
	 1	

Comprehensive	human	cell-type	methylation	atlas	reveals	origins	of	circulating	
cell-free	DNA	in	health	and	disease	
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Abstract	1	

Methylation	patterns	of	circulating	cell-free	DNA	(cfDNA)	contain	rich	information	about	recent	2	

cell	death	events	in	the	body.	Here,	we	present	an	approach	for	unbiased	determination	of	the	3	

tissue	origins	of	cfDNA,	using	a	reference	methylation	atlas	of	25	human	tissues	and	cell	types.	4	

The	 method	 is	 validated	 using	 in	 silico	 simulations	 as	 well	 as	 in	 vitro	 mixes	 of	 DNA	 from	5	

different	tissue	sources	at	known	proportions.	We	show	that	plasma	cfDNA	of	healthy	donors	6	

originates	 from	 white	 blood	 cells	 (55%),	 erythrocyte	 progenitors	 (30%),	 vascular	 endothelial	7	

cells	 (10%)	 and	 hepatocytes	 (1%).	 Deconvolution	 of	 cfDNA	 from	 patients	 reveals	 tissue	8	

contributions	 that	 agree	 with	 clinical	 findings	 in	 sepsis,	 islet	 transplantation,	 cancer	 of	 the	9	

colon,	 lung,	 breast	 and	 prostate,	 and	 cancer	 of	 unknown	 primary.	We	 propose	 a	 procedure	10	

which	 can	 be	 easily	 adapted	 to	 study	 the	 cellular	 contributors	 to	 cfDNA	 in	 many	 settings,	11	

opening	a	broad	window	into	healthy	and	pathologic	human	tissue	dynamics.	12	

	13	

Introduction	14	

Small	 fragments	 of	 DNA	 circulate	 freely	 in	 the	 peripheral	 blood	 of	 healthy	 and	 diseased	15	

individuals.	These	cell-free	DNA	(cfDNA)	molecules	are	thought	to	originate	from	dying	cells	and	16	

thus	 reflect	ongoing	cell	death	 taking	place	 in	 the	body	
1
.	 In	 recent	years,	 this	understanding	17	

has	led	to	the	emergence	of	diagnostic	tools,	which	are	impacting	multiple	areas	of	medicine.	18	

Specifically,	next	generation	sequencing	of	fetal	DNA	circulating	in	maternal	blood	has	allowed	19	

non-invasive	prenatal	testing	(NIPT)	of	fetal	chromosomal	abnormalities	
2,	3
;	detection	of	donor-20	

derived	DNA	in	the	circulation	of	organ	transplant	recipients	can	be	used	for	early	identification	21	

of	graft	rejection	
4,	5

;	and	the	evaluation	of	mutated	DNA	in	circulation	can	be	used	to	detect,	22	

genotype	 and	 monitor	 cancer	
1,	 6

.	 These	 technologies	 are	 powerful	 at	 identifying	 genetic	23	

anomalies	in	circulating	DNA,	yet	are	not	informative	when	cfDNA	does	not	carry	mutations.	24	

A	key	limitation	is	that	sequencing	does	not	reveal	the	tissue	origins	of	cfDNA,	precluding	the	25	

identification	 of	 tissue-specific	 cell	 death.	 The	 latter	 is	 critical	 in	 many	 settings	 such	 as	26	

neurodegenerative,	 inflammatory	or	 ischemic	diseases,	not	 involving	DNA	mutations.	 Even	 in	27	

oncology,	 it	 is	 often	 important	 to	 determine	 the	 tissue	 origin	 of	 the	 tumor	 in	 addition	 to	28	

determining	its	mutational	profile,	for	example	in	cancers	of	unknown	primary	(CUP)	and	in	the	29	

setting	of	early	cancer	diagnosis	
7
.	Identification	of	the	tissue	origins	of	cfDNA	may	also	provide	30	

insights	into	collateral	tissue	damage	(e.g.	toxicity	of	drugs	in	genetically	normal	tissues),	a	key	31	

element	in	drug	development	and	monitoring	of	treatment	response.	32	

Several	 approaches	 have	 been	 proposed	 for	 tracing	 the	 tissue	 sources	 of	 cfDNA,	 based	 on	33	

tissue-specific	 epigenetic	 signatures.	 Snyder	 et	 al.	 have	 used	 information	 on	 nucleosome	34	

positioning	in	various	tissues	to	infer	the	origins	of	cfDNA,	based	on	the	idea	that	nucleosome-35	
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free	DNA	is	more	likely	to	be	degraded	upon	cell	death	and	hence	will	be	under-represented	in	36	

cfDNA	
8
.	Ulz	et	al.	used	this	concept	to	infer	gene	expression	in	the	cells	contributing	to	cfDNA	

9
.	37	

The	latter	can	theoretically	indicate	not	only	the	tissue	origins	of	cfDNA,	but	also	cellular	states	38	

at	the	time	of	cell	death,	for	example	whether	cells	died	and	released	cfDNA	while	engaged	in	39	

the	cell	division	cycle	or	during	quiescence.	40	

An	 alternative	 approach	 is	 based	 on	 DNA	 methylation	 patterns.	 Methylation	 of	 cytosine	41	

adjacent	to	guanine	(CpG	sites)	is	an	essential	component	of	cell	type-specific	gene	regulation,	42	

and	hence	 is	a	 fundamental	mark	of	cell	 identity	
10
.	We	and	others	have	recently	shown	that	43	

cfDNA	 molecules	 from	 loci	 carrying	 tissue-specific	 methylation	 can	 be	 used	 to	 identify	 cell	44	

death	in	a	specific	tissue	
11,	12,	13,	14,	15,	16,	17,	18

.	Others	have	taken	a	genome-wide	approach	to	the	45	

problem,	and	used	the	plasma	methylome	to	assess	the	origins	of	cfDNA.	Sun	et	al	inferred	the	46	

relative	 contributions	 of	 four	 different	 tissues,	 using	 deconvolution	 of	 cfDNA	 methylation	47	

profiles	from	low-depth	whole	genome	bisulfite	sequencing	(WGBS)	
19
.	Guo	et	al	demonstrated	48	

the	potential	of	cfDNA	methylation	for	detecting	cancer	as	well	as	identifying	its	tissue	of	origin	49	

in	 two	 cancer	 types,	using	a	 reduced	 representation	bisulfite	 sequencing	 (RRBS)	 approach	
20
.	50	

Kang	 et	 al	 and	 Li	 et	 al	 described	 CancerLocator	
21
	 and	 CancerDetector

22
,	 probabilistic	51	

approaches	for	cancer	detection	based	on	cfDNA	methylation	sequencing.	52	

While	 these	 studies	 show	 the	 potential	 of	 DNA	 methylation	 in	 identifying	 the	 cellular	53	

contributions	to	cfDNA,	it	remains	to	be	seen	whether	cfDNA	methylation	can	be	analyzed	in	an	54	

unbiased	and	comprehensive	manner,	in	settings	where	it	is	unclear	which	cell	types	contribute	55	

to	cfDNA	and	which	underlying	diseases	a	patient	may	have.	To	address	this	challenge,	we	took	56	

advantage	of	the	Illumina	Infinium	methylation	array,	which	allows	the	simultaneous	analysis	of	57	

the	 methylation	 status	 of	 >450,000	 CpG	 sites	 throughout	 the	 human	 genome.	 Illumina	58	

methylation	arrays	have	been	previously	used	in	the	deconvolution	of	whole	blood	methylation	59	

profiles	to	determine	the	relative	proportions	of	white	blood	cells	in	a	sample,	a	crucial	step	in	60	

Epigenome-Wide	 Association	 Studies	 (EWAS)	
23,	 24,	 25

.	 However,	 to	 date,	 array	 deconvolution	61	

has	 been	 applied	 only	 to	whole	 blood	 samples,	 where	 all	 contributing	 cells	 are	well-studied	62	

types	of	white	blood	cells	
23
.		63	

Here	we	demonstrate	that	plasma	methylation	patterns	can	be	used	to	accurately	identify	cell	64	

type-specific	 cfDNA	 in	 healthy	 and	 pathological	 conditions.	We	 have	 generated	 an	 extensive	65	

reference	atlas	of	25	human	tissues	and	cell	types,	covering	major	organs	and	cells	involved	in	66	

common	diseases.	As	we	show,	our	approach	allows	for	a	robust	and	accurate	deconvolution	of	67	

plasma	methylation	 from	as	 little	as	20ml	of	blood,	and	using	only	a	 small	number	 (4039)	of	68	

selected	 genomic	 loci.	 We	 quantify	 the	 major	 cell	 types	 contributing	 to	 cfDNA	 in	 healthy	69	

individuals,	 and	demonstrate	 the	origins	 of	 cfDNA	 in	 islet	 transplantation,	 sepsis	 and	 cancer.	70	

We	 propose	 principles	 for	 effective	 plasma	 methylome	 deconvolution,	 including	 the	 key	71	

importance	of	a	 reference	atlas	consisting	of	cell	 type,	 rather	 than	whole-tissue	methylomes,	72	
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and	discuss	the	potential	of	global	cfDNA	methylation	analysis	as	a	diagnostic	modality	for	early	73	

detection	and	monitoring	of	disease.	74	

	75	

Results	76	

Development	of	a	DNA	methylation	atlas	77	

To	obtain	a	comprehensive	DNA	methylation	database	of	human	cell	types,	we	took	advantage	78	

of	datasets	which	were	previously	published,	either	as	part	of	The	Cancer	Genome	Atlas	(TCGA)	79	

26
	 or	 by	 individual	 groups	 that	 deposited	 data	 in	 the	 Gene	 Expression	 Omnibus	 (GEO).	 In	80	

selecting	 datasets	 to	 be	 included	 in	 the	database,	we	used	 the	 following	 criteria:	 1)	we	only	81	

used	primary	tissue	sources,	which	have	not	been	passaged	in	culture	–	reasoning	that	culture	82	

may	 change	 methylation	 patterns	 or	 alter	 the	 cellular	 composition	 of	 a	 mixed	 tissue,	 e.g.	83	

enriched	for	fibroblasts;	2)	used	the	methylomes	of	healthy	human	tissues,	which	are	expected	84	

to	be	universally	conserved	 (that	 is,	be	nearly	 identical	among	cells	of	 the	same	type,	among	85	

individuals,	throughout	life,	and	be	largely	retained	even	in	pathologies)	
27
;	3)	excluded	tissue	86	

methylomes	that	contained	a	high	proportion	of	blood-derived	DNA,	as	previously	described
28
;	87	

4)	 merged	 the	 methylomes	 of	 highly	 similar	 tissues	 (e.g.	 rectum	 and	 colon,	 stomach	 and	88	

esophagus,	 cervix	and	uterus);	 and	5)	preferred	 the	methylomes	of	 specific	 cell	 types,	 rather	89	

than	 whole	 tissues.	 We	 reasoned	 that	 since	 whole	 tissues	 are	 a	 composite	 of	 multiple	90	

heterogeneous	 cell	 types	 (e.g.	 different	 types	 of	 epithelial	 cells,	 blood,	 vasculature	 and	91	

fibroblasts),	methylation	signatures	of	minority	populations	might	be	difficult	 to	 identify,	and	92	

unique	tissue	signatures	might	be	masked	by	the	methylome	of	stroma.	Unfortunately,	other	93	

than	isolated	blood	cell	types,	the	vast	majority	of	publically	available	methylomes	comes	from	94	

bulk	tissues.	We	therefore	generated	methylation	profiles	of	key	human	cell	types,	which	have	95	

not	been	previously	published.	We	have	isolated	primary	human	adipocytes,	cortical	neurons,	96	

hepatocytes,	 lung	alveolar	 cells,	 pancreatic	beta	 cells,	 pancreatic	 acinar	 cells,	 pancreatic	duct	97	

cells,	 and	 vascular	 endothelial	 cells.	 As	 detailed	 in	 the	 Materials	 and	 Methods	 and	98	

Supplementary	File	1,	surgical	samples	from	each	tissue	were	enzymatically	dissociated,	stained	99	

with	antibodies	against	a	cell	type	of	interest,	and	isolated	using	either	flow	cytometry	(FACS)	100	

or	 magnetic	 beads	 (MACS).	 We	 then	 prepared	 DNA	 from	 sorted	 cells,	 and	 obtained	 the	101	

genome-wide	methylome	using	 Illumina	450K	or	EPIC	BeadChip	array	platforms.	The	result	of	102	

this	effort	was	a	comprehensive	human	methylome	reference	atlas,	composed	of	25	tissues	or	103	

cell	types	(Figure	1a).	104	

	105	

Deconvolution	algorithm	using	cell	type-specific	CpGs	106	

To	analyze	novel	DNA	methylation	 samples,	 composed	of	 admixed	methylomes	 from	various	107	

cell	 types,	we	devised	a	computational	deconvolution	algorithm.	We	approximate	the	plasma	108	
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cfDNA	methylation	profile	as	a	 linear	combination	of	 the	methylation	profiles	of	 cell	 types	 in	109	

the	reference	atlas.	According	to	this	model,	the	relative	contributions	of	different	cell	types	to	110	

plasma	cfDNA	can	be	determined	using	non-negative	least	squares	linear	regression	(NNLS)	
23,	

111	

29,	 30
.	 In	 addition,	 the	 relative	 contributions	 of	 cfDNA	 can	 be	 multiplied	 by	 the	 total	112	

concentration	of	 cfDNA	 in	plasma	 to	obtain	 the	absolute	concentrations	of	 cfDNA	originating	113	

from	each	cell	type	(genome	equivalents/ml)	(Figure	1b).	114	

For	 accurate	 inference,	 we	 first	 selected	 a	 subset	 of	 CpG	 sites	 in	 the	 genome	 that	 are	115	

differentially	methylated	among	the	cell	types	and	tissues	in	our	atlas.	We	chose	to	use	only	a	116	

subset	of	the	methylome	for	deconvolution	based	on	several	considerations.	First,	almost	half	117	

of	the	CpG	sites	represented	in	the	Illumina	arrays	show	similar	methylation	patterns	across	all	118	

cells	and	are	 therefore	uninformative.	Second,	we	 found	 that	using	a	 limited	subset	of	CpGs,	119	

that	are	uniquely	methylated	or	unmethylated	in	a	cell	type,	allows	one	to	detect	rare	cell	types	120	

contributing	 only	 small	 amounts	 of	 cfDNA	 and	 reduces	 false	 detection	 of	 contributors	121	

(Supplementary	Figures	1-2).	Third,	a	smaller	subset	of	genomic	regions	can	be	the	basis	of	a	122	

simpler,	capture-based	method,	increasing	the	feasibility	of	routine	use.		123	

After	removing	CpG	sites	with	 little	variance	across	cell	 types,	we	selected,	 for	each	tissue	or	124	

cell	 type	 in	 the	 atlas,	 100	 CpG	 sites	 uniquely	 hypermethylated	 and	 100	 sites	 uniquely	125	

hypomethylated	when	compared	to	other	tissues,	as	well	as	CpGs	located	adjacently	(within	50	126	

bp)	 to	 the	 originally	 selected	 set	 (Methods,	 Supplementary	 File	 1).	 This	 process	 resulted	 in	127	

~7,390	CpGs,	to	which	we	added	500	CpGs,	by	iteratively	identifying	the	two	most	similar	cell	128	

types	 in	 the	 atlas,	 and	 adding	 the	 CpG	 site	 upon	which	 these	 two	 cell	 types	 differ	 the	most	129	

(Methods,	Supplementary	File	1).	In	total,	our	selection	includes	~7,890	CpGs,	covering	~4,039	130	

genomic	regions.	We	found	this	set	of	CpGs	to	perform	favorably	on	simulated	datasets	when	131	

compared	to	other	selection	criteria,	including	the	full	set	of	CpGs	(Supplementary	Figure	1,	2).	132	

	133	

In	silico	mix-in	simulations	134	

We	 initially	 performed	 in	 silico	 experiments	 to	 assess	 the	 performance	 of	 the	 deconvolution	135	

approach	in	determining	the	relative	contributions	of	various	cell	types	to	a	methylation	profile	136	

of	DNA	from	a	heterogeneous	mixture	of	cell	types.	For	an	exhaustive	and	realistic	assessment,	137	

we	used	whole-blood	samples	 from	18	 individuals	measured	using	EPIC	 Illumina	arrays
31
.	We	138	

then	 computationally	 mixed-in	 methylation	 profiles	 of	 individual	 samples	 of	 cell	 types	 and	139	

tissues	 at	 varying	 admixtures,	 reapplied	 the	 feature	 selection	 and	 deconvolution	 algorithms	140	

using	an	atlas	from	which	the	individual	mixed-in	sample	was	removed.	We	then	compared	the	141	

actual	 percentage	with	 the	predicted	one.	We	 simulated	 such	data	 for	 every	 cell	 type	 in	 the	142	

reference	methylation	atlas,	except	 for	white	blood	cells,	at	mixing	 levels	varying	 from	0%	to	143	

10%	(in	1%	intervals)	across	36-180	replicates	(18	independent	 leukocyte	samples,	times	2-10	144	

replicates	 for	each	 cell	 type).	As	 shown	 in	 Figure	2a,	 the	deconvolution	algorithm	performed	145	
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well	for	almost	all	cell	types.	Most	cell	types	were	accurately	detected	when	composing	>1%	of	146	

the	mixture,	with	many	cell	types	detected	even	below	1%	(Supplementary	Figure	1).	147	

Importantly,	 almost	 no	 non-leukocyte	 cells	 (<0.25%)	 were	 detected	 at	 mixing	 level	 of	 0%	148	

(namely,	 analysis	 of	 pure	 leukocytes)	 (Figure	 2a,	 leftmost	 side	 of	 each	 plot;	 Supplementary	149	

Figure	 1).	 In	 preliminary	 analysis	 we	 noticed	 that	 some	 confusion	might	 occur	 between	 cell	150	

types	 of	 similar	 developmental	 origin	 (e.g.	 cervix/uterus,	 stomach/esophagus,	 colon/rectum),	151	

and	 therefore	 have	 merged	 these	 samples	 in	 the	 reference	 atlas	 (Methods).	 Overall	 the	152	

confusion	between	cell	types	was	minimal,	as	shown	using	confusion	matrices	(Supplementary	153	

Figure	3,	4).	154	

	155	

Cell-type	vs	whole-tissue	reference	methylomes	156	

	We	 then	 tested	 the	 importance	 of	 using	 cell	 type-specific	 versus	 tissue-specific	 or	 cell-line	157	

derived	 methylomes.	 A	 reference	 methylation	 atlas	 containing	 the	 methylome	 of	 purified	158	

hepatocytes	outperformed	atlases	 containing	either	whole	 liver	or	HepG2	hepatoma	cell	 line	159	

methylomes,	with	the	former	leading	to	overestimation	of	hepatocyte	in	the	mixture,	and	the	160	

latter	 leading	 to	 a	 gross	 underestimation	 (Figure	 2b).	 Similarly,	 an	 atlas	 containing	 the	161	

methylomes	of	purified	pancreatic	cells	(acinar,	duct	and	beta	cells)	was	superior	 in	detecting	162	

pancreatic	DNA	within	blood,	compared	to	a	reference	atlas	containing	the	methylome	of	the	163	

whole	 pancreas,	 with	 the	 latter	 being	 ineffective	 in	 detecting	 small	 contributions	 (<2%)	 of	164	

pancreatic	 DNA	 (Figure	 2c).	 These	 findings	 support	 the	 feasibility	 of	 highly	 sensitive	165	

deconvolution	 of	 the	 plasma	 methylome,	 and	 highlight	 the	 importance	 of	 using	 a	166	

comprehensive,	 cell	 type-specific	 DNA	 methylation	 atlas	 for	 sensitive	 detection	 of	 rare	167	

contributors	to	mixed	methylomes.		168	

In	vitro	DNA	mixing	169	

We	then	mixed	DNA	samples	from	four	specific	tissues	(Liver,	Lung,	Neurons	and	Colon,	each	170	

from	 a	 single	 donor),	 into	 leukocytes	 from	 a	 healthy	 donor,	 at	 different	 proportions	 varying	171	

from	 0%	 to	 10%,	 and	 reapplied	 the	 computational	 deconvolution	 analysis	 (Figure	 3,	172	

Supplementary	File	1).	For	all	samples,	our	algorithm	identified	the	correct	cell	type	in	a	specific	173	

and	 sensitive	manner	 (Pearson’s	 r	 0.88-0.99,	 p-value<1e-3	 for	 all	mixes).	 These	 findings	 lend	174	

further	support	to	the	feasibility	of	deconvolution,	but	they	do	not	fully	address	real	life	issues	175	

such	as	inter-individual	variation	in	methylation.		176	

Tissue	origins	of	Healthy	cfDNA	177	

To	determine	the	main	contributors	to	cfDNA	in	healthy	individuals,	we	collected	plasma	from	178	

multiple	healthy	donors	(n=105).	The	samples	were	classified	by	sex	and	age	(young:	19-30	or	179	
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old:	67-97;	see	Supplemental	File	1),	and	cfDNA	was	pooled	accordingly	to	obtain	250ng	cfDNA	180	

in	each	pool.	181	

We	 then	 obtained	 methylation	 profiles	 of	 each	 sample	 (n=8)	 using	 Illumina	 arrays	 and	182	

performed	 a	 deconvolution	 analysis	 to	 estimate	 the	 relative	 contribution	 of	 each	 tissue/cell-183	

type	 to	 the	 cfDNA.	 The	 predicted	 distribution	 of	 contributing	 tissues/cell	 types	 was	 similar	184	

among	all	pools	(Figure	4a,b).	Additionally,	cfDNA	from	four	additional	healthy	individuals	was	185	

analyzed	and	 found	to	be	consistent	with	 the	 findings	 in	 the	pooled	samples	 (Supplementary	186	

File	 1).	 As	 previously	 reported	
32
,	 we	 found	 that	 the	 main	 contributors	 to	 cfDNA	 were	 of	187	

hematopoietic	origin.	On	average,	32.0%	(±1.1%	mean	SD)	of	cfDNA	came	from	granulocytes,	188	

29.7%	 (±0.8%)	 from	 erythrocyte	 progenitors,	 10.5%	 (±1.1%)	 from	 monocytes,	 and	 12.1%	189	

(±0.7%)	 from	 lymphocytes.	 The	main	 solid	 tissue	 sources	of	 cfDNA	were	 vascular	 endothelial	190	

cells	 (8.6%±0.9%)	 and	 hepatocytes	 (1.2%±0.4%).	 The	 signal	 from	 erythrocyte	 progenitors,	191	

endothelial	cells	and	hepatocytes	 is	expected	to	be	present	 in	cfDNA	but	not	 in	DNA	 isolated	192	

from	leukocytes.	Indeed,	deconvolution	of	blood	cell	(leukocyte)	methylomes	predicted	signals	193	

from	 these	 tissues	 at	much	 lower	 levels	 than	 in	 plasma,	 supporting	 validity	 of	 the	 algorithm	194	

(p<1e-10,	Figure	4c).	195	

Furthermore,	 the	predicted	proportions	of	monocytes,	neutrophils	and	 lymphocytes	 in	whole	196	

blood	methylomes	were	in	excellent	agreement	with	the	actual	proportions	of	these	cell	types	197	

in	each	individual	blood	sample,	as	obtained	from	a	Complete	Blood	Count	(CBC)	(Figure	4d).	198	

Unexpectedly,	 deconvolution	 of	 the	 healthy	 plasma	 methylome	 revealed	 also	 a	 signal	 from	199	

neurons,	accounting	for	as	much	as	2%	of	cfDNA	(Figure	4a,b).	The	significance	of	this	finding	200	

remains	to	be	determined,	as	it	is	not	consistent	with	findings	using	PCR-sequencing	of	specific	201	

brain	markers	
11
;	we	favor	the	idea	that	the	neuronal	signal	is	an	artifact	of	the	assay,	perhaps	202	

reflecting	contribution	from	a	tissue	not	included	in	our	atlas	(see	Discussion).		203	

While	 the	 young	 and	 old	 samples	 showed	 similar	 relative	 contributions	 of	 the	 different	 cell	204	

types,	 the	 plasma	 of	 older	 people	 showed	 a	 significantly	 higher	 levels	 of	 total	 cfDNA,	 as	205	

measured	 in	 genome	 equivalents	 per	 ml	 of	 plasma	 (Supplementary	 Figure	 5).	 The	 similar	206	

proportions	of	 cfDNA	origins	may	suggest	a	 slower	clearance	 rate	of	 circulating	DNA	 in	older	207	

individuals	(Figure	4b),	rather	than	an	increased	rate	of	cell	death	in	all	tissues.	Further	work	is	208	

required	 to	 define	 the	 determinants	 of	 cfDNA	 clearance	 in	 difference	 physiologic	 and	209	

pathologic	conditions.	 In	summary,	these	findings	provide	the	first	detailed	description	of	the	210	

composition	of	cfDNA	in	healthy	people.	211	

	212	

Deconvolution	of	cfDNA	in	islet	transplant	recipients	213	

We	analyzed	the	plasma	methylome	of	patients	with	long	standing	type	1	diabetes,	1	hour	after	214	

receiving	a	cadaveric	pancreatic	islet	transplant	(pool	of	n=5	recipients).	The	total	concentration	215	
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of	cfDNA	in	these	samples	was	~20-fold	higher	than	healthy	control	levels,	suggesting	a	massive	216	

process	of	cell	death	shortly	after	islet	transplantation.	The	deconvolution	algorithm	identified	217	

a	 large	proportion	 (~20%)	of	 cfDNA	as	derived	 from	pancreatic	 origin	 (from	beta,	 acinar	 and	218	

duct	cells,	Figure	5a-b),	in	stark	contrast	to	cfDNA	from	healthy	plasma.	These	findings	strongly	219	

support	the	validity	of	our	deconvolution	procedure.	Strikingly,	we	observed	that	most	of	the	220	

increase	 in	 cfDNA	 levels	 in	 islet	 transplant	 recipients	 was	 of	 an	 immune	 cell	 origin	221	

(granulocytes,	monocytes	and	 lymphocytes).	This	 finding	suggests	an	acute	 immune	response	222	

to	the	infusion	of	islets	into	recipient	blood,	or	alternatively	a	response	to	the	procedure	itself	223	

and/or	pre-transplant	immune	suppression	treatment,	resulting	in	massive	immune	cell	death	224	

(Figure	5b).	Follow	up	studies	will	attempt	to	distinguish	between	these	possibilities.		225	

To	examine	the	dynamics	of	cfDNA	of	pancreatic	origin,	we	determined	the	plasma	methylome	226	

of	 3	 individual	 recipients	before	 (<1	day),	 1	hour	 after,	 and	2	hours	 after	 transplantation.	As	227	

expected,	 the	 algorithm	 identified	 no	 pancreas	 cfDNA	 before	 islet	 transplantation,	 a	 large	228	

increase	 immediately	after	transplantation,	and	a	subsequent	decrease	 in	 levels	of	pancreatic	229	

cfDNA	 (Figure	 5c).	 Interestingly,	 cfDNA	 originating	 from	 immune	 cells	 as	 inferred	 by	230	

deconvolution	 showed	 a	 different	 dynamics,	 likely	 reflecting	 the	 response	 of	 the	 innate	231	

immune	 system	 to	 the	 transplantation	 (Supplementary	 Figure	 6).	 In	 addition,	 we	 used	 a	232	

previously	 described	 targeted	 bisulfite-sequencing	 approach	 to	 quantify	 the	 amount	 of	233	

unmethylated	CpGs	at	a	haplotype	block	located	over	the	insulin	promoter	
11
.	We	observed	a	234	

high	 correlation	 (r=0.995,	 p≤2.6e-8)	 between	 the	 amount	 of	 beta	 cell	 cfDNA	 estimated	 by	235	

deconvolution	 and	 by	 targeted	 PCR-based	 method,	 further	 supporting	 validity	 of	 the	236	

deconvolution	 algorithm	 (Figure	 5d).	 Finally,	 we	 tested	 the	 deconvolution	 algorithm	 using	 a	237	

reference	matrix	containing	either	whole-tissue	or	cell	 type-specific	methylomes.	Consistently	238	

with	results	 from	deconvolution	of	 in	silico	mixes	 (Figure	2b-c),	a	 reference	matrix	containing	239	

cell	 type-specific	methylomes	 showed	 higher	 sensitivity	 compared	with	 an	 atlas	 containing	 a	240	

whole-tissue	 methylome,	 which	 failed	 to	 identify	 pancreatic	 cfDNA	 in	 one	 of	 the	 three	241	

recipients	(Figure	5e).	242	

The	origin	of	cfDNA	in	sepsis	243	

An	increase	in	total	cfDNA	levels	in	septic	patients	has	been	previously	documented,	and	even	244	

shown	to	have	a	prognostic	value	
33,	34

.	However,	it	is	unclear	which	cell	types	are	contributing	245	

to	the	elevated	cfDNA.	We	analyzed	the	cfDNA	methylation	profile	of	14	samples	from	patients	246	

with	 sepsis.	 In	 most	 patients	 (13/14)	 the	 main	 contributors	 to	 the	 increase	 in	 cfDNA	 were	247	

leukocytes	(mainly	granulocytes),	elevated	>	20-fold	relative	to	healthy	 levels	(Figure	6a,b).	 In	248	

some	cases,	varying	amounts	of	hepatocyte	cfDNA	were	detected	(patients	SEP-026,	SEP-017,	249	

SEP-016).	 Importantly,	 the	 levels	 of	 hepatocyte	 cfDNA	 were	 strongly	 correlated	 (Pearson’s	250	

r=0.931,	 p	 <5e-7)	 with	 levels	 of	 Alanine	 Aminotransferase	 (ALT)	 in	 circulation,	 a	 marker	 of	251	

hepatocyte	damage	(Figure	6c).	252	
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Identifying	tumor	origin	by	cfDNA	methylation	253	

We	 deconvoluted	 the	 cfDNA	 methylation	 profiles	 of	 patients	 with	 metastatic	 colon	 cancer	254	

(n=4),	 lung	 cancer	 (n=4)	 and	 breast	 cancer	 (n=3)	 (Supplementary	 File	 1).	 All	 had	 elevated	255	

concentration	of	cfDNA	compared	to	healthy	individuals	(>20	fold	increase).	The	tissue	of	origin	256	

was	the	strongest	signal	(most	genome	equivalents/ml)	in	the	majority	of	cases	(8/11	total,	3/4	257	

colon,	2/4	lung,	3/3	breast,	Figure	7a-c).	These	findings	indicate	the	ability	of	the	deconvolution	258	

algorithm	 to	 correctly	 detect	 cfDNA	 from	 advanced	 cancer,	 despite	 potential	 changes	 to	 the	259	

epigenome	of	cancer	cells.		260	

To	 assess	 the	 accuracy	 of	 cancer	 detection	 using	 deconvolution,	 we	 performed	 a	 mixing	261	

experiment,	where	plasma	from	a	patient	with	colon	cancer	was	mixed	with	plasma	of	healthy	262	

donors	 at	 different	 proportions	 (Supplementary	 File	 1),	 and	 the	methylome	 of	 the	 resulting	263	

mixture	was	deconvoluted.	The	algorithm	correctly	identified	the	presence	of	colon	DNA	in	the	264	

mixes,	 in	 the	 correct	 proportion,	 down	 to	 3%	 (33-fold	 dilution	 of	 the	 original	 cancer	 plasma	265	

sample,	r=0.92,p<1.2e-3)	(Figure	7d).	266	

To	 further	 assess	 the	 performance	 of	 the	 deconvolution	 algorithm,	we	 applied	 it	 to	 recently	267	

published	 dataset	 where	 plasma	 samples	 of	 prostate	 cancer	 patients	 were	 assessed	 using	268	

Illumina	450K	arrays,	before	and	after	treatment	with	Abiraterone	Acetate,	 including	patients	269	

that	 were	 responsive	 or	 not	 responsive	 to	 therapy
35
.	 As	 shown	 in	 Figure	 7e,	 the	 algorithm	270	

detected	prostate	DNA	in	most	patients	(as	compared	to	a	lack	of	signal	in	all	healthy	controls).	271	

Strikingly,	 the	deconvolution	algorithm	also	detected	a	sharp	decline	 in	 the	 levels	of	prostate	272	

cfDNA	 in	 treatment-sensitive	 patients	 (p<0.019,	 paired	 t-test)	 but	 not	 in	 treatment-resistant	273	

patients	(p<0.909,	paired	t-test),	further	supporting	validity	of	the	method.		274	

Finally,	we	tested	whether	an	unbiased	deconvolution	approach	could	be	useful	in	identifying	a	275	

cancer	tissue	of	origin,	even	 in	the	absence	of	an	 identifiable	primary	tumor.	To	this	end,	we	276	

analyzed	the	plasma	cfDNA	of	four	patients	with	Cancer	of	Unknown	Primary	(CUP).	All	patients	277	

had	metastatic	disease	with	no	clear	pathological	identification	of	the	primary	source	of	cancer	278	

(detailed	 in	 Supplementary	 File	1).	 In	each	 case	 the	 suspected	origin	of	 the	 tumor,	based	on	279	

clinical	 history	 and	 pathology	 reports,	 showed	 a	 strong	 signal	 in	 the	 deconvolution	 analysis	280	

(Figure	 7f).	 Patient	 3,	 for	 example,	 presented	 with	 metastases	 in	 bones	 and	 lungs	 without	281	

identifiable	histopathology.	Six	years	earlier,	the	patient	had	a	local	bladder	carcinoma	that	was	282	

treated	 and	 removed.	 Deconvolution	 analysis	 of	 plasma	 cfDNA	 identified	 a	 significant	283	

contribution	by	bladder	 cells	 (>5,000	 genome	equiv./ml),	 suggesting	 that	 the	 current	disease	284	

originated	from	previously	disseminated	bladder	cancer	cells	(Figure	7f).	285	

These	 findings	 indicate	 that	 cfDNA	 methylation	 deconvolution	 can	 be	 the	 basis	 of	 a	 non-286	

invasive	 approach	 to	 identify	 the	 origin	 of	 cancer,	 similar	 to	what	 has	 been	 described	 using	287	

biopsy	material	
36
.	288	
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Discussion	289	

In	many	diseases,	DNA	from	dying	cells	is	released	into	the	bloodstream.	Tools	that	can	identify	290	

the	 source	 tissue	of	 this	DNA	 could	 be	 instrumental	 in	 identifying	 and	 locating	 disease.	DNA	291	

methylation	 reflects	 cell	 identity,	 and	 is	 therefore	 an	 ideal	 marker	 of	 the	 origin	 of	 DNA	 in	292	

circulation.	 In	 this	 study,	 we	 present	 a	method	 to	 decipher	 the	 cellular	 origins	 of	 cfDNA	 by	293	

deconvoluting	genome-wide	methylation	profiles,	and	use	 it	 to	determine	which	cells	 release	294	

DNA	into	blood	in	several	clinically	relevant	situations.	295	

When	assessing	the	tissues	that	contribute	to	human	cfDNA,	we	first	made	an	effort	to	define	296	

the	 healthy	 baseline.	 Previous	 studies	 used	 plasma	 from	 female	 patients	 who	 had	 received	297	

bone	marrow	transplants	 from	male	donors,	and	concluded	 that	most	cfDNA	 is	derived	 from	298	

cells	of	hematopoietic	origin	
32
;	however,	the	contribution	of	individual	blood	cell	types	was	not	299	

assessed,	nor	was	 the	contribution	of	non-blood	cells.	More	 recently,	Guo	et	al	 analyzed	 the	300	

plasma	methylome	of	healthy	and	cancer	patients	using	WGBS,	and	reported	the	contribution	301	

of	white	blood	cells	(without	subtypes)	as	well	as	nine	solid	tissues	and	two	tumor	types	
20
.	Our	302	

deconvolution	assay	revealed	the	specific	contributors	to	healthy	plasma,	namely	granulocytes,	303	

monocytes,	 lymphocytes	 and	 erythrocyte	 progenitors.	 The	 latter	 is	 consistent	 with	 a	 recent	304	

report	 that	used	 specific	 erythroid	 lineage	methylation	markers	 to	 identify	 erythroid	 lineage-305	

derived	cfDNA	
15
.	Note	that	unlike	the	other	sources	of	cfDNA,	in	this	case	the	process	reflected	306	

by	 cfDNA	might	 be	 cell	 birth	 (the	 generation	 of	 enucleated	 red	 blood	 cells)	 rather	 than	 cell	307	

death.	 Refinement	 of	 the	 methylome	 atlas	 will	 likely	 result	 in	 further	 refinement	 of	 cfDNA	308	

interpretation,	 even	 retrospectively	on	 the	 samples	 reported	here.	 For	example,	 it	 should	be	309	

possible	 to	 determine	 the	 relative	 contribution	 of	 neutrophils	 and	 other	 cell	 types	 to	 the	310	

granulocyte	cfDNA	pool,	and	of	circulating	monocytes	and	tissue	resident	macrophages	to	the	311	

monocyte	cfDNA	pool.	312	

Beyond	blood	cells,	we	found	that	~10%	of	cfDNA	in	healthy	individuals	is	derived	from	vascular	313	

endothelial	 cells	 (a	 finding	 made	 possible	 by	 the	 generation	 of	 a	 vascular	 endothelial	 cell	314	

methylome	reference),	and	that	~1%	of	cfDNA	is	derived	from	hepatocytes,	which	is	consistent	315	

with	 our	 recent	 observation	 of	 hepatocyte	 cfDNA	 in	 healthy	 plasma	 using	 3	 targeted	316	

hepatocyte	markers	
18
.	The	cfDNA	signal	from	the	vasculature	and	the	liver	reflects	the	sum	of	317	

multiple	parameters:	 total	 cell	number	 in	 these	organs,	 the	degree	of	baseline	 turnover,	 and	318	

the	fact	that	cfDNA	from	these	tissues	is	apparently	cleared	via	blood.	The	absence	of	a	cfDNA	319	

signal	 from	 other	 tissues	 in	 the	 body,	 known	 to	 have	 a	 high	 turnover	 rate,	 likely	 reflects	320	

alternative	 clearance	 routes:	 for	 example,	 dying	 intestinal	 epithelial	 cells	 under	 healthy	321	

conditions	 likely	 shed	 cfDNA	 into	 the	 lumen	 of	 the	 intestine,	 rather	 than	 to	 blood.	 Similar	322	

considerations	 apply	 to	 the	 lung,	 kidney	 and	 skin.	 The	 algorithm	 also	 detected	 a	 neuronal-323	

derived	signal	comprising	as	much	as	~2%	of	the	healthy	plasma	methylome.	While	this	finding	324	

may	 reflect	 a	 baseline	 turnover	 of	 central	 or	 peripheral	 neurons	
37
,	 we	 cannot	 rule	 out	 the	325	
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possibility	 that	 it	 is	an	artifact	of	 the	deconvolution	algorithm,	due	to	a	partial	and	 imperfect	326	

reference	 atlas.	 One	 argument	 in	 favor	 of	 the	 latter	 interpretation	 is	 that	 our	 directed	 PCR-327	

sequencing	 assays	 using	 brain-specific	 methylation	 markers	 show	 only	 a	 negligible	 neuronal	328	

signal	in	healthy	individuals	(~0.1%),	while	positive	controls	with	brain	damage	do	show	a	clear	329	

signal	 (manuscript	 in	 preparation	 and	
11
).	 More	 experiments	 are	 needed	 to	 determine	 the	330	

actual	contribution	of	neuronal	DNA	to	the	healthy	cfDNA.	331	

We	 also	 performed	 a	 preliminary	 analysis	 of	 cfDNA	 composition	 as	 a	 function	 of	 age,	 using	332	

pools	of	samples	from	healthy	individuals	aged	75	and	above	and	between	the	ages	of	19	and	333	

30.	 Two	 striking	 findings	 emerge	 from	 the	 analysis	 of	 these	 samples:	 first,	 the	 total	334	

concentration	of	cfDNA	in	aged	individuals	is	about	twice	that	of	people	in	their	3
rd
	decade	of	335	

life;	 second,	 deconvolution	 revealed	 a	 distribution	 of	 sources	 that	 is	 highly	 similar	 between	336	

aged	and	young	 individuals.	We	propose	 that	 this	 similarity	 reflects	a	decrease	 in	 the	 rate	of	337	

cfDNA	clearance	 in	old	age,	 rather	 than	a	concordant	 increase	 in	cell	death	within	all	 tissues.	338	

Additional	 studies	 are	 required	 to	 definitively	 interpret	 the	 biology	 of	 the	 circulating	339	

methylome	in	old	age.		340	

The	application	of	cfDNA	deconvolution	to	selected	pathologies	provided	further	support	as	to	341	

the	 validity	 of	 the	 approach.	 This	 included	 the	 identification	 of	 pancreas	 cfDNA	 in	 islet	342	

transplant	recipients	(but	not	in	healthy	controls)	and	the	identification	of	elevated	hepatocyte	343	

cfDNA	in	patients	with	sepsis,	which	correlated	with	an	independent	circulating	liver	marker.	In	344	

both	 transplantation	 and	 sepsis	 we	 found	 that	 elevated	 cfDNA	 was	 mostly	 derived	 from	345	

immune	 cells.	 Both	 scenarios	 likely	 involve	 strong	 immune	 reactions	 and	 the	 increase	 in	346	

leukocyte-derived	cfDNA	may	be	derived	from	cells	that	died	during	cell	division	or	as	part	of	an	347	

immune	 response.	 We	 also	 demonstrated	 that	 deconvolution	 can	 identify	 cfDNA	 from	 a	348	

cancer’s	 tissue	 of	 origin,	 even	 in	 advanced	 tumors	 presumably	 presenting	 with	 epigenomic	349	

instability.	 While	 more	 studies	 with	 plasma	 samples	 from	 cancer	 patients	 are	 needed,	 in	350	

particular	 from	 early	 stage	 diseases,	 our	 findings	 from	multiple	 type	 of	 cancer	 (colon,	 lung,	351	

breast	and	prostate)	are	highly	encouraging	in	this	respect.	Lastly,	using	plasma	samples	from	352	

patients	with	cancer	of	unknown	primary,	we	showed	that	the	tissue	source	of	metastases	can	353	

be	 identified	by	analysis	of	cfDNA	methylation,	even	 in	cases	where	the	primary	tissue	of	the	354	

cancer	 is	 missing	 and	 unclear.	 Whilst	 most	 current	 approaches	 aim	 to	 monitor	 cancer	 via	355	

identification	of	mutations	 in	cfDNA,	we	propose	that	combining	such	an	analysis	with	cfDNA	356	

methylation	deconvolution	may	eventually	allow	for	early	and	unbiased	diagnosis	of	cancer	and	357	

its	location	
7
.		358	

Our	work	 provides	 a	 proof	 of	 concept	 for	 the	 utility	 of	 plasma	methylome	 deconvolution	 in	359	

studying	human	tissue	dynamics	in	health	and	disease,	adding	insights	beyond	those	of	recent	360	

reports	 in	 this	emerging	 field	
19,	 20,	 21,	 22

.	Furthermore,	our	approach	can	easily	be	adapted	 to	361	

determine	the	cellular	contributors	to	cfDNA	in	virtually	any	setting	in	which	there	is	a	question	362	
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regarding	the	composition	of	cfDNA.	We	selected	to	work	with	Illumina	arrays	as	a	platform	for	363	

both	 the	 tissue	 reference	 atlas	 and	 the	 plasma	methylome	 assay.	 This	 platform	has	multiple	364	

advantages,	 perhaps	most	 importantly	 the	 vast	 amount	 of	 public	 data	 available	 that	 can	 be	365	

used	 to	 construct	 a	 tissue	 methylome	 atlas.	 Additionally,	 it	 is	 the	 most	 affordable	 method	366	

available	 for	 obtaining	 high-resolution	 genome-wide	 methylation	 profiles	 and	 is	 simple	 to	367	

perform	and	analyze	as	well	as	scalable.	However,	arrays	have	also	important	limitations:	they	368	

cover	 only	 a	 small	 fraction	 of	 the	 genome-wide	methylome;	 they	 report	 on	 the	methylation	369	

status	of	 individual	CpG	sites,	missing	the	information	embedded	in	the	status	of	methylation	370	

haplotype	blocks	
11,	20

;	they	suffer	from	batch	effects;	they	require	a	relatively	large	amount	of	371	

DNA	 (100ng	 cfDNA,	 shown	 here	 to	 be	 sufficient	 for	 deconvolution,	 requires	 about	 40ml	 of	372	

blood);	 and	 their	 sensitivity	 (ability	 to	 detect	 a	 small	 fraction	 of	 molecules	 with	 a	 different	373	

methylation	status	 in	a	mixture)	 is	 limited	compared	with	sequencing	of	 individual	molecules.	374	

We	believe	that	in	the	long	run,	for	applications	requiring	maximal	sensitivity	and	affordability	375	

(such	 as	 for	 early	 detection	 of	 cancer	 in	 asymptomatic	 individuals),	 a	 cfDNA	 methylation	376	

deconvolution	approach	based	on	deep	sequencing	of	a	collection	of	 informative	CpG	blocks,	377	

possibly	 following	 capture	of	 key	 loci	 from	plasma,	using	 a	 sequencing-based	 comprehensive	378	

atlas,	will	likely	be	the	preferred	approach.		379	

Nonetheless,	our	study	does	provide	some	important	insights	into	design	principles	of	effective	380	

plasma	methylome	technology,	which	are	general	and	would	hold	for	other	platforms	including	381	

massively	 parallel	 bisulfite	 sequencing	 or	 nanopore	 sequencing.	 These	 include:	 1)	 The	 key	382	

importance	of	generating	a	comprehensive	methylation	atlas	composed	of	individual	cell	types	383	

(purified	 from	 fresh	 tissue),	 rather	 than	 whole	 tissues.	 The	 inclusion	 of	 cell-type	 specific	384	

methylomes	allows	the	identification	of	important	tissue	contributions	to	cfDNA,	including	cell	385	

types	that	comprise	a	small	minority	of	 their	host	 tissue	(e.g.	beta	cells	 in	 the	pancreas),	and	386	

cell	 types	 that	 are	 present	within	multiple	 organs	 and	hence	might	 be	masked	 (e.g.	 vascular	387	

endothelial	 cells). 2)	 Not	 all	 CpG	 sites	 contribute	 to	 accurate	 deconvolution;	 in	 fact,	388	

deconvolution	based	on	a	defined	subset	of	informative	sites	performs	better	than	an	approach	389	

taking	 into	 account	 all	 sites,	 including	 those	 that	 are	 not	 differentially	 methylated	 between	390	

tissues	 and	 hence	 contribute	 mostly	 noise;	 3)	 A	 specific	 subset	 of	 ~4000	 CpG	 sites	 that	 is	391	

informative	enough	for	accurate	estimation	of	cfDNA	contributors.	We	propose	that	a	capture-392	

based	approach,	applying	deep	bisulfite	sequencing	to	probe	multiple	neighboring	CpGs	from	393	

the	 same	 molecule	 around	 selected	 loci,	 would	 offer	 deconvolution	 at	 a	 much	 greater	394	

resolution,	and	potentially	using	lower	amount	of	DNA.		395	

In	summary,	we	report	a	method	for	interpreting	the	circulating	methylome	using	a	reference	396	

methylome	 atlas,	 allowing	 inference	 of	 tissue	 origins	 of	 cfDNA	 in	 a	 specific	 and	 sensitive	397	

manner.	 We	 propose	 that	 deconvolution	 of	 the	 plasma	 methylome	 is	 a	 powerful	 tool	 for	398	

studying	 healthy	 human	 tissue	 dynamics	 and	 for	 identifying	 and	monitoring	 a	wide	 range	 of	399	

pathologies.	400	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2018. ; https://doi.org/10.1101/448142doi: bioRxiv preprint 

https://doi.org/10.1101/448142
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

	401	

Methods	402	

Reference	matrix	403	

All	 DNA	 methylation	 profiles	 were	 determined	 either	 on	 the	 Illumina	 Infinium	 Human	404	

Methylation	 450K	 or	 EPIC	 BeadChip	 arrays.	 DNA	 methylation	 data	 for	 white	 blood	 cells	405	

(neutrophils,	 monocytes,	 B-cells,	 CD4+	 T-cells,	 CD8+	 T-cells,	 NK-cells,	 n=6	 each)	 were	406	

downloaded	 from	 GSE110555	 (EPIC)	407	

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE110555]	
38
.	 Data	 for	 erythrocyte	408	

progenitors	 (n=5)	 were	 downloaded	 from	 GSE63409	409	

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63409]	 (450K)	
39
,	 and	 data	 for	 left	410	

atrium	 (n=4)	 were	 downloaded	 from	 GSE62727	411	

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62727]	 (450K)	
40
.	 Data	 for	 bladder	412	

(n=19),	breast	 (n=98),	 cervix	 (n=3),	 colon	 (n=38),	esophagus	 (n=16),	oral	 cavity	 (n=34),	kidney	413	

(n=160),	prostate	(n=50),	rectum	(n=7),	stomach	(n=2),	thyroid	(n=56)	and	uterus	(n=34)	were	414	

downloaded	from	TCGA	
26
.	DNA	methylation	data	for	adipocytes	(n=3,	450K),	hepatocytes	(n=3,	415	

450K	 and	 EPIC),	 alveolar	 lung	 cells	 (n=3,	 EPIC),	 neurons	 (n=3,	 450K	 and	 EPIC),	 vascular	416	

endothelial	cells	(n=2,	EPIC)	pancreatic	acinar	cells	(n=3,	450K	and	EPIC),	duct	cells	(n=3,	450K	417	

and	EPIC),	beta	cells	(n=4,	450K	and	EPIC),	colon	epithelial	cells	(n=3,	EPIC)	were	generated	in	418	

house	 and	 are	 available	 from	 the	 corresponding	 authors	 upon	 reasonable	 request.	 Detailed	419	

sample	information	is	available	in	Supplementary	File	1.	420	

Cell	isolation	421	

Cancer-free	primary	human	tissue	was	obtained	from	consenting	donors,	dissociated	to	single	422	

cells,	 sorted	using	cell	 type-specific	antibodies	and	 lysed	 to	obtain	genomic	DNA,	 from	which	423	

250ng	were	applied	to	an	Illumina	methylation	array.	Adipocytes	(n=3)	were	isolated	from	fat	424	

tissue	according	to	the	collagenase	procedure	of	Rodbell	
41
.	In	brief,	tissue	was	cut	into	≈20	mg	425	

pieces	and	incubated	(10	g	tissue/25ml	buffer)	in	Krebs-Ringer	phosphate	(KRP	buffer,	pH	7.4)	426	

containing	4%	bovine	serum	albumin	(BSA)	and	0.5	mg/ml	of	collagenase	type	1	for	45	min	at	427	

37℃	 in	a	shaking	water	bath.	The	 isolated	adipocytes	were	collected	through	a	250μm	nylon	428	

mesh	filter	and	were	washed	3-4	times	with	1%	KRP-BSA	washing	buffer.	The	stromal	vascular	429	

fraction	(SVF)	in	the	washing	buffer	was	collected	by	500	x	g	centrifuge	at	4℃	for	10	min.	Cells	430	

were	 then	 homogenized	 in	 lysis	 buffer	 (0.32	M	 sucrose,	 25	mM	 KCl,	 5	mM	MgCl2,	 0.1	mM	431	

EDTA,	10	mM	Tris-HCl	pH	7.5,	0.005	%	NP-40,	1	mM	DTT)	transferred	to	ultracentrifuge	tubes,	432	

layered	 onto	 a	 sucrose	 cushion	 solution	 (1.8	M	 sucrose,	 25	mM	 KCl,	 5	mM	MgCl2,	 0.1	mM	433	

EDTA,	 10	mM	 Tris-HCl	 pH	 7.5,	 1	mM	DTT)	 and	 centrifuged	 at	 106,750	 x	 g	 for	 1hr	 at	 4℃	 to	434	

isolate	 nuclei.	 Cortical	 neurons	 (n=1)	 were	 isolated	 from	 human	 occipital	 cortex	 by	 sucrose-435	

gradient	 centrifugation	 and	 labeled	 with	 Alexa	 Fluor	 647	 conjugate	 of	 neuron-specific	436	
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monoclonal	anti-NeuN	antibody	(A-60)	(Millipore,	1:1,000).	NeuN-positive	and	negative	nuclei	437	

were	 sorted	 by	 FACS	 and	 DNA	 was	 extracted	
42,	 43

.	 Hepatocytes	 (n=2)	 were	 isolated	 as	438	

previously	 described	
44
.	 Pancreatic	 acinar	 cells	 and	 duct	 cells	 (n=3)	 were	 obtained	 from	439	

cadaveric	donors	as	described	
45
.	Pancreatic	beta	cells	(n=4)	were	isolated	from	cadaveric	islets	440	

as	 previously	 described	
46
.	 Vascular	 endothelial	 cells	were	 isolated	 from	 the	 saphenous	 vein,	441	

surgically	excised	due	to	chronic	insufficiency.	Dissociated	endothelial	cells	were	captured	using	442	

mouse	 anti-human	 CD105	 magnetic	 beads	 (cat	 #130-051-201,	 Miltenyi,	 1:5)	 (n=	 3	 donors,	443	

pooled	 to	 2	 samples,	 one	 containing	material	 from	 two	 donors	 and	 one	 containing	material	444	

from	 one	 sample).	 Distal	 lung	 tissue	 (n=	 3	 donors,	 3	 samples)	 was	 dissociated	 using	 an	445	

adaptation	 of	 previous	 protocols	
47,	 48,	 49,	 50

.	 Briefly,	 alveolar	 epithelial	 cells	 were	 enriched	446	

using	mouse	 anti-human	 CD105	magnetic	 beads	 for	 depletion	 of	 endothelial	 cells	 (cat	 #130-447	

051-201,	Miltenyi,	1:5)	and	subsequently	mouse	anti-human	Epcam	(CD326)	magnetic	beads	to	448	

capture	epithelial	cells	(cat	#130-061-101,	Miltenyi,	1:4)	or	by	FACS	sorting	using	the	following	449	

antibodies:	CD45	eFluor	450	(cat	#48-9459-41),	CD31	eFluor	450	(cat	#48-0319-42)	and	CD235a	450	

eFluor	 450	 (cat	 #48-9987-42)	 (all	 from	eBioscience,	 1:20)	 and	CD326-APC	 (cat	 #130-113-260,	451	

Miltenyi,	 1:50).	 Colon	 epithelial	 cells	 were	 dissociated	 using	 an	 adaptation	 of	 a	 published	452	

protocol	
51
	and	were	sorted	by	FACS	using	CD45	eFluor	450	(cat	#48-9459-41),	CD31	eFluor	450	453	

(cat	#48-0319-42)	and	CD235a	eFluor	450	(cat	#48-9987-42,	eBioscience,	1:20)	(for	blood	and	454	

endothelial	 cell	 lineage	 depletion),	 and	 CD326-APC	 (Miltenyi,	 1:50,	 cat	 #130-113-260)	455	

antibodies.	FACS	gating	strategies	are	shown	in	Supplementary	Figure	8.	456	

Blood	samples	457	

Donors	were	 consented	 and	whole	 blood	 (usually	 20	ml)	was	 drawn,	 collected	 into	 an	 EDTA	458	

tube,	and	spun	quickly	to	separate	plasma,	which	was	stored	at	-20℃	until	isolation	of	cfDNA.	459	

Human	research	participants	460	

Tissue	and	plasma	samples	were	obtained	 in	accordance	with	 the	principles	endorsed	by	 the	461	

Declaration	of	Helsinki	and	written	informed	consent	was	obtained	from	all	subjects.	Protocols	462	

were	 approved	 by	 the	 Institutional	 review	 boards	 of	 Hadassah-Hebrew	 University	 Medical	463	

Center,	The	University	of	Alberta,	Karolinska	Institute	and	Oregon	Health	&	Science	University.		464	

Sample	pooling	465	

Pooled	DNA	samples	were	obtained	by	mixing	DNA	from	several	individuals.	DNA	was	extracted	466	

from	8ml	of	plasma	and	samples	were	added	until	250ng	reached	(7-19	samples	per	pool).	No	467	

individual	contributed	more	than	2	times	as	much	DNA	to	a	pool	than	another	individual.	468	

DNA	extraction	469	

250	ng	was	collected	from	each	sample,	except	where	otherwise	specified.	DNA	concentration	470	

was	 measured	 with	 Qubit.	 cfDNA	 extraction	 from	 plasma	 was	 performed	 with	 the	471	
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QIAsymphony	 liquid	 handling	 robot.	 cfDNA	 was	 treated	 with	 the	 Illumina	 Infinium	 FFPE	472	

restoration	kit	and	hybridized	to	the	Illumina	450K	or	EPIC	arrays.	473	

For	adipocytes,	we	used	a	modified	protocol	from	Miller	et	al.	
52
.	500	μl	DNA	lysis	buffer	(200	474	

mM	NaCl,	5	mM	EDTA,	100	mM	Tris-HCl	pH	8,	1	%	SDS)	and	6	μl	Proteinase	K	(20	mg/ml)	were	475	

added	 to	 the	 collected	nuclei	 and	 incubated	at	55℃	 overnight.	RNase	 cocktail	 (Ambion)	was	476	

then	added	and	incubated	at	55℃	for	1hr.	Half	of	the	existing	volume	of	5	M	NaCl	solution	was	477	

added	and	the	mixture	agitated	for	15	s.	The	solution	was	spun	down	at	16,000	x	g	for	3	min.	478	

The	 supernatant	 containing	 DNA	 was	 transferred	 to	 a	 new	 Eppendorf	 tube.	 3	 times	 of	 the	479	

existing	 volume	 of	 95	 %	 ethanol	 was	 added	 and	 the	 tube	 was	 inverted	 several	 times	 to	480	

precipitate	 adipocytes	 or	 SVF	 DNA.	 The	 DNA	 precipitate	 was	 washed	 three	 times	 in	 75	 %	481	

ethanol	and	air-dried	at	55℃	for	2	hr.	500	μl	DNase/RNase-free	water	was	used	to	suspended	482	

the	 dried	 DNA.	 All	 DNA	 samples	 were	 quantified	 and	 purity-checked	 by	 UV	 spectroscopy	483	

(Nanodrop).		484	

Neuronal	DNA	was	extracted	by	adding	500	µl	DNA	lysis	buffer	(100	mM	Tris-HCl	[pH	8.0],	200	485	

mM	NaCl,	1%	SDS,	and	5	mM	EDTA)	and	6	µl	Proteinase	K	(20	mg/ml,	Invitrogen)	to	the	sorted	486	

nuclei	and	incubated	overnight	at	65℃.	Following	overnight	incubation,	an	RNase	cocktail	was	487	

added	(3	µl,	Ambion)	and	incubated	at	65℃	for	45	min.	Half	of	the	existing	volume	of	5	M	NaCl	488	

solution	was	added	and	the	mixture	agitated	for	15	s	and	centrifuged	at	16000	x	g	for	3	min.	489	

The	 supernatant	 containing	 the	 DNA	 was	 transferred	 to	 a	 12	ml	 glass	 vial.	 Three	 times	 the	490	

volume	of	95%	ethanol	was	added	to	the	glass	vial	and	inverted	several	times	to	precipitate	the	491	

DNA.	The	DNA	precipitate	was	washed	in	DNA-washing	solution	(70%	[v/v]	ethanol	and	0.5	M	492	

NaCl)	for	15	min	for	three	times	and	transferred	to	200	µl	DNase-/	RNase-free	water	(Gibco/Life	493	

Technologies)	 and	 air-dried	 at	 65℃	 overnight.	 Finally,	 the	 DNA	 was	 dissolved	 in	 500	 µ	 l	 TE	494	

buffer	 (pH	 8.0)	 (10	mM	 Tris-HCl	 [pH	 8.0]	 and	 1	mM	 EDTA).	 The	 DNA	was	 quantified	 and	 its	495	

purity	was	verified	using	a	NanoDrop	2000	spectrophotometer	(ThermoScientific).	496	

Data	processing	497	

Methylation	array	data	were	processed	with	the	minfi	package	in	R.	For	each	sample	analyzed	498	

on	the	Illumina	Methylation	array,	CpG	sites	were	filtered	out	if	they	were	represented	by	less	499	

than	 3	 beads	 on	 the	 array,	 if	 the	 detection	 p-value	 (representing	 total	 fluorescence	 of	 the	500	

relevant	probes)	was	greater	than	0.01,	or	 if	they	mapped	to	a	sex	chromosome.	Background	501	

correction	 and	 normalization	 were	 performed	 with	 the	 preprocessIllumina	 function,	 which	502	

removes	background	calculated	based	on	internal	control	probes	and	normalizes	all	samples	to	503	

a	predetermined	control	sample.	504	

Comparison	of	EPIC	and	450K	platforms	505	

As	the	reference	database	included	samples	analyzed	with	two	highly	similar	yet	not	identical	506	

platforms,	 the	 Illumina	 450K	 array	 and	 the	 Illumina	 EPIC	 array,	 we	 looked	 to	 identify	 and	507	
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remove	 sites	with	 low	 reproducibility	 between	 the	 platforms.	 To	 this	 end,	we	 collected	 data	508	

from	 samples	 analyzed	 on	 both	 platforms:	 15	 samples	 from	 GSE86833	509	

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86833]	
53
,	 12	 samples	 from	510	

GSE92580	 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92580]	
54
,	 and	 one	511	

sample	 from	 our	 generated	 dataset	 (hepatocytes).	 For	 each	 overlapping	 CpG,	 we	 then	512	

calculated	the	median	absolute	error	(MAE)	between	the	450K	samples	and	the	corresponding	513	

EPIC	samples,	and	removed	37,747	CpGs	with	an	MAE>0.05.	514	

CpG	feature	selection	515	

First,	CpGs	whose	variance	across	 the	entire	methylation	atlas	was	below	0.1%,	or	CpGs	with	516	

missing	 values	 were	 excluded.	We	 then	 selected	 the	 K=100	 most	 specific	 hyper-methylated	517	

CpGs	for	each	cell	type.	Let	us	denote	the	methylation	matrix	X,	composed	of	N	rows	(CpGs)	by	518	

d	columns	(cell	types).	We	then	divided	each	row	(the	methylation	pattern	of	one	CpG	over	all	519	

cell	types)	by	its	sum	X!� = !!
!!,!!

!
.	For	each	cell	type	j,	we	identified	the	top	K	hyper-methylated	520	

CpGs	with	the	highest	X’i,j	values.	To	identify	uniquely	hypo-methylated	CpGs,	we	performed	a	521	

similar	process	for	the	reversed	methylation	matrix	(1-X).	Finally,	for	each	cell	type	we	included	522	

both	 the	 top	 K	 hypermethylated	 and	 the	 top	 K	 unmethylated	 CpGs	 in	 the	 reference	matrix	523	

(Supplementary	File	1).	To	this	set	of	CpGs,	we	added	neighboring	CpGs,	up	to	150bp.	524	

Pairwise-specific	CpGs	were	iteratively	selected	as	follows:	Given	the	current	set	S	of	CpGs,	we	525	

projected	 the	 reference	 atlas	 on	 those	 coordinates,	 and	 calculated	 the	 Euclidean	 distances	526	

between	pairs	of	cell	types.	Once	the	closest	pair	of	cell	types	was	identified,	we	selected	the	527	

CpG	site	where	 they	differ	 the	most,	and	added	 it	 into	 the	set	S.	This	process	was	 iteratively	528	

repeated,	focusing	on	the	most	confusing	pair	of	cell	types	in	each	iteration.	529	

Deconvolution	530	

To	calculate	the	relative	contribution	of	each	cell	 type	to	a	given	sample,	we	performed	non-531	

negative	least	squares,	as	implemented	in	the	nnls	package	in	MATLAB	(an	efficient	alternative	532	

to	lsqnonneg).	Given	a	matrix	X	of	reference	methylation	values	with	N	CpGs	and	d	cell	types,	533	

and	a	vector	Y	of	methylation	values	of	length	N,	we	identified	non-negative	coefficients	β,	by	534	

solving	!"#$%!! Xβ− Y !,	subject	to β ≥ 0.	We	then	adjusted	the	resulting	β	to	have	a	sum	535	

of	1,	where	for	each	�!	we	defined	�!
� = �!

!!!
!

.	To	obtain	absolute	levels	of	cfDNA	(genome	536	

equivalent/ml)	per	cell	type,	we	multiplied	the	resulting	!!!	by	the	total	concentration	of	cfDNA	537	

present	 in	 the	 sample,	 as	 measured	 by	 Qubit.	 It	 was	 assumed	 that	 the	 mass	 of	 a	 haploid	538	

genome	 is	 3.3	pg	 and	as	 such,	 the	 concentration	of	 cfDNA	 could	be	 converted	 from	units	 of	539	

ng/ml	 to	 haploid	 genome	 equivalents/ml	 by	 multiplying	 by	 a	 factor	 of	 303.	 To	 estimate	540	

deconvolution	 error	 rates,	 we	 used	 a	 bootstrap	 approach,	 where	 we	 also	 analyzed	 the	541	

observation	 vector	 (Y)	 using	 N=100	 different	 instances	 of	 the	 methylation	 atlas.	 Following	542	
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30
,	 and	 due	 to	 the	 limited	 number	 of	 replicate	 per	 cell	 type,	 we	 used	 a	543	

parametric	approach,	where	the	original	 replicates	 for	each	tissue	were	used	to	estimate	the	544	

mean	CpG	methylation	and	its	standard	deviation.	We	then	generated	N=100	new	methylation	545	

atlases	(X’)	by	sampling	from	Normal	distributions	centered	at	these	values	for	each	CpG/tissue.	546	

Finally,	 we	 deconvoluted	 the	 observation	 vector	 (Y)	 using	 each	 atlas,	 and	 estimated	 the	547	

empirical	 standard	 deviation	 of	 the	 admixture	 parameters	 across	 atlases	 (X’).	 The	 same	548	

approach	was	 used	 to	 estimate	 the	 variation	 for	 contribution	of	 specific	 cell	 types,	 including	549	

DNA	mixes	(Fig	3a-d),	pancreas	(Fig	5c-e),	hepatocytes	(Fig	6c),	and	plasma	mixes	(Fig	7d). 550	

Simulations	551	

We	 analyzed	 18	 leukocyte	 samples	 (whole-blood)	with	 Illumina	methylation	 EPIC	 arrays.	 For	552	

each	cell	type,	we	mixed	in	every	available	replicate	with	each	leukocyte	sample	in	ratios	of	0	to	553	

100,	0.1	to	99.9,	1	to	99,	2	to	98,	etc.	up	to	10	to	90.	For	every	combination	of	leukocytes	and	554	

cell	type	replicate,	we	updated	the	reference	atlas	by	excluding	the	mixed-in	sample	and	then	555	

re-computing	the	average	methylome	for	that	cell	type	using	all	other	replicates.	We	then	re-556	

applied	 the	 feature	 selection	 process	 (using	 the	 new	 atlas),	 applied	 the	 deconvolution	557	

algorithm,	and	estimated	 the	admixture	coefficients	 for	all	 cell	 types.	This	procedure	ensures	558	

that	the	training	set	 is	completely	separated	from	the	test	set.	Finally,	we	calculated	for	each	559	

cell	 type,	 at	 each	 admixture	 ratio,	 the	 average	 predicted	 proportion	 over	 all	 replicates,	 its	560	

median,	and	the	range	between	the	1
st
	and	3

rd
	quartiles.		561	

Reproducibility	562	

We	 assayed	 three	 cfDNA	 samples	 in	 duplicate	 (Supplementary	 Figure	 7a-c).	 The	 predicted	563	

proportions	 of	 cell	 types	 contributing	 to	 the	 samples	 were	 highly	 correlated	 (r	 >	 0.99).	564	

Furthermore,	 as	 the	 amount	 of	 cfDNA	 available	 is	 often	 limited,	 we	 also	 evaluated	 the	565	

possibility	of	using	less	than	the	250	ng	cfDNA	(as	recommended	by	Illumina	for	analysis	with	566	

methylation	 array).	 The	 results	 were	 reproducible	 with	 as	 little	 as	 50	 ng	 of	 cfDNA	 (r	 >	 0.9)	567	

(Supplementary	Figure	7a-d).	568	

Code	Availability	569	

A	 standalone	 program	 for	 deconvolution	 of	 array	 methylome	 is	 available	 at	570	

https://github.com/nloyfer/meth_atlas	or	from	the	corresponding	authors.	571	

Data	Availability	572	

The	datasets	generated	and	analyzed	during	this	study	are	summarized	in	Supplementary	File	1	573	

and	available	from	the	corresponding	authors	on	reasonable	request.	A	reporting	summary	for	574	

this	Article	is	available	as	a	Supplementary	Information	file.	575	
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Figure	Legends	
Figure	 1:	 Identification	 of	 tissue-of-origin	 of	 cfDNA	 using	 deconvolution	 of	 the	 plasma	 methylome	
aided	 by	 a	 comprehensive	methylation	 atlas.	 (a)	Methylation	 atlas	 composed	 of	 25	 tissues	 and	 cell	

types	 (columns)	 across	 ~8000	 CpGs	 (rows).	 For	 each	 cell	 type,	 we	 selected	 the	 top	 100	 uniquely	

hypermethylated	(top)	and	100	most	hypomethylated	(bottom)	CpG	sites,	giving	a	total	of	5,000	tissue-

discriminating	individual	CpGs.	We	then	added	neighboring	(up	to	50bp)	CpGs,	as	well	as	500	CpGs	that	

are	differentially	methylated	across	pairs	of	otherwise	similar	tissues.	Overall,	we	used	7,890	CpGs	that	

are	located	in	4,039	500bp	genomic	blocks.	(b)	Deconvolution	of	plasma	DNA.	Cell-free	DNA	(cfDNA)	is	

extracted	from	plasma	and	analyzed	with	a	methylation	array.	It	is	then	deconvoluted	using	a	reference	

methylation	atlas	to	quantify	the	contribution	of	each	cell	type	to	the	cfDNA	sample.	

Figure	2:	DNA	methylation	patterns	allow	for	accurate	deconvolution	of	simulated	admixed	samples.	
(a)	The	methylome	of	each	cell	type	was	mixed	 in	silico	with	the	methylome	of	leukocytes	such	that	it	

contributed	 between	 0%	 to	 10%	 of	 DNA,	 in	 1%	 intervals	 (x-axis	 of	 each	 plot)	 and	 compared	 to	 the	

prediction	of	deconvolution	using	our	reference	methylation	atlas	(y-axis).	Red	horizontal	bars	represent	

the	median	predicted	contribution	for	each	mixed-in	level,	across	36-180	replicates	for	each	cell	type	(2-

10	replicates	of	measured	cell	type	methylomes,	each	mixed	within	any	of	18	leukocyte	replicates).	The	
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blue	area	 represents	a	box	plot	 spanning	 the	25
th
	 to	75

th
	percentiles	 for	each	mixing	 ratio,	with	black	

vertical	 lines	marking	the	9
th
	 to	91

st
	percentiles.	 (b)	Primary	tissue	methylome	allows	a	more	accurate	

deconvolution	 than	whole-tissue	or	 a	 cell	 line.	Hepatocyte	methylome	was	mixed	 in	 silico	with	 blood	
methylome	 as	 in	 (a).	 The	 level	 of	 inferred	 admixture	 (y-axis)	 was	 calculated	 using	 a	 reference	 tissue	

methylome	atlas	that	included	other	hepatocyte	samples	(green),	whole	liver	methylomes	(blue)	or	the	

methylome	of	the	HepG2	cell	line	(red).	Dotted	red	line	marks	accurate	prediction.	(c)	Cell	type-specific	
methylomes	 allow	 a	more	 accurate	 deconvolution	 than	whole	 tissue	methylomes.	 The	methylome	of	

pancreatic	acinar,	duct,	or	beta	cells	was	diluted	 in	 silico	 into	 leukocyte	methylomes	 (left,	middle	and	

right,	 respectively);	 the	 level	 of	 admixture	was	 calculated	using	 a	 comprehensive	 reference	 atlas	 that	

contained	 either	 independent	 samples	 of	 the	 spiked-in	 pancreas	 cell	 types	 (green	 lines),	 or	 a	 whole	

pancreas	 methylome	 (blue	 lines).	 Note	 assay	 linearity,	 but	 reduced	 sensitivity,	 when	 using	 a	 whole	

pancreas	methylome.	

Figure	3:	 in	 vitro	mixing	experiments.	Genomic	DNA	derived	 from	 liver	 (a),	 lung	 (b),	 neurons	 (c)	 and	
colon	(d)	(each	from	a	single	donor)	was	mixed	in	9	different	combinations	(detailed	in	Supplementary	

File	 1)	 with	 genomic	 DNA	 extracted	 from	 the	 blood	 of	 a	 single	 healthy	 donor,	 in	 the	 proportions	

indicated	in	the	X	axis.	A	total	of	250ng	DNA	from	each	mixture	was	subjected	to	an	Illumina	EPIC	array,	

and	 the	 resulting	methylome	was	deconvoluted	 to	predict	 the	contribution	of	each	mixed-in	 tissue	 (Y	

axis).	Each	dilution	point	represents	one	mixing	experiments.	

Figure	4:	Cellular	contributors	to	cfDNA	in	healthy	individuals	(a)	Predicted	distributions	of	contributors	
to	circulating	cfDNA,	averaged	across	eight	sample	pools	of	healthy	donors.	Contributions	smaller	than	

1%	were	included	in	“Other”.	(b)	Deconvolution	results	for	eight	sets	of	pooled	DNA	samples,	expressed	

as	 absolute	 levels	 of	 DNA	 (genome	 equivalents/ml	 plasma,	 derived	 by	 multiplying	 the	 fraction	

contribution	of	each	tissue	by	the	total	amount	of	cfDNA	in	1ml	plasma).	Shown	are	contributions	larger	

than	1%.	Young,	19-30	years	old;	Old,	67-97	years	old	(pool	average	>	75yr).	(c)	Comparison	of	estimated	

proportion	of	various	cell	types	in	healthy	plasma	samples	(blue)	vs.	leukocytes	(orange),	as	predicted	by	

deconvolution.	 Shown,	 from	 left,	 are	 the	 contributions	 of	 erythrocyte	 progenitor	 cells,	 vascular	

endothelial	cells	and	hepatocytes,	all	of	which	are	not	expected	 in	 leukocyte	samples.	Also	shown	are	

the	predicted	contributions	of	lymphocytes,	that	represent	a	large	fraction	of	leukocyte	cell	population.	

Shaded	 boxes	mark	 95%	 confidence	 interval	 of	 the	 sample	mean.	 (d)	 Deconvolution	 of	 whole	 blood	
methylomes	 (not	 plasma),	 showing	 excellent	 correlation	 (Pearson’s	 r=0.985,	 p<2e-16)	 between	 the	

estimated	proportions	of	monocytes,	neutrophils	and	lymphocytes	and	the	actual	proportions	of	these	

cells	obtained	via	standard	Complete	Blood	Count	(CBC)	for	each	sample.	

Figure	 5:	 Cellular	 contributors	 to	 cfDNA	 in	 islet	 transplant	 recipients.	 (a)	Deconvolution	 results	 for	
pooled	 sample	 of	 cfDNA	 from	 five	 patients,	 1	 hour	 after	 islet	 transplantation.	 The	 patients	 present	 a	

noticeable	 amount	 of	 pancreas-derived	 cfDNA	 (typically	 absent	 in	 healthy	 donors).	 Cell	 types	

contributing	 <1%	 were	 included	 in	 “Other”.	 (b)	 Same	 as	 (a),	 expressed	 as	 absolute	 levels	 of	 cfDNA	

(genome	equivalents	per	ml	plasma).	Also	shown	is	the	prediction	for	a	healthy	 individual.	(c)	 Inferred	
amount	of	 cfDNA	 from	all	 three	pancreas	 cell	 types	 for	 three	 individuals	prior	 to,	1	hour	after,	 and	2	

hours	 after	 islet	 transplantation.	 Error	 bars:	 SD,	 estimated	 using	 Bootstrapping.	 (d)	 Comparison	 of	

pancreatic	 cfDNA	 estimations	 using	 deconvolution	 (y-axis)	 to	 results	 of	 targeted	 insulin	 promoter	
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methylation	 assay	 (x-axis).	 Pearson’s	 r=0.996,	 p-value=1.6e-8.	 (e)	 Same	 as	 (c),	 using	 a	 reference	 atlas	

with	whole	 pancreas	methylome,	 instead	 of	 purified	 pancreas	 cell	 types.	Here,	 deconvolution	 fails	 to	

identify	pancreatic	cfDNA	in	recipient	1.	

Figure	6:	Cellular	contributors	to	cfDNA	in	sepsis.	(a)	Predicted	cellular	contributions	are	shown	for	14	
samples	of	cfDNA	from	patients	with	sepsis.	Cell	types	present	at	<1%	were	included	in	“Other”.	(b)	Pie	
charts	 representing	 predicted	 distribution	 of	 cell	 types	 contributing	 to	 cfDNA	 of	 two	 of	 the	 sepsis	

patients.	 (c)	 Predicted	 levels	 of	 hepatocyte	 cfDNA	 compared	 to	 serum	 levels	 of	 Alanine	

Aminotransferase	 (ALT),	a	 standard	biomarker	 for	hepatocyte	damage	 (Pearsons’s	 r=0.93,	p-value≤4e-

7).	Error	bars:	SD,	as	estimated	using	Bootstrapping.	

Figure	 7:	 Cellular	 contributors	 to	 cfDNA	 in	 cancer.	 (a-c)	 Predicted	 contributions	 of	 breast,	 colon	 and	
lung	DNA	 to	 the	plasma	methylome	of	4	patients	with	 colon	 cancer	 (CC),	 4	patients	with	 lung	 cancer	

(LC),	3	patients	with	breast	cancer	(BRC)	and	4	healthy	donors	(H).	All	patients	were	at	advanced	stages	

of	disease.	(d)	A	mix-in	experiment.	The	plasma	of	a	patient	with	advanced	colon	cancer	was	mixed	with	

3	healthy	plasma	samples	in	varying	proportions	(detailed	in	Supplementary	File	1),	and	the	fraction	of	

colon-derived	cfDNA	was	assessed	using	deconvolution	of	the	methylome.	(e)	Identification	of	prostate-
derived	 cfDNA	 in	 published	 plasma	methylomes	 of	 patients	 with	 prostate	 cancer	

35
	 before	 and	 after	

treatment.	Patients	classified	as	abiraterone	acetate	(AA)	treatment	responsive	(blue)	show	a	dramatic	

drop	 in	 prostate-derived	 cfDNA,	 compared	 with	 the	 AA-resistant	 patients	 (red).	 (f)	 Deconvolution	 of	
cfDNA	 methylation	 predicts	 cfDNA	 origin	 for	 CUP	 cancer	 patients.	 Shown	 are	 the	 predicted	 cellular	

contributors	 for	 cfDNA	 samples	 from	4	 patients	 diagnosed	with	 a	 Cancer	 of	Unknown	Primary	 (CUP).	

Blood	cell	types	and	cells	contributing	<1%	are	not	shown.	For	each	patient,	the	location	of	metastases	

and	the	presumed	tissue	source	of	cancer	according	to	clinical	history	are	listed.	Deconvolution	results	

agreeing	with	clinical	predictions	are	shown	as	orange	bars.	
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	 1	

Supplementary	Figures	

	

	
	

	
	
	
Supplementary	 Figure	 1.	 Estimations	 of	 specificity	 (false	 positive	 rate)	 and	 sensitivity	
(detection	rate)	for	various	CpG	selection	strategies.	(a)	Specificity	values,	estimated	as	the	mean	
error	 (RMSE)	 for	 simulations	 with	 0%	 mixing	 (namely,	 pure	 leukocytes),	 for	 convolution	 with	
different	 numbers	 of	 selected	 CpGs	 per	 cell	 types.	 These	 include	 the	 top	 K	 differentially	
hypermethylated	CpGs	and	 top	K	hypomethylated	CpGs	per	cell	 types,	with	K	varying	 from	50	CpGs	
(50x2x25=2500	total),	 through	100,	200,	500,	1000,	5000,	or	all	methylation	array	CpGs	(right-most	
column).	 Note	 that	 deconvolution	 with	 all	 CpGs	 is	 less	 accurate	 (and	 less	 efficient)	 compared	 to	
models	with	 fewer,	 selected,	 CpGs.	 (b)	 Sensitivity	 values,	 estimated	as	percent	of	 in	 silico	mixes	 (at	
0.1%)	correctly	detected.	Orange	bar	marks	optimal	selection	(500	hyper	+	500	hypomethylated	CpGs	
per	cell	type,	for	total	of	25,000	CpGs).	(c)	Same	as	(b),	but	at	a	1%	mixing-in	level.	(d-f)	Same	as	(a-c),	
with	deconvolution	also	based	on	all	neighboring	CpGs	 (up	 to	50bp	away)	 from	previously	 selected	
ones.	The	addition	of	neighboring	CpGs	allows	 for	accurate	deconvolution	with	 few	CpGs,	e.g.	2x100	
CpG	blocks	per	cell	type	(total	of	7,390	CpGs	in	4,039	CpG	“haplotype	blocks”).	(g-i)	Specificity	using	
previous	CpGs	with	additional	pairwise-specific	500	CpGs	that	are	specifically	selected	to	distinguish	
between	similar	cell	types	(e.g.	different	T	cells,	adipocytes	vs.	vascular	endothelial	cells,	 	Bladder	vs	
Prostate,	etc),	allowing	for	a	further	improvement	in	sensitivity	with	few	CpGs.		
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Supplementary	Figure	2.	Same	as	Fig	2,	without	feature	selection	(250,777	CpGs	in	total).	Included	
are	 all	 CpGs,	 except	 for	 those	 with	 missing	 values	 or	 those	 with	 variance	 <	 0.1%	 across	 the	
methylation	atlas.	
	
	 	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2018. ; https://doi.org/10.1101/448142doi: bioRxiv preprint 

https://doi.org/10.1101/448142
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 3	

	

	
	
Supplementary	Figure	3.	Confusion	matrix	 for	deconvolution	of	plasma	cfDNA	methylomes.	
Each	 row	corresponds	 to	one	 cell	 type,	 in	 silico	admixed	with	 leukocytes	at	 various	mixing	 ratios	
from	0%	to	10%	(x-axis)	and	depicts	the	inferred	proportion	of	the	mixed	(in	blue)	and	all	other	cell	
types	(in	red).	Most	cell	types	are	completely	invariant	of	each	other.	
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Supplementary	Figure	4.	Confusion	matrix	 for	deconvolution	of	plasma	cfDNA	methylomes.	
Unlike	 Supplementary	 Figure	 3,	 here	 the	 admixed	 cell	 type	 was	 completely	 removed	 from	 the	
methylation	 atlas	 prior	 to	 deconvolution	 (black	 lines),	 resulting	 with	 some	 confusion	 between	
functionally	or	biologically	related	cell	types	(adipocytes	and	endothelial	cells,	pancreatic	cells,	etc).		
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Supplementary	 Figure	 5.	 cfDNA	 concentration	 of	 healthy	 individuals.	 Total	 concentration	 of	
cfDNA	(in	haploid	genome	equivalents/ml	plasma)	from	all	samples	used	to	generate	healthy	pools	are	
shown,	 grouped	by	 the	pool	 they	were	used	 in,	 as	 in	Fig	4b.	The	 cfDNA	 concentrations	of	 the	older	
individuals	 (blue	 boxplots)	 were	 significantly	 greater	 than	 those	 of	 the	 younger	 individuals	 (red	
boxplots)	(p-value	<	3.96e-7,	Mann-Whitney	test).	
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	 6	

Supplementary	Figure	6.	Immune	cell	cfDNA	in	pancreatic	islet	transplantation.	Same	as	Figure	
5c,	 plotting	 the	 inferred	 amount	 of	 cfDNA	 (in	 haploid	 genome	 equivalents/ml	 plasma)	 from	 all	
immune	cell	types	for	three	individuals	prior	to,	1	hour	after,	and	2	hours	after	islet	transplantation.	
Error	bars:	SD,	estimated	using	Bootstrapping.	
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Supplementary	Figure	7.	Reproducibility	of	deconvolution	results.	(a-d)	Predicted	distribution	of	
cellular	contributors	shown	 for	 four	samples	using	different	amounts	of	DNA	(50	ng,	100	ng	or	250	
ng).	(e)	Pearson	correlation	coefficients	(in	blue)	and	p-values	(in	yellow)	shown	for	different	pairs	of	
analyzed	plasma	cfDNA	methylomes	(each	set	from	the	same	individual).	
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Supplementary	Figure	8.	Sorting	and	gating	strategies	for	colon	epithelial	cells	(a)	and	lung	
alveolar	epithelial	cells	(b).	We	chose	a	P1	population	according	to	size	and	granularity	cell	
distribution,	followed	by	gate	P2	and	then	gate	P3	to	avoid	doublets.	From	the	P3	gate	we	chose	the	
Lineage	negative	cells,	and	then	selected	the	EpCam	positive	cells.	
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Legends	for	Supplementary	Data	file	1:	
	
Supplementary	Data	File	1	contains	nine	individual	tables,	covering:	
Table	1:	Cell	type-specific	CpGs	selected	for	deconvolution.	
Table	2:	Pairwise-differential	CpGs	selected	for	deconvolution.	
Table	3:	Ages	of	samples	used	in	healthy	pools.	
Table	4:	Inferred	composition	of	healthy	plasma	cfDNA.	
Table	5:	Reference	sample	donor	data.	
Table	6:	In	vitro	mixes.	
Table	7:	Cancer	patient	data.	
Table	8:	Healthy	and	cancer	cfDNA	mixes.	
Table	9:	Cancer	of	unknown	primary	site	(CUP)	data.	
	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 20, 2018. ; https://doi.org/10.1101/448142doi: bioRxiv preprint 

https://doi.org/10.1101/448142
http://creativecommons.org/licenses/by-nc-nd/4.0/

