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Abstract

Recent investigation indicated that latent reservoir and immune impairment are
responsible for the post-treatment control of HIV infection. In this paper, we simplify
the disease model with latent reservoir and immune impairment and perform a series of
mathematical analysis. We obtain the basic infection reproductive number R0 to
characterize the viral dynamics. We prove that when R0 < 1, the uninfected equilibrium
of the proposed model is globally asymptotically stable. When R0 > 1, we obtain two
thresholds, the post-treatment immune control threshold and the elite control threshold.
The model has bistable behaviors in the interval between the two thresholds. If the
proliferation rate of CTLs is less than the post-treatment immune control threshold, the
model does not have positive equilibria. In this case, the immune free equilibrium is
stable and the system will have virus rebound. On the other hand, when the
proliferation rate of CTLs is greater than the elite control threshold, the system has
stable positive immune equilibrium and unstable immune free equilibrium. Thus, the
system is under elite control.

Author summary

In this article, we use mathematical model to investigate the combined effect of latent 1

reservoir and immune impairment on the post-treatment control of HIV infection. By 2

simplifying an HIV model with latent reservoir and immune impairment, and performing 3

mathematical analysis, we obtain the post-treatment immune control threshold and the 4

elite control threshold for the HIV dynamics when R0 > 1. The HIV model displays 5

bistable behaviors in the interval between the two thresholds. We illustrate our results 6

using both mathematical analysis and numerical simulation. Our result is consistent 7

with recent medical experiment. We show that patient with low proliferation rate of 8

CTLs may undergo virus rebound, and patient with high proliferation rate of CTLs may 9

obtain elite control of HIV infection. We perform bifurcation analysis to illustrate the 10

infection status of patient with the variation of proliferation rate of CTLs, which 11

potentially explain the reason behind different outcomes among HIV patients. 12
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Introduction 13

In 2010, an HIV-infected mother gave birth to a baby prematurely in a Mississippi 14

clinic. The infant was known as the ‘Mississippi baby’. Before delivery, the mother was 15

not diagnosed with HIV infection did not receive antiretroviral treatment [26]. At the 16

age of 30 hours, the baby received liquid, triple-drug antiretroviral treatment. Such 17

treatment was terminated at the age of 18 months and since then, the virus level in the 18

baby remains undetectable. Though it was thought that the baby was cured of HIV, a 19

routine clinical test on July 10, 2014 showed that the level of virus in the ‘Mississippi 20

baby’ became detectable (16,750 copies/ml) [26]. 21

Antiretroviral therapy (ART) is effective in inhibiting the HIV infection and 22

prolongs the life of infected individuals. However, due to the existence of latent 23

reservoirs, it is unable to totally eliminate the virus infection[7, 8, 12, 13, 48]. The time 24

it takes the virus to rebound varies. For example, the virus level of the Mississippi baby 25

remains undetectable for years before the virus rebound [26, 30]. Sometimes, a host may 26

have low virus load after antiretroviral therapy. Investigations have been carried out to 27

reveal the causes of low virus level and virus rebound[9, 30, 38]. 28

Conway and Perelson constructed a mathematical model to investigate the dynamics 29

of virus rebound [9]. Their investigation reveals the interplay between immune response 30

and latent reservoir, and shows that post-treatment control may appear. Recent 31

investigations indicated that early antiretroviral therapy may be responsible for the 32

development of post-treatment control with plasma virus remaining undetectable after 33

the cessation of treatment. However, only a small proportion of patients receiving early 34

antiretroviral therapy developed post-treatment control. Further investigations are to be 35

carried out to reveal the reasons behind this. 36

Treasure et al investigated the HIV rebound in patients who terminated the 37

antiretroviral therapy. They showed that a patient who discontinued the antiretroviral 38

therapy may or may not undergo immediate HIV rebound[38]. 39

As an important approach to investigate disease transmission, mathematical 40

modeling provides insights into interactions between viral and host factors. Evaluating 41

the behaviors of the viral models yields a better understanding of the disease and is 42

beneficial to the development of appropriate therapy strategies. In the literature, 43

mathematical models of within-host viral dynamics have been designed 44

[1, 3, 10, 11, 15, 27–29, 44–46]. Immune response has also been integrated into within 45

host models to investigate the combined effects of viral dynamics and immune process 46

of the host [6, 16, 23, 36, 40, 41, 43, 49]. 47

Regoes et al. [32] incorporated immune impairment into viral models to consider the 48

effects that target cell limitation and immune responses have on the evolution of virus. 49

Their investigations indicated that the immune system of the host may collapse when 50

the impairment rate of HIV surpasses its threshold value. Iwami et al. [17, 18] 51

investigated the HIV dynamics with immune impairment using mathematical models. 52

The authors got the ‘risky threshold’ and ‘immunodeficiency threshold’ by performing 53

analysis. The results implied that the immune system always collapses when the 54

impairment rate is greater than the threshold value. Immune impairment in within-host 55

virus models have received much attention in the literature [2, 37, 39]. 56

HIV latent reservoir is responsible for the rebound in HIV viral load. As a major 57

barrier to the eradication of HIV-1 virus, latent reservoir poses persistent risks to the 58

hosts. The infected cells in the latent reservoir remain undetectable to the immune 59

system and can be reactivated to produce virions with the termination of drug therapy 60

[19, 20, 33, 34, 42]. Investigations showed that the size of the virus reservoir is relatively 61

stable [42]. For a patient under sufficient antiretroviral therapy (ART), ongoing viral 62

replication rate in the reservoir remains low [19]. However, for infected individuals 63

under ART of lower efficiency, there might be coexistence of latent reservoir and virus. 64
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Rong and Perelson [34] performed a thorough study on the replenishment of the latent 65

reservoir induced by latently infected cells that are occasionally reactivated. The 66

authors indicated that such scenario corresponds to the half-life of the latent reservoir. 67

Post-treatment control of HIV attracted the attention of researchers. Conway and 68

Perelson integrated the post treatment into an HIV model and performed analysis [9]. 69

Here, we simplify the model proposed in [9] to obtain 70

dx(t)
dt = s− dx(t)− (1− ε)βx(t)y(t),

dL(t)
dt = αL(1− ε)βx(t)y(t) + (ρ− a− dL)L(t),

dy(t)
dt = (1− αL)(1− ε)βx(t)y(t) + aL(t)
−δy(t)− py(t)z(t),

dz(t)
dt = cy(t)z(t)

1+ηy(t) − bz(t)−my(t)z(t),

(1.1)

where x denotes the concentration of activated CD4+ T cells, L latently infected cells, y 71

productively infected CD4+ T cells and z the immune cells. The effectiveness of both 72

drug classes is represented by ε ∈ [0, 1]. Here ε is also known as the overall treatment 73

effectiveness of HIV. If the treatment is terminated, ε = 0. If the therapy is 100% 74

effective, we have ε = 1 [9, 33]. 75

In the literature, the immune and immune impairment function cyz
1+ηy − bz −myz 76

has been applied to the viral models to characterize the interaction between the immune 77

cells and the productively infected CD4+ T cells [11, 31, 39]. Wang and Liu [39] 78

constructed a within-host viral dynamics models to consider HIV infection with immune 79

impairment. In this article, we consider the post-treatment immune control, the 80

biological implication behind the ‘Mississippi baby’. By mathematical analysis, we 81

obtain the threshold of proliferation rate of CTLs, which determines the HIV infection 82

status. We also perform bifurcation analysis and demonstrate the bistable behavior of 83

the model, which is consistence with results from recent medical trial. 84

1 Preparation 85

In this section, we perform mathematical analysis for the model (1.1). We prove the 86

positiveness and boundedness of the solutions to system (1.1) and calculate the 87

equilibria of the model. 88

1.1 Positiveness and boundedness 89

In the following, we show that system (1.1) is well-posed. 90

Theorem 2.1. System (1.1) has a unique nonnegative solution with initial values 91

(x(0), L(0), y(0), z(0)) ∈ R4
+, where R4

+ = {(x1, x2, x3, x4)|xj ≥ 0, j = 1, 2, 3, 4}. 92

Furthermore, the solution is bounded. 93

Proof. It follows from the fundamental theory of ordinary differential equations [14] 94

that there exists a unique solution to system (1.1) with nonnegative initial conditions. 95

For any nonnegative initial data, let t1 > 0 be the first time when x(t1) = 0. From 96

the first equation of (1.1) we have that ẋ(t1) = s > 0, which implies that x(t) < 0 for 97

t ∈ (t1 − ε1, t1), where ε1 is an arbitrarily small positive constant. This is a 98

contradiction. Therefore, x(t) is always positive. Since z = 0 is a constant solution of 99

the last equation of (1.1), it follows from the fundamental existence and uniqueness 100

theorem that z > 0 for all t > 0. 101

Suppose there is a first time t2 > 0 when y(t2)z(t2) = 0. Then we have 102

(i) L(t2) = 0, y(t) ≥ 0 for t ∈ [0, t2], or 103

(ii) y(t2) = 0, L(t) ≥ 0 for t ∈ [0, t2]. 104
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For case(i), since x(t) is positive, it follows from the variation of constants formula 105

that L(t2) = L(0) + e−
∫ t2
0 (a+dL−ρ)dξ

∫ t2
0
αL(1− ε)βx(ξ)y(ξ)dξ > 0, which is in 106

contradiction to L(t2) = 0. 107

For case (ii), the third equation of system (1.1) implies that 108

y(t2) = y(0) + e
∫ t2
0 [(1−αL)(1−ε)βx(ξ)−δ−pz(ξ)]dξ ∫ t2

0
aL(ξ)dξ > 0, which is in contradiction 109

to y(t2) = 0. Thus, L(t) and y(t) are always positive. 110

Next, we expatiate upon the boundedness of solutions of (1.1). Let 111

K(t) = σx(t) + aL(t) + (a+ dL − ρ)y(t) +
p(a+ dL − ρ)z(t)

c−m
,

where σ = aαL + (1− αL)(a+ dL − ρ). Since all solutions of (1.1) are positive, we have 112

dK
dt = σ

[
s− dx− (1− ε)βxy

]
+a
[
αL(1− ε)βxy + (ρ− a− dL)L

]
+(a+ dL − ρ)

[
(1− αL)(1− ε)βxy

+aL− δy − pyz
]

+p(a+dL−ρ)
c−m

(
cyz
1+ηy − bz −myz

)
≤ σs− σdx− (a+ dL − ρ)δy − p(a+dL−ρ)

c−m bz

< σs− σrK,

where r = min
{
d
σ ,

δ
σ ,

b
δ

}
> 0. Let ϕ denote the solution to the following system 113

dϕ

dt
= σs− σrϕ,

ϕ0 = σx0 + aL0 + (a+ dL − ρ)y0 +
p(a+ dL − ρ)z0

c−m
,

where x0, y0 and z0 are the initial values of system (1.1) and ϕ0 = K0 > 0. We then 114

obtain limt→+∞ sup ϕ(t) = s
r . By comparison theorem [35], we get K(t) < ϕ(t). 115

Therefore, x(t), L(t), y(t) and z(t) are bounded. 116

1.2 Equilibria 117

In this section, we consider the existence of the equilibria to system (1.1). 118

(i) If R0 < 1, system (1.1) only has an infection-free equilibrium E0 = ( sd , 0, 0, 0),
where

R0 =
sβ(1− ε)[aαL + (1− αL)(a+ dL − ρ)]

dδ(a+ dL − ρ)

is the basic infection reproductive number. Here, R0 is the expected number of newly 119

infected cells generated from an infected cell at the beginning of the infectious process. 120

(ii) If R0 > 1, system (1.1) also has an immune-free equilibrium E1 = (x1, L1, y1, 0),
where

x1 = δ(a+dL−ρ)
β(1−ε)[aαL+(1−αL)(a+dL−ρ)] ,

L1 = αLβ(1−ε)x1y1
a+dL−ρ ,

y1 = d(R0−1)
β(1−ε) .

Solving equation cy
1+ηy − b−my = 0 yields two positive roots, given by 121

c1 = m+ bη − 2
√
bmη and c2 = m+ bη + 2

√
bmη. We then get the existence conditions 122

for the positive equilibria. 123
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(iii) If R∗− > 1 and c > c2, system (1.1) has an immune equilibrium
E∗− = (x∗−, L

∗
−, y

∗
−, z

∗
−). If R∗+ > 1 and c > c2, system (1.1) has an immune equilibrium

E∗+ = (x∗+, L
∗
+, y

∗
+, z

∗
+) as well. Here

x∗± = s
d+β(1−ε)y∗±

,

L∗± =
αL(1−ε)βx∗

±y
∗
±

a+dL−ρ ,

y∗± =
−B∓
√
B2−4bmη

2mη ,

z∗± =
δ(R∗

±−1)
p ,

B = m+ bη − c,

R∗− = 2mηsβ(1−ε)
δ(a+dL−ρ)

[aαL+(a+dL−ρ)(1−αL)]

{2mηd+β(1−ε)[c−m−bη−
√

(c−m−bη)2−4bmη]}
,

and
R∗+ = 2mηsβ(1−ε)

δ(a+dL−ρ)
[aαL+(a+dL−ρ)(1−αL)]

{2mηd+β(1−ε)[c−m−bη+
√

(c−m−bη)2−4bmη]}
.

Denote

c∗ = m+ bη +
2dmη(R0 − 1)

β(1− ε)
,

c∗∗ = m+ bη +
bβ(1− ε)
d(R0 − 1)

+
dmη(R0 − 1)

β(1− ε)
and

Rc = 1 +
β(1− ε)

√
bmη

dmη
.

We then have the following results. 124

Lemma 1.1. R0 > Rc > 1⇔ c∗ > c∗∗. 125

Proof.
c∗ > c∗∗ ⇔ dmη(R0−1)

β(1−ε) > bβ(1−ε)
d(R0−1) ,

⇔ R0 > 1 + β(1−ε)
√
bmη

dmη = Rc.

Lemma 1.2. (i) R0 > Rc > 1⇔ c∗ > c2. (ii) 1 < R0 < Rc ⇔ c∗ < c2. 126

Proof.
c∗ > c2 ⇔ dmη(R0−1)

β(1−ε) >
√
bmη,

⇔ R0 > 1 + β(1−ε)
√
bmη

dmη = Rc.

c∗ < c2 ⇔ dmη(R0−1)
β(1−ε) <

√
bmη,

⇔ R0 < 1 + β(1−ε)
√
bmη

dmη = Rc.

Lemma 1.3. (i) Assume 1 < R0 < Rc. If R∗− > 1, then c > c∗∗. (ii) Assume 127

R0 > Rc > 1. If R∗− > 1, then c > c2. 128

Proof. 129

R∗− > 1 ⇔ sβ(1−ε)[aαL+(a+dL−ρ)(1−αL)]
δ(a+dL−ρ)

> d+ β(1−ε)
2mη [c−m− bη −

√
(c−m− bη)2 − 4bmη],

⇔
√

(c−m− bη)2 − 4bmη > c−m− bη − 2dmη
β(1−ε) (R0 − 1),

⇔
√

(c−m− bη)2 − 4bmη > c− c∗.

If c < c∗ and one of the conditions c < c1 or c > c2 holds, then R∗− is always greater 130

than one. If c > c∗, solving
√

(c−m− bη)2 − 4bmη > c− c∗ yields c > c∗∗. 131

(i) If 1 < R0 < Rc, then c∗ < c2. From R∗− > 1, we can deduce that c > c∗∗. 132

(ii) If R0 > Rc > 1, then c∗ > c2. From R∗− > 1, we can deduce that c > c2. 133

October 16, 2018 5/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/448308doi: bioRxiv preprint 

https://doi.org/10.1101/448308
http://creativecommons.org/licenses/by/4.0/


Lemma 1.4. (i) If 1 < R0 < Rc, then R∗+ > 1 has no solution. (ii) Assume that 134

R0 > Rc > 1. If R∗+ > 1, then c2 < c < c∗∗. 135

Proof. 136

R∗+ > 1 ⇔ sβ(1−ε)[aαL+(a+dL−ρ)(1−αL)]
δ(a+dL−ρ)

> d+ β(1−ε)
2mη [c−m− bη +

√
(c−m− bη)2 − 4bmη],

⇔ −(c−m− bη) + 2dmη
β(1−ε) (R0 − 1) >

√
(c−m− bη)2 − 4bmη,

⇔ c∗ − c >
√

(c−m− bη)2 − 4bmη.

(i) If 1 < R0 < Rc, then c∗ < c2. Thus R∗+ > 1 has no solution. (ii) If R0 > Rc > 1, 137

then c∗ > c2. Solving R∗+ > 1, we have c2 < c < c∗∗. 138

By Lemma 2.1∼2.4, summing up the above analysis yields the existence results of 139

the equilibria of system (1.1) 140

Theorem 1.2 141

(i) System (1.1) always has an infection-free equilibrium E0. 142

(ii) If R0 > 1, system (1.1) also has an immune-free equilibrium E1. 143

(iii) If 1 < R0 < Rc and c > c∗∗, system (1.1) has only one positive equilibrium E∗+. 144

(iv) If R0 > Rc > 1 and c2 < c < c∗∗, system (1.1) has two positive equilibria E∗− 145

and E∗+. While R0 > Rc and c > c∗∗, system (1.1) has only one positive equilibrium E∗+. 146

The existence of the positive equilibria of the model is summarized in Tables 1 and 2. 147

Table 1. The existence of the positive equilibria when 1 < R0 < Rc.

c2 < c < c∗∗ c > c∗∗

E∗− — exist
E∗+ — —

Table 2. The existence of the positive equilibria when R0 > Rc > 1.

c2 < c < c∗∗ c > c∗∗

E∗− exist exist
E∗+ exist —

2 Stability analysis 148

In this section, we consider the stability of the equilibria of system (1.1). 149

Let Ẽ be any arbitrary equilibrium of system (1.1). Its corresponding Jacobian 150

matrix is obtained as 151

J =


J11 0 J13 0
J21 J22 J23 0
J31 J32 J33 J34
0 0 J43 J44

 ,
where 152
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J11 = −d− β(1− ε)ỹ,
J13 = −β(1− ε)x̃,
J21 = αLβ(1− ε)ỹ,
J22 = ρ− a− dL,
J23 = αL(1− ε)βx̃,
J31 = (1− αL)β(1− ε)ỹ,
J32 = a,
J33 = (1− αL)β(1− ε)x̃− δ − pz̃,
J34 = −pỹ,
J43 = cz̃

(1+ηỹ)2 −mz̃,
J44 = cỹ

1+ηỹ − b−mỹ.

The characteristic equation of the linearized system of (1.1) at Ẽ is given by 153

|λI − J | = 0. (3.1)

2.1 Stability analysis of Equilibrium E0 154

Theorem 2.1. If R0 < 1, then the infection-free equilibrium E0 of system (1.1) is 155

locally asymptotically stable. If R0 > 1, then E0 is unstable. 156

Proof. For equilibrium E0(x0, 0, 0, 0), the characteristic equation (3.1) reduces to 157

(λ+ d)(λ+ b)(λ+ a+ dL − ρ)[λ+ δ − (1− αL)(1− ε)βx0] = 0. (3.2)

It is easy to see that equation (3.2) has two negative roots, obtained as 158

λ1 = −d, λ2 = −b. (3.3)

The other eigenvalues are determined by 159

λ2 + a1λ+ a2 = 0, (3.4)

where 160

a1 = a+ dL − ρ+ δ[1− (1−αL)(1−ε)βx0

δ ],

a2 = (a+ dL − ρ)− asβαL(1−ε)
d

−aβ(1− ε)[δ − (1− αL)(1− ε)βx0]

= δ(a+ dL − ρ)(1−R0).

(3.5)

If R0 < 1, we have a1 > 0 and a2 > 0, and as such equation (3.4) has two negative 161

roots. Thus, E0 is locally stable for R0 < 1. 162

If R0 > 1, from (3.5) we know that E0 is a saddle, and hence unstable. The proof of 163

Theorem 3.1 is complete. 164

Theorem 2.2. If R0 < 1, then the infection-free equilibrium E0 of system (1.1) is 165

globally asymptotically stable. 166

Proof. Define a function

V =
1

2
(x− x0)2 +AL+By +

pB

c−m
z,

where A and B are undetermined positive coefficients. It is easy to see that V is a 167

positive Lyapunov function. Evaluating the time derivative of V along the solution of 168
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system (1.1) yields 169

V̇ |(1.1) = (x− x0)[s− dx− (1− ε)βxy]

+A[αL(1− ε)βxy − (a+ dL − ρ)L]

+B[(1− αL)(1− ε)βxy + aL− δy − pyz]

+
pB

c−m
(
cyz

1 + ηy
− bz −myz)

= (x− x0)[dx0 − dx− (1− ε)βxy
+(1− ε)βx0y − (1− ε)βx0y]

+AαL(1− ε)βxy −A(a+ dL − ρ)L

+B(1− αL)(1− ε)βxy

+BaL−Bδy −Bpyz +
pB

c−m
cyz

1 + ηy(t)

− pB

c−m
bz − pB

c−m
myz

≤ −(d+ (1− ε)βy)(x− x0)2

−[x0 −AαL −B(1− αL)](1− ε)βxy
−[Bδ − (1− ε)βx20]y

−[A(a+ dL − ρ)−Ba]L

−(Bp−Nc+Nm)yz −Nbz.

If we choose 170

A =
x0

(1− αL)[a+dL−ρa + αL

1−αL
]
,

B =
A(a+ dL − ρ)

a
,

then 171

x0 −AαL −B(1− αL) ≥ 0,

Bδ − (1− ε)βx20 ≥ 0,

A(a+ dL − ρ)−Ba ≥ 0.

Thus, if R0 ≤ 1, then V̇ |(1.1) ≤ 0. Since x, L, y, z are positive, we have V̇ = 0 if and only 172

if (x, L, y, z) = (x0, 0, 0, 0). Therefore, it follows from the classical Krasovskii-LaSalle 173

principle [21, 22] that E0 is globally asymptotically stable. 174

Biologically, the global asymptotic stability of the uninfected equilibrium E0 of 175

system (1.1) implies that the virus will die out in the host if the treatment is strong 176

enough to ensure R0 < 1. 177

2.2 Stability analysis of Equilibrium E1 178

Now we consider the stability of equilibrium E1. 179

Theorem 3.3. Suppose that the immune-free equilibrium exists (i.e., R0 > 1). When 180

0 < c < c∗∗, E1 is locally asymptotically stable. When c > c∗∗, E1 is unstable. 181

Proof. The characteristic equation of the linearized system of (1.1) at E1 is given by 182

(λ3 + b1λ
2 + b2λ+ b3)

( cy1
1 + ηy1

− b−my1
)

= 0,

where 183

October 16, 2018 8/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/448308doi: bioRxiv preprint 

https://doi.org/10.1101/448308
http://creativecommons.org/licenses/by/4.0/


b1 = d+ (1− ε)βy1 + a+ dL − ρ︸ ︷︷ ︸
1○

+
aαL(1− ε)βx1
a+ dL − ρ︸ ︷︷ ︸

2○

,

b2 = d(a+ dL − ρ+ aL1

y1
) + (1− ε)βaL1

+ (1− ε)βy1(a+ dL − ρ)︸ ︷︷ ︸
3○

+ (1− ε)βx1(1− αL)(1− ε)βy1︸ ︷︷ ︸
4○

,

b3 = aαL(1− ε)βx1(1− ε)βy1
+(a+ dL − ρ)(1− ε)βx1(1− aL)(1− ε)βy1.

Clearly, 184

1○× 4○ + 2○× 3○− b3 = 0.

Thus, we have b1b2 − b3 > 0. We then consider the sign of the eigenvalue 185

λ =
cy1

1 + ηy1
− b−my1

=
− dmη
β(1−ε) (R0 − 1)2 + (c−m− bη)(R0 − 1)− bβ(1−ε)

d

[β(1− ε) + dη(R0 − 1)]/d
,

which is determined by
∆ = (c−m− bη)2 − 4bmη.

Let ∆ = 0, we have c = c1 or c = c2. 186

(i) If ∆ = 0, then c = c1 or c = c2, which is a critical situation. 187

(ii) If ∆ < 0, then c1 < c < c2, and we have λ < 0. 188

(iii) If ∆ > 0, then c < c1 or c > c2. To get λ < 0, we must ensure c < m+ bη and 189

R0 < 1 +R1, or R0 > 1 +R2. Meanwhile, from R0 < 1 +R1 and R0 > 1 +R2, we have 190

c < c∗∗. Here R1,2 =
β(1−ε)

[
(c−m−bη)∓

√
(c−m−bη)2−4bmη

]
2dmη . In view of c2 < c∗∗, if 191

c < m+ bη or c2 < c < c∗∗, then the eigenvalue λ < 0. If c > c∗∗, we have λ > 0. 192

In summary, if c < c2 or c2 < c < c∗∗, then λ < 0. By the Routh-Hurartz criterion, 193

for R0 > 1, if c < c2 or c2 < c < c∗∗, the equilibrium E1 of system (1.1) is locally 194

asymptotically stable. If c > c∗∗, E1 is unstable. 195

Biologically, if the proliferation rate of CTLs is less than the critical value c∗∗, the 196

viral load can be at high level. 197

2.3 Stability analysis of positive equilibria 198

In this subsection, we consider the stability of the positive equilibria. Here, we use 199

E∗ = (x∗, L∗, y∗, z∗) to denote a positive equilibrium of system (1.1). 200

Theorem 3.4. 201

(i) Assume A3(A1A2 −A3)−A2
1A4 > 0. If 202

(A.1) 1 < R0 < Rc and c > c∗∗, or 203

(A.2) R0 > Rc > 1 and c > c2, 204

system (1.1) has an immune equilibrium E∗−, which is a stable node. 205

(ii) If R0 > Rc > 1 and c2 < c < c∗∗, system (1.1) also has an immune equilibrium 206

E∗+, which is an unstable saddle. 207
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Proof. The characteristic equation of the linearized system of (1.1) at an arbitrary 208

positive equilibrium E∗ is given by 209

λ4 +A1λ
3 +A2λ

2 +A3λ+A4 = 0,

where 210

A1 = a+ dL − ρ+ d+ β(1− ε)y∗ + aL∗

y∗ ,

A2 = (a+ dL − ρ)
[
d+ β(1− ε)y∗

]
+aL∗

y∗

[
d+ β(1− ε)y∗

]
+ py∗z∗

[
c

(1+ηy∗)2 −m
]

+(1− αL)(1− ε)βx∗(1− ε)βy∗,
A3 = aL∗

y∗ (a+ dL − ρ)(1− ε)βy∗

+py∗z∗
[

c
(1+ηy∗)2 −m

][
a+ dL − ρ+ d+ β(1− ε)y∗

]
+(1− αL)(1− ε)βx∗(1− ε)βy∗(a+ dL − ρ),

A4 = py∗z∗(a+ dL − ρ)
[

c
(1+ηy∗)2 −m

][
d+ β(1− ε)y∗

]
.

Then we have 211

A1A2 −A3 = aL∗

y∗ d(a+ dL − ρ) + (aL
∗

y∗ )2
[
d+ β(1− ε)y∗

]
+aL∗

y∗ py
∗z∗
[

c
(1+ηy∗)2 −m

]
+aL∗

y∗ (1− αL)(1− ε)βx∗(1− ε)βy∗

+(a+ dL − ρ)
[
a+ dL − ρ+ d+ β(1− ε)y∗

]
×
[
d+ β(1− ε)y∗

]
+ aL∗

y∗

[
d+ β(1− ε)y∗

]
×
[
a+ dL − ρ+ d+ β(1− ε)y∗

]
+(1− αL)(1− ε)βx∗(1− ε)βy∗

×
[
a+ dL − ρ+ d+ β(1− ε)y∗

]
.

(i) For equilibrium E∗−, if c > c2, we have m(
√

c
m − 1) > bη√

c
m−1

. It thus follows that 212√
(c−m− bη)2 − 4bmη > c−m− bη − 2m(

√
c
m − 1). Therefore, c

(1+ηy∗−)2 −m > 0. 213

Clearly, Ai > 0, i = 1, 2, 3 and A1A2 −A3 > 0. If A3(A1A2 −A3)−A2
1A4 > 0, by 214

Routh-Hurartz Criterion, we know that the positive equilibrium E∗+ is a stable node in 215

this case. 216

(ii) For equilibrium E∗+, if R0 > Rc > 1 and c2 < c < c∗∗, then c
(1+ηy∗+)2 −m < 0 217

and A4 < 0. Thus, equilibrium E∗+ is an unstable saddle for R0 > Rc and c2 < c < c∗∗. 218

By Theorem 3.3 and Theorem 3.4, we have the following result. 219

Theorem 3.5. If R0 > Rc > 1 and c = c2, the immune equilibrium E∗+ and E∗− 220

coincide with each other and a saddle-node bifurcation occurs when c passes through c2. 221

The stabilities of the equilibria and the behaviors of system (1.1) are summarized in 222

Tables 3 and 4.

Table 3. The stabilities of the equilibria and the behaviors of system (1.1) in the case
1 < R0 < Rc. Here, c∗∗ is the critical value, and we assume A3(A1A2−A3)−A2

1A4 > 0.

E0 E1 E∗− E∗+ System (1.1)
R0 < 1 GAS — — — Converges to E0

1 < R0 < Rc, 0 < c < c∗∗ US LAS — — Converges to E1

1 < R0 < Rc, c
∗∗ < c US US LAS — Converges to E∗+

223
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Table 4. The stabilities of the equilibria and the behaviors of system (1.1) in the case
R0 > Rc > 1. Here, c2, c

∗ and c∗∗ are critical values, and c2 is a saddle-node bifurcation
point. Here we assume A3(A1A2 −A3)−A2

1A4 > 0.

E0 E1 E∗− E∗+ System (1.1)
R0 < 1 GAS — — — Converges to E0

R0 > 1, 0 < c < c2, US LAS — — Converges to E1

R0 > Rc > 1, c2 < c < c∗∗ US LAS LAS US Bistable
R0 > Rc > 1, c∗∗ < c < c∗ US US LAS US Converges to E∗+
R0 > Rc > 1, c > c∗∗ US US LAS — Converges to E∗+

3 Sensitive analysis and numerical simulations 224

3.1 Sensitive analysis 225

Sensitive analysis provides insights into the basic infection reproductive number R0 with 226

respect to system parameters [47]. In this section, we use latin hypercube sampling 227

(LHS) and partial rank correlation coefficients (PRCCs) [4, 24] to reveal the dependence 228

of the basic infection reproduction number R0 on a variety of system parameters. As a 229

statistical sampling method, LHS provides efficient analysis of parameter variations 230

across simultaneous uncertainty ranges in each parameter [4]. PRCC, which is obtained 231

from the rank transformed LHS matrix and output matrix [24], indicates the 232

parameters that have the most significant influences on the behaviors of the model. In 233

this work, we perform 4000 simulations per run. We use a uniform distribution function 234

to test the PRCCs for a variety of system parameters. 235

The PRCC results of the model, Fig. 1, illustrate the dependence of R0 on different 236

system parameters. The estimations of the distributions for R0 is approximately a 237

normal distribution. We use |PRCC| as an index to test if the parameter has important 238

correlation with the infection reproduction number R0. If |PRCC| > 0.4, we say that 239

the correlation is strong. If 0.4 ≥ |PRCC| > 0.2, we say that the correlation is moderate. 240

For 0.2 ≥ |PRCC| > 0, there correlation is weak. As is shown in Fig. 1, the general rate 241

of CD4+ T cells s, the decay rate of CD4+ T cells d, the infection rate of CD4+ T cells 242

β, the drug efficacy ε and the latently infected cell death rate dL have significant 243

influence on the infection reproduction number R0. 244

3.2 Numerical simulations 245

In this section, we carry out numerical simulations to consider the HIV dynamics of our 246

model. The parameter values are listed in Table 5. We then calculate the thresholds 247

R0 ≈ 3.0030 > 1, Rc ≈ 1.4243, c2 ≈ 0.2914 and c∗∗ ≈ 0.4988. Notice that 248

A3(A1A2 −A3)−A2
1A4 = 8.9125× 10−011 > 0. We then get the bistable interval 249

(0.2914, 0.4988). In this case, when c < c2, the immune-free equilibrium E1 is stable. 250

When c2 < c < c∗∗, the immune-free equilibrium E1 and the positive equilibrium E∗+ 251

are stable. When c > c∗∗, only the positive equilibrium E∗+ is stable. 252

Fig.2 shows that there is no positive equilibrium if c < 0.2914 and a saddle-node 253

bifurcation appear when c passes through 0.2914. The system display bistable behavior 254

for 0.2914 < c < 0.4988. As an example, we simulate the time history of the system for 255

c = 0.45 ∈ (0.2914, 0.4988) with different initial conditions (see Fig. 3). We find that, 256

with the same parameter values and different initial conditions, the system may 257

converge to different equilibriums. Such simulation result is consistent with recent clinic 258

trial performed by Treasure et al [38]. 259
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We also consider the influence of system parameters on the elite control threshold 260

c∗∗ by PRCCs. Fig.4 shows that the immune impairment rate of virus m and the 261

proliferation rate of latently infected cells ρ are positively correlated with the elite 262

control threshold c∗∗. On the other hand, the death rate of infected cells δ has negative 263

correlation with the elite control threshold c∗∗. It thus follows that decreasing immune 264

impairment rate m is beneficial for obtaining post-treatment immune control. Decrease 265

the immune impairment rate m and the proliferation rate of latently infected cells ρ, and 266

increasing the death rate of infected cells δ are beneficial for the host to get elite control. 267

4 Discussion 268

In this paper, we investigate the viral dynamics of a simplified within host model. By 269

performing mathematical analysis and numerical simulations, we obtain the 270

post-treatment immune control threshold and the elite control threshold. We get 271

conditions for the model to reach post-treatment immune control and elite control. 272

The expression of the post treatment control threshold implies that the immune 273

impairment rate of virus m has positive correlation with the post treatment control 274

threshold . Early initiation of ART after infection allows PTC by limiting the size of 275

latent reservoir. A patient with latent HIV reservoir small enough may obtain adaptive 276

immune response to prevent viral rebound (VR), and thus has controlled infection 277

Conway and Perelson [9]. 278

Sensitive analysis and numerical simulations imply that decreasing the immune 279

impairment rate is beneficial for the host obtain post-treatment immune control and the 280

elite control. A comprehensive HIV treatment involving decreasing the immune 281

impairment rate of virus, decay rate of CTLs and effector cell production Hill function 282

scaling allows the host to obtain elite control efficiently. 283

The proliferation rate of latently infected cells ρ plays an important role in the elite 284

control. It is worth carrying out further investigation to reveal the viral dynamics of the 285

within host model with logistic proliferation rate of latently infected cells, given by 286

system (5.1). 287

dx(t)
dt = s− dx(t)− (1− ε)βx(t)y(t),

dL(t)
dt = αL(1− ε)βx(t)y(t)− (a+ dL)L(t)

+ρL(t)(1− L(t)
Lmax

),
dy(t)
dt = (1− αL)(1− ε)βx(t)y(t) + aL(t)
−δy(t)− py(t)z(t),

dz(t)
dt = cy(t)z(t)

1+ηy(t) − bz(t)−my(t)z(t),

(5.1)

Using the same method of analyzing system (1.1), we can get theoretical results. 288

Here, we carry out numerical simulations to show its bistable behaviors. As shown in 289

Fig.5, if we choose parameters listed in Table 5 and Lmax = 50, system (5.1) displays 290

bistable behaviors. 291
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Table 5. Parameters for the model.

Symbol Description Value Reference

s Proliferation rate of CD4+ T cells 10 cells /µ L/ day [5]

d Decay rate of CD4+ T cells 0.01 day−1 [5]

β Infection rate of CD4+ T cells 0.015 µ L / day –
ε Drug efficacy 0.8 –
αL Fraction of newly infected cells that become latently infected 0.001 –

ρ Proliferation rate of latently infected cells 0.0045 day−1 [9]

a Activation rate 0.001 day−1 [9]

dL Latently infected cell death rate 0.004 day−1 [9]

δ Infected cell death rate 1 day−1 [25]

p Killing rate of infected CD4+ T cells 0.42 day−1 –

c Proliferation rate of CTLs 0.45 day−1 –
η Effector cell production Hill function scaling 1 cells/µ L –

b Decay rate of CTLs 0.1 day−1 –
m Immune impairment rate of viral 0.05 cells /µ L / day –
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Fig 1. Partial rank correlation coefficients for R0 and the frequency distribution of R0. The
parameters are shown in Table 5.
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Fig 2. Bistability and saddle-node bifurcation diagram of system (1.1). Here c = 0.2914 is a
saddle-node bifurcation (SN) point. The bistable interval is (0.2914, 0.4988). The parameter values are
shown in Table 5. There are three phases in this figure. In phase I (0 < c < c2), the system has virus
rebound. In phase II (c2 < c < c∗∗), the system has bistable behavior. In phase III (c > c∗∗), the
system is under elite control.
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Fig 3. Time history of system (1.1) for c = 0.45 (c2 < c < c∗∗). All the other parameter values are
listed in Table 5. The trajectories of system (1.1) converge to different equilibria for different initial
values, i.e., system (1.1) has bistable behavior. The initial values are x(0) = 600, L(0) = 13, y(0) = 20,
z(0) = 1 (blue) and x(0) = 600, L(0) = 13, y(0) = 20, z(0) = 20 (red).
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Fig 5. Time history of system (5.1). The trajectories of system (5.1) converge to different equilibria
for different initial values, i.e., system (5.1) has bistable behavior. The initial values are x(0) = 600,
L(0) = 13, y(0) = 20, z(0) = 1 (blue) and x(0) = 600, L(0) = 13, y(0) = 20, z(0) = 20 (red). The
parameter values are shown in Table 5.
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