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ABSTRACT: 

 

Longitudinal studies of microbial communities have emphasized that host-associated microbiota 

are highly dynamic as well as underscoring the potential biomedical relevance of understanding 

these dynamics. Despite this increasing appreciation, statistical challenges in the design and 35 

analysis of longitudinal microbiome studies such as sequence counting, technical variation, 

signal aliasing, contamination, sparsity, missing data, and algorithmic scalability remain. In this 

review we discuss these challenges and highlight current progress in the field. Where possible, 

we try to provide guidelines for best practices as well as discuss how to tailor design and 

analysis to the hypothesis and ecosystem under study. Overall, this review is intended to serve 40 

as an introduction to longitudinal microbiome studies for both statisticians new to the 

microbiome field as well as biologists with little prior experience with longitudinal study design 

and analysis.  

 

 45 
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Introduction 

There is an increasing recognition that host-associated microbiota are a contributor to 

many aspects of human physiology and health and may ultimately play important roles in the 

diagnosis, treatment, and prevention of human disease (1–3). Beyond human health, the study 50 

of microbial community composition using high-throughput DNA sequencing have found use in 

a variety of fields including ecology, agriculture, and industrial engineering. The most common 

method for characterizing these communities is based on sequencing the 16S ribosomal RNA 

gene in bacteria which while ubiquitous in bacteria is also diverse enough to act as a molecular 

fingerprint distinguishing microbial taxa. The resultant data used for modeling and analyses of 55 

microbial community is a count table where each count reflects the relative abundance of a 

given taxa in a given sample. Considerable effort now focuses on best practices for designing 

microbial community surveys and methods for the analysis of such sequence count data.  

 An increasing appreciation of the temporal variability of host-associated microbial 

communities and the potential biomedical relevance of these dynamics has led to new statistical 60 

challenges (1, 4–8). For example, in  Caporaso et al. (4), the authors study the natural variability 

of human microbiomes over the course of two years. Understanding such intrinsic temporal 

variability within microbial communities also requires statistical methods of partitioning observed 

temporal variation into technical and biological components (9–11). In contrast, in Yassur et al. 

(12), the authors focus on  the temporal effects of antibiotics on infants gut microbiome in the 65 

first three years of life. Modeling such external factors requires dynamic models capable of 

including external covariates and potentially lagged or non-linear effects on the microbiota (13, 

14). Alternatively, large longitudinal studies have been collected with the purpose of guiding 

diagnosis of inflammatory bowel disease and type 2 diabetes as well as prediction of preterm 

birth (15). Building such diagnostic tools will will require predictive models that can either 70 
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forecast current or future community regimes based on the community composition at earlier 

time points are requires  (10, 16). 

 The statistical considerations of longitudinal microbiome studies that could ultimately 

affect the biological findings, goes beyond data modeling and encompases study design, data 

preprosessing, and model evaluation. The data generation process underlying the profiling of 75 

microbial communities, using high-throughput sequencing (e.g., sample processing and 

measurement), has implications for the design and analysis of the resulting data. We therefore 

begin this  review  of statistical considerations of longitudinal microbiome data with a thorough 

discussion of the measurement process underlying sequence counting (Section 1). Proper 

experimental design can be vital to the ultimate success of a study. As longitudinal studies 80 

impose an added layer of complexity beyond   cross-sectional designs, we discuss the design of 

longitudinal microbiome studies in Section 2. Finally, we discuss the modeling of longitudinal 

microbiome data in Section 3. As data preprocessing and model evaluation are also crucial 

components in the analysis of longitudinal data, we discuss these steps  as well as part of data 

modeling in Section 3. We highlight that our discussions regarding the data generation process 85 

and experimental design are largely novel with minimal consideration in previous reviews. This 

review is aimed towards applied statisticians unfamiliar with microbiome data and 

experimentalists with a minimal background in the analysis of longitudinal data. 

 

Sample Processing and Measurement 90 

The majority of longitudinal microbiome studies to date have made use of high-

throughput sequencing, where the relative abundance  of different bacterial taxa is inferred 

based on the amount of distinct DNA reads. Yet, due to a wide variety of technical factors, such 

measurements of microbiota can differ substantially from the underlying true community 
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structure (17).  These discrepancies, which are not limited to longitudinal measurements, can be 95 

attributed to the sample processing – a sequential procedure, where in each step DNA is 

randomly selected, processed, and then included in the subsequent step. The randomness of 

this data generation process introduces uncertainty into microbiome measurements in the 

following way.  First, this process results in a competition to be counted, or in other words more 

of one taxa results in less of another for purely technical reasons (Figure 2). Without knowledge 100 

of the total microbial load in the original ecosystem, this competition to be counted limits us to 

inferences regarding the relative abundance of taxa in that ecosystem (Figure 3). The second 

issue is that, while  the read count data contains only relative information, the random sampling 

process also introduces uncertainty in estimates of these relative measurements that must be 

considered in analyses (18). Given the randomness in the data generation process described 105 

above, we suggest directly modeling the uncertainty in the counts using a model that also 

considers this competition to be counted. The multinomial distribution is the prototypical 

example of such a model. In particular, the multinomial distribution addresses count uncertainty 

rather than directly transforming counts to relative abundances and also models the competition 

to be counted rather than treating the counts of each taxa as independent. Additionally, the 110 

multinomial distribution may also better model the excess zero values often found in microbiome 

datasets that can be due to increase in the abundance of one taxa causing other taxa to fall 

below the detection limit of sequencing.  

Notably, while the multinomial distribution can account for the uncertainty stemming from 

random sampling, it alone is not sufficient to model other sources of technical variation in the 115 

observed data. Specifically, studies have found that numerous steps including DNA extraction, 

PCR amplification, DNA sequencing, sample collection and even sample storage can impact 

measured microbial composition (17, 19–24). To capture these forms of technical variation, and 

to model other biological sources of variation, we recommend models that also account for 

these other sources of variability either through extensions of the count distribution, such as the 120 
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Generalized Multinomial-Dirichlet, or as we describe below by modeling variation in the 

parameters of the count distribution. 

While our discussion to this point has  focused on approaches to accurately model 

microbial relative abundance from sequence count data, recent methods have proposed 

approaches that aim to produce measurements  based on microbial absolute abundances using 125 

external measurements (25–27). Two methods in particular, qPCR and Flow cytometry have 

gained increasing popularity for this purpose (25). Yet, accurately recovering the absolute 

abundance of taxa in an ecosystem requires direct measurement of total microbial load which is 

often not possible in vivo. Instead, available methods provide an estimation of the microbial load 

at some later sample processing step that does not necessarily reflect the ecosystem total but 130 

rather the microbial concentration in the stool. Nonetheless, use of such external measurements 

to augment relative abundances inferred from sequence count data should still consider 

modeling count uncertainty and competition to be counted as well as measurement error 

present in the extraneous total information.  

 135 

Experimental Design 

Experimental design can be key to the success of any study. Notably, longitudinal 

studies require additional parameters be chosen beyond those required for standard cross-

sectional designs. In particular, the parameters involved in the design of longitudinal microbiome 

studies include the number of individual time-series to study (e.g., the number of individuals 140 

studied) !, the number of time-points in each time-series, "# (for $ = 1,⋯ , !), the number of 

taxa ), and the number of measured covariates * (e.g., diet, sex, antibiotics, or batch number). 

The design of longitudinal studies must also consider the spacing (either equal or variable) 

between time-points within each time-series and the synchronization or lack thereof of samples 
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between individuals. Additional measurements in the form of technical replicates or positive and 145 

negative controls may also be required to adequately partition biological signal from technical 

noise. As a final complication, the design must be motivated and account for subtleties of the 

ecosystem under study and the research goals. However, ultimately the general principle 

underlying all experimental design is the need to differentiate biological variation (i.e., signal) 

from technical variation (i.e., noise). For this purpose, we recommend thinking about the 150 

interplay between technical variation,  biological variation, and the temporal distribution of 

sample collection. 

As sampling effort of biological systems are often limited both by cost and by biological 

limitations (e.g., the rate at which an organism defecates), care is needed to appropriately 

distribute sampling effort. The primary goal when portioning sampling effort is to ensure that 155 

sampling frequency is adequate to capture the biological variation of interest (7, 28). One way to 

address resource limitations is to concentrate sampling effort around highly variable time-

periods such as right before and after an experimental intervention or using prior knowledge on 

the ecosystem’s dynamics. Yet, modeling such irregularly spaced studies can be challenging, 

requiring special modeling techniques such as state space models or imputation methods. A 160 

guiding principle when designing irregularly spaced studies is to aim to achieve equal amounts 

of variation between consecutive time-points (29). Additionally, if it is known that the biological 

variation of interest is periodic and no aliasing is occurring then autocorrelation can be a useful 

tool for determining sampling rate and sampling spacing. In this situation, one should consider 

sampling at twice the frequency of the signal (30).  165 

Given that sampling effort is portioned appropriately to capture the biological variation of 

interest, the impact of technical variation must be considered. In particular, it can be helpful to 

consider two forms of technical variation, random errors and systematic biases (31). Random 

errors, such as pipetting errors, are those sources of variation that cause biologically identical 

samples processed in parallel (i.e., technical replicates) to differ. Systematic biases, such as a 170 
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consistent underrepresentation of Actinobacteria in measured data (32), are those sources of 

variation that cause technical replicates to differ from the truth but remain nearly identical to 

each other. If the relationship between technical and biological variation is unknown or technical 

variation is known to be at least comparable to biological variation, special care is needed to 

account for technical variation.  175 

For random errors, the two standard solutions are to either collect ample technical 

replicates or to sample more frequently.  While the former always works the later can encounter 

similar biological or cost limitations on sampling frequency and will also require an assumption 

that longitudinal trajectories varying smoothly and slowly compared to the sampling frequency. 

For example, Silverman et al. (9) quantified and control for random errors (and not systematic 180 

biases) in an in vitro system by using ample technical replicates which allowed the 

characterization of the relationship between technical and biological variation as a function of 

sampling frequency for an in vitro artificial gut system. They found that at hourly sampling 

frequencies technical variation was approximately four times larger than biological variation, and 

was equal at sampling frequencies of approximately 3.5 hours. These results demonstrated that 185 

subsequent studies in these ecosystems must either account for technical variation or choose to 

limit inference to biological variation occurring over longer time-periods (e.g., daily). 

As for systematic biases, few solutions are available as measuring and correcting these 

biases requires either specially designed calibration experiments or positive and negative 

controls. A notable example is the work of Davis et al. (33) who proposed a method for 190 

removing contamination in microbiome sequencing studies using designed negative controls. 

Nonetheless, capturing other sources of technical bias such as PCR bias or DNA extraction bias 

remain outstanding problems. On the positive side, systematic biases, unlike random errors, 

may be ignored in many situations where the specific aims of the study are not affected by such 

technical variation. For example, if the aim of a study is to identify how the community structure 195 

changes over time, a systematic bias such as the consistent underrepresentation of 
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Actinobacteria in observed data, may not affect inference. In contrast, if the aim of a study is to 

determine which taxa is the most abundant at any given time-point, such underrepresentation 

may severely effect inference.  

Often a chief concern in data analysis is that technical variation covaries with a biological 200 

feature of interest (34). Specifically, in longitudinal studies sample randomization throughout 

sample processing can mitigate issues that may arise from covariation between technical 

variation and the sample time-index. Additionally, all sample processing information should be 

retained and reported with the final dataset as various modeling approaches may be used to 

correct for differences between groups of samples processed separately such as linear mixed 205 

models (35).  

As the problem of experimental design for longitudinal microbiome studies is 

challenging, model based methods for optimizing the study design may provide substantial 

insights. In particular some of the most basic  questions such as how to choose values for ! and 

"  using sample size or power calculations remain under-studied. Of the few available 210 

techniques, we recommend using simulation studies. As in power and sample size calculations, 

simulation studies can provide a simple (yet computationally intensive) method for answering 

such questions. For example, Fukuyama et al. (36) used simulation studies to conclude that for 

their research goals, crossover longitudinal sampling designs with baseline correction are more 

powerful than parallel designs. In the same paper the authors, designed their irregular sampling 215 

intervals to achieve approximately equal variance between time-points using simulations 

studies. Despite the utility of simulation studies, formal methods of experimental designs such 

as those maximizing D-optimality criteria, information gain, or those based on Bayes optimality 

may provide methods of optimizing many more aspects of experimental design (37). To the best 

of our knowledge, the only available methods for optimal design of longitudinal microbiome 220 

experiments are those provided in the MC-TIMME package (13) which selects a sampling 

frequency to maximize the expected information gain.   
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Finally, additional considerations in the design of longitudinal microbiome studies, such 

as the temporal relationships between time-series or with respect to external events, should be 

appraised. Studies involving multiple individuals over time (! > 1) should design the experiment 225 

in a way that will subsequently be utilized by the the data modeling scheme . For example, 

multi-person studies of the effect of a targeted intervention may want to collect samples at 

similar temporal distances from the intervention. Such synchronization allows for richer 

questions to be investigated and greatly reduces modeling complexity. Seasonality effects can 

also be important to consider in experimental design. While perhaps most obvious in 230 

environmental studies, dietary changes surrounding holidays or weekends, or even natural 

circadian variation (38) can also be important factors to consider.  

 

Data Modeling 

Due to the complexity and high-dimensional nature of longitudinal microbiome data, 235 

nearly all datasets will require non-trivial statistical modeling. In this section we discuss various 

aspects of data modeling including the initial preprocessing of data, various types of analyses 

that are commonly performed, and various considerations in choosing models. 

Data Preprocessing 

Two approaches are commonly used to characterize microbial communities by 240 

summarising raw sequencing reads into a sequence count table: quality filtering OTU-based 

methods and denoising methods. In the OTU-based methods, all the sequences are clustered 

into OTUs based on a distance matrix at a specified dissimilarity threshold (typically 3%), which 

reduces the rate at which errors are misinterpreted as biological variation.  However, OTUs 

underutilize the quality of modern sequencing by precluding the possibility of resolving fine-245 
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scale variation. The denoising methods, e.g., DADA2, model the error process and evaluate the 

validity of individual sequences in the context of the full metagenomic data set, while including 

the number of reads corresponding to each sequence. Notably, a growing consensus has arisen 

that methods like DADA2 help avoid the inflation of diversity often seen with many OTU 

clustering methods (39).  Using DADA2 improved resolution of low-frequency taxa may be 250 

achieved by pooling or pseudo-pooling which uses a two pass algorithm to adaptively threshold 

low-abundant sequences by pooling information across samples from similar environments.  

Despite the significant progress in reducing errors from PCR and sequencing, the 

accuracy of microbial community surveys  still suffers from the presence of contaminants — 

DNA sequences not truly present in the sample. Preparing contaminant-free DNA is 255 

challenging, and the sensitivity of PCR and whole-genome amplification methods means that 

even trace contamination can become a serious issue (40, 41). To alleviate this issue, 

computational methods for ‘microbial source tracking’ (quantifying the contribution of potential 

source environments to complex microbial communities) have been proposed (33, 42, 43). 

These methods identify both the source and quantity of contamination, and could help account 260 

and remove the contamination. Another option to account for contamination is using taxonomy-

dependent methods. These methods rely on the annotated sequences already deposited in the 

databases for taxonomic assignment of a query sequence by the best-matching sequence in the 

reference database. Although taxonomy-dependent methods can assign taxonomy to the query 

sequences based on previously characterized microbes, lack of sufficient well-characterized 265 

microbes and reliable taxonomy often make it difficult to characterize novel sequences, and the 

robustness and accuracy of such methods are mainly dependent on the completeness of the 

annotated reference database.  The count table that results from either OTU clustering or 

denoising methods is typically very sparse, often with greater than 90% zero values, which can 

pose both computational and statistical problems (44). In particular, estimates of relative 270 
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abundance from small counts involves large variance and therefore low certainty (45). To focus 

analysis on taxa whose relative abundance can be estimated with higher certainty and to 

alleviate the computational burden of excessive sparse taxa, analyses typically filter low 

abundance taxa prior to modeling. However, the thresholds used for filtering are typically 

heuristics and have not been thoroughly investigated. In determining whether initial data filtering 275 

is appropriate, and if so how it will be done, the goals of a study must be considered. In general, 

studies aimed at exploratory analyses, such as biomarker discovery, should consider little to no 

initial filtering. In particular, such studies may consider filtering taxa based on their temporal 

patterns as demonstrated by Shenhav et al. using the time-explainability measurement they 

introduced, which corresponds to the fraction of variance explained by the microbiome 280 

composition in previous time points. Specifically, time-explainability is informative for selecting 

time-dependent taxa (i.e., taxa that can be predicted based on the previous microbial 

composition). In contrast, for studies aimed at confirmatory analysis we suggest limiting the 

number of taxa analyzed to just those groups under study. For example, if the purpose of a 

study is to determine the dynamics of butyrate producing organisms, researchers should 285 

consider amalgamating taxa into butyrate producing and butyrate non-producing groups and 

restricting analysis to just these two categories. Overall, as the total number of counts in each 

sample provides important uncertainty information, we recommend that studies never eliminate 

counts/taxa from a dataset but instead amalgamate taxa that are not of primary interest into a 

category called “other”.  290 

 

Types of Analysis  

In this subsection we focus on modeling the temporal relationship between samples 

towards goals such as inference and prediction of microbiota longitudinal trajectories. A 

common task in the analysis of longitudinal microbiome data is to infer the trajectories of the 295 
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community as well as forecasting future compositions. Longitudinal microbiota data may include 

many different temporal patterns such as cyclical effects (e.g., seasonal or circadian effects), 

long term trends, or even delayed effects of shifts in community composition. However, models 

may differ substantially in the types of temporal patterns they can infer and predict. For 

example, the model of (14) is capable of capturing single time-step interactions. Other models 300 

such as the Poisson ARIMA model of Ridenhour et al. (46) allow for temporal interactions to be 

carried over multiple time-steps. Even greater flexibility is allowed by models such as those of 

Shenhav et al. (10) and Silverman et al. (9) which allow for more complex time-series modeling 

such as the inclusion of seasonal or polynomial trends to be included as well. Other methods 

can achieve even greater flexibility by using non-parametric kernel methods to either model 305 

community trajectories using Gaussian processes (11) or finding low dimensional 

representations of trajectories (36) (although the later does not, strictly-speaking, enable 

prediction or account for the temporal correlation between samples). However, these non-

parametric methods may not allow for parameter estimation of distinct temporal components as 

parametric methods can (e.g., to quantify the relative impact of seasonality versus long term 310 

trend). 

Another common goal is to infer or predict the relationship between external metadata 

(e.g., covariates or perturbations) and microbiota trajectories, including the effect of 

perturbations. For example, the differences in temporal trajectories between treatment and 

control groups in a longitudinal study may be investigated by incorporation of a binary covariate 315 

indicating presence of a measurement in either a treatment versus control group. Alternatively, 

inclusion of time-varying metadata such as the pH of the environment can be used to explore 

the impact of such dynamic factors on a microbial community. The methods of (9, 10, 14) all 

allow for such external covariates. In particular the MALLARD class of models introduced by 

Silverman et al. (9) further allow for the effects of such external covariates to be time-varying as 320 

well, which is a modeling procedure known as dynamic regression (47). While these methods 
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allow for very flexible modeling of linear interactions between covariates and microbiota 

trajectories, non-linear modeling of perturbations as is required popular in classical 

pharmacokinetic (PK) and pharmacodynamic (PD) studies remains understudied. Multivariate 

extensions of standard PK-PD models or non-linear transfer function models would likely find 325 

tremendous use in studies aiming to understand the impact of therapeutics on the microbiome.  

Of course the above is just a limited sampling of common analysis tasks. Other tasks 

include regime or changepoint detection, dimensionality reduction or feature selection, and time-

series synchronization. First, regime and changepoint detection relates to the problem of either 

identifying a regions within a time-series that differs in some substantial way from other parts of 330 

the time-series. While few methods have been adapted to address the many  specific 

challenges of microbiome data, Sankaran and Holmes (16) provide a thorough review of 

available methods and recommendations on productive new research directions. Second, as 

longitudinal microbiome data is high dimensional, with studies typically analyzing tens to 

thousands of taxa, methods for dimensionality reduction or feature selection can greatly improve 335 

scalability and interpretability of models. A small number of methods to date have addressed 

these issues and include the post-processing dimensionality reduction based low dimensional 

representations of biological temporal covariation inferred by state-space models and 

introduced in Silverman et al. (9); dimensionality reduction using Kernel ordination as in (36); 

Dirichlet process clustering of temporal patterns introduced in Gibson and Gerber (14); as well 340 

as autoregressive-based feature selection using linear mixed models introduced by Shenhav et 

al. (10) which aims to retain taxa whose trajectories are most explainable by time.  Finally, time-

series synchronization refers to the problem of aligning temporal patterns in distinct time-series 

or aligning time-series from unsynchronized experimental designs. Specifically, temporal 

alignment for microbiome data was suggested by Lugo-Martinez et al. (48) as a preprocessing 345 

step, that may improve the prediction accuracy of a Dynamic Bayesian network, similar to the 

model suggested by Larsen et al. (49).  
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. 

Other Considerations in Model Choice 

Missing observations in longitudinal microbiome studies are common and can pose a 350 

challenging modeling task by essentially interrupting the temporal chain of observations. 

Observations missing due to extraneous factors, such as issues arising during sample 

processing, are often termed missing at random and may be handled in a number of ways. 

Perhaps the most common means is by concatenating together samples on either side of 

missing observations. This practice however is discouraged as it can lead to biased inference, 355 

often increasing the inferred temporal variation especially for studies with multiple or 

consecutive missing observations. Instead we recommend that observations missing at random 

be modeled directly either through marginalization as was performed by Silverman et al. (9), or 

through the use of non-parametric kernel methods that concern themselves only with the 

distance (or conversely similarity) between observations as is the case with the methods of Äijö 360 

et al. (11) and Fukuyama et al. (36). In contrast to observations missing at random, 

observations may be missing for other reasons that may confound inference, such as censoring 

due to subject withdrawal from a study due to adverse drug reactions. This later type of missing 

observations is often termed missing not at random and often requires a combination of expert 

knowledge and special modeling techniques that are beyond the scope of this review.  365 

 Scalability is another important factor of successful inference and prediction in 

longitudinal microbiome studies. Importantly there is a balance between the scalability of a 

model and the assumptions made, where , the more covariation between parameters in a model 

and the more levels of latent variables, the more computationally intensive to infer or predict. In 

Table 1 we highlight assumptions made by each model. The difference in scalability between 370 

existing models can be large with only a subset of models providing results in a reasonable 

time-frame. However, such assumptions must be considered carefully as subtleties of these 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/448332doi: bioRxiv preprint 

https://doi.org/10.1101/448332


 

assumptions can have large impacts on results. Specially, only the models proposed by 

Shenhav et al.  (10),  Ridenhour et al. (46) and  Fukuyama et al. (36) can be applied on the 

entire microbial community, at any level of the phylogenetic tree (taxa/genus/order/family etc), 375 

while all other methods mentioned above require either some feature selection in the taxa level 

(<200) or amalgamation to a higher phylogenetic level (genus/family/order). 

Model evaluation is an important step in developing models as well as assessing their 

utility either as inferential or predictive tools. As ground truth is often unknown in many studies, 

statistical methods based on either model predictive accuracy or goodness of fit to observed 380 

data are often employed. With regards to longitudinal microbiome studies predictive metrics 

such as cross-validation which iteratively fits a model to a subset of the data and then assess  

the predictive accuracy of the fit model on the held-out samples are particularly useful. Potential 

metrics to assess the predictive accuracy of a model include the correlation between estimated 

relative abundance and the relativised counts or the distance (e.g., Euclidean, Aitchison, or 385 

arcsine) between predicted relative abundance and relativised counts (10, 11). The first 

measurement highlights the model’s ability to accurately predict the abundance along time per 

taxa, while the second measurement highlights the model’s ability to accurately predict the 

microbial community composition per time point.  Alternatively, statistical quantities such as the 

marginal log-likelihood, AIC, BIC, or WAIC can be used to assess the goodness of fit of a model 390 

to observed data (50). Typically such quantities include a penalization based on model 

complexity to mitigate overfitting.  
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Conclusions 395 

Here we have presented a review of statistical considerations in the experimental design 

and analysis of longitudinal microbiome studies. In addition to describing aspects of design and 

analysis we also presented a thorough discussion of challenges arising from the measurement 

process underlying sequence counting. In particular, we introduced how the process of 

sampling can introduce a negative correlation between counts (i.e., competition to be counted) 400 

into observed data and a consideration of technical variation and bias that can also be present. 

As part of a larger discussion on design of longitudinal microbiome studies, we introduced 

concepts relating to the distribution of sampling effort along time as well as the interplay 

between biological and technical replicates. Finally, as part of our discussion of data modeling 

we discussed considerations in data preprocessing, analytic goals, and other considerations 405 

such as missing data, scalability, and model evaluation.  

Although we have attempted to provide general guidelines regarding the design and 

analysis of longitudinal microbiome studies, these decisions must ultimately be based on the 

hypothesis and goals of a given study. For example, consider the following two studies. Study A 

aims to identify specific microbes in a microbial community that change cyclically along host 410 

day-night cycling (38). In contrast, study B aims to identify compositional shifts of microbial 

genera in patients undergoing allogeneic hematopoietic stem cell transplantation with 

concurrent antibiotic prophylaxis  (51). Differences in the goals in studies A and B should lead to 

differences in how they approach technical noise, sampling frequency, data preprocessing, and 

modeling. For example, while study A is concerned with sub-daily variation and should likely 415 

sample at least every 6 hours, study B is more concerned with longer term trends and likely only 

needs to sampled daily. Additionally, we would expect that the effects of antibiotic treatment in 

study B would lead to larger compositional shifts than the natural day-night cycling in study A.  

Therefore, study A should be more concerned with the impact of technical variation than study 
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B. Finally, whereas study A aims to identify, with highest resolution, the taxa that may oscillate 420 

with host day-night cycles, study B is specifically interested in shifts at the level of bacterial 

genera. Therefore whereas study A should consider performing inference at the level of 

sequence variants or OTUs, study B should likely amalgamate taxa to the level of bacterial 

genera to improve statistical power and decrease computational complexity.  

Challenges in the design and analysis of longitudinal studies introduce many new 425 

avenues for future research. Perhaps the most pressing need is for scalable models that 

account for count variation and the negative correlation between taxa introduced by random 

sampling. While models based around the multinomial distribution account for these features, 

existing implementations are not scalable to larger microbiome analyses. Second, the majority 

of existing methods have focused on trajectory inference or prediction. Methods that address 430 

other questions such as trajectory classification would be of great value. Finally, there is a need 

for models that account for delayed or multi-time-step effects of perturbations as occur in 

pharmacokinetic or pharmacodynamic studies. Few current models can easily handle such 

perturbations and as such multivariate PK-PD models or models that incorporate non-linear 

transfer functions would fill a current void.  435 

 

 

 

 

 440 
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Figures and Tables 

 

Figure 1: Structural Overview of this Review - statistical considerations of longitudinal 

microbiome data with a thorough discussion of: the measurement process underlying sequence 445 

counting (Section 1), the experimental design of longitudinal microbiome studies (Section 2) and 

modeling of longitudinal microbiome data (Section 3).  

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 20, 2018. ; https://doi.org/10.1101/448332doi: bioRxiv preprint 

https://doi.org/10.1101/448332


 

 

Figure 2: Effects of random sampling can lead to spurious conclusions in longitudinal studies. 450 

(A) A longitudinal study of 30 microbial taxa  was simulated over 20 time-points. At time 10 a 

simulated prebiotic was given. 10 taxa in group 1 were simulated to grow rapidly in response to 

the prebiotic. 10 taxa in group 2 were simulated to grow moderately (half the response of group 

1) in response. 10 Taxa in group 3 were simulated to have no response. (B) Each sample was 

randomly sampled to even sequencing depth and the resulting counts. This type of subsampling 455 

simulates the sample pooling step performed in multiplex sequencing where the DNA from each 

sample is subsampled to even depth to provide even coverage of sequencing depth across 

samples. Notably, bacteria in group 2 and 3 now display a marked and spurious decline in 

response to the prebiotic. Even the majority of those bacteria in group 1 that did not have the 

largest effect now appear to show no increase in response to the prebiotic. This effect reflects 460 

the competition to be counted that is introduced by random sampling.  
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 465 

Figure 3: Random sampling limits inferences to the relative abundances of different microbial 

taxa and induces negative correlation into the observed data that may lead to spurious 

conclusions. Panels A and B illustrates sampling (red square) from two microbial ecosystems 

with three types of bacteria (depicted as orange circles, green squares, and blue triangles). In 

Panel A, measuring three orange taxa reflects only an arbitrary sample size (not the absolute 470 

abundance of the orange taxa). In contrast, measuring three orange and five blue taxa provides 

information on the ratio of orange to blue taxa in the entire ecosystem. Panel B depicts sampling 

from an ecosystem that is identical to that in Panel A but with an increase in the absolute 

number of the green taxa. As overall sampling size is fixed, it is likely that a random sample will 

count fewer orange and blue taxa and more green taxa. Compared to Panel A researchers may 475 

then be led to believe that Panel B contains more green and less blue and orange taxa whereas 

in reality only the green has changed. Even if the sample size in Panel B was not the same as in 

Panel A spurious conclusions may be reached.  

 

  480 
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Name and Summary Tasks Measurement Model 

Highlighted 

Assumptions Software Scalability 

Missing 

Data 

Multiple 

Time-Series 

Poisson ARIMA (46) Inference and Prediction of long-term 

trends, high-order temporal 

dependency 

Poisson (1) No relative constraints 

(2) Dynamics are 

Log-Linear 

ARIMA(1,0,0) 

(only) offered by 

the authors upon 

request 

++ No No 

MTV-LMM (10) - Linear 

Mixed Models with 

Variance Components 

Inference and Prediction of long-term 

trends, high-order temporal 

dependency, and metadata 

covariates; Feature selection 

Transformed 

Multivariate Normal 

(e.g., Standard, Log, 

or Logistic) 

(1) No count noise (2) 

Dynamics are Linear or 

Log-Linear 

R Package ++ Yes Yes 

Adaptive gPCA (36) Inference of Low dimensional 

structure in observed data 

Transformed 

Multivariate Normal 

(e.g., Standard, Log, 

or Logistic) 

(1) No count noise (2) No 

temporal correlation 

between samples (3) User 

defined kernel 

R Package ++ Yes Yes 

MDSINE 2.0 (14) - 

Bayesian Ecological 

Interaction Model with 

Clustering 

Inference and Prediction of First-order 

autoregressive trajectories with 

metadata covariates; Clustering taxa 

based on dynamics 

Negative Binomial for 

counts, Univariate 

Normal for qPCR 

(1) qPCR reflects microbial 

load (2) First order 

temporal dynamics only (3) 

Dynamics are Log-Linear 

None + Yes Yes 

GP Microbiome (11) - 

Bayesian Generalized 

Gaussian Processes 

Inference and Prediction of any 

smoothly varying trajectory 

Multinomial - Logistic 

Normal 

(1) Zero Inflation "Shot 

Noise" is present and 

independent for each 

count in the dataset. (2) 

Stationarity 

Command Line 

interface to Stan 

– Yes No 

MALLARD (9) - 

Bayesian Generalized 

Dynamic Linear Model 

Inference and prediction of long term 

trends, high-order temporal 

dependency, metadata covariates, 

and identification and denoising of 

technical variation and bias 

Multinomial - Logistic 

Normal 

(1) Dynamics are 

Log-Linear 

Stan code 

implementing 

MALLARD with 

time-invariant 

covariance 

– Yes Yes 

Table 1: Comparison of six currently available tools for modeling longitudinal microbiome studies. Other notes: 1) adaptive gPCA                  

does not provide a method of prediction, but rather a low-rank representation; 2) only GP Microbiome and MALLARD model a                    

competition to be counted in the sampling process; 3) GP Microbiome can only model stationary dynamics as a result of its radial                      

basis function kernel.  
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