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Cells need to reliably sense external ligand concentrations to achieve various biological functions
such as chemotaxis or signaling. The molecular recognition of ligands by surface receptors is degen-
erate in many systems leading to crosstalk between different receptors. Crosstalk is often thought of
as a deviation from optimal specific recognition, as the binding of non-cognate ligands can interfere
with the detection of the receptor’s cognate ligand, possibly leading to a false triggering of a down-
stream signaling pathway. Here we quantify the optimal precision of sensing the concentrations
of multiple ligands by a collection of promiscuous receptors. We demonstrate that crosstalk can
improve precision in concentration sensing and discrimination tasks. To achieve superior precision,
the additional information about ligand concentrations contained in short binding events of the non-
cognate ligand should be exploited. We present a proofreading scheme to realize an approximate
estimation of multiple ligand concentrations that reaches a precision close to the derived optimal
bounds. Our results help rationalize the observed ubiquity of receptor crosstalk in molecular sensing.

I. INTRODUCTION

Living cells need to collect information with high pre-
cision to respond and adapt to their environment [1].
For example, chemotactic swimming bacteria can react
to changes in concentrations of nutrients and toxins [2];
and cells from the innate immune system can recognize
distinct microbial components and initiate immune re-
sponses [3]. Presence or concentrations of key ligands are
measured via receptor proteins, which are usually located
in the cell surface, and later processed by complex down-
stream signaling networks to trigger cellular responses.
The accuracy of these measurements suffer from multi-
ple sources of noise, including the transport of ligands by
diffusion, the binding of the ligands to the receptors after
they have arrived to the surface, and the communication
between components of the signaling network.

In recent years, the fundamental limits to cellular sens-
ing has received thorough theoretical consideration [4–7].
Berg and Purcell [8] were the first to study the problem
and found that the sensing error can be minimized by ei-
ther increasing the number of receptors or the number of
measurements per receptor. More recently, Endres and
Wingreen showed [9] using a maximum likelihood estima-
tion that the accuracy can be increased by a factor of 2
by solely taking into account the unoccupied time inter-
vals. Further theoretical work has concentrated on un-
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derstanding the limits in cellular sensing for single recep-
tors with spatial [10–14] and temporal gradients [15, 16],
for multiple receptors [17–19] and even for cells that can
communicate [20–22]. The thermodynamic cost [23–27]
and the trade-offs between different resources for sensing
[28–30] has also been explored at large.

Most of the aforementioned models assume that recep-
tors sense individual ligands. However, cognate ligands
usually reside among other spurious ligands and recep-
tor must identify them accurately [16, 31–33]. Recently,
Mora [34] derived the fundamental limit to measuring
concentrations among spurious ligands, and devised a sig-
naling network, based on a kinetic proofreading scheme
[35], to approximately reach this limit. Similarly, Singh
and Nemenman [36] found that a single receptor is capa-
ble of correctly measuring two different ligands with dis-
parate binding affinities using a similar network. These
studies focused on understanding the optimal sensing ca-
pacity of one receptor with a cognate and one (or many)
non-cognate ligands. In reality, receptors with differ-
ent cognate ligands may communicate with each other
through their downstream signaling networks, thereby in-
creasing the efficiency of the measurement of the concen-
tration of all ligands. This crosstalk between receptors
is likely to be the case for systems with a larger num-
ber of ligands than receptors. For example, in the bone
morphogenetic protein signaling pathway, more than 30
different ligands interact with only 7 different receptors
[37, 38]. Similar circumstances arise for Toll-like recep-
tors in the innate immune system [39] and T-cell recep-
tors in the adaptive immune system [40, 41]. The fun-
damental limits to how different receptors combine infor-
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mation through crosstalk is currently unknown.
In this paper, we place physical limits on concentra-

tion sensing with crosstalking receptors. We consider two
types of receptors, each with their own cognate ligands
and compare specific to crossreactive binding. To gain
intuition, we first consider specific receptors which never
bind to non-cognate ligands. We then analyze the more
realistic case where both receptors bind to both ligands
with different binding strengths in a background with
other ligands. In the latter case, we call the receptors
specific if the off-rates of the non-cognate ligand are as
high as those for the background ligands. In both cases,
we demonstrate that crosstalk outperforms specific bind-
ing of ligands in some parameter regimes as measured by
relative errors on concentration estimation of the two lig-
ands. We also discuss a related problem: detection of the
presence of a ligand over a given concentration threshold
using sequential probability ratio tests.

II. MAXIMUM LIKELIHOOD ANALYSIS OF
TWO CROSSTALKING RECEPTORS

We consider a situation of crosstalk in the simplified
case of two receptors, labeled A and B, and two ligands,

labeled 1 and 2. The binding rates of the two recep-
tors kA and kB are assumed to be independent of the
identity of the ligand, as in the case of diffusion-limited
binding, in which case kA = 4DsA, kB = 4DsB , where
sA, sB are the sizes of idealized circular receptors located
on the cell surface, and D is the diffusivity of the lig-
and molecules. The distinction between the two ligands
appears in the distinct rates of unbinding, which are de-
noted by rA,1, rA,2, rB,1, rB,2. In the presence of both
ligands, receptors alternate between bound and unbound
states with exponential waiting times associated with the
off and on rates respectively. In general, the mean occu-
pancy of each receptor contains useful information about
the concentrations of each ligand. However, the temporal
information contained in the sequence of bound and un-
bound times is lost; a maximum likelihood estimation
based off the binding and unbinding events yields an
estimator that is unbiased and asymptotically achieves
the least variance, as given by the Cramér-Rao bound
[9, 34, 42]. For independent receptors, we may split the
log-likelihood L into contributions from binding events
at each receptor, L = LA+LB . For ligands with concen-
trations c1 and c2 (with ctot = c1 + c2), the probability
of a sequence of bound and unbound times on receptor
A is written as

P ({uAi , bAi }) ≡ eLA =

nA∏
i=1

e−kActotu
A
i

[
kAc1rA,1e

−rA,1b
A
i + kAc2rA,2e

−rA,2b
A
i

]
, (1)

where {uAi , bAi } denotes the sequence of unbound and bound times, and the index i runs from one to the total number
of binding events nA in a fixed time interval T , which is taken to be much longer than the typical binding and
unbinding times. A similar expression can be written for receptor B. The log-likelihood now reads

L =
∑

R=A,B

{
−kRctotT

R
u + nR log kRctot +

nR∑
i=1

log
(
xrR,1e

−rR,1b
R
i + (1− x) rR,2e

−rR,2b
R
i

)}
, (2)

with x = c1/ctot and TRu is the total unbound time of the receptor R. Maximum likelihood (ML) estimates of x and
ctot are obtained from the conditions ∂L

∂x |x∗ = 0 and ∂L
∂ctot
|c∗tot = 0. The ML estimate of the total concentration, c∗tot,

is given by

c∗tot =
nA + nB

kATAu + kBTBu
(3)

The ML estimate x∗ satisfies the equation

nA∑
i=1

αAe
−(αA−1)rA,2b

A
i − 1

x∗αAe−(αA−1)rA,2bAi + (1− x∗)
−

nB∑
i=1

αBe
−(αB−1)rB,1b

B
i − 1

(1− x∗)αBe−(αB−1)rB,1bBi + x∗
= 0. (4)

Here, we have defined αA = rA,1/rA,2 and αB = rB,2/rB,1.

III. PRECISION IN CONCENTRATION
SENSING

Since ctot and x are involved in separate terms of the
log-likelihood (2), the variances of their optimal estima-

tors are given, in the limit of large numbers of binding
events, by the inverse of their respective Fisher informa-

tion, δx2 = 〈∂2L
∂x2 〉−1 and δc2tot = 〈 ∂2L

∂c2tot
〉−1, where the
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FIG. 1: Specific and crosstalk receptors for concen-
tration sensing. (A) The receptors A and B bind to their
cognate ligand 1 and 2 respectively with the same rate k.
Crosstalk is defined as the receptors additionally binding to
another non-cognate ligand. The non-cognate ligand unbinds
faster (r′ > r), which allows for discrimination between the
two types of binding events. (B) The two receptors bind to
both ligand species, as well as to a pool of background lig-
ands 0, all with the same binding rate k. The off rates of the
non-cognate ligand can either be identical to the background
ligands (specific case, r < r′ = r0) or in between the back-
ground and the cognate ligand (crosstalk case, r < r′ < r0).

angled brackets denote an expectation over the distri-
bution parametrized by the true parameter values. A
similar approach is taken in [34]; here, we simply write
the final form for the variance in the estimates of ctot and
x:

δc2tot =
c2tot

〈nA〉+ 〈nB〉
, (5)

δx2 =

( 〈nA〉
f (x, αA)

+
〈nB〉

f (1− x, αB)

)−1

, where

(6)

f (x, α)
−1

=

∫ ∞
0

dte−t
(
αe−(α−1)t − 1

)2
xαe−(α−1)t + (1− x)

, (7)

where averages and variances are taken over realizations
of sequences of bound and unbound times (or equiva-
lently, averaged over one sequence in the limit of large
T ) and 〈ni〉 = T/((kictot)

−1 +xr−1
i,1 +(1−x)r−1

i,2 ). Before
proceeding further, we make a few simplifying assump-
tions of symmetric binding of the two ligands on the two
receptors. Particularly, we assume rA,1 = rB,2 = r,
rA,2 = rB,1 = r′ and kA = kB = k, which give
αA = αB ≡ α = r/r′. For α < 1, the conditions imply
that ligand 1 acts as a cognate ligand for receptor A and
a non-cognate ligand for receptor B, whereas the recipro-
cal relationship is true for ligand 2. The discriminability
of the two ligands is set by α, which measures the ratio
of bound times of the cognate and non-cognate ligands.
It is convenient to nondimensionalize the concentrations
of the two ligands as c̃1 = kc1/r and c̃2 = kc2/r. The

mean number of binding events on the two receptors is
given by the total time divided by the mean time for each
binding and unbinding cycle, which gives

〈nA〉 =
rT (c̃1 + c̃2)

1 + c̃1 + αc̃2
, 〈nB〉 =

rT (c̃1 + c̃2)

1 + αc̃1 + c̃2
. (8)

In the case of specific receptors i.e., when each ligand
binds to only one receptor type, the minimum variance of
the estimated concentration of each ligand can be derived
in a similar fashion from the log-likelihood (see [9]). If
we suppose ligand 1 binds specifically to receptor A (with
the same binding and unbinding rates as in the crosstalk
case above), and ligand 2 binds only to receptor B, the
error in ML estimation is given by

δc21 = c21/〈nA〉spec, δc22 = c22/〈nB〉spec, where (9)

〈nA〉spec =
rT c̃1
1 + c̃1

, 〈nB〉spec =
rT c̃2
1 + c̃2

, (10)

where, 〈nA〉spec, 〈nB〉spec are the average number of bind-
ing events for the specific receptor case in the same inter-
val T . Note that (10) does not correspond to the r′ →∞
limit in (5) and (6): when r′ is very large, non-cognate
ligand bound times can be read easily because there is no
cutoff for the readout of small bound times. This biolog-
ical inconsistency can be removed by taking into account
binding of non-specific molecules (see Section V).

To make a comparison between the effectiveness of
crosstalking and specific receptors, it is more pertinent
to estimate relative errors, δc1/c1, δc2/c2, as concentra-
tions can span many orders of magnitude. In the limit
of long times, where errors are Gaussian-distributed, the
covariance matrix

Σ =

 δc21
c21

δc1δc2
c1c2

δc1δc2
c1c2

δc22
c22

 (11)

describes the magnitude and shape of relative estimation
errors as an ellipse around the true value. Its determi-
nant, Ω = det(Σ), gives the volume of that ellipse and
is used as a measure of error. Intuitively, the discrim-
inability between two pairs of concentrations (c1, c2) and
(c′1, c

′
2) depends on the overlap in the areas of the two

ellipses centered around the pairs [43]. In the crosstalk
case, from (5) we have

ΩCT =
1

x2 (1− x)
2

1

〈nA〉+ 〈nB〉

× 1

〈nA〉f (x, α)
−1

+ 〈nB〉f (1− x, α)
−1 ,

(12)

For the case of specific binding, the measurements of c1
and c2 are independent, and from (10), the determinant
of the covariance matrix is

ΩS =
1

〈nA〉spec〈nB〉spec
. (13)
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FIG. 2: Comparison of concentration sensing accuracy with specific and crosstalking receptors. (a) Ratio between
the specific and cross-talk errors, ΩS/ΩCT, for four different values of α and different concentration pairs. The region where
crosstalk shows greater precision ΩCT < ΩS is delineated by the orange dashed line. For α > αc ≈ 0.27, crosstalk does not
exhibit greater precision in any range of concentrations. (b) The logarithm of the same ratio for c̃1 = 1 and three values of c̃2
as a function of α.

In the limit of weak crosstalk, α � 1, we find that
crosstalk between receptors always improves sensing ca-
pacity over non-crosstalking receptors, regardless of the
concentrations of each ligand. To see this, note f(x, α) ≈
(1− x) and f(1− x, α) ≈ x (from (7)), and so

ΩS/ΩCT ≈ 2
(µ+ 2x(1− x))(µ+ 1/2)

(µ+ x)(µ+ 1− x)
> 1, (14)

where µ = (c̃1 + c̃2)−1. In particular, when c1 ≈ c2, the
number of binding events for the crosstalking receptors is
twice that for the specific receptors and consequently, ΩS

is a factor two greater than ΩCT in this limit. In Figure 2
we mark the regions in the (c̃1, c̃2) plane where ΩS > ΩCT

for different values of α. We make two major observa-
tions. First, for α = 0 i.e., for perfect discriminability,
crosstalking receptors always show lower estimation error
(Eq. 14). Second, there is a critical value of α, αc ≈ 0.27,
beyond which ΩS is smaller than ΩCT for all concentra-
tions. Thus, the usefulness of crosstalk diminishes with
increasing α, as in Ref. [36].

IV. PERFORMANCE COMPARISON IN
DISCRIMINATION TASKS

Next, we consider the task of discriminating between
two external environmental states or ’hypotheses’, H0

and H1, corresponding to ligand concentrations (c1, c2)
and (c′1, c

′
2) respectively. A Bayes-optimal decision-maker

compares the likelihood ratio, or equivalently, the differ-
ence in log-likelihoods, L0 − L1 ≡ ∆L, for the two hy-
potheses given the observed bound and unbound times
and makes a decision if ∆L crosses a certain threshold θ
in a given amount of time T . The false positive and false
negative error rates depend on θ and the distribution of

10−2 10−1 100 101 102
10−3

10−2

10−1

0.4

1

2.5

FIG. 3: Crosstalking receptors show improved dis-
criminability relative to specific receptors. Ratio of
sensitivity index d′ for the cross-talk (d′CT) and specific (d′S)
cases, as a function of the concentration of the second ligand
c2, and the specificity ratio α = r/r′, in the task of discrimi-
nating two values of the first ligand concentration, kc1/r = 0.5
or kc′1/r = 2. The orange line separates the regions in which
each of the two strategy (crosstalk or specific) is optimal.
Crosstalk is beneficial for small c2 and α, i.e. when the lig-
ands are easy to distinguish and do not saturate the receptor.
The sensitivity index was computed using rT = 104.

∆L under the hypotheses. To conveniently compare the
discriminability for the crosstalk and specific cases, we
use the discriminability (or ‘sensitivity index’ d′), defined
as

d′ =
〈∆L〉c − 〈∆L〉c′√
〈δ2∆L〉c + 〈δ2∆L〉c′

, (15)

where subscripts c and c′ denotes expectation values un-
der concentrations (c1, c2) and (c′1, c

′
2) respectively. If ∆L
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is Gaussian-distributed and its variance equal for both
sets of concentrations, d′ and θ together uniquely de-
termine the false positive and false negative error rates.
For large T , the central limit theorem guarantees that
the Gaussian approximation is a good one. Although the
variances 〈δ2∆L〉c and 〈δ2∆L〉c′ are not equal in general,
d′ is often used as a general measure of discriminability.

To calculate the mean and variance of 〈∆L〉c, we first
observe that since the two receptors are independent, it
is sufficient to compute them for a single receptor and
sum them up. We show in the Appendix that for a single
receptor with arbitrary unbound and bound time distri-
butions, the cumulant generating function of 〈∆L〉c has a
simple form in the limit of large T , from which we derive
explicit forms for the mean and variance. In Figure 7,
we validate these analytical expressions using numerical
simulations.

The discriminabilities for the crosstalking and specific
receptors, d′CT and d′S, are compared in Figure 3. The
orange line mark the region where crosstalk offers greater
discriminability compared to the specific case. Large con-
centrations of the non-cognate ligand can mask the ac-
curate discrimination between different concentrations of
the cognate ligand, as evidenced by the blue region. As
α → 0, masking plays a limited role, since even though
binding events are dominated by the non-cognate ligand,
the bound times are extremely short and easily distin-
guishable from the bound times of the cognate ligand.

V. CONCENTRATION ESTIMATES OF TWO
LIGANDS IN A POOL OF NONSPECIFIC

LIGANDS

Next, we consider a more realistic scenario the cell
faces: the problem of concentration estimation of two
ligands in a presence of a pool of background nonspecific
ligands. This scenario also allows us to resolve the incon-
sistency of the limit of perfect specificity, α → 0. As we
observed earlier, that limit did not reduce to the case of
no cross-talk, because of infinitely short but mathemat-
ically informative nonspecific binding events. Adding a
background of nonspecific ligands removes the informa-
tive content of these spurious events by making them
indistinguishable from background ligand binding. Here,
as before, we have two receptors, A and B, and two cog-
nate ligands, 1 and 2, whose concentrations c1 and c2
the cells needs to be estimate. In addition, there exists
a pool of nonspecific ligands labeled 0, with concentra-
tion c0. The receptors now have to differentiate between
three types of ligands to correctly estimate their con-
centrations. We assume diffusion-limited ligand-receptor
binding as before. The off-rates for the nonspecific lig-
ands are rA,0 = rB,0 = r0 ≥ r′ > r from both receptors.
With total concentration given by ctot = c0 + c1 + c2,
and relative fractions x = c1/ctot, y = c2/ctot, the prob-
ability P ({uRi , bRi }) of a sequence of bound and unbound
times can be written as a function of the on-rate, various

off-rates and concentrations. As before, the ML estimate
of θ = [x, y, ctot] can be obtained by maximimizing the

log-likelihood L = logP , by setting ∂L(θ)
∂θ |θ∗ = 0. Fur-

ther, in the limit of large numbers of binding events, the
Cramér-Rao bound guarantees that the covariance ma-
trix of the estimator θ is given by the inverse of the Fisher
Information matrix:

〈δθT δθ〉 = −
〈 ∂2L
∂θT∂θ

〉∣∣∣∣−1

θ∗
. (16)

The covariance matrix ΣNS of the relative errors on
concentrations, δc1/c1 and δc2/c2, can then be obtained
by a change of variable from θ to (c0, c1, c2), from which
the error volume ΩNS = det(ΣNS) is computed, analogous
to ΩS and ΩCT defined earlier.

We are interested in how ΩNS varies as a function of r
and r′, to understand if crosstalk (defined now as r′ < r0

by contrast to background unspecific binding, r′ = r0)
can result in relatively better concentration estimates.
Up to scalar scaling, ΩNS depends only on the ratios
kctot/r0, r/r0 and r′/r0 and the ligand concentration
fractions x and y.

The estimation error quantified by ΩNS attains a min-
imum (Fig. 4a) at some finite values of r = rmin and
r′ = r′min < r0, meaning that a finite crosstalk minimizes
the estimation error. At a fixed r, for r′ > r, while ΩCT

monotonically decreases with increasing r′, ΩNS is non-
monotonic with a local minimum at r′ = r′min ∈ (r, r0)
(inset, Fig. 4a). The existence of a minimum results
from a tradeoff between three conflicting effects. First,
when r′ is large, receptors cannot reliably distinguish be-
tween the noncognate and the nonspecific ligand, result-
ing in an increased estimation error for x and y. On
the other hand, larger values of r′ and r result in more
binding events, thereby improving statistics and accu-
racy. Lastly, r and r′ should as far as possible from each
other for each receptor to be able to distinguish cognate
from noncognate ligands. These opposing forces result in
a local minimum at (rmin, r

′
min), balancing the need for

speed (high unbinding rates r, r′) with that of specificity
(low but different r and r′), ensuring that receptors can
maximally distinguish between the three different kinds
of ligands by looking at their binding times.

Distinct regimes emerge depending on the value of the
dimensionless parameter kctot/r0, which can be viewed
as an effective unspecific receptor occupancy quantifying
the effect of background binding, as well as on the ligand
fractions x and y. For small kctot/r0, (Fig. 4a), a tradeoff
exists between speed and specificity (r′min < r0), while
for large kctot/r0 (Fig. 4b), the low receptor availability
caused by unspecific background binding makes the speed
requirement dominate, resulting in absence of cross-talk
in the optimal solution (r′min = r0). Fig. 5 shows the
phase diagram as a function of the ligand fractions x
and y, for fixed values of kctot/r0 = 0.01. Three phases
emerge: cross-talk (rmin < r0, I), no cross-talk (rmin =
r0, II), and impossibility region (x+ y > 1, III).
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FIG. 4: Optimal unbinding rates in presence of background unspecific binding. Logarithm of the error, log ΩNS as a
function of the the unbinding rate of the cognate ligands, r, and the unbinding of noncognate ligands, r′, for the ML estimates in
the crosstalk model with nonspecific ligands with x = y = 0.4. (a) Weak background binding (kctot/r0 = 0.01). ΩNS attains a
local minimum at rmin < r′min < r0, meaning that crosstalk optimizes the accuracy of concentration sensing. In the inset, we plot
ΩNS (red) and ΩCT (blue) as a function of r′/r0, at fixed r/r0 = 0.01 (along the dotted white line in the main plot). While ΩCT

decreases monotonously as r′ increases (and α decreases), ΩNS attains a local minimum (black diamond). A good estimation of
the cognate ligand concentrations requires all unbinding rates to be as dissimilar as possible, ensuring that the identity of the
bound ligand can be faithfully inferred from the binding times. (b) Strong background binding (kctot/r0 = 0.01). The minimum
is reached at the boundary, (r′min = r0), meaning that the noncognate ligand is indistinguishable from background binding and
thus treated as noise. This optimal solution thus reduces to the case of specific binding in the presence of background binding.
Plots are obtained with kc1/r0 = 0.4, kc2/r0 = 0.4, kc3/r0 = 0.2, and r0T = 104.
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FIG. 5: Optimal strategy as a function of ligand fractions. Three phases are shown: I, crosstalking receptors are optimal
(rmin < r′min < r0); II, specific receptors are optimal (rmin < r′min = r0); III, impossible region (x + y > 1). The heatmap
shows the optimal value of the specificity ratio, αmin = rmin/r

′
min. Yellow lines indicate a constant c0 (or x + y). The phase

diagram depends on the strength of background binding: (a) kctot/r0 = 0.01, (b) kctot/r0 = 0.1, and (c) kctot/r0 = 0.5. As
this strength increases, the region where specific binding is optimal (phase II) extends towards smaller values of x and y.
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When one ligand is present in very low concentrations
and the other in high concentrations (low x, high y, or
vice-versa), introducing cross-talk would cause the abun-
dant ligand to saturate both receptors, keeping the re-
ceptor that is cognate to the sparse ligand from sensing
its concentration. In that regime, cross-talk is not op-
timal (region II of Fig. 5a). As kctot/r0 increases (Fig.
5b), this region spreads towards smaller values of x and
y. Yet even when the effect of background ligand is felt
strongly, cross-talk is still advantageous when the cog-
nate ligands are sparse (x+ y � 1).

VI. A BIOCHEMICAL NETWORK SCHEME
THAT REACHES CLOSE TO THE OPTIMAL

BOUNDS

In this section, we present a simple kinetic
proofreading-based scheme that implements an approx-
imate maximum likelihood estimation with a precision
close to the derived optimal bounds. In the follow-
ing analysis, for simplicity, we revert to the former
case of one cognate and one non-cognate ligand. We
note that the ML estimate for the total concentration
ĉtot = (nA + nB)/(kAT

A
u + kBT

B
u ) has a simple expres-

sion; the terms in the numerator and denominator can
be measured biochemically and combined to form ĉtot.
To estimate x, the scheme relies on a proofreading ‘clas-
sifier’ associated to each receptor that distinguishes be-
tween bound times above and below a certain thresh-
old. An unbiased estimate of x, which we denote by
x̃R, can be formed for each receptor R (R = A or B),

based on the fraction f̂R of binding events where the
ligand is bound longer than τR. Defining yR = e−r

′τR ,
hR = e−rτR − e−r′τR = yαR − yR, this estimate reads:

x̂A =
f̂A − yA
hA

(17)

x̂B =
yαB − f̂B
hB

(18)

The error in each estimate is δx2
R = fR (1− fR)/(h2

RnR),
where nR is the mean total number of binding events in

time T and fR ≡ 〈f̂R〉. Because the estimates from recep-
tors A and B stem from independent binding events, the
best way to combine them is through a weighted average
of the estimates from each receptor:

x̂ = βx̂A + (1− β) x̂B , (19)

with β = 1/
(
1 + δx2

A/δx
2
B

)
.

The value of the threshold τA can be optimized to yield
the most precision in x̃A. In Appendix B, we show that
the optimum is reached for r′τ∗A = (1− α)−1 log

(
1−2α
αx

)
,

valid for α < 1/2. We note here that even though τ∗A
depends on x, the dependence is logarithmic. To imple-
ment adaptive thresholds that depend on log x, we can
imagine a collection of ‘gating’ networks which apply dif-
ferent thresholds to the length of the binding events. An

independent crude estimate of x is sufficient to choose
the network that has a threshold closest to τ∗A. The op-
timal value for τB has a similar form with x replaced by
1− x.

The cell can easily compute x̂A and x̂B using a proof-
reading motif followed by a downstream push-pull net-
work as shown in Figure 6A. For concreteness, consider
the case of receptor A. Suppose the proofreading mo-
tif produces a molecule of enzyme E1 for each binding
event longer than the threshold τA. Further, every bind-
ing event generates a single protein X and an enzyme
molecule E2. The enzymes E1 and E2 catalyze the con-
version of X to its active state X∗ and vice-versa, re-
spectively. Assuming that X and X∗ are in excess in the
enzymatic reaction, the rate at whichX andX∗ are inter-
converted is directly proportional to the enzyme numbers
with catalytic rates denoted by k1 and k2. Suppose also
that X∗ reverts to X at a finite rate r−1. At steady
state, dX∗/dt = 0, and we have r−1X

∗ = k1E1 − k2E2.
Then, setting k1/r−1 = 1/hA and k2/r−1 = yA/hA, the
fraction of X molecules in the active state tracks x̂A.

Combining x̂A and x̂B as in (19) using a biochemi-
cal network can be done at fixed β. For instance, when
x ∼ 1/2, the errors from both receptors are about the
same and we may weight the estimate from each receptor
equally, β = 1/2. However, tuning β to reflect its depen-
dency of the concentrations requires additional adaptive
mechanisms. In the regime x � 1, receptor A has the
highest precision in estimating x, and x̃A can be taken
as a crude estimate of x (and symmetrically for B when
1 − x � 1). In Figure 6B, we compare the error from
this crude estimate against the optimal crosstalk error
and the error from using the optimal network weights
(19). This comparison shows that although the approx-
imate biochemical solutions are not optimal, they stand
reasonably close to the ML estimate.

VII. DISCUSSION

The key result of our paper is that crosstalk is generi-
cally the optimal strategy for sensing multiple ligand con-
centration using multiple receptors. The theory predicts
an optimal level of crosstalk, which balances the oppos-
ing requirements of maximizing the number of binding
events with the receptor’s ability to distinguish the lig-
ands involved in those events. For this discrimination
to be possible, the difference between cognate and non-
cognate binding affinities is maintained.

In the simplest theory that we presented (Sec. 2 and
3), higher unbinding rates are always advantageous be-
cause they increase receptor availability without hurting
discriminability. However, in reality there are several rea-
sons why high unbinding rates are not optimal. First, the
molecular machinery required to process the information
of the receptor binding state operates with its own in-
compressible time scale, which sets a lower bound on the
duration of binding events that can be detected. Second,
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FIG. 6: (a) Network scheme to estimate x = c1/ctot using the fraction of binding events that last longer than some threshold
τ . An estimate of x is read off from the fraction of X molecules in the active state (see text). (b) The error in estimating x for
x = 10−1, 10−3, 10−5 (blue, orange, red respectively) using (19) (solid, colored lines) and the crude estimate of using only one
receptor (dashed lines) is compared with the optimal ML error (solid, black lines).

it is not realistic to assume that unbinding rate can be
increased arbitrarily without affect binding rates as well.
Very unspecific ligands that unbind very quickly are also
less likely to bind in the first place, and the assumption of
diffusion-limited binding rate is no longer valid. Lastly,
for high enough unbinding rates, cognate and cross-talk
binding events become indistinguishable from completely
unspecific binding with other generic molecules. Model-
ing that situation as we did in Section V allowed us to
find well-defined optimal unbinding rates.

In addition to maximizing the use of each receptor to
gain information about each ligand, crosstalk has the ad-
ditional advantage of expanding the dynamic range of
concentrations over which ligands can be sensed. For in-
stance, when a ligand is present at high concentration,
its cognate receptors will be fully saturated, making it
difficult to reliably read off the concentration from the
receptor’s activity. Lower-affinity binding to a second
receptor can then allow for more accurate sensing, as
long as that receptor is not itself saturated by other lig-
ands. In our language, when receptor A is saturated
by ligand 1, c1 � r/k ≡ Kd, then receptor B is still
sensitive to the concentration of ligand 1 in the regime
c1 ∼ r′/k = α−1Kd. More generally in the presence of
multiple ligands and multiple receptors, a good strategy
could be to organize specificities (i. e., unbinding rates) so
that, for each ligand, dissociation constants collectively
tile the sensory space. For such strategies to work, the
concentration space must be sparse, meaning that only
one or a few of the ligands of interest are present in large
concentrations at the same time.

Cross-talk, also known as promiscuous binding, cross-

reactivity, or multiplexing, depending on the context, is
widespread in biology. It is an important feature of the
BMP [37], Notch, Wnt [44], and JAK-STAT [45] path-
ways, as well as the Eph-ephrin system for cell posi-
tioning [46], T- and B-cell receptor antigen recognition
[41, 47], and olfactory receptors [48]. An often cited
benefit of promiscuity is that it confers the ability to
design combinatorial codes. In the context of olfaction
[49], such design can be advantageous in the presence
of sparse odors [50]. Combinatorial codes also allow for
flexible computations in signaling pathways [38]. In the
adaptive immune system, cross-reactivity is necessary to
cover the large space of possible antigens with a limited
number of receptors [40, 41]. Our results suggests an-
other advantage of cross-talk: sensing accuracy. It would
be interesting to study whether some of the biological
systems that exhibit cross-talk make use of that benefit,
and whether they are organized in a way that approaches
the optimal solution.
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Appendix A: Cumulants of the log-likelihood for discrimination

Consider a receptor switching between two states, bound and unbound, where the bound times u and unbound
times b are drawn from general distributions that depend on the external ligand environment. We will consider the
problem of discriminating two possible environmental states, labeled H0 and H1, given the time series of receptor
states for a fixed time T , where T is much larger than the typical bound and unbound times. Our interest is in
calculating the cumulants of the log-likelihood difference between the two hypotheses, L0 − L1 ≡ ∆L, under the
hypothesis that either H0 or H1 is the true external state. We shall use Pi(u) and Qi(b) to denote the distributions
of unbound and bound times respectively for Hi.

The moment generating function M(λ) of ∆L under Hi is

M(λ) = 〈eλ∆L〉i =

∫
eλ∆L+LiDuDb, (A1)

where the measure denotes an integral over all possible bound and unbound times in the interval T . The range of the
integral can be split over distinct regions with a particular number of binding events n in time T i.e.,

∑n
j=0 uj+bj > T

but
∑n−1
j=0 uj + bj < T , where uj and bj denote the unbound and bound time at the jth binding event. Conditioning

over n using the Heaviside function, we have

M(λ) =

∞∑
n=1

∫
eλ∆L+Li

Θ

 n∑
j=0

uj + bj − T

−Θ

n−1∑
j=0

uj + bj − T


n∏
j=1

dujdbj (A2)

Note that Li is a sum of 2n independent contributions: Li =
∑n
j=1 pi(uj) +

∑n
j=1 qi(bj), where pi ≡ logPi and

qi ≡ logQi. The Heaviside function Θ can be replaced by its integral form

Θ(x) =

∫ i∞

−i∞

dσ

2πiσ
eσx, (A3)

where the pole at σ = 0 should be taken to be in the left half of the complex plane. Applying this expression, we have

Θ

 n∑
j

uj + bj − T

 =

∫ i∞

−i∞

dσ

2πiσ
e−σT

n∏
j

eσuj+σbj . (A4)

Using the same representation for the other Θ function, we have

M(λ) =
∞∑
n=1

∫ i∞

−i∞

dσ

2πiσ
e−σT

∫ 
n∏
j=1

eλ∆p(uj)+pi(uj)+λ∆q(bj)+qi(bj)




n∏
j=1

eσuj+σbj −
n−1∏
j=1

eσuj+σbj


n∏
j=1

dujdbj ,

(A5)

where ∆p(uj) = p0(uj)− p1(uj) and similarly for ∆q. Simplifying, we have

M(λ) =
∞∑
n=1

∫ i∞

−i∞

dσ

2πiσ
e−σT

{
f(σ, λ)n − f(0, λ)f(σ, λ)n−1

}
, (A6)

where we have defined

f(σ, λ) =

∫ ∞
0

eλ∆p(u)+pi(u)+σudu

∫ ∞
0

eλ∆q(b)+qi(b)+σbdb. (A7)
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Summing over n, we get

M(λ) =

∫ i∞

−i∞

dσ

2πiσ
e−σT

f(σ, λ)− f(0, λ)

1− f(σ, λ)
. (A8)

From Cauchy’s Residue Theorem, for large T , this integral is dominated by the residue from the smallest, positive
pole σ such that f(σ, λ) = 1, which we call σs(λ). Since we are interested in the cumulants of ∆L, which are generated
by the Taylor series of logM(λ) as λ→ 0, it is sufficient to consider only small λ. To see that σs exists and is positive,
we expand f(σ, λ) around f(0, 0) up to first order in a Taylor series

f(σ, λ) = f(0, 0) + σ
∂f

∂σ
+ λ

∂f

∂λ
+ . . . . (A9)

where all derivatives here and below are evaluated at (σ, λ) = (0, 0). Since f(0, 0) = 1 and f(σs(λ), λ) = 1, we have

σs(λ) = −λ∂f/∂λ
∂f/∂σ

+O(λ2). (A10)

To keep the moment-generating function well-defined, for i = 0, we take λ → 0− and for i = 1, we take λ → 0+,
which together ensure that for both cases σs is a positive pole of the integrand in (A8). We circumvent the problem of
calculating σs for each Pi and Qi by noticing that for large T , the cumulant generating function logM can be simply
written as

logM(λ) = −Tσs(λ) + o(T ). (A11)

The mth-order cumulants are then obtained by taking the mth-order derivatives of σs(λ) at λ = 0. Here, we will derive
the expressions for the mean and the variance; higher-order cumulants can be obtained by taking further derivatives.
As noted above, f(σs(λ), λ) = 1. Differentiating both sides by λ, we obtain

dσs
dλ

∂f

∂σ
+
∂f

∂λ
= 0 (A12)

From here, we get

〈∆L〉i = −T dσs
dλ

= T
∂f/∂λ

∂f/∂σ
(A13)

Taking the partial derivatives of f and evaluating at (0, 0) gives:

〈∆L〉i
〈n〉i

= 〈P +Q〉i , (A14)

where we have defined P = log P0

P1
,Q = log Q0

Q1
and 〈n〉i = T

〈tu+tb〉i is the total number of binding events on the

receptor in time T . For instance, at (0,0), we have ∂f/∂λ =
〈

log P0

P1
+ log Q0

Q1

〉
i

and ∂f/∂σ = 〈u+ b〉i. The variance

can similarly be obtained by applying another derivative w.r.t λ on (A12). Finally, we get

〈δ2∆L〉i = −T d
2σs
dλ2

= T

(
dσs

dλ

)2 ∂2f
∂σ2 + 2dσs

dλ
∂2f
∂σ∂λ + ∂2f

∂λ2

∂f
∂σ

. (A15)

The expression above can be evaluated as in the examples above to obtain:

〈δ2∆L〉i
〈n〉i

= 〈P +Q〉2i
〈(tu + tb)

2〉i
〈tu + tb〉2i

− 2 〈P +Q〉i
〈(tu + tb)(P +Q)〉i

〈tu + tb〉i
+ 〈(P +Q)2〉i. (A16)

Appendix B: Optimizing the proofreading scheme

The variance of x̂A is

δx2
A =

fA(1− fA)

nA(e−αr′τA − e−r′τA)2
, (B1)
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FIG. 7: The values from expressions for the mean ((A14), solid lines, left panel) and variance ((A16), solid lines, right panel)
of the log-likelihood differences, ∆L, align with those obtained from numerical simulations (circles). Parameters are the same
as those in Figure 3.

where fA = xe−rτA + (1− x) e−r
′τA . We define yA = e−r

′τA and write the above equation as

δx2
A × nA =

yA(1− yA)

(yαA − yA)2
+ x

1− 2yA
yαA − yA

− x2, (B2)

To make the RHS of the above expression tractable for optimization, we observe that we are imposing a cutoff that
discriminates between samples drawn from exponential distributions of means with ratio α−1. As α → 0, the ratio
gets larger and we expect the threshold to be placed much greater than mean bound time of non-cognate binding
events, ∼ r′−1. Accordingly, we propose an ansatz that yαA = O(1) and yA � 1 as α → 0. Using the ansatz, we
simplify the equation above to get

δx2
A × nA ≈ y1−2α

A + xy−αA . (B3)

Optimizing the right hand side of the above equation w.r.t yA by taking the derivative in yA and equating to zero,
we get

r′τ∗A ≈ (1− α)−1 log

(
1− 2α

αx

)
, (B4)

which is reproduced in the main text and used in Figure 6. We verify then that as α → 0, e−r
′τ∗A � 1 and since

αα → 1, we have e−αr
′τ∗A = O(1). A similar expression can be derived for τ∗B with x replaced by 1− x in (B4).

Appendix C: Nonspecific ligand pool

With total concentration given by ctot = c1 + c2 + c0, the probability of a sequence of bound and unbound times
{uRi , bRi } can be written as,

P ({uRi , bRi }) =
∏

R=A,B

nR∏
i=1

e−kRctotu
R
i

[
kRc1rR,1e

−rR,1b
R
i + kRc2rR,2e

−rR,2b
R
i

+kRc0rR,0e
−rR,0b

R
i

]
, (C1)

with index R running over the receptors A and B, and index i running over the binding events nR in a fixed interval
T . Now, log-likelihood L(x, y, ctot) as a function of the fractions of the cognate ligands, x and y, and the total
concentration, ctot, is given by,

L =
∑

R=A,B

{
− kRctotTRu + nR log kRrR,0ctot − rR,0TRb

+

nR∑
i=1

log
(
xλR,1e

(1−λR,1)rR,0b
R
i + yλR,2e

(1−λR,2)rR,0b
R
i + 1− x− y

)}
, (C2)
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where R runs over the receptors, i runs over the binding events (a total of nR) of each receptor, bRi denotes the bound
time of the ith binding event of receptor R, TRu and TRb denote the total unbound and bound time respectively of
receptor R. We also define λR,j ≡ rR,j

rR,0
as the ratio of the unbinding rate of ligand j to the unbinding rate of the

nonspecific ligand from receptor R. By setting ∂L(θ)
∂θ |θ∗ = 0, we obtain the ML estimates of θ = [x, y, ctot]. The ML

estimate of total concentration, c∗tot, is

c∗tot =
nA + nB

kATAu + kBTBu
. (C3)

The ML esimates of the fractions of cognate ligands, x∗ and y∗, satisfy the following equations.∑
R=A,B

nR∑
i=1

λR,1e
(1−λR,1)rR,0b

R
i − 1

x∗λR,1e(1−λR,1)rR,0bRi + y∗λR,2e(1−λR,2)rR,0bRi + 1− x∗ − y∗
= 0, (C4)

∑
R=A,B

nR∑
i=1

λR,2e
(1−λR,2)rR,0b

R
i − 1

x∗λR,1e(1−λR,1)rR,0bRi + y∗λR,2e(1−λR,2)rR,0bRi + 1− x∗ − y∗
= 0. (C5)

Next, by taking expectation over the distribution of the sequence of bound and unbound times, we obtain 〈∂L∂θ 〉, which

informs us whether the ML estimates are unbiased, and 〈∂2L
∂θ2 〉, which help us obtain the Fisher Information matrix,

I(θ). We note that this probability P factorizes and can be written as,

P ({uRi , bRi }) =
∏

R=A,B

nR∏
i=1

p(uRi )p(bRi ). (C6)

It is trivial to show that 〈∂L∂θ 〉 = 0 and hence the ML estimates θ∗ are unbiased. Now, setting u = rR,0b
R
i , we have,〈∂2L

∂x2

〉
= −

∑
R=A,B

〈nR〉
∫ +∞

0

due−u
(λR,1e

(1−λR,1)u − 1)2

xλR,1e(1−λR,1)u + yλR,2e(1−λR,2)u + 1− x− y , (C7)

〈∂2L
∂y2

〉
= −

∑
R=A,B

〈nR〉
∫ +∞

0

due−u
(λR,2e

(1−λR,2)u − 1)2

xλR,1e(1−λR,1)u + yλR,2e(1−λR,2)u + 1− x− y , (C8)

〈 ∂2L
∂x∂y

〉
= −

∑
R=A,B

〈nR〉
∫ +∞

0

due−u
(λR,1e

(1−λR,1)u − 1)(λR,2e
(1−λR,2)u − 1)

xλR,1e(1−λR,1)u + yλR,2e(1−λR,2)u + 1− x− y . (C9)

We also have 〈 ∂2L
∂c2tot

〉
= −〈nA〉+ 〈nB〉

c2tot
, (C10)〈 ∂2L

∂x∂ctot

〉
= 0, (C11)〈 ∂2L

∂y∂ctot

〉
= 0. (C12)

Using Eq. C7-C12, the Fisher Information matrix I(θ) can be obtained as −〈∂2L
∂θ2 〉. The Cramér-Rao bound, in the

limit of a large number of binding events, which can be ensured by choosing T to be significantly longer than a typical
binding/unbinding event, ensures that

Σθ = I(θ)−1. (C13)

We are interested in the log concentrations, li = log ci. What is an appropriate cost-function in this case? With
θ′ = [l1, l2], and lall = [l1, l2, l0] = [θ′, l0], we obtain the covariance matrix Σlall

as

Σlall
= JallΣθJ

T
all, (C14)

where Jall is the Jacobian given by  x−1 0 c−1
tot

0 y−1 c−1
tot

−z−1 −z−1 c−1
tot

 . (C15)
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This describes an ellipsoid in lall space. We are interested only in θ′. So we obtain the marginal distribution of l1
and l2 and obtain the covariance matrix, Σθ′ = JΣθJ

T , and the cost function ΩNS as the area of the ellipse centered
at (l1, l2) as

ΩNS = det(Σθ′) = det(JΣθJ
T ), (C16)

where the Jacobian J given by (
x−1 0 c−1

tot

0 y−1 c−1
tot

)
. (C17)
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