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13 Abstract

14 Research in applied ecology provides scientific evidence to guide conservation policy and 

15 management. Applied ecology is becoming increasingly quantitative and model selection via 

16 information criteria has become a common statistical modeling approach. Unfortunately, 

17 parameters that contain little to no useful information are commonly presented and interpreted as 

18 important in applied ecology. I review the concept of an uninformative parameter in model 

19 selection using information criteria and perform a literature review to measure the prevalence of 

20 uninformative parameters in model selection studies applying Akaike’s Information Criterion 

21 (AIC) in 2014 in four of the top journals in applied ecology (Biological Conservation, 

22 Conservation Biology, Ecological Applications, Journal of Applied Ecology). Twenty-one 

23 percent of studies I reviewed applied AIC metrics. Many (31.5 %) of the studies applying AIC 

24 metrics in the four applied ecology journals I reviewed had or were very likely to have 

25 uninformative parameters in a model set. In addition, more than 40 % of studies reviewed had 

26 insufficient information to assess the presence or absence of uninformative parameters in a 

27 model set. Given the prevalence of studies likely to have uninformative parameters or with 

28 insufficient information to assess parameter status (71.5 %), I surmise that much of the policy 

29 recommendations based on applied ecology research may not be supported by the data analysis. I 

30 provide warning signals and a decision tree to help reduce the prevalence of uninformative 

31 parameters in studies applying model selection with information criteria. The four warning 

32 signals and decision tree should assist authors, reviewers, and editors to screen for uninformative 

33 parameters in studies applying model selection with information criteria. In the end, careful 

34 thinking at every step of the scientific process and greater reporting standards are required to 

35 detect uninformative parameters in studies adopting an information criteria approach.
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39 Introduction

40 Conservation biology emerged as a crisis discipline in the 1970s in response to evidence of 

41 widespread declines in biodiversity [1]. Along with the evolution of new technologies (e.g. 

42 Remote Sensing, Geographic Information Systems) and increasing availability of environmental 

43 (e.g. Land-use) and biodiversity (e.g. species occurrence records) data, the discipline has 

44 developed into a rigorous quantitative science [2-4]. These advances in methods and data allow 

45 applied ecologists to tackle complex problems at larger temporal and spatial scales than before. 

46 The application of quantitative analyses and the interpretation of these analyses in applied 

47 ecology is particularly important as research in this field often informs policy and management 

48 practices [5-7]. 

49 Around the same time as the field of conservation biology was emerging, Akaike [8] was 

50 paving the way for the broad application of the information criteria (IC) approach to statistics for 

51 evaluating data-based evidence for multiple working hypotheses [9,10]. Model selection using 

52 IC is now a common type of analysis in applied ecology (Fig 1). This statistical approach 

53 encourages a priori development of multiple working hypotheses and presents formal methods 

54 for weighing the evidence supporting the different hypotheses [see reviews in 10-12]. As with 

55 any quantitative method, there are many challenges and ways to misuse IC techniques and recent 

56 work has highlighted some important issues in the application of IC in ecology, evolution, 

57 wildlife management and conservation biology. For example, Galipaud et al. [13] show how 

58 model averaging using the sum of model weights can overestimate parameter importance and 
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59 Mac Nally et al. [14] present a plea for including absolute measures of model goodness-of-fit 

60 when possible as the top ranked model determined by IC may not be a “good” model. In 

61 addition, several researchers have called on the need for independent model validation [14-16] 

62 and better reporting of methods and results to facilitate critical evaluation of research 

63 conclusions (i.e. greater transparency [17]). Here, I focus on one issue in IC; uninformative 

64 parameters (sensu [18]). Uninformative parameters have received some attention in the literature 

65 [e.g. 11,18-20] but this issue is still prevalent in applied ecology. 

66 INSERT FIGURE 1 HERE

67 Figure 1. Summary of the use of IC and prevalence of uninformative parameters in articles 

68 reviewed from four top applied ecology journals (Biological Conservation, Conservation 

69 Biology, Ecological Applications, Journal of Applied Ecology). Articles were classified into four 

70 different categories for the prevalence of uninformative parameters in model sets – see main text 

71 for description of categories. Note that many papers in these journals do not use statistical 

72 analyses (e.g. essays). UP = uninformative parameter.

73 An “uninformative parameter” (sensu [18]) also known as a “pretending variable” (sensu 

74 [9,11]), is a variable that has no relationship with the response, makes little to no improvement in 

75 the log-likelihood of a model (i.e. model fit) but can be included in a model ranked close to 

76 models with informative parameters based on IC. Interpreting uninformative parameters as 

77 important is a Type I error in statistics (i.e. false-positive [21]). If the interpretation of 

78 uninformative parameters as important is common, particularly in policy and management 

79 related fields such as conservation biology or medicine, then the policy recommendations of 

80 research may not be supported by the data analysis. What is more, poor data analysis and 

81 interpretation can lead to the natural selection of bad science (sensu [22]). My objectives are 
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82 twofold; i) review and operationalize the concept of an uninformative parameter in model 

83 selection using IC and ii) quantify the prevalence of uninformative parameters in model selection 

84 using IC in applied ecology. Based on the results, I end with recommendations for how to screen 

85 for uninformative parameters in model selection studies using IC. 

86 Identifying uninformative parameters

87 In this section, I provide background on model selection using IC and formally present the 

88 concept of an uninformative parameter in this context. A clear definition of this concept is 

89 essential before presenting the methods and results of the quantitative review of uninformative 

90 parameters in model selection using IC in applied ecology. 

91 Several IC exist for assessing the weight the evidence in support of different hypotheses 

92 formulated as competing statistical models [9] but I focus on the most commonly applied tool, 

93 Akaike’s Information Criterion (AIC) and related variations (e.g. AICc). AIC is defined as

94 AIC = -2 log L + 2K

95 where L is the likelihood of the model given the data and K is the number of estimated 

96 parameters in the model. K is included as a penalty for adding additional parameters to the 

97 model, therefore AIC prioritizes parsimonious models. It is customary practice in model 

98 selection with IC to rank competing models from lowest to highest AIC or more specifically to 

99 rank models based on the AIC which is the difference in AIC between a focal model and the 

100 model with the lowest AIC [9]. Top ranked models are models with a AIC = 0. Models with 

101 AIC < 2 are often considered equally supported or not differentiable from the top ranked model 

102 [9]. It is easy to see that two models (subscript 1 and 2) having identical log L (i.e. same fit to the 

103 data) but differing only by 1 estimated parameter (i.e. K1 – K2 = 1) will have a difference in AIC 

104 = 2. Given identical log L, the model with the additional parameter will have a larger AIC than 
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105 the model with one less parameter and therefore the model with one additional parameter will be 

106 ranked below the simpler model. Likewise, models with identical log L and differing by 2 

107 estimated parameters will have a difference in AIC = 4, and so on. 

108 Uninformative parameters occur when there are nested models or more specifically, more 

109 complex versions of simpler models, in a model set [11,18,23-25]. Importantly, if the log L of a 

110 model has not improved with the addition of a parameter, it is likely that this additional 

111 parameter does not improve model fit and should be considered an uninformative parameter. 

112 However, if adding a parameter to a model improves the model fit, then the log L will increase 

113 and the AIC will decrease (i.e. the model with the extra parameter will be ranked above the 

114 model with one less parameter). See Table 1 for an illustration of uninformative parameters from 

115 some recent empirical research. Next, I outline the warning signals for uninformative parameters 

116 and summarize these warning signs in a decision tree that can be used to formally identify 

117 uninformative parameters in IC analyses (Fig 2). 

118
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119 Table 1 Here, I illustrate uninformative parameters from a real example derived from analyses in Yalcin and Leroux [26]. The 

120 objective of this study was to assess the relative and combined effects of land-use change and climate change on the colonization and 

121 extinction of species. We used a case study in Ontario, Canada where birds were surveyed in standardized grids during two time 

122 periods (1981-1985 and 2001-2005). Below I provide results for a subset of the colonization models of one of the study species, black-

123 throated blue warbler (Setophaga caerulescens). In the colonization model, the black-throated blue warbler is observed as absent in a 

124 grid in the first time period and the response is warbler absence (0) or presence (1) in the second time period. We selected covariates 

125 based on a priori hypotheses. These covariates measured changes in land-use (% change in land-cover in each grid (%LCC), % 

126 change in land-cover in 20km buffers surrounding each grid (%LCCb) and change in Net Primary Productivity (∆NPP)) and climate 

127 (change in mean winter temperature (∆MWT), change in mean summer temperature (∆MST), and change in mean winter precipitation 

128 (∆MWP)) during the time period between bird sampling. All models include sampling effort (SE) in order to control for variable 

129 sampling effort across grids and between time periods. Yalcin and Leroux [26] fit generalized linear models with a binomial error 

130 structure and a logit link for local colonization models for the black-throated blue warbler. See for full details on data, methods, and 

131 hypotheses pertaining to each covariate used in these models. Table 1 provides a summary of AIC model selection results and 

132 parameter estimates (95% Confidence Interval) for a sub-set of the colonization models considered for this species. By following the 

133 decision tree in Fig 2, Yalcin and Leroux [26] identified the variable %LCCb is an uninformative parameter in models 2, 4, and 6. 

Model SE ∆NPP %LCC %LCCb ∆MST ∆MWT ∆MWP K log L AICC *Pseudo R2

1 0.30 0.06 0.04 0.25 -2.54 6 -276.14 0.00 0.28
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(0.24,0.39) (0.03,0.09) (0.02,0.06) (0.10,0.40) (-4.64,-0.46)

2 0.30

(0.24,0.39)

0.06

(0.03,0.09)

0.04

(0.01,0.06)

0.00

(-0.05,0.05)

0.25

(0.10,0.41)

-2.54

(-4.65,-0.47)

7 -276.14 2.00 0.28

3 0.30

(0.22,0.39)

0.05

(0.02,0.08)

0.25

(0.10,0.41)

-2.06

(-4.23,-0.09)

0.07

(0.02,0.12)

6 -278.18 4.07 0.27

4 0.30

(0.22,0.38)

0.05

(0.02,0.08)

0.03

(-0.02,0.07)

0.29

(0.12,0.45)

-2.04

(-4.23,-0.12)

0.07

(0.01,0.12)

7 -277.63 4.97 0.27

5 0.30

(0.22,0.38)

0.06

(0.04,0.09)

0.32

(0.18,0.46)

0.08

(0.03,0.13)

5 -279.95 5.61 0.26

6 0.30

(0.22,0.38)

0.06

(0.04,0.09)

0.03

(-0.02,0.07)

0.35

(0.20,0.50)

0.08

(0.03,0.13)

6 -279.34 6.39 0.26

Intercept 1 -344.09 125.91 0.00

134 *McFadden’s pseudo R2

135
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136 INSERT FIGURE 2 HERE

137 Figure 2. Decision tree for identifying models with uninformative parameters in a model set 

138 based on warning signals (see main text). This decision tree was used to assess the prevalence of 

139 uninformative parameters in top applied ecology journals (see Quantitative review). Note that the 

140 particular cut-off for the first step will vary based on the IC used (see main text).

141 Here I focus on cases where one additional estimated parameter may be an uninformative 

142 parameter but the logic also applies for cases where a model contains two additional estimated 

143 parameters and both may be uninformative parameters. These warning signals should be 

144 assessed in sequence (i.e. they build on each other, Fig 2). An uninformative parameter may exist 

145 in a model set if:

146 1. there are two models that differ by one estimated parameter that are within AIC ≤ 2 of 

147 each other. Authors must screen all possible model pairs in a model set (i.e. not just top 

148 ranked models) as a parameter may not be uninformative in every model in which it 

149 appears given varying levels of multi-collinearity among covariates. Note that different 

150 IC metrics will yield slightly different cut-off points for detecting this first warning 

151 signal. For example, based on AICc (AICc = AIC + ) and a sample size (n) of 30, 
2𝐾2 + 2𝐾
𝑛 ‒ 𝐾 ‒ 1

152 two models with identical log L and differing by only 1 parameter will have AICc = 

153 2.21. Consequently, the particular cut-off for this first warning signal should be 

154 considered in light of the specific IC metric used.

155 2. the model with one additional parameter (as outlined in warning signal 1) is ranked below 

156 the model with one less parameter (i.e. less parsimonious model AIC > more 

157 parsimonious model AIC). This suggests that the model with one additional parameter 

158 does not have a much better fit (i.e. log L) than the simpler model.
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159 3. the models identified in warning signals 1 and 2 have virtually identical log L. Nearly 

160 identical log L suggests that the additional parameter is not contributing to improving 

161 model fit. This warning signal is subjective as there will be very few cases where the log 

162 L of two different models are identical. Consequently, authors must decide what is a 

163 sufficient difference to demonstrate that the added parameter contains useful information 

164 about the data. A strength of model selection with IC is that it allows researchers to use 

165 all available information to draw inference [9]. If authors are too strict in the cut-off for 

166 what they consider useful information, then authors risk losing inferential power. To 

167 avoid committing a Type I error, it may be best to err on the side of caution and to lose 

168 some information than to mis-interpret uninformative parameters as useful information. 

169 Given log L is a relative measure based on the data, there is no specific cut-off to 

170 determine if log L are similar. In lieu of a specific cut-off, researchers should assess 

171 parameter estimates and confidence intervals as a final step to identify uninformative 

172 parameters (see warning signal 4 [18]).

173 4. the additional parameter identified from warning signals 1-3 has a parameter estimate 

174 near zero with a confidence interval overlapping 0 [11,18,20,27]. A parameter estimate 

175 near zero suggests that there is no relationship between this variable and the response 

176 variable. Arnold [18] and Galipaud et al. [20] provide specific guidance on confidence 

177 interval interpretations for identifying uninformative parameters. 

178 By sequentially searching for the above warning signals, authors can identify all possible 

179 uninformative parameters in a model set (Fig 2). In order for readers of scientific papers to 

180 independently assess these warning signals, it follows that authors must provide all information 

181 required to interpret model selection with IC analyses.
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182 While some recent research has demonstrated issues with uninformative parameters 

183 usually as part of broader studies [11,18,20,25,27], none have documented the prevalence of 

184 uninformative parameters in applied ecology and focused on solutions. Next, I provide a 

185 quantitative review of the prevalence of uninformative parameters in four of the top journals in 

186 applied ecology. 

187 Methods

188 I reviewed all 2014 articles in four of the top journals in applied ecology; Biological 

189 Conservation, Conservation Biology, Ecological Applications, and Journal of Applied Ecology 

190 for evidence of uninformative parameters. Specifically, I downloaded every article for each 

191 journal and I searched for the terms AIC or Akaike Information Criterion. I retained all articles 

192 with the term AIC in it. Following this first pass, I removed all articles that did not apply AIC in 

193 their analysis (i.e. they just mention AIC in the text). 

194 I determined the presence or absence of uninformative parameters by systematically 

195 searching for the four warning signals in the order listed in the previous section and outlined in 

196 the decision tree (Fig 2). For warning signal 1, I only focused on pairs of models that differ by 

197 AIC ~ 2 and one estimated parameter. I used AIC ~ 2 as a cut-off as different articles used 

198 different AIC metrics (e.g. AIC, AICc, qAIC). I did not focus on cases where two models differ 

199 by 2 or more parameters (i.e. differ by AIC ~ 4) – so my assessment of the prevalence of 

200 uninformative parameters is a minimum or conservative estimate. In many cases, authors did not 

201 provide sufficient information to fully determine if a model set included a model with an 

202 uninformative parameter. For example, AIC tables or estimates of model coefficients were often 

203 absent and when AIC tables were provided, key information such as the number of estimated 

204 parameters (K) or log L were often omitted. Consequently, I identified four possible 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 19, 2018. ; https://doi.org/10.1101/448191doi: bioRxiv preprint 

https://doi.org/10.1101/448191
http://creativecommons.org/licenses/by/4.0/


12

205 uninformative parameter outcomes for each article in the study; i) articles with uninformative 

206 parameters, ii) articles with no uninformative parameters, iii) articles very likely to have 

207 uninformative parameters, iv) articles with insufficient information to identify uninformative 

208 parameters. These possible outcomes can be interpreted as follows. An article was classed as 

209 outcome i) if it had all four warning signals and outcome ii) if it did not have one of the warning 

210 signals. I assumed that the occurrence of one model with one uninformative parameter was 

211 sufficient to classify an article as having uninformative parameters. In most cases where there 

212 was one model with confirmed or very likely uninformative parameters, there were many models 

213 with uninformative parameters in the model set. I do not, however, report on the number of 

214 uninformative parameters per article. An article was classified as outcome iii) if it had the first 

215 three warning signals and as outcome iv) if there was insufficient information to assess any of 

216 the warning signals. 

217 The article classification followed a two-step process. In the first step, two reviewers with 

218 experience in model selection with IC (lead author and A. Tanner (MSc working with lead 

219 author)) independently placed each article into one of the four outcomes listed above. In step 

220 two, the lead author reviewed the independent responses and flagged any articles with 

221 disagreement between reviewers (n = 16 or 9 % of studies). Then the lead author re-read and re-

222 assigned each article that had initial disagreement between reviewers. I extracted the following 

223 information from each article: basic article information (authors, title, journal, issue, pages), IC 

224 used (i.e. AIC, AICc, qAIC), the presence or absence of AIC, parameter estimates, model 

225 averaging, and stepwise IC and the uninformative parameter ranking (i.e. yes, no, very likely, 

226 insufficient information). All data are available online [28]. 

227 Results 
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228 The literature review revealed 329, 187, 163, and 182 articles published in 2014 in Biological 

229 Conservation, Conservation Biology, Ecological Applications, and Journal of Applied Ecology, 

230 respectively (Table 2). From this total, there were 87 (26 %), 22 (12 %), 33 (20 %), 39 (21 %) 

231 articles from Biological Conservation, Conservation Biology, Ecological Applications, and 

232 Journal of Applied Ecology, respectively that used AIC metrics in their analysis (Table 2, Fig 1). 

233 While only 21 % of articles (n = 181 / 861) in these journals apply AIC, many papers in these 

234 journals do not use statistical analyses (e.g. essays). 

235 Table 2 Summary statistics (number and percentage of articles) of uninformative parameter 

236 assessment for four top journals in applied ecology. Articles were classified into four different 

237 categories for the prevalence of uninformative parameters in model sets – see main text for 

238 description of categories. The number of articles and percent of articles reported are compared to 

239 the subset of articles with AIC per journal, except in the final row which reports the totals across 

240 all journals. UP = uninformative parameter.

Number of articles (%) with

Journal (Total # in 2014) Total # 

(%) with 

AIC

UP very 

likely UP

no UP insufficient 

information

Biological Conservation (329) 87(26) 7(8) 20(23) 25(29) 35(40)

Conservation Biology (187) 22(12) 1(5) 7(32) 5(23) 9(41)

Ecological Applications (163) 33(20) 0(0) 8(24) 8(24) 17(51)

J. of Applied Ecology (182) 39(21) 3(8) 11(28) 12(31) 13(33)

Total (861) 181(21) 11(6) 46(25) 50(28) 74(41)

241
242
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243  Across all journals there was at least one model with an uninformative parameter in an 

244 article’s model set in 6 % of cases and no model with an uninformative parameter in an article’s 

245 model set in 28 % of cases. Only 4 % of articles self-identified uninformative parameters and 

246 removed them from their model set. Biological Conservation and Journal of Applied Ecology 

247 had the highest percentage of articles adopting an AIC approach where the presence or absence 

248 of uninformative parameters could be confirmed (Table 2). This statistic goes hand in hand with 

249 the fact that these two journals had the lowest percentage of articles with insufficient information 

250 to assess uninformative parameters, albeit these percentages were still high (Biological 

251 Conservation = 40 %, Journal of Applied Ecology = 33 %). Ecological Applications had no 

252 confirmed cases of models with uninformative parameters but it also had the highest percentage 

253 of articles with insufficient information to identify uninformative parameters (51 %, Table 2). 

254 Note that in many cases, there is no possibility for uninformative parameters as a model set may 

255 be very simple with a null model (i.e. intercept only) and one additional model with one fixed 

256 effect or a set of non-nested models (i.e. models with no overlapping parameters). For example, 

257 Barnes et al. [29]’s model set to investigate the response of dung beetle communities to land-use 

258 management in Afromontane rainforests in Nigeria included four non-nested models and 

259 therefore there is no possibility for uninformative parameters in their model set. Consequently, 

260 the percentage of studies with no uninformative parameters should be higher than the percentage 

261 of studies with uninformative parameters.

262 In 23 to 32 % (grand mean 25 %) of articles across the four journals there was evidence 

263 that uninformative parameters were very likely based on the information presented in the article 

264 (i.e. warning signals 1-3 were confirmed, Fig 1). Altogether, nearly 1/3 (31.5 %) of all articles 
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265 considered had or were very likely to have models with an uninformative parameter in the model 

266 set (Table 2, Fig 1). 

267 Discussion

268 Applied ecologists are increasingly being called on to support evidence-based 

269 environmental and natural resource management. The evidence we provide, therefore, must be 

270 based on sound empirical design, statistical analyses, and interpretations of these analyses [5]. In 

271 this study, I conducted a quantitative review of the prevalence of uninformative parameters in 

272 model selection using IC in applied ecology. My review revealed two main findings with 

273 potential impacts on the field of applied ecology; i) many articles applying model selection with 

274 IC in this study had or were very likely to have at least one model in a model set with one 

275 uninformative parameter (Table 2, Fig 1) and ii) many articles had insufficient information to 

276 identify uninformative parameters in their model set. These two issues stand to reduce the 

277 validity of inference drawn from statistical analyses applying model selection using IC in applied 

278 ecology.

279  In many of the articles reviewed herein, uninformative parameters were reported as 

280 important and often interpreted as such. For example, Biological Conservation [30 – author 

281 names withheld] report the following results for two competing models (i.e. y ~ time; y ~ time + 

282 weather) of florican (Sypheotides indicus) detection in semiarid grasslands in India: “The time 

283 model had smallest AICc value, more precise effect (β = 0.62Mean ± 0.31SE) and parsimony than 

284 the time and weather model (ΔAICc = 1.54, β = 0.56 ± 0.31 [time], 0.28 ± 0.34 [weather]). Time 

285 had stronger influence (AICc–wt = 0.61) than weather (AICc–wt = 0.31) on display frequency...”. 

286 The two models differ by one parameter, have almost identical log L (i.e. differ by 0.69) and the 

287 parameter estimate for weather overlaps zero. In this case, weather is an uninformative parameter 
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288 and weather should be removed from the model set and presented as having little to no support 

289 (i.e. not interpreted as important). In contrast to this example many of the papers that did have 

290 uninformative parameters did not interpret these parameters as important. For example, Rudolphi 

291 et al. [31] have many uninformative parameters in their model sets to investigate the impacts of 

292 logging on bryophytes and lichens. However, they restrict their interpretation to parameters with 

293 95 % confidence estimates that do not overlap zero. 

294 The quantitative review revealed that more than 40 % of all articles had insufficient 

295 information to identify uninformative parameters (Table 2, Fig 1). This lack of transparency in 

296 reporting of methods and results has been highlighted previously [e.g. 10,17,32,33]. The missing 

297 information ranged from not reporting the number of parameters or log L per model, to not 

298 reporting parameter estimates, and in many cases not presenting any AIC table. 

299 Based on my findings, I present the following recommendations for reducing erroneous 

300 interpretation of uninformative parameters from model selection studies in applied ecology. 

301 First, once authors have identified all uninformative parameters in a model set, I recommend that 

302 all models with uninformative parameters be removed from the model set and that the model 

303 removal be noted in the results section (see discussion of full reporting below; [11,18]). In some 

304 cases, the top model may include an uninformative parameter uncovered elsewhere in the IC 

305 table and in such cases, the original top model should be removed from the model set. Models 

306 with interaction terms (i.e. X1 * X2) where a component (e.g. X1) of the interaction is an 

307 uninformative parameter in the model set should be retained because a parameter may be 

308 informative (i.e. improve model fit) once it is in interaction with another parameter. However, if 

309 an interaction term is an uninformative parameter, then all models with the full interaction term 

310 should be removed from the model set. The type of variable (i.e. continuous or categorical) will 
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311 influence the approach to removing models with uninformative parameters. Continuous variables 

312 and categorical variables with two levels usually have one estimated parameter and advice for 

313 removal of uninformative parameters above can be followed. Categorical variables with more 

314 than 2 levels will have n – 1 estimated parameters where n is the number of levels. It is possible 

315 that one level of a multi-level categorical variable is uninformative but others are informative. In 

316 these cases, authors should retain the categorical variable but interpret the results for every level 

317 making a clear distinction between the informative and uninformative levels. 

318 Second, a solution to detecting and removing uninformative parameters from analyses is 

319 to report sufficient information to assess the warning signals of uninformative parameters (see 

320 Fig 2, [11,18]). Proper reporting of quantitative analyses should be a default in scientific 

321 research. Transparency will allow peer review to help identify uninformative parameters at 

322 various stages of the review process. At minimum, papers using model selection with IC must 

323 report AIC tables with K, log L, ΔAIC, absolute measure of goodness-of-fit (see [14]) and 

324 parameter estimates with some measure of confidence intervals for all models [9,10]. 

325 Abbreviated AIC tables (i.e. models with AIC < 8) may occur in the main text as per Burnham 

326 et al. [10] but the AIC table for the full model set prior to removal of models with uninformative 

327 parameters should be placed in supplement. Graphical presentations of modeled relationships 

328 also may be useful for understanding relationships [34,35] and detecting uninformative 

329 parameters.

330 As described in Arnold [18], authors must not sacrifice full reporting when removing 

331 models with uninformative parameters. Specifically, authors should present all models in the 

332 methods and report the presence of uninformative parameters and subsequent model removal in 

333 the results. If done correctly, readers should be able to identify all models considered by authors 
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334 and the particular parameters that were uninformative. Examples for clear reporting of all models 

335 considered and removal of uninformative parameters can be seen in Devries et al. [36], Fondell 

336 et al. [37], Beauchesne et al. [38] and Fitzherbert et al. [39].

337 Third, some IC techniques are more prone to uninformative parameters than others and 

338 steering away from such approaches can help reduce the occurrence of uninformative 

339 parameters. Cade [40] and Galipaud et al. [13,20] convincingly demonstrate the perils of model 

340 averaging by summed IC weights (but see [41]). Most articles considered in the quantitative 

341 review which used model averaging by summed AIC weights were very likely to have 

342 uninformative parameters. For example, Conservation Biology [42– author names withheld] 

343 present summed AIC weights for several models with uninformative parameters for the effects of 

344 land-use (i.e. mining vs agriculture) on West African rainforest bird richness (see their Figs 3 

345 and 4). 

346 Stepwise AIC runs counter to the original intention of model selection with IC [9-12,21]. 

347 Stepwise AIC does not encourage the creation of a priori hypotheses and models but is rather 

348 usually applied to all possible models. Stepwise AIC was common in the studies reviewed with 

349 14% of articles using some form of stepwise AIC in their analysis. The process of fitting all 

350 possible models without a priori reason is flawed [9-12,21] and will often inflate the occurrence 

351 of uninformative parameters relative to an a priori model selection approach [27]. Note that 

352 uninformative parameters may still occur in a model set based on a priori selection of variables. 

353 However, trying all possible models will almost surely lead to more uninformative parameters. 

354 Stepwise AIC also does not allow one to assess model selection uncertainty [27] which is a 

355 critical component of multiple hypothesis testing. While stepwise AIC has critical flaws, the end 

356 result likely does not include uninformative parameters as the stepwise process ends with one top 
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357 model and models with additional variables but higher AIC would have been thrown out during 

358 the stepwise process. That said, stepwise AIC should only be used when paired with a priori 

359 selection of variables and models. 

360 Common advice to reduce uninformative parameters is to remove more complex or 

361 nested versions of simpler models in a model set [12,24,25]. This approach is not new to 

362 statistics [24] and it is commonly used in a Bayesian framework [43]. The articles in the data set 

363 that used this approach [e.g. 38,39,44] did not have uninformative parameters. Authors should 

364 think critically about nested models and only use the more complex versions of nested models if 

365 they represent a priori hypotheses for the phenomenon of interest. 

366 Conclusion

367 I provide quantitative evidence of the prevalence of uninformative parameters in IC studies in 

368 applied ecology and recommendations on how to diagnose and remove these uninformative 

369 parameters. My review focused on the most widely used IC metric; AIC, but uninformative 

370 parameters should be considered when applying other IC metrics (e.g. Bayesian Information 

371 Criterion, Deviance Information Criterion). Model selection with IC is a powerful tool to assess 

372 the evidence supporting multiple working hypotheses but only if the tool is applied correctly. 

373 Given the close connection of applied ecology to conservation policy and management, careful 

374 thinking at every step of the process from the individual researchers (i.e. study design, statistical 

375 analysis, interpretation of results), reviewers (i.e. interpretation of results, transparency in 

376 reporting), and editors is required for valid inferences to be made. Additional vigilance can be 

377 facilitated by improving the reporting standards for statistical analyses [35,45] and by screening 

378 the statistical analyses of submitted articles. In the end, researchers must be critical of results and 
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379 seek statistical advice when in doubt - biodiversity and the reputation of the field of applied 

380 ecology depends on it. 
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