e.g., OmrA), the prediction with the lowest E 179 

value was used. 180 

In addition, we compiled a list of 85 E. coli sRNAs to investigate the ability of the pipeline 181 

to be used to predict mRNA-sRNA interactions using a putative mRNA target as the search 182 

query (Table S2). This includes 65 RefSeq annotated sRNAs (NC_000913.3), an additional 19 183 

sRNAs annotated in ecocyc.org (21), and the sRNA IepX (23). Note that 552 additional 184 

predicted E. coli sRNAs, cis regulatory elements and other putative RNAs corresponding to 185 

known RFAMs (n=172) or identified from expression studies (n=360) were not included (24, 25). 186 

Finally, sRNA-mRNA interaction coordinates and the 5’ UTRs of 11 mRNAs with ≥2 187 

known interacting sRNAs were collected from ecocyc.org (21): csgD (b1040,n=5), flhD 188 

(b1892,n=4), ompA (b0957,n=3), ompC (b2215,n=3), ompF (b0929,n=2), ompX (b0814,n=2), 189 

phoP (b1130,n=2), rpoS (b2741,n=4), sdhC (b0721,n=3), sodB (b1656,n=2), and tsx 190 

(b0411,n=2). 191 

Media and reagents  192 

E. coli strains were cultured in lysogeny broth (LB) medium or on LB agar plates at 37°C, unless 193 

stated otherwise. For construction of reporter fusions by λ Red, recovery of recombinants was 194 

carried out on M63 minimal medium containing 5% sucrose, 0.001% L-arabinose (Ara), 0.2% 195 

glycerol, and 40 μg/ml 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside (X-Gal). For β-196 

galactosidase assays, bacterial cells were grown in Tryptone Broth (TB) medium supplemented 197 

with 100 μg/ml ampicillin (Amp) overnight at 37°C and then subcultured in TB broth containing 198 

100 μg/ml ampicillin (Amp) with 0.002% L-arabinose. Where necessary, media were 199 

supplemented with antibiotics at the following concentrations: 100 μg/ml ampicillin (Amp), 25 200 

μg/ml chloramphenicol (Cm), and 25 μg/ml kanamycin (Kan). Expression of RydC was induced 201 
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with either 0.1 or 0.5 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) from the PLlacO-1 202 

promoter.  203 

Strain construction 204 

Strains and plasmids used in this study are listed in Table S3. All strains used in this study are 205 

derivatives of E. coli K12 strain MG1655. Oligonucleotide primers and 5’-biotinylated probes 206 

used in this study are listed in Table S4 and were all acquired from Integrated DNA 207 

Technologies (IDT). Chromosomal mutations were made by λ Red recombination (26, 27), and 208 

marked alleles were moved between strains by P1 vir transduction (28). PCR products were 209 

generated using the Expand™ High Fidelity PCR System (Sigma-Aldrich, St. Louis, MO) 210 

according to the manufacturer’s instructions. All mutations were verified by amplifying PCR 211 

fragments using GoTaq polymerase (Promega, Madison, WI) and sequencing.  212 

The translational lacZ reporter fusions under the control of the PBAD promoter were 213 

constructed by PCR amplifying a fragment of interest using forward and reverse primers 214 

containing 5’ homologies to PBAD and lacZ (Table S3). PCR products were recombined into 215 

PM1205 using λ Red homologous recombination and counter-selection against sacB as 216 

described previously (29). The fusions used in this study were inserted into the lac locus of 217 

PM1205. Some lacZ reporter fusions used in this study were constructed using the one-step 218 

recombination method (30). 219 

Plasmids harboring mutated rydC alleles under the control of the PLlacO-1 promoter 220 

were constructed using the Quickchange II XL Site-Directed Mutagenesis Kit (Agilent 221 

Technologies, Santa Clara, CA) with oligonucleotides AKP59 (PLlacO-1-rydC3), AKP68 (PLlacO-1-222 

rydC5), and AKP69 (PLlacO-1-rydC345) that contained mismatched bases at the desired locations 223 

and transformed into XL10-Gold Ultracompetent cells (Table S3).  224 

RNA-seq analysis 225 

E. coli K12 MG1655 strain AK250 (ΔrydC, lacIq+) harboring vector (pBR322) or Plac-rydC 226 

plasmid was grown to OD600∼0.5 in LB broth media at 37°C and then induced with 0.1 mM IPTG 227 
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for 10 min. The hot phenol method (31) was used to extract total RNA after 2 and 10 minutes of 228 

induction. Samples were then treated with TURBO™DNase (Ambion) kit according to the 229 

manufacturer’s protocol and resolved by gel electrophoresis on 1.2 % agarose gel to confirm 230 

integrity of the 16S and 23S bands. Ribosomal RNA removal, library construction and 231 

sequencing were performed at the W. M. Keck Center for Comparative and Functional 232 

Genomics at the University of Illinois at Urbana-Champaign. Ribosomal RNA was removed from 233 

1 μg of total RNA using Ribozero rRNA Removal Meta-Bacteria Kit (Illumina, Inc), and the 234 

mRNA-enriched fraction was converted to indexed RNA-seq libraries (single reads) with the 235 

TruSeq Stranded RNA Sample Preparation Kit (Illumina, Inc). The prepared libraries were then 236 

pooled in equi-molar concentrations and were quantified by qPCR with the Library 237 

Quantification kit Illumina compatible (Kapa Biosystems) and sequenced for 101 cycles plus 238 

seven cycles for the index read on a HiSeq2000 using TruSeq SBS version 3 reagents. The 239 

output fastq files were generated using Casava 1.8.2 (Illumina) and analyzed with Rockhopper 240 

(32). Genes were considered differentially expressed in RydC pulse-expression strains if they 241 

met a significance cutoff (q-value) of ³0.005 and a fold-change value of >1.5 or <0.5. Some 242 

genes outside this range were studied because they met other criteria (e.g., prediction of a 243 

RydC-mRNA interaction by multiple algorithms). 244 

β-galactosidase assays 245 

Bacterial strains were cultured overnight at 37ºC (shaking) in TB medium containing 100 μg/ml 246 

Amp. Subsequent to overnight growth, cultures were diluted 1:100 into fresh TB media 247 

containing 100 μg/ml Amp and 0.002% Ara and cultured at 37 ºC. After reaching an OD600 of 248 

0.3, 0.1 or 0.5 mM IPTG was added to induce expression of the plasmids and grown for an 249 

additional hour until an OD600 of 0.5 - 0.6 was reached. All β-galactosidase assays were 250 

performed as described in previous protocols (33). In short, the samples were suspended in Z-251 

buffer, with reactions conducted at 28ºC with 4 mg/ml 2-nitrophenyl β-D-galactopyranoside 252 

(ONPG) as a substrate and 1 M Na2CO3 to end the reactions. 253 
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RESULTS 254 

Integrated pipeline for sRNA target prediction algorithms 255 

A number of algorithms and tools for identifying putative sRNA-mRNA interactions have been 256 

developed (9, 10, 12, 13). However, no single target prediction tool is 100% accurate, the tools 257 

implement distinct user-defined parameters, each tool uses a different format for reporting 258 

results, and tools are hosted on distinct web platforms. Our approach was to create a single 259 

pipeline incorporating existing computational tools to search for sRNA binding sites, producing a 260 

collated and standardized results report (Fig. 1). We incorporated the TargetRNA2 (9), 261 

sTarPicker (10), IntaRNA (12), and CopraRNA (13) tools into this pipeline because they are 262 

widely used and have open source code. Input for the pipeline minimally includes a fasta 263 

sequence for the sRNA and the RefSeq number for the target genome. Additional RefSeq 264 

genome IDs and homologous sRNA sequences can be provided if the user wishes to include 265 

CopraRNA results in the analysis. The pipeline interface also allows the user to define a set of 266 

parameters for the individual algorithms and results filters. In particular, the results can be 267 

filtered for genes with known binding sites or sets of genes that were identified as putative 268 

targets by experimental methods (e.g., RNA-seq, MAPS [MS2 affinity purification coupled with 269 

RNA sequencing] (17), RIL-seq [RNA interaction by ligation and sequencing] (15)). For 270 

instance, output from the RNA-seq analysis tool Rockhopper (32) can be used directly as a 271 

results filter. The program then follows four basic steps (1) download/validate input files, (2) 272 

simultaneously initiate computational tools, (3) track job progress and read individual raw 273 

results, (4) filter and collate results into a single report (Fig. 1). Finally, an option is provided that 274 

allows users to re-collate the results from an initial analysis using different results filter settings. 275 

Pipeline Optimization with SgrS and RyhB targets 276 

SgrS and RyhB are two well-characterized model sRNAs in E. coli critical for glucose-phosphate 277 

(34) and iron limitation (35) stress responses, respectively. Numerous studies have confirmed 8 278 

mRNA targets of SgrS (18, 36, 37, 38, 39) and 18 of RyhB (20, 40, 41, 42). We used these two 279 
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sRNAs to test the utility and sensitivity of the pipeline. For RyhB, the entire 90-nt sequence was 280 

used as query for the bioinformatics search. For SgrS, only the 3’ 80-nts of the 227-nt sRNA 281 

was used as query, since this is the region involved in target RNA binding. Our initial 282 

optimization of the pipeline focused primarily on three parameters: ‘seed size’, ‘window size’ and 283 

‘significance cutoffs.’ Each application utilizes distinct defaults for these parameters. For 284 

example, ‘seed size,’ defined as the number of contiguous base pairing interactions required to 285 

define an sRNA-mRNA match is set to a default value of 7 in TargetRNA2 and IntaRNA and 5 in 286 

sTarPicker. We varied the seed sizes for each algorithm and determined how different seed 287 

sizes impact the sensitivity of detection of true targets for SgrS and RyhB. Sensitivity is defined 288 

as Correctly Predicted Targets/Total Known Targets (i.e., true positive rate). For TargetRNA2, a 289 

seed size of 7 gave the highest sensitivity for correct target predictions, with 38% and 56% 290 

correct predictions, for SgrS and RyhB, respectively (Fig. 2A). For sTarPicker, the seed size 291 

giving the optimal sensitivity was 6, with 63% and 72% of known binding interactions identified 292 

for SgrS and RyhB, respectively. IntaRNA yielded the highest sensitivity of all three algorithms, 293 

again at a seed size of 6. IntaRNA correctly identified 100% of known SgrS interactions and 294 

94% of known RyhB interactions (Fig. 2A). Based on these results, we used seed size settings 295 

of 7 for TargetRNA2 and 6 for IntaRNA and sTarPicker for all other analyses. 296 

Next, we evaluated how altering the window size and significance cutoffs impacted the 297 

accuracy of predictions (Fig. 2B, C). The window size refers to the size of the region upstream 298 

and downstream of every start codon in the genome that is searched for potential base pairing 299 

with the query sRNA. Default window sizes for each tool vary dramatically. The default 300 

TargetRNA2 window size is 80 nt upstream and 20 nt downstream (80/20) of each start codon 301 

(9). The default for sTarPicker is 150/100, IntaRNA suggests 75/75 and CopraRNA uses 302 

200/100. Likewise, the tools have different metrics to determine the significance of a match 303 

either providing a P value (TargetRNA2, IntaRNA, CopraRNA) or a probability measure 304 

(STarPicker). TargetRNA2 generates P values for predicted interactions based on the sRNA-305 
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mRNA hybridization energy scores of a randomized mRNA pool (32). IntaRNA utilizes P values 306 

based on transformation of the energy scores calculated for all putative target binding sites with 307 

energy score ≤0 (14). CopraRNA combines individual IntaRNA P value predictions among 308 

clusters of genes to generate a weighted P value and false discovery rate (FDR)-corrected Q 309 

value (14). In contrast, sTarPicker uses a machine learning approach to generate probabilities 310 

as a proportion of base classifiers (n=1000) that support each proposed interaction (10). The 311 

sTarPicker authors report that probabilities ≥ 0.5 correspond to likely sRNA-mRNA interactions. 312 

SPOT provides the user with the ability to alter the search window and significance thresholds 313 

used by all the algorithms included in the pipeline (Fig. 1). We chose two sets of parameters 314 

that we define as “Stringent” and “Relaxed,” and tested the performance of each set of 315 

parameters in correctly identifying known RyhB and SgrS target binding sites (Fig. 2B, C). 316 

Stringent parameters incorporated a window size of 80-nt upstream and 20-nt downstream 317 

(80/20) of start codons as the search region, and significance thresholds of 0.05 for 318 

TargetRNA2, 0.5 for sTarPicker, “top” (e.g., the top 100 predictions) for IntaRNA, and 0.01 for 319 

CopraRNA (Fig. 2B, C). Relaxed parameters used a comparatively larger window size of 320 

150/100 and thresholds of 0.5, 0.001, “un,” (e.g., all predictions) and 0.01 for TargetRNA2, 321 

sTarPicker, IntaRNA, and CopraRNA, respectively. 322 

Using stringent search parameters, 10/18 known RyhB target binding sites and 2/8 323 

known SgrS target binding sites were correctly predicted by ³2 algorithms (Figure 2B, C, 324 

indicated by 2 or more pink cells and absence of blue cells). Using relaxed parameters, the 325 

correctly predicted interactions rose to 17/18 and 6/8 for RyhB and SgrS, respectively. Thus, for 326 

both RyhB and SgrS, relaxed parameters substantially increased the number of correctly 327 

identified binding sites (Fig. 2B, C). Notably, use of relaxed parameters was necessary to 328 

capture true binding sites like the SgrS binding site on yigL mRNA, which is located further from 329 

the start codon than is typical. The relaxed parameters improve the sensitivity of individual 330 

methods but may result in the downside of identifying more false positives. IntaRNA has high 331 
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sensitivity for true positives (correct identification of known sRNA binding sites) under the 332 

relaxed settings, but also gives a high rate of likely false positives, illustrated by the fact that 333 

IntaRNA predicts >3400 binding interactions that are not predicted by any other algorithm. 334 

Mitigating this downside of using relaxed parameters, we saw that in the majority of instances 335 

the correct RyhB and SgrS binding sites were predicted by ≥2 methods and incorrect 336 

predictions by ≥2 methods occurred rarely (RyhB= 1/18, SgrS= 0/8) (Fig. 2B, C).  337 

For SgrS and RyhB, at least a dozen mRNAs have been experimentally defined as ‘non-338 

targets’ for each sRNA (18). In other words, predicted sRNA-mRNA interactions were tested 339 

and shown not to mediate regulation of the mRNA in question. These examples served as 340 

controls that allowed us to calculate False Positive Rates. Together with the Sensitivity 341 

measures for each algorithm and the pipeline, we generated receiver operating characteristic 342 

(ROC) curves to assess the accuracy of the methods alone and in combination (Fig.  2D, E). 343 

Ideally tools should yield high true positive rates and low false positive rates, resulting in values 344 

falling in the upper left quadrant of the ROC curve. Our results indicate that when 2 methods 345 

converge on the same prediction, the pipeline achieves ≥75% sensitivity and ≤ 50% false 346 

positive rate for both sRNAs. This is a marked improvement in most instances over the single 347 

algorithms used here (Fig. 2D, E). In particular, using a 2-method threshold mitigates the very 348 

high false positive rate from IntaRNA. We note that making the IntaRNA P value cutoff more 349 

stringent (e.g., 0.05) decreases the false positive rate dramatically, but at a cost to sensitivity 350 

(Fig. S1). Similarly, requiring 3 or 4 algorithms to identify the same predicted interaction 351 

decreases the false positive rate of predictions for RyhB and SgrS, however, the sensitivity 352 

decreases by more than 25% (Fig. 2D, E). Collectively, these analyses suggest that use of 353 

relaxed search parameters and a combined evidence approach requiring a minimum of 2 354 

algorithms to predict the same binding interaction is an effective means of improving sRNA 355 

target prediction sensitivity.  356 
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The SPOT pipeline accepts several results filters to facilitate analysis of the predictions. 357 

First, users can provide the program a list of binding site locations for known mRNA targets 358 

(e.g., true positives). Second, users can include genes on the list that lack known binding sites 359 

in order to limit the results reporting to select genes of interest, for example those that emerged 360 

from experimental analyses (e.g., RNA-seq). Integration of experimental data with 361 

computational predictions is another valuable way of reducing potential false positive 362 

predictions.  363 

Based on our results and observations during the optimization of SgrS and RyhB target 364 

identification, we designed SPOT to prioritize the target binding site predictions (Fig. S2). First, 365 

known binding sites correctly predicted by ≥2 algorithms (1) or 1 algorithm (2) are reported. Any 366 

gene targets with predictions that are discordant with known binding sites (3) are reported next. 367 

Then any additional targets with the same predicted target site found by ≥2 algorithms are 368 

ranked next (4). This is followed by targets that were only predicted by a single algorithm, in the 369 

following order: CopraRNA (5), TargetRNA, sTarPicker (6), and IntaRNA (7). Using the results 370 

filters, a user can narrow or widen their searches, for example, by limiting the predictions made 371 

by single algorithms or by applying secondary filters on binding site regions.  372 

Application of SPOT to additional sRNAs 373 

To evaluate the robustness of the defined pipeline parameters and our ranking methods, we ran 374 

similar analyses on 9 additional sRNAs with ≥4 known targets. Overall, we found that the SPOT 375 

pipeline sensitivity (e.g., the percent of correctly identified interactions) was equal to or 376 

exceeded any individual method (average = 84% ± 8.5%, Fig. 3A, Fig. S3A). As before, we 377 

found that correct identification by ≥2 methods occurred in the majority of instances (Fig. 3A, red 378 

bars). The full list of target predictions generated by ≥2 methods for all 11 sRNAs (Fig. S3B) are 379 

included as Supplemental Dataset 1. On average the primary analysis by the pipeline took 1hr 380 

15min ± 35min, using as many as 6 processing cores simultaneously. Re-collation of the results 381 

using different filters only took an average of 29s ± 6s.  382 
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Extended application of the SPOT pipeline – mRNA as query sequence 383 

The four individual algorithms are intended to identify the interaction of an sRNA with mRNA 384 

targets. However, a user may be interested in determining which known sRNAs interact with a 385 

specific mRNA of interest. Normally this would require running an individual search for each of 386 

the 10s to 100s of sRNAs from that organism. As part of our pipeline we have designed a 387 

feature that allows a user to input a custom annotation file for their reference genome. 388 

Therefore, instead of providing the list of mRNA targets, sRNAs can be provided to the 389 

algorithm and the relevant mRNA sequence, e.g., a 5' untranslated region (UTR) of interest can 390 

be used as the query. We carried out this “reverse” analysis on 11 E. coli 5' UTRs that have 391 

already been demonstrated to interact with ≥2 different sRNAs. The results are comparable to 392 

the analysis using sRNAs as targets – known sRNA interactions were identified with an average 393 

sensitivity of 85% ± 24% (Fig. 3B). Moreover, using the 2-algorithm cutoff we were able to use 394 

this approach to predict 5 to 14 additional sRNAs that putatively bind the UTRs and could affect 395 

their regulation (Supplemental Dataset 1). We note that due to technical constraints the reverse 396 

search method can only be used with TargetRNA2, sTarPicker, and IntaRNA at this time. This 397 

approach is a novel feature that will facilitate ongoing sRNA research. 398 

Examination of novel RydC target predictions 399 

We next sought to use the SPOT pipeline to identify additional targets for the poorly 400 

characterized sRNA RydC. RydC was reported to repress yejA mRNA (encoding an 401 

uncharacterized ABC transporter (43)) and csgD mRNA (encoding the master regulator of curli 402 

biogenesis (44)), but the molecular mechanisms of RydC-mediated repression were not 403 

reported. Fröhlich, et al., (2013) demonstrated that RydC activates cfa mRNA, encoding 404 

cyclopropane fatty acid synthase. This activation involves RydC-dependent protection of cfa 405 

mRNA from RNase E-mediated degradation (3). Despite identification of these targets, the 406 

physiological function of RydC remains unclear. We used SPOT to identify additional targets of 407 

RydC as a means to gain further insight into its physiological role in E. coli.  408 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 22, 2018. ; https://doi.org/10.1101/448696doi: bioRxiv preprint 

https://doi.org/10.1101/448696
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 17 

Our strategy for RydC target identification was to combine computational and 409 

experimental data to generate an experimentally tractable list of putative targets for further 410 

validation. Experimental identification of putative targets was accomplished by pulse expression 411 

of RydC from an inducible promoter followed by identification of RydC-dependent changes in 412 

gene expression by RNA-seq. Vector control and Plac-rydC plasmids were maintained in a 413 

ΔrydC host strain grown in rich medium (LB) at 37°C. Expression of rydC was induced by 414 

addition of IPTG to cultures, and total RNA harvested at 10 minutes after induction. RNA-seq 415 

data output fastq files were analyzed with Rockhopper and exported as .xls files (Supplemental 416 

Dataset 2).  417 

 To identify putative RydC targets, the SPOT pipeline was applied to RydC using both 418 

stringent and relaxed parameters, with the former being more restrictive for window size and 419 

algorithm thresholds as described above. Similar to analyses for SgrS and RyhB, the relaxed 420 

parameters yielded a greater number of predictions than the stringent parameters. Potential 421 

targets that were predicted by ≥ 3 algorithms with the relaxed parameters are shown in Fig. 4 422 

above the bold line. The RydC binding site for a validated target, cfa mRNA, was correctly 423 

predicted by 3 algorithms in the relaxed run. TargetRNA2 predicted a binding site that was 424 

inconsistent with the known binding site. The cfa prediction was absent in the stringent run, 425 

since the base pairing interaction between RydC and cfa mRNA takes place outside the window 426 

specified in the stringent run (Fig. 4). Some of the putative targets predicted by ≥ 3 algorithms 427 

were also differentially expressed in RydC pulse expression RNA-seq experiments (indicated 428 

under “Fold Change,” Fig. 4). Another set of genes were predicted as targets by ≥ 2 algorithms, 429 

and differentially expressed in RNA-seq experiments (Fig. 4, see targets below the bold line). 430 

Genes chosen for further analysis are listed in Table 1, along with information about their 431 

functions, differential expression in RNA-seq, predicted binding interactions, and algorithm 432 

predictions. Several other genes that did not meet the criteria for inclusion in Fig. 4 were also 433 

chosen for analysis because they had been described previously as RydC targets or because 434 
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they encode proteins belonging to functional categories related to known RydC targets (Table 435 

1). 436 

Testing pipeline predictions for RydC 437 

To test the targets selected for further validation for regulation by RydC, we constructed 438 

translational fusions to putative targets. These fusions were placed under the control of an 439 

arabinose-inducible promoter (PBAD) to eliminate possible indirect transcriptional effects. For 440 

each target, the entire 5' UTR and part of the coding sequence (length variable, depending on 441 

the location of the predicted RydC binding site) was fused to 'lacZ (Fig. 5A). Strains containing 442 

the reporter fusions were transformed with vector control or Plac-rydC plasmids and reporter 443 

activity measured after induction with IPTG.  444 

In Salmonella, RydC was demonstrated to activate cfa translation by occluding an 445 

RNase E cleavage site to stabilize the cfa mRNA (3). Conservation of RydC-cfa mRNA 446 

interactions between E. coli and Salmonella as well as SPOT identification of cfa as a putative 447 

RydC target (Fig. 4, Table 1) suggest that E. coli RydC regulates cfa in a similar manner. To 448 

confirm this, we constructed two translational fusions: PBAD-cfa'-'lacZ-Long, which contains the 449 

RydC binding site, and PBAD-cfa'-'lacZ-Short, which lacks the RydC binding site (Fig. 5B). RydC 450 

production strongly activated the long fusion, increasing activity by >20-fold compared to the 451 

vector control strain (Fig. 5B). As expected, activity of the short fusion lacking the RydC binding 452 

site was unaffected upon RydC induction (Fig. 5B). These results support the model that cfa 453 

mRNA is a directly regulated by RydC in both S. enterica and E. coli.  454 

Strains harboring reporter fusions to 13 other putative targets (listed in Table 1) were 455 

transformed with vector control and Plac-rydC plasmids and β-galactosidase assays were 456 

performed after a period of RydC induction (Fig. 5C). Only two of the target fusions were 457 

differentially regulated by the criteria we selected (³1.5-fold or £0.5-fold) in RydC-expressing 458 

cells compared to the vector control (Fig. 5C). These two targets were pheA and trpE, which 459 

both encode proteins involved in aromatic amino acid biosynthesis. Previous studies (43, 44) 460 
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reported RydC-dependent translational repression of the yejA and csgD mRNAs, though we 461 

note that specific and direct base pairing interactions with RydC were not demonstrated. Our 462 

translational fusions to these putative targets did not show any differential regulation in 463 

response to RydC expression (Fig. 5C).  464 

 RydC regulates genes in aromatic amino acid biosynthetic pathways 465 

In RNA-Seq experiments, levels of pheA mRNA were reduced to ~30% of control levels when 466 

RydC was ectopically expressed (Supplemental Dataset 2). Likewise, in RydC-producing cells, 467 

activity of the PBAD-pheA'-'lacZ fusion was ~30% that of the vector control (Fig. 5C). The 468 

predicted RydC-pheA mRNA base pairing interaction involves the 5' end of RydC and the 469 

coding region of pheA, directly adjacent to the start codon (Fig. 6A). The PBAD-pheA'-'lacZ fusion 470 

encompasses all of the 5' UTR and 645-nt of the coding region. A reporter derived from this has 471 

mutations that disrupt the predicted base pairing with RydC, resulting in the PBAD-pheA67'-'lacZ 472 

fusion with mutations G9C/G10C (Fig. 6A). A rydC allele with compensatory mutations 473 

(C4G/C5G) was constructed and named RydC5. The mutations in RydC5 abrogated regulation 474 

of the wild-type PBAD-pheA'-'lacZ fusion. Likewise, the mutations in PBAD-pheA67'-'lacZ 475 

prevented regulation by wild-type RydC. The compensatory mutant pair: PBAD-pheA67'-'lacZ and 476 

RydC5 had restored regulation, albeit not to fully wild-type levels. Together, these data suggest 477 

that RydC targets pheA mRNA for translational repression. Due to the location of the base 478 

pairing interaction in the translation initiation region, mechanism is likely direct occlusion of 479 

ribosome binding to pheA mRNA by RydC. 480 

Another new putative RydC target is trpE, which encodes a component of the 481 

anthranilate synthase involved in tryptophan biosynthesis. A PBAD-trpE'-'lacZ fusion 482 

encompassing the 30-nt trpE mRNA 5' UTR and 42-nt of trpE coding sequence was activated 483 

upon RydC production by slightly less than 2-fold (Fig. 5C, 7B). The predicted RydC-trpE mRNA 484 

base pairing interaction involves sequences near the 3' end of RydC and sequences within the 485 

trpE coding sequence. Point mutations in the trpE reporter fusion (C20G/C22G) resulted in the 486 
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mutant reporter PBAD-trpE20'-'lacZ, which was not substantially upregulated when wild-type 487 

RydC was produced (Fig. 7B). Because of the unusual pseudoknot structure of RydC (3, 44) 488 

mutations in the 3' end of RydC have a dramatic impact on RydC stability (45), thus we were not 489 

able to test a RydC compensatory mutant that would restore pairing to the trpE20 mutant fusion. 490 

However, we did construct a second trpE fusion, PBAD-trunc-trpE'-'lacZ, which was truncated to 491 

remove the putative RydC binding site (Fig. 7B). This fusion was no longer activated by RydC at 492 

all. These observations suggest that sequences early in the trpE coding sequence are important 493 

for RydC-mediated increase in trpE translation.  494 

DISCUSSION 495 

Over the years, many sRNAs have been discovered and characterized using both 496 

computational and experimental methods. Although target discovery of sRNAs still remains the 497 

rate-limiting step in sRNA characterization, many new techniques have been developed to 498 

overcome that obstacle. Some techniques take a purely computational approach to target 499 

prediction, including the target-prediction algorithms we have included in SPOT, (9, 10, 11, 12, 500 

13) and others we have not included (47-57). Experimental techniques to identify bacterial 501 

sRNA targets have also expanded. Many of these use affinity purification or co-502 

immunoprecipitation approaches, with or without crosslinking (15, 17, 20, 58, 59, 60). To help 503 

streamline the process of sRNA target identification, the SPOT pipeline was constructed to be 504 

used in conjunction with other identification methods. In this study, we showed that the SPOT 505 

pipeline achieved ≥ 75% sensitivity and ≤ 50% false positive rate when at least 2 methods 506 

converged on a prediction for the well-characterized sRNAs SgrS and RyhB (Fig. 2D-E). 507 

Expanding our analysis to other bacterial sRNAs, we found that the pipeline sensitivity was 508 

equal to or exceeded that of any individual method (average = 84% ± 8.5%, Fig. 3A, Fig. S2). 509 

As before, we found that correct identification by ≥2 methods occurred in the majority of 510 

instances (Fig. 3A). Furthermore, SPOT can be applied to the reverse situation where a user 511 

can search for potential sRNAs that regulate their UTR of interest. We found through these 512 
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analyses that for 11 E. coli 5’ UTRs with ≥2 known interactions with sRNAs, the analysis gave 513 

an average sensitivity of 85% ± 24% (Fig. 3A).  514 

To test the utility of SPOT in identifying novel sRNA-mRNA target interactions, we used 515 

it to predict targets of the poorly characterized sRNA RydC, which had been described to 516 

regulate three genes: yejA (43), cfa (3), and csgD (44). Through SPOT analyses and filtering 517 

based on experimental data, we generated a list of putative RydC targets (Table 1). 518 

Reassuringly, SPOT identified the true RydC target, cfa mRNA, and correctly predicted the 519 

known binding site on this target (Table 1, Supplemental Dataset 1). The other two reported 520 

targets, yejA and csgD, were not identified by the SPOT computational pipeline, nor were these 521 

genes differentially regulated in our RydC pulse-expression RNA-seq analyses (Supplemental 522 

Dataset 2). Since no specific direct binding interactions were shown for RydC-yejA or RydC-523 

csgD, we postulate that the previously observed regulation of these targets by RydC may be 524 

indirect. The SPOT pipeline also correctly identified 2 additional RydC targets, pheA and trpE 525 

(Table 1, Figs. 5C, 6, 7). RydC represses pheA translation, likely by a mechanism common to 526 

repressing sRNAs. Binding of RydC to sequences around the Shine-Dalgarno region would 527 

prevent ribosome binding and inhibit translation initiation. The mechanism of RydC-dependent 528 

activation of trpE appears to be more complex. The trpE gene is part of the trpLEDCBA operon 529 

responsible for L-tryptophan biosynthesis, which is regulated by both the trpR repressor and an 530 

attenuation mechanism (46). Depending on the availability of L-tryptophan, the ribosome can 531 

either stalls at or moves quickly through Trp codons in the trpL ORF. When Trp is abundant, the 532 

ribosome rapidly completes translation of trpL, which prevents co-transcriptional formation of an 533 

antiterminator hairpin and allows formation of a transcription terminator just upstream of the trpE 534 

coding sequence. When Trp is limiting, ribosome stalling at the Trp codons allows formation of 535 

an antiterminator structure, which promotes transcription elongation into downstream Trp 536 

biosynthesis structural genes. While sequences within the trpE coding sequence have not been 537 

implicated in the Trp-dependent attenuation mechanism, it is possible that the sequences 538 
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including the RydC binding site are responsible for yet another layer of regulation of these 539 

genes, perhaps at the level of translation. Alternatively, sequences in the trpE coding sequence 540 

could have long-range interactions with the upstream terminator or antiterminator sequences 541 

and RydC binding could modulate those interactions.  542 

Our study and evaluation of a combinatorial approach to identify mRNA targets of 543 

sRNAs of interest represents a step toward accelerating a rate-limiting step in sRNA 544 

characterization. The SPOT pipeline is able to streamline the process of running individual 545 

algorithms, which can take hours to days, by reducing the run times significantly for all 4 546 

algorithms at once (under 2 hours). Since the pipeline runs all 4 algorithms simultaneously, a 547 

more narrowed down, comprehensive list is generated, negating the need for manually selecting 548 

targets from individual algorithm runs. However, every method has drawbacks and though 549 

SPOT is a powerful tool, it has limitations as well. For instance, a 50% false positive rate (the 550 

average for well-characterized sRNAs analyzed in this study) is still high even though it is 551 

markedly better than the false positive rates of predictions made by any single algorithm. As 552 

experimental approaches for sRNA-mRNA target identification continue to improve, the power 553 

and accuracy of SPOT’s combinatorial approach to sRNA-target binding site predictions will 554 

likewise improve. Another factor impacting the accurate prediction of sRNA binding sites by 555 

SPOT is the user-defined search window. The majority of early examples of sRNA-mediated 556 

regulation involved sRNAs binding in translation initiation regions of target mRNAs. Thus, most 557 

existing sRNA target prediction algorithms have default windows set to search around start 558 

codons. As more sRNA-mRNA interactions are validated and mechanisms of regulation studied, 559 

we and others have found increasing numbers of examples of sRNA-mRNA interactions that 560 

occur outside this window. Some of these interactions are primary or only interactions 561 

responsible for sRNA-mediated regulation of the mRNA, e.g., RydC-cfa mRNA (3), SgrS-yigL 562 

mRNA (39), which both involve mRNA sequences far upstream of the start codons. Yet other 563 

interactions involving mRNA sequences far from translation initiation regions represent 564 
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secondary or auxiliary binding interactions that nevertheless play important roles in regulation 565 

(18, 38).  566 

For the sRNA SgrS, there are two binding sites for its interaction with asd mRNA (18), 567 

but SPOT was only able to predict the primary binding site. We expect that there are other 568 

examples where the algorithms have failed to identify alternate or additional binding sites. This 569 

is currently an area of development and once implemented, will serve as a valuable asset in 570 

identifying putative targets for a sRNA of interest.  571 

Taken together, the combinatorial approach revealed two new targets, pheA and trpE, in 572 

the RydC regulon. Interestingly, both PheA and TrpE are involved in the chorismate metabolic 573 

pathway, with PheA using chorismate as a substrate in L-Tyrosine/L-Phenylalanine biosynthesis 574 

and TrpE for L-Tryptophan biosynthesis. Interestingly, RydC repressed pheA whereas it 575 

activated trpE, an unusual case since both are involved in amino acid biosynthesis in divergent 576 

pathways. In the case for trpE, the mechanism of positive regulation is unique in that the base 577 

pairing interaction takes place 12-22 nt downstream of the start codon. RydC could possibly 578 

serve as a sRNA modulator of the biosynthetic pools of amino acids by activating/repressing 579 

trpE/pheA mRNA expression when necessary. As an aside, chorismate is also a substrate for 580 

production of the E. coli siderophore enterobactin, which is synthesized under iron limiting 581 

conditions. Mutations in fur, tyrA, pheA, or pheU resulted in increased enterobactin production 582 

since the chorismate pools were used for enterobactin synthesis (62). These observations 583 

suggest that there may be conditions where RydC impacts the iron starvation stress response, 584 

perhaps forming a regulatory network that intersects with that of the well-characterized iron 585 

starvation stress response sRNA, RyhB. To better understand these potential connections, 586 

future work will be aimed at characterizing the regulators and conditions controlling synthesis of 587 

RydC. 588 

With the implementation of the SPOT pipeline, combined with RNA-Seq and MAPS data, 589 

we were able to add to the RydC regulon and expand its network. Whether this regulatory 590 
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network is exhaustive remains to be determined. We note that there were other RydC-mRNA 591 

binding interactions predicted by SPOT that were not analyzed further here. Moreover, there are 592 

additional sRNA-mRNA interactions predicted by SPOT for the other sRNAs that were run 593 

through the pipeline (Supplementary Dataset 1) and it is likely that more bona fide interactions 594 

are among those predictions. All in all, we developed a streamlined method for sRNA-mRNA 595 

binding site predictions that leverages the strengths of many pre-existing algorithms. We 596 

showed the robustness of SPOT for identification of true sRNA-mRNA interactions using well-597 

characterized and poorly characterized sRNAs. We anticipate that SPOT will become a valuable 598 

tool for many investigators who have found interesting sRNAs and wish to identify potential 599 

mRNA targets for further characterization.  600 
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Table 1. List of putative RydC targets chosen for further testinga, b, c 782 
 783 

aColumn #3 (Fold change Plac-rydC/vector) lists the determined ratio from RNA-Seq experiments 784 
(Supplemental Dataset 1) 785 
bColumn #4 (Predicted interactions) lists the bases involved in the interaction in the 5′ to 3′ direction for 786 
target and 3′ to 5′ direction for RydC in relation to the +1 site (start of translation) 787 
cColumn #5 (Algorithm predictions) lists the algorithms that predicted a base-pairing interaction with T = 788 
TargetRNA2, S = sTarPicker, I = IntaRNA, and C = CopraRNA 789 
 790 

Gene Putative function Fold change 
Plac-rydC/vector 

Predicted 
interactions 

Algorithm 
predictions 

Reference 

cfa cyclopropane fatty acyl 
phospholipid synthase 

31.00 cfa    -110 to -98 
RydC +14 to +2 

T, S, I, C (3) 

grpE nucleotide exchange 
factor 

0.32 grpE  +16 to +29 
RydC +64 to +51 

T, S, I, C This study 

moaB part of moaABCDE 
operon 

0.63 moaB +27 to +42 
RydC +44 to +29 

T, S, I, C This study 

araH arabinose ABC 
transporter membrane 
subunit 

0.67 araH  +9 to +25 
RydC +17 to +1 

T, S, I, C This study 

yhjD putative transporter 0.30 yhjD   -62 to -11 
RydC +53 to +2 

S, I, C This study 

ygaU potassium binding 
protein (kbp) 

0.67 ygaU +78 to +94 
RydC +31 to +15 

T, S, I This study 

yibT protein YibT 0.30 yibT   -24 to -10 
RydC +28 to +14 

T, S, I This study 

trpE anthranilate synthase 
subunit 

1.00 trpE   +12 to +22 
RydC +47 to +37 

T, S, I This study 

pheA fused chorismate 
mutase/prephenate 
dehydratase 

0.30 pheA +4 to +11 
RydC +10 to +3 

S, I, C This study 

cysQ 3′ (2′), 5′-bisphosphate 
nucleotidase 

0.59 cysQ +48 to +67 
RydC +21 to +2 

T, S, I This study 

purK 5-(carboxyamino) 
imidazole 
ribonucleotide synthase 

3.49 purK   -38 to -19 
RydC +59 to +5 

S, I, C This study 

csgD DNA binding 
transcriptional dual 
regulator 

0.75 csgD  -19 to +3 
RydC +26 to +5 

I (44) 

yejA putative oligopeptide 
ABC transporter 
periplasmic component 

0.91 yejA +1265 to +1273 
RydC +47 to +39 

I (43) 

lldR DNA-binding 
transcriptional dual 
regulator 

1.17 lldR   +15 to +65 
RydC +61 to +15 

S This study 
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Figure. 1. Schematic diagram of SPOT pipeline. 
Step 1: A basic implementation of SPOT requires a user-provided reference genome and a sRNA sequence file. The user can 
customize the search window size and can optionally provide information required for CopraRNA (dashed boxes). Step 2: The user can 
set seed sizes and significance cutoffs for each algorithm (superscript t = TargetRNA2, s = sTarPicker, i = IntaRNA). Step 3: SPOT
runs the algorithms in parallel and generates a set of collated results. Step 4: Results filtering options as shown narrow the list of 
predicted interactions to an experimentally-tractable size for further validation or analysis. 
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Seed size 7 6 6 7 7 6 6 7
Threshold 0.05 0.5 top 0.01 0.5 0.001 un 0.01
Algorithm T S I C T S I C
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frdA b4154

ptsG b1101
purR b1658
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manY b1818
folE b2153
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yigL b3826
adiY b4116

B. RyhB
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C. SgrS

Seed size (nt) 5 6 7 8

SgrS-T 38% 38% 38% 6%
RyhB-T 39% 44% 56% 56%

SgrS-S 63% 63% 50% 38%
RyhB-S 72% 72% 67% 56%

SgrS-I 100% 100% 100% 28%
RyhB-I 94% 94% 89% 72%
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Figure. 2. Validation of SPOT using known SgrS and RyhB sRNA-mRNA interactions. 
(A) “Seed size” indicates the number of consecutive basepairing nucleotides in an sRNA-mRNA interaction prediction. This is an 
adjustable parameter for each algorithm. Seed sizes were varied from 5 to 8 nt and the sensitivity (true positive rate) was 
determined for known SgrS and RyhB interactions while all other parameters were kept constant. Optimal seed sizes 
(bold boxes) were chosen for each algorithm. Highest percentage values for sensitivity are indicated with gray shading. 
Algorithms were abbreviated -T=TargetRNA2, -S=Starpicker, -I=IntaRNA. 
(B & C) Analyses were re-run using optimal seed sizes identified in A, but using a ‘Stringent’ parameter set with a narrow 
window size and high individual significance thresholds or a ‘Relaxed’ parameter set with a wider window size and low 
individual significance thresholds. Correctly predicted interactions for RyhB and SgrS are shown as pink cells, predictions 
that were inconsistent with confirmed interaction sites are shown in blue, and empty cells did not have any predictions 
above the indicated thresholds. Algorithms are abbreviated T=TargetRNA2, S=Starpicker, I=IntaRNA, and C=CopraRNA. 
(D & E) RyhB and SgrS have experimentally validated (true positive) and invalidated (true negative) mRNA targets, which 
were used to generate receiver operating characteristic (ROC) curves. These plots enable assessment of the accuracy of 
SPOT and the individual algorithms. Using the ‘Relaxed’ search parameters, 2-algorithm agreement in SPOT had greater 
True Positive Rates and more acceptable False Positive Rates compared with individual algorithms with the same settings.
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Figure. 3. SPOT demonstrates high sensitivity for detecting targets of multiple sRNAs. 
(A) Along with RyhB and SgrS, nine additional sRNAs were analyzed with SPOT using the ‘Relaxed’ parameter set, demonstrating the 
robustness of the SPOT pipeline for correctly identifying sRNA-mRNA target interactions. Stacked bars show the number of 
experimentally validated mRNA targets correctly or incorrectly identified by 1 or ≥2 methods. Black diamonds indicate the overall 
True Positive Rate (sensitivity) of SPOT for each sRNA. 
(B) Eleven UTRs that are experimentally validated to interact with multiple sRNAs were used in a ‘reverse’ search in SPOT 
(i.e., using the UTR as the query and the sRNAs as the targets). The average sensitivity of this method is lower than in A., 
however, this is a novel means for identifying sRNAs that might affect genes of interest. Plots are drawn as in A. 
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Figure. 4. SPOT predictions for the sRNA RydC. 
Analyses were run with optimal seed sizes as determined in Fig. 2. Genes above the bold line denote those with ≥ 3 
computational predictions, while genes below the line had 2 computational predictions and differential RNA-seq expression 
(fold change of ≥ 1.5 or ≤ 0.5, q-value of ≤ 0.005). Correctly predicted interactions for RydC are shown as pink cells, unknown 
predictions that were consistent among algorithms are shown in green, inconsistent predictions are shown in blue, and empty 
cells did not have any predictions above the indicated thresholds. Algorithms are abbreviated T=TargetRNA2, S=Starpicker, 
I=IntaRNA, and C=CopraRNA. 

Fig. 4 Stringent Relaxed
Upstream (nt) 80 80 80 80 150 150 150 150

Downstream (nt) 20 20 20 20 100 100 100 100
Seed size 7 6 6 7 7 6 6 7

Threshold 0.05 0.5 top 0.01 0.5 0.001 un 0.01
Algorithm T S I C T S I C Fold change

cfa b1661 31.00
grpE b2614 0.32
moaB b0782 0.63
araH b4460 0.67
yqgC b2940 1.00
mdtH b1065 1.00
waaC b3621 0.91
ybiT b0820 1.50
cspC b1823 1.20
rsmF b1835 1.30
paaD b1391 0.59
ppdB b2825 0.77
cytR b3934 1.00
recC b2822 0.67
nhoA b1463 1.00
hemX b3803 0.77
cycA b4208 1.50
yhjD b3522 0.30
ygaU b2665 0.67
yafT b0217 1.00
yibT b4554 0.30
trpE b1264 1.00
panB b0134 1.00
mukE b0923 1.00
pheA b2599 0.30
yjiM b4335 1.50
cysQ b4214 0.59
eamB b2578 0.77
yfcE b2300 1.00
tamB b4221 0.71
yhdJ b3262 1.50
nagK b1119 1.10
sgcA b4302 0.77
cdh b3918 0.91
purK b0522 3.50
deoC b4831 0.20
purM b2099 3.30
malM b4037 0.04
malP b3417 0.14
malF b4033 0.09
nrdI b2674 0.42
pstS b3728 0.13
prlC b3498 0.25
hslV b3932 0.24
udp b3831 0.22
pstC b3727 0.23
ytjA b4568 0.50
hslR b3400 0.40
dnaJ b0015 0.36
yheV b4551 0.50
ybeY b0659 0.50
dnaK b0014 0.15
fxsA b4140 0.32
tabA b4252 0.43

predicted = confirmed
predicted inconsistent
predicted unknown
no prediction above threshold
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B. 

A. 

PBAD-cfa′-′lacZ-Long

Figure. 5. Validation of RydC target predictions.
(A) The design for the translational lacZ constructs is shown, where the green box indicates the arabinose promoter (PBAD), 
yellow the untranslated region (UTR), blue the coding sequence (CDS), and pink the lacZ gene. 
(B) To confirm cfa as a RydC target, both full-length and shortened cfa′-′lacZ translational fusions were tested in 
backgrounds with vector or Plac-rydC plasmids. Expression of the reporter fusion was induced with 0.002% L-arabinose 
while induction of RydC was achieved with 0.1 mM IPTG. The activities were normalized to vector control and plotted 
as relative activity. The Specific Activity in Miller units are presented underneath the graph. These experiments were conducted as 
three independent trials with three biological replicates per trial. Error bars represent standard deviation among biological 
replicates from a representative trial.
(C) Empty vector or RydC was overexpressed in strains with reporter fusion as indicated above. Expression of the fusion 
and RydC was induced as previously described. As a comparison, the positive control cfa(long)’ was included in the 
experiment. These experiments were conducted as three independent trials with three biological replicates per trial. Error 
bars represent standard deviation among biological replicates from a representative trial.
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Figure. 6. RydC represses pheA translation. 
(A) The predicted base pairing between pheA mRNA and RydC from IntaRNA. The residues highlighted in red represent point 
mutations made for each of the variant fusions/RydC alleles. The numbers are in relation to the +1 of RydC and the AUG of 
pheA. To test pheA as a putative target, both full-length and mutated (pheA67′) pheA′-′lacZ translational fusions were tested. 
(B) RydC or a RydC variant (RydC5) were overexpressed in the pheA′ and pheA67′ lacZ fusion backgrounds. Expression of the
fusion and RydC was induced as described for Fig. 5. The activities were normalized to vector control and plotted as relative 
activity. The data were analyzed and reported as described for Fig. 5.
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Figure. 7. RydC activates trpE translation. 
(A) The predicted base pairing between trpE mRNA and RydC from IntaRNA. The vertical/dotted lines represent the seed region for 
base pairing interactions. The residues highlighted in red represent point mutations made for each of the variant fusions/RydC alleles. 
The numbers are in relation to the +1 site of RydC and the ‘AUG’ of trpE. To test trpE as a putative target, both full-length, mutated 
(trpE20′), and truncated (trunc_trpE′) trpE′-′lacZ translational fusions were tested. 
(B) Empty vector or RydC were overexpressed in the trpE′, trpE20′, and trunc_trpE′ lacZ fusion backgrounds. Expression of the fusion 
and/or RydC was induced as previously described. The experiments were conducted and data analyzed and presented as described 
for Fig. 5.
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