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Abstract 
 
      Multi-voxel pattern analysis (MVPA) has been successfully applied to neuroimaging 
data due to its larger sensitivity compared to univariate traditional techniques. Although 
a Searchlight strategy that locally sweeps all voxels in the brain is the most extended 
approach to assign functional value to different regions of the brain, this method does not 
offer information about the directionality of the results and does not allow studying the 
combined patterns of more distant voxels. 

      In the current study, we examined two different alternatives to searchlight. First, an 
atlas-based local averaging (ABLA, Schrouff et al., 2018) method, which computes the 
relevance of each region of an atlas from the weights obtained by a whole-brain analysis. 
Second, a Multiple-Kernel Learning (MKL, Rakotomamonjy et al., 2008) approach, 
which combines different brain regions from an atlas to build a classification model. We 
evaluated their performance in two different scenarios where differential neural activity 
was large vs. small, and employed nine different atlases to assess the influence of diverse 
brain parcellations. 
 
      Results show that all methods are able to localize informative regions where 
differences were large, demonstrating stability in the identification of regions across 
atlases. Moreover, the sign of the weights reported by these methods provides the 
sensitivity of multivariate approaches and the directionality of univariate methods. 
However, in the second context only ABLA localizes informative regions, which 
indicates that MKL leads to a lower performance when the atlas does not match the actual 
brain functional parcellations. These results could improve by employing machine 
learning algorithms to compute atlases that fit specifically the brain organization of each 
subject. 

Keywords: Multi-voxel pattern analysis, Multiple Kernel Learning, Searchlight, Atlas-
based local averaging, fMRI, permutation testing. 
 
 
1. Introduction 
 
      The use of machine learning in neuroscience has considerably increased in the last 
few years. There are many previous studies that have employed these methods in clinical 
contexts, providing tools for computer-aided diagnosis of different neurological 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2018. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

disorders, such as Alzheimer’s (Arco et al., 2015), Parkinson’s disease (Choi et al., 2017), 
epilepsy (Del Gaizo et al., 2017) or brain computer interfaces in quadriplegic patients 
(Blankertz et al., 2007; Nurse et al., 2015). In this case, obtaining the maximum decoding 
performance is the main aim, whereas the source of information is not of interest. On the 
other hand, these methods can also be used for a better cognitive understanding of the 
human brain, where the main aim is not the prediction itself but the identification of the 
regions involved in specific cognitive functions. Hebart and Baker (2017) remarked the 
importance of isolating the use of multivariate decoding for prediction from its use in 
interpretation, and the need of considering them as two independent frameworks. In the 
interpretation context, Multi-voxel pattern analysis (MVPA) has replaced the traditional 
univariate methods due to the larger sensitivity that it provides (Haynes and Rees, 2006; 
Norman et al., 2006). Moreover, this method localizes where information is contained 
based on the distribution of spatial patterns instead of evaluating mean differences as 
univariate approaches do. However, MVPA brings some crucial points to be considered: 
is it possible to use these techniques in a different context from which they were 
developed for? If so, would it be necessary to modify the existing algorithms to 
accomplish the new goals? Finding the most adequate method for each specific context 
is of vital importance, and in the current investigation we aimed to compare the sensitivity 
of different approaches and to propose some variations to assess the suitability of these 
methods in the cognitive neuroscience field.  
 
      From the identification perspective, the simplest approach is to use a region of interest 
(ROI) based on a priori knowledge, so that classification is only performed in the voxels 
contained in the region. The performance of the algorithm highly depends on how well 
the regional hypothesis fits the observed data. Haxby et al. (2001) demonstrated that the 
representations of faces and objects were differentially distributed in the ventral temporal 
cortex, whereas Haynes and Rees (2005) showed that there is an orientation-selective 
processing in the primary visual cortex (V1). Other studies detected distributed patterns 
of activity in the visual cortex (Cox and Savoy, 2003; Kamitani and Tong, 2005), whereas 
Poldrack (2007) highlighted the Type 1 error reduction when a statistical test is applied 
to each ROI. However, when there is not a straightforward hypothesis regarding the 
regions involved in specific computations, the whole brain may need to be explored. The 
main drawback of whole-brain analyses is related to the curse of dimensionality: in fMRI 
studies, there are usually many more features (e.g. voxels) than samples (e.g. images or 
volumes), which complicates the definition of a classification model to separate the two 
classes (Fort and Lambert-Lacroix, 2005). Alternatively, feature-selection methods find 
a subset of informative features (e.g. voxels in fMRI) that will be the input of the 
subsequent classification. As an example, t-tests can be used to restrict the voxels fed to 
the classifier to those that differ between the classes. Previous studies have employed this 
method to localize the regions associated with different pathologies and psychological 
contexts (Arco et al., 2015; Balci et al., 2008; Haynes and Rees, 2005; De Martino et al., 
2008; see Mwangi et al., 2014, for a detailed review).  
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      One of the most appealing approaches for identification of cognitive informative 
regions is the Searchlight technique (Kriegeskorte et al., 2006), a method that offers 
results potentially easier to interpret due to its larger spatial precision and no need to 
define a specific ROI. Searchlight produces maps of accuracies from small spherical 
regions centered on each voxel of the brain. For each sphere, a classification analysis is 
performed, and the decoding performance is assigned to the central voxel. There are many 
studies that have successfully used this technique (e.g. Chen et al., 2017; Cichy et al., 
2016; Coutanche et al., 2011; González-García et al., 2017; Loose et al., 2017; Qiao et 
al., 2017). However, it also has some disadvantages and limitations to consider. 
Searchlight performance depends on the size of the sphere; the larger the radius of the 
sphere, the larger the number of significant voxels, even when the size of the informative 
regions stayed fixed (Etzel et al., 2013; although see Arco et al. 2016). Another drawback 
is that the accuracy of the classification within a certain sphere is associated with the 
central voxel, which obviates the possibility that only a few voxels of the total in the 
sphere truly contain information. As a result, some voxels may be marked as significant 
only because they are at the center of a sphere that contains informative voxels, leading 
to somewhat distorted results (see Figure 3 in Etzel et al., 2013 for an extreme example). 
Another problem is its large computational cost. Each Searchlight analysis entails a 
massive number of classifications (one for each voxel of the brain), increasing the 
computational time compared to other simpler approaches. This time cost increases 
exponentially when different values of the parameters associated with the classifier are 
evaluated to find the one with the largest performance (grid search) and also when 
permutation tests are used to evaluate the statistical significance of the results. 
 
      There are other alternatives based on atlas that do not suffer from this large 
computational cost. This is the case of Multiple Kernel Learning (MKL, Lanckriet et al., 
2004), a method that uses a priori knowledge of brain organization to guide the decision 
of the classifier. Specifically, this approach extracts information from brain parcellations 
provided by an atlas to maximize the performance of the classification algorithm, and 
ranks the regions according to their importance in the decision. A crucial aspect is the 
two-level hierarchical model that this approach entails. The regions used for classification 
have an associated weight, which indicates their contribution to the model. Voxels within 
each region have a similar weight value. Thus, MKL offers information both at the region 
and at the voxel level. Previous studies have used this method in the context of 
neuroimaging, e.g. to discriminate between Parkinsonian neurological disorders (Adeli et 
al., 2017; Filippone et al., 2013), identification of attention deficit hyperactivity disorder 
(ADHD) patients (Dai et al., 2017; Qureshi et al., 2017) and localization of informative 
regions (Schrouff et al., 2018). This approach leads to a sparse solution, which means that 
only a subset of regions is selected to contribute to the decision function (similarly to 
feature-selection methods). However, this decreases its ability to detect informative 
regions, which is not recommended when identification of informative areas is the main 
aim. Schrouff et al. (2013a) proposed another decoding-based method based on local 
averages of the weights from each region defined in an atlas. This is known as Atlas-
based local averaging (ABLA). First, a whole-brain classification is performed, leading 
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to a weight map summarizing the contribution of each voxel. Then, the weights defined 
in each region of the atlas are averaged and normalized by the size of the region. This 
yields a score of the informativeness of each region. This means that this approach builds 
only one classification model since the summary of the weights is done a posteriori. In 
contrast, MKL combines the different regions of the atlas as part of the learning process, 
so that using a different atlas will result in a different classification, with the subsequent 
increase in computational cost compared with ABLA. 
 
      Previous research has usually employed atlas-based methods in classification 
contexts, where the main aim is to obtain the largest accuracy as possible. However, the 
validity of these approaches in an identification scenario (where the goal is to find the 
informative brain regions during a certain cognitive function) is yet unknown. Therefore, 
in this study, we aimed at evaluating the performance of different atlas-based approaches 
in an fMRI experiment, in two contexts with differential changes in neural activity. To 
do so, we modified the MKL and ABLA methods to better fit the requirements of an 
identification context instead of a classification one, and compared the results to those 
obtained by Searchlight. Specifically, we proposed an L2-version of MKL, which avoids 
sparsity by allowing all regions of the corresponding atlas to contribute to the model. 
Moreover, to assess the suitability of these approaches we employed nine different atlases 
to examine how different brain parcellations influenced the identification of informative 
regions of MKL and ABLA. We predicted that L2-MKL and ABLA would be more 
sensitive than L1-MKL, and that they would show a larger overlap with Searchlight 
results. For a contrast with large differences in the neural activity, we expected overlap 
between the significant regions obtained by all the approaches. However, this overlap 
would decrease for the contrast testing more subtle difference in neural activity. In this 
case, we hypothesized that the specific organization of the brain proposed by each atlas 
would highly affect the identification of significant regions. 
 
 
2. Material 

 
2.1 Participants 

 
Twenty-four students from the University of Granada (M = 21.08, SD = 2.92, 12 men) 

took part in the experiment and received an economic remuneration (20-25 euros, 
depending on performance). All of them were right-handed with normal to corrected-to-
normal vision, no history of neurological disorders, and signed a consent form approved 
by the local Ethics Committee. 
 
2.2 Image Acquisition 

 
       fMRI data were acquired using a 3T Siemens Trio scanner at the Mind, Brain and 
Behavior Research Centre (CIMCYC) in Granada (Spain). Functional images were 
obtained with a T2*-weighted echo planar imaging (EPI) sequence, with a TR of 2000 
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ms. Thirty-two descendent slices with a thickness of 3.5 mm (20% gap) were obtained 
(TE = 30 ms, flip angle = 80°, voxel size of 3.5 mm3). The sequence was divided in 8 
runs, consisting of 166 volumes each. After the functional sessions, a structural image of 
each participant with a high-resolution T1-weighted sequence (TR = 1900 ms; TE = 2.52 
ms; flip angle = 9°, voxel size of 1 mm3) was acquired. 

We used SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) to preprocess and 
analyse the neuroimaging data. The first 3 volumes were discarded to allow for saturation 
of the signal. Images were realigned and unwarped to correct for head motion, followed 
by slice-timing correction. Afterwards, T1 images were coregistered with the realigned 
functional images. Then we used slice timing correction to account for differences in slice 
acquisitions. To better preserve the spatial configuration of activations in individual 
subjects, images were not smoothed or spatially normalized into a common space. 

2.3 Design 

The task contained two events in each trial, first a word (positive, negative or neutral 
in valence) and second two numbers, to which participants had to respond. They 
performed a total of 192 trials, arranged in 8 runs (24 trials per run), in a counterbalanced 
order across participants. Each trial started with the word for 1000 ms, followed by a 
jittered interval lasting 5500 ms on average (4-7 s, +/0.25). Then, the numbers appeared 
for 500 ms followed by a second jitter interval (5500 ms on average, 4-7 s, +/0.25). The 
first event (words), was modelled as the duration of the word and the variable jittered 
interval, yielding a global duration ranging from 5 to 8 seconds. The second event 
(numbers) was modelled as an impulse function (Dirac delta), i.e. with zero duration, as 
explained in Henson (2005). The different duration of the events corresponds to the 
cognitive nature of the underlying processes, extended in the case of the preparation 
triggered by the words and short in the case of the quick decision linked to the monetary 
offers. 

      To test the reliability of the different approaches (sensitivity and overlap of the 
significant regions with those obtained by Searchlight), we focused on two different 
classification analyses. First, we aimed at discriminating between the neural activity 
associated with accepting vs. rejecting offers (from now on, decision classification). The 
hand used to respond was counterbalanced across participants, which means that odd 
subjects used the right/left hand to accept/reject an offer, whereas in even subjects the 
order was the opposite. Second, we focused on distinguishing the positive vs. negative 
valence of the words (e.g. Lindquist et al., 2015; from now on, valence classification) that 
were equated in number of letters, frequency of use and arousal (Gaertig et al., 2012). We 
employed a Least-Squares Separate (LSS) model to obtain an accurate estimation of the 
neural activity (Turner et al., 2012). This method is based on iteratively fitting a new 
GLM for each trial with two predicted BOLD time courses: one for the target event and 
a nuisance parameter estimate that represents the activation for the rest of the events. 
Previous studies have shown that this is the best approach for isolating the activity in 
contexts like this experiment (Abdulrahman and Henson, 2016; Arco et al., in press), 
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where overlap and collinearity are large. 

2.4 Atlases 

      In this study, we used 9 atlases to assess the reliability of the informative regions 
obtained by the three atlas-based classification methods. They differ in three main 
aspects: the information (anatomical, functional or multimodal) that they use to cluster 
the brain regions, the number of resulting regions (from 12 to 400) and the algorithms 
that implement the parcellation (a wide spectrum, from the k-means clustering to 
Bayesian models).  

2.4.1. BASC Cambridge 

      This atlas was computed from group brain parcellations generated by the BASC 
(Bootstrap Analysis of Stable Clusters) method, an algorithm based on k-means clustering 
to identify brain networks with coherent activity in resting-state fMRI (Bellec et al., 
2010). These networks were generated from the Cambridge sample from the 1000 
Functional Connectome Project (Liu et al., 2009). Based on this framework, different 
atlases were built depending on the number of networks defined (Urchs et al., 2015). In 
this study, we used four versions with 12, 20, 36 and 64 regions. 

2.4.2 AICHA 
 
     This atlas covers the whole cerebrum and is based on resting-state fMRI data acquired 
in 281 individuals (Joliot et al., 2015), and also relies on k-means clustering. One 
interesting feature is that it accounts for homotopy, relying on the assumption that a 
region in one hemisphere has a homologue in the other hemisphere. This leads to 192 
homotopic region pairs (122 gyral, 50 surcal and 20 gray nuclei). 
 
2.4.3 Brainnetome 
 
     Fan et al (2016) introduced an atlas based on connectivity using in vivo diffusion MRI 
(dMRI) and fMRI data acquired in 40 subjects. It divides the human brain into 210 
cortical and 36 subcortical regions, providing detailed information based on both 
anatomical and functional connections. The number of regions was computed by using a 
cross-validation procedure to maximize consistency across subjects (Fan et al., 2014; Liu 
et al., 2013). All functional data, connections and brain parcellations are freely available 
at http://atlas.brainnetome.org. 
 
 
 
2.4.4 Yeo2011 
     
     A clustering algorithm was used to parcellate the cerebral cortex into networks of 
functionally coupled regions. The method employed assumes that each vertex of the 
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cortex belongs to a single network (see Yeo et al., 2011). Different brain networks 
exhibiting brain coactivations were identified from fMRI data of 1000 subjects. There are 
two versions available depending on the number of networks considered (7 or 17). We 
employed the latter for the subsequent analysis as it offers a more detailed parcellation of 
the brain. This atlas is preinstalled in Lead-dbs toolbox (http://www.lead-dbs.org). 
 
2.4.5 Harvard-Oxford 
 
     Clustering in this atlas was performed with the automatic algorithm presented in 
Desikan et al. (2006), which subdivides structural magnetic resonance data of the human 
cerebral cortex into gyral based regions of interest (ROI). Its validity was evaluated by 
computing correlation coefficients and mean distances between these results and 
manually identified cortical ROIs. Forty-eight cortical regions were obtained from data 
of 37 subjects. The resulting atlas is freely distributed with FSL 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). 
 
2.4.6 Schaefer 
 
     This atlas adds novel parcellations and a larger precision to the brain networks 
published in Yeo et al., (2011) by using a local gradient approach to detect abrupt 
transitions in functional connectivity patterns (Schaefer et al., 2017). These transitions 
are likely to reflect cortical areal boundaries defined by histology or visuotopic fMRI. 
The resulting parcellations were generated from resting-state fMRI based on 1489 
participants (see original paper for further details). There are several versions of this atlas 
depending on the number of regions the brain is divided into (400, 600, 800 or 1000), but 
we selected the first one to maintain reasonable speed on computation analyses. 
 
 
3. Methods 

In this study, we considered four different algorithms based on linear classifiers. First, 
the atlas-based local averaging method (ABLA) presented in Schrouff et al. (2018). 
Second, an L1-MKL version of the algorithm introduced in (Rakotomamonjy et al., 2008) 
and implemented in the PRoNTo toolbox (Schrouff et al., 2013a). Third, a modification 
of the L1-MKL to use an L2-nom instead of an L1 (from now on, L2-MKL) to avoid the 
sparsity that L1 leads to and the subsequent decrease in detecting informative regions. 
Finally, we used a Searchlight approach as a reference to contrast the validity of these 
methods. 

 

3.1 Atlas-based local averaging (ABLA) 
 

This method is used after performing a whole-brain analysis in which all voxels of 
the brain are used as input to the classification algorithm. A linear classifier leads to a 
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weight map where each value corresponds to the contribution of each voxel to the 
decision function. ABLA computes a normalization of the average weight for each region 
of an atlas that summarizes the importance of this region in a certain classification 
context. From a mathematical perspective, it is possible to specify a linear SVM (Bennett 
and Blue, 1998; Burges, 1998) classification rule 𝑓 by a pair of (𝒘, 𝒙), from equation: 

 
                                     𝑓(𝑥) = 〈𝒘, 𝒙*〉 + 𝑏                                  (1) 

 
where 𝒘 is the weight vector, 𝒙* is the feature vector and 𝑏 is the error term. Thus, a point 
𝑥 is classified as positive if 𝑓(𝑥) > 0 or negative if 𝑓(𝑥) < 0. The decision function is 
based on a linear rule that maximizes the geometrical margin between the two classes, 
and can be obtained by solving the optimisation problem described in Boser et al. (1992): 

 
1
2
‖𝒘4‖2 + 𝐶 ∑ 𝜉*	*      subject to   𝑦*(〈𝒘, 𝒙*〉 + 𝑏) ≥ 1 − 𝜉*      ∀*𝜉* ≥ 0   ∀*     (2) 

 
The solution to the optimization problem can be written as: 
  

                                           𝒘 = ∑ 𝑦𝒊𝛼𝒊𝒙𝒊𝒏
𝒊A𝟏                                         (3) 

after applying the Lagrangian multipliers. Substituting the value of 𝒘 in Equation 1, 
it is possible to rewrite the decision function in its dual form as 

                                         𝑓(𝒙*) = ∑ 𝑦𝒊𝐾(𝒙, 𝒙*) + 𝑏𝒏
𝒊A𝟏                            (4) 

where 𝛼* and 𝑏 represent the coefficients to be learned from the examples and 
𝐾(𝒙, 𝒙*) is the kernel function characterizing the similarity between samples 𝒙 and 𝒙*. 

Once the significant model was obtained, we extracted the weight maps that guided 
the decision of the classifier. Then, we computed the normalized weight for each region 
in the atlas as the average of the absolute value of the weights contained in each region, 
as explained in Schrouff et al. (2018). Equation 5 summarizes mathematically this 
computation: 

                                     𝑁𝑊FGH =
∑ |JK|K∈MNO

4MNO
                                         (5) 

with 𝑣 representing the index of a voxel in the weight map, 𝑊Q  its weight and 𝑚FGH , 
the number of voxels in region ROI. 

 

3.2 Multiple Kernel Learning 
 
This method combines the information from the different brain regions of an atlas to 

build the classification model, in contrast to the use of the corresponding brain 
organization a posteriori done in ABLA. Specifically, MKL combines different kernels 
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and optimizes their contribution to the model to obtain the highest performance. As a 
result, this approach offers information at two levels: regions and each voxel within them. 
Mathematically, the decision function is computed as a linear combination of all these 
basis kernels as stated in Lanckriet et al. (2004): 

 

         𝐾(𝒙, 𝒙S) = ∑ 𝑑4𝐾4(𝒙, 𝒙S)U
4A1     with   𝑑4 ≥ 0,∑ 𝑑4 = 1U

4A1         (6) 

where 𝑀 is the total number of kernels. 

      The decision function of the MKL problem is very similar to the SVM one described 
in Equation 1 but adding the sum of the different kernels from the corresponding atlas: 

𝑓(𝒙*) = 〈𝒘4, 𝒙*〉 + 𝑏 

The MKL version considered in this study is based on the formulation presented in 
Rakotomamonjy et al. (2008), where a solution can be obtained by solving the following 
optimization problem: 

minimize    1
2
∑ 1

WX
‖𝒘4‖24 + 𝐶 ∑ 𝜉**    subject to 

                𝑦*(∑ 𝒘4, 𝒙* + 𝑏4 ) ≥ 1 − 𝜉*			∀𝑖𝜉* ≥ 0		∀𝑖 ∑ 𝑑4 = 1, 𝑑4 ≥ 0	4 ∀𝑚   (7) 

where 𝑑4 is the contribution to the decision function of each region (see 
Rakotomamonjy et al., 2008 for a detailed explanation of this method). 

 This MKL variation optimizes, in a simultaneous manner, the contribution to the decision 
function of every voxel within a region and the contribution of the region as a whole, in 
a two-level hierarchical model. On the other hand, the L1-norm (Tibshirani, 1996) 
constraint on 𝑑4 enforces sparsity on some kernels, resulting in a zero-contribution of 
these regions: information from a region that is present in another is automatically 
discarded in one of them. Mathematically: 

                                  𝑆 = ∑ |𝑦* − 𝑓(𝑥*)|[
*A1                            (8) 

Thus, the L1-norm is based on minimizing the sum of the absolute differences 
between the target value (𝑦*) and the estimated values (𝑓(𝑥*)). This hierarchical model 
leads to two different weight maps: one that summarizes the contribution to the model of 
each region (region level), and another that provides the contribution of each voxel within 
its corresponding region (voxel-level). The sparsity that this method entails can be very 
interesting in classification problems (Arco et al., 2015; Khedher et al., 2017; Plant et al., 
2010), but the sparsity that L1-norm leads to can potentiate the instability of the selected 
regions and decrease the sensitivity in identification contexts (Baldassarre et al., 2017). 
For this reason, we applied a different version of MKL based on L2-norm instead of L1. 
In this case all regions defined by the atlas are used to build the model. Mathematically: 
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                                     𝑆 = ∑ (𝑦* − 𝑓(𝑥*))2[
*A1                              (9) 

      Thus, the L2-norm relies on minimizing the sum of the square of the differences 
between the target value (𝑦*) and the estimated values (𝑓(𝑥*)).  

      In both versions of the MKL, we applied two preprocessing steps before 
classification: first, we applied a mean-centering to all kernels from each region of the 
atlas, a very common step in machine learning. This operation relies on subtracting the 
voxel-wise mean for each voxel across samples, which is computed on the training data 
to maintain the independence between the training and test subsets. Then, we normalized 
the kernel dividing each sample by its norm. Regions from which kernels are computed 
usually have different sizes, and larger regions would have a larger contribution to the 
model simply because of its larger size. This operation guarantees that all regions have 
an equal chance regardless of their sizes.  

 

3.3 Searchlight 

This method was introduced by Kriegeskorte et al. (2006) to identify the location of 
the neural activity that contains information about a given classification. It defines a 
sphere with a certain radius so that only the voxels inside this sphere are used to build the 
classification model. Performance is associated with the central voxel of the sphere. This 
procedure is repeated for all voxels in the brain, yielding a map of accuracies. Its main 
drawback is its local-multivariate nature: it extracts patterns of information from a 
reduced number of voxels, and this number is much smaller than the one obtained when 
the brain is evaluated as a whole. 

In each sphere, we employed a support vector machine (SVM) classifier with a linear 
kernel due to its simplicity and the high performance reported by previous studies (Misaki 
et al., 2010; Pereira et al., 2008). A mathematical description of the SVM algorithm is 
provided in Section 3.1.  We used a 12-mm radius sphere to strike a balance between 
sensitivity and spatial precision: smaller sizes may not detect some informative voxels 
whereas larger values can boost false-positives rates (Arco et al., 2016; Chen et al., 2011).  

 

3.4 Performance and statistical significance. 
 

We performed a nested cross-validation to train the model and optimize the hyper-
parameters of the classifier (soft-margin parameter, C), both in the ABLA and in the two 
MKL versions: L1-MKL and L2-MKL. In these situations, the C hyperparameter range 
was [10-5:105]. Regarding Searchlight, we used a standard soft-margin parameter of C=1 
for each SVM classifier due to the large performance that it provides according to 
previous studies (Chanel et al., 2016; Dosenbach et al., 2010; Fan et al., 2008). The 
dataset comprised an fMRI experiment divided into 8 independent runs. To maintain the 
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independence between training and testing, we used a leave-one-run-out cross validation 
for the external loop (all methods) and the internal loop (MKL and SVM), using the 
balanced accuracy to evaluate the performance of the model. For a binary classification, 
the balance accuracy is computed as the average of the accuracy obtained in the images 
belonging to each experimental condition individually, which increases the robustness of 
the performance evaluated when there is a different number of images of each class. 

 
Statistical significance was assessed with the method proposed by Stelzer et al. 

(2013), with a slight difference when the procedure was applied to Searchlight or the 
atlas-based approaches. In the first one, the significance was computed from accuracy 
maps, whereas in the other methods weight maps were used instead. First, the labels of 
the images were randomly shuffled. Then, the corresponding classification method 
(ABLA, MKL or Searchlight) was applied. This procedure was repeated 100 times in a 
within-subject classification, resulting in 100 permuted accuracy/weight maps per 
participant (accuracy for Searchlight and weight for the rest). A map from each individual 
was randomly picked following a Monte Carlo resampling with replacement (Forman et 
al., 1995), averaging the permuted maps and obtaining a permuted group map. This 
procedure was carried out 50000 times to build an empirical chance distribution. A 
voxel/region was considered significant if no more than 50 samples of the empirical 
distribution had a larger value than the one obtained without shuffling the labels, which 
corresponds to a cluster-defining primary-threshold of p=0.001 (50/50000). Once the 
image was thresholded, an empirical distribution of the cluster sizes of the 50000 
permuted maps was built to compute the required family-wise error rate at the cluster 
level. After associating a p-value to each cluster, an FWE correction was applied (p=0.05) 
on all-cluster p-values to correct for multiple comparisons at the cluster level. 

 
3.5 Comparison of different atlases 

 
Following the procedure proposed by Schrouff et al. (2018), we computed the Pearson 

correlation between the weight maps obtained by the different atlases. Since ABLA 
organizes the weights a posteriori in regions from a whole-brain classification, it is only 
possible to compute this correlation for L1-MKL and L2-MKL. To do so, we calculated 
the overlap between the significant voxels obtained by each atlas, yielding a value ranging 
from 0 to 1. We employed permutation tests to assess the significance of the correlation 
coefficients using a similar framework as described in Section 3.4.  

 
 

4 Results 
 

      In this section, we report the results obtained by the three approaches evaluated in this 
study: Atlas-based local averaging (ABLA), and the two versions of Multiple Kernel 
Learning (L1-MKL and L2-MKL). We compared the weight maps of these three methods 
with the accuracies map obtained by Searchlight by computing the overlap between 
significant voxels. Moreover, for L1 and L2-MKL we show the stability of the selected 
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regions across atlases by computing a correlation between their overlapping-significant 
weight maps, using permutation tests to assess the significance of these correlations. We 
did not compute this correlation for the ABLA method because weights are exactly the 
same for all atlases. Additionally, we include the results obtained by these methods in 
two classification contexts that lead to large or subtle differences (decision and valence) 
to test the generalizability of the results of the different approaches.    
 
4.1 Influence of the classification methods 

 
      Table 1 summarizes the results for ABLA, L1-MKL and L2-MKL, respectively, in 
the decision classification in terms of accuracy and overlap between the significant 
regions obtained by each method and those obtained by the Searchlight. The first method 
yielded a maximum overlap of 70.58% and an accuracy of 81.51%. For L1-MKL, the 
accuracy increased to 89.37%, reducing the overlap to 21.36%. The accuracy obtained by 
the L2-MKL method was 74.74%, with the same overlap of 21.36 led to an overlap of 
48.39% and an accuracy of 64.73%. The accuracies reported correspond to the values 
obtained in the maximum overlap scenario, which does not mean that these accuracies 
were the absolute maximum itself. In fact, we found that the approach that yielded the 
maximum accuracy was not usually the same that obtained the maximum overlap. We 
further discuss the implications of this finding in Section 5.1. 
 
In the valence classification, the ABLA method obtained a maximum overlap of 41,49% 
and an accuracy of 51.77 %. This last value is considerably lower than the one obtained 
in the decision classification and it likely reflects the subtle differences in the neural 
activity associated with the valence of a word. We observed that after applying the L1-
MKL method, none of the significant voxels overlapped with the significant results 
obtained by Searchlight. Similarly, a maximum overlap of 3.81% was obtained when the 
L2 version of the MKL was employed, with a corresponding accuracy of 49.14%. Table 
4 summarizes the results obtained by the three different methods used. 
 
4.2 Influence of the atlases 

 
      For the decision classification, Table 1 and Figure 1 show the significant results 
obtained by the ABLA method. Regions marked as informative for different atlases are 
very similar. The largest overlap score with Searchlight was obtained by the Harv-Oxf 
atlas (70.58%), whereas the minimum value was derived from the Camb64 division of 
the brain (21.36%). In L1-MKL, the largest and lowest overlap values were obtained by 
the same atlases as with ABLA, and results are shown in Figure 2. However, the minimum 
overlap corresponded to the atlas with the maximum accuracy, Camb64. Results obtained 
by L2-MKL were quite similar in terms of overlap and accuracy (see Figure 3). Again, 
the parcellation derived from the Camb64 atlas yielded the largest accuracy and minimum 
overlap score (74.74% and 21.36%, respectively), whereas Harv-Oxf obtained a good 
accuracy value and the largest overlap (70.65% and 77.84%, respectively). 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2018. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Table 4 and Figure 7 include the significant results associated with the nine different 
atlases and classification methods in the valence context. In this case, results were highly 
affected by the atlas used. Results show a large consistency in the significant regions 
obtained by ABLA and Searchlight when the Cambridge12 atlas was employed. The 
brain parcellations provided by AICHA and Harv-Oxf also identified informative regions 
that were similar to the ones obtained by previous research, (e.g. ventromedial prefrontal 
cortex, Arco et al, 2018; Lindquist et al., 2015). Nonetheless, results were highly different 
for L1-MKL. Specifically, the significant voxels obtained were completely different for 
each atlas (see Figure 8). Regarding L2-MKL, results are very similar. In fact, none of 
the nine atlases that we employed led to an accuracy that surpassed the chance level, so 
that the subsequent model did not provide useful information about where the information 
regions were located. Figure 9 summarizes the results obtained by the L2-MKL method. 
 
 
4.3 Stability of the weights across atlases 
 
We compared how similar the weight maps were across the different atlases for L1-MKL 
and L2-MKL, for the two classification analyses. In the decision classification, Table 2 
summarizes the correlation between the significant weight maps for the L1-MKL. The 
correlation values obtained by the first 6 atlases (Camb12, Camb20, Camb36, Camb64, 
AICHA and Yeo2011) range from 0.882 to 0.974. The weight maps derived from the 
Harvard-Oxford atlas also yielded a large similarity to these 6 atlases This correlation 
obtained almost a maximum value between the first 6 atlases (Camb12, Camb20, 
Camb36, Camb64, AICHA and Yeo2011), with values ranging from 0.882 to 0.974. 
Harvard-Oxford also obtained a large similarity to these 6 atlases, but this correlation 
decreased when the Brainnetome atlas was employed. By contrast, the Schaeffer atlas led 
to very different weights compared to any of the other atlases. L2-MKL yielded very 
similar weight maps regardless of the atlases used. It is worth noting the large correlation 
between each pair of atlases (see Table 3), even with the Schaefer atlas that yielded very 
different weights when L1-MKL was applied. We can see how similar the different 
weights are: only maps provided by Yeo2011 and Brainnetome are slightly less similar 
to those obtained by the four Cambridge atlases, whereas both show a large correlation 
with the others. The rest of the atlases present correlation values close to 1. Different 
atlases lead to very similar results, highlighting the robustness of L2-MKL in the 
identification of informative regions. Moreover, this finding shows the low influence that 
the brain parcellation has in the results, which validates the use of these atlas-based 
methods even when a prior hypothesis about the brain organization in a specific process 
is missed. 
 
Regarding the valence classification, we could compute the correlation between AICHA, 
Harv-Oxf and BN for L1-MKL because they were the only atlases that shared some 
informative voxels, yielding a maximum overlap of 0,428. Results obtained by L2-MKL 
also showed a reduced overlap between the weight maps and we could only correlate the 
significant results of AICHA, Yeo2011 and Schaefer atlases. In this case, the maximum 
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correlation was obtained by Yeo2011 and Schaefer, yielding a value of 0.99 (see Table 
5). Nevertheless, this value was obtained from an extremely small region since significant 
results provided by these two atlases were considerably different. We further discuss 
these results in Section 5.  
 
 
4.4 Directionality of the weights 

 
      In the decision classification, it was very useful to evaluate not only the source of 
information from the weight maps but the sign of these weights. Due to the nature of the 
contrast, it was expected that weights were organized according to their sign in a specific 
hemisphere for each group of subjects. Figure 4 shows the distribution of the significant 
voxels depending on the sign of their weights for the ABLA method. As expected, 
participants who accepted the offer with the right hand and rejected it with the left hand 
(odd group) show a cluster of positive weights in the left hemisphere and a cluster of 
negative weights in the right hemisphere. On the other hand, these results are shifted when 
results from even participants were evaluated (weights associated with accept an offer are 
found in the right hemisphere, whereas negative weights are present in the left 
hemisphere). These results are consistent with those obtained by the univariate results. 
Specifically, results from the odd group are quite similar from the Acceptance>Reject 
contrast, and results from the even group have a lot of similarities with the 
Acceptance<Reject contrast. Figures 5 and 6 exhibit the signs of the significant voxels 
for the L1-MKL and L2-MKL methods, respectively. It is worth noting that the three 
atlas-based methods (ABLA, L1-MKL and L2-MKL) take into account the differences at 
the global activation level as univariate approach does. Regardless of the differences in 
the spatial location of the information (already commented in a previous section), the 
weights follow the same distribution than the ABLA approach.  
 
 

5 Discussion 
 
In this study, we aimed at evaluating methods, alternative to Searchlight, to localize 

the informative regions involved in cognitive functions. We extracted the weight maps 
from three atlas-based classification approaches (ABLA, L1-MKL and L2-MKL) and 
evaluated the statistical significance of each region. We used these methods in two 
different contexts. In the first one, where the two classes generated large differences in 
neural activity, L2-regularization resulted the best option for identification purposes. 
Moreover, atlas-based approaches showed a large stability in the informative regions 
found regardless of the atlas employed, which highlights the adequacy of these methods. 
In contrast, when the differences in the activity associated with each class were much 
subtler, only the ABLA approach showed certain stability in the informative regions 
across the atlases. However, both L1-MKL and L2-MKL were highly affected by the 
specific brain organization reflected in the atlases. 
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5.1 Influence of the classification methods 

We have found that maximum accuracy and overlap do not usually concur, especially 
when detecting subtle differences in neural activity. In the decision classification, we 
found differences across the methods in terms of overlap and accuracy. L1-MKL usually 
obtained a larger accuracy than ABLA and L2-MKL for the different atlases, but a lower 
overlap with Searchlight results. According to these results, we can separate the different 
approaches in two groups: on the one hand, ABLA and L2-MKL; on the other, L1-MKL. 
The reason for this difference is the regularization used by each method: while ABLA 
and L2-MKL use an L2-norm regularization, L1-MKL employs an L1. L1-norm provides 
sparse solutions since it only selects a subset of regions that contain predictive 
information, while the rest are automatically driven to zero. This can be helpful from the 
classification standpoint since it leads to larger accuracies: When a lower number of 
features are considered, the dimensionality of the data is reduced, which facilitates finding 
the optimal solution to the classification problem. However, our results show that the 
model with the largest overlap is not usually the most accurate. This is consistent with 
previous studies, e.g. the extreme case reported by Sona et al. (2007). They proposed a 
model for decoding subjective perception of participants from their neural data while 
viewing movie segments. They found a framework that yielded a large performance, but 
the regions that guided the classifier were partially contained in the ventricles and other 
regions with large physiological noise. This means that their algorithm performed 
consistently well in the classification task, but it did not provide any useful information 
for a better understanding of the human brain. Our results support the need of clearly 
separating the use of multivariate decoding for prediction and for identification (Hebart 
and Baker, 2017) in addition to highlight the importance of selecting the methods that 
best fit the desired aim. 

 
In the valence classification, we also found differences across the methods in terms of 
overlap and accuracy, but in this case these differences were even larger. ABLA was the 
only method that obtained some overlap with the voxels marked as informative by 
Searchlight, whereas L1-MKL and L2-MKL hardly detected those significant regions. 
The key of this finding is the classification problem itself. Evaluating whether a 
participant responded with the right/left hand to a stimulus generates large differences in 
neural activity and it is easy for a classifier to find a hyperplane that maximizes the 
separation of the two classes. This is the reason why the accuracies and the overlap are 
larger in the decision classification. On the other hand, isolating regions with a differential 
involvement in valence processing is much harder, as shown by recent metanalytic 
approaches (Lindquist et al., 2015), so the accuracies in this case are much lower.        
 
Our results show that ABLA provides a larger overlap than all the other methods in the 
two classification problems, especially in the valence one. This discrepancy must be due 
to the different framework that ABLA relies on. Both L1-MKL and L2-MKL consider 
the regions provided by the atlas to build the model as part of the learning process. Hence, 
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if the parcellations derived from the atlas do not match the actual organization of the brain 
in the context under study, the resulting model would be suboptimal since it is based on 
non-valid assumptions about effective brain parcellations. On the other hand, ABLA 
builds the classification model from a whole-brain approach, which means that the atlas 
parcellations do not have any influence in the learning process. Instead, the brain 
organization is incorporated after building the model to summarize how informative each 
region is. For this reason, ABLA leads to a better performance when non-accurate atlases 
are employed, although it is supposed to have a lower ability to detect informative regions 
compared with methods based on MKL when the atlas leads to a realistic approximation 
of the brain subdivisions.  
 
5.2 Influence of the atlases 

Results show that specific brain parcellations of each atlas impact the spatial accuracy 
of the different methods only when differences in neural activity are small, but not when 
these are large. In the decision classification, there was a large consistency among the 
significant regions obtained by all methods across the different atlases. These results carry 
important implications. Atlas-based approaches are assumed to have a large dependency 
on the way brain parcellations are computed. In fact, their use is sometimes automatically 
discarded when there is a clear hypothesis about the brain organization in a specific 
context. Our results evidence that atlas approaches can identify informative regions even 
when the concrete one used does not perfectly match the actual configuration of the brain, 
provided the differences in the neural activity in the context under study are large. 
However, according to the results obtained in the valence classification, there are other 
contexts where these atlases are not accurate enough to guarantee a good performance in 
the identification of the sources of information. This is probably related to the size and 
the specific shape of the region involved in a certain cognitive function, such as the 
ventromedial prefrontal cortex (vmPFC) associated with the valence classification. The 
only region that ABLA marked as significant in the Camb12 parcellation is the one that 
contains the vmPFC, so that this method was able to identify where the information was 
located. Nevertheless, this region has a massive size in this atlas, and these atlas-based 
methods consider each region as a whole, and thus a large number of voxels are marked 
as significant only because they are in the same region as the one that is really informative. 
However, using atlases with more subdivisions implies that these regions are much 
smaller. This complicates that the organization proposed by the atlas matches the actual 
shape and location of a small structure as the vmPFC, leading to a reduced sensitivity and 
spatial accuracy. 

The number of subdivisions of an atlas also influenced the performance of the three 
algorithms evaluated. In the decision classification, the optimum value in terms of overlap 
was obtained by the 36 regions that the Camb36 atlas is divided into. We hypothesize that 
the number of regions is also important to obtain these results. Using an atlas with few 
subdivisions means that it is more likely to find an informative region, despite the small 
ratio between the voxels that are really significant and the total number of voxels that 
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comprise the region. Instead, a large number of parcellations means that the classifier has 
to be much subtler in the identification of informative regions. The parcellations derived 
from Schaeffer add larger precision and subdivisions to the brain networks published by 
the Yeo2011 atlas. However, results show a better performance in terms of sensitivity 
when the simplest approach was used. These results strongly indicate that using atlases 
that do not properly match the actual brain organization is similar to choosing a large 
Searchlight sphere where only a few voxels within this sphere are informative (Etzel et 
al., 2013). Using a large radius increases the probability of marking as significant voxels 
that are not, increasing the false-positives rate. Thus, it is important to use an atlas that 
properly matches the brain organization when aiming to identify subtle differences in the 
neural activity.  

5.3 Stability of the weights across atlases 
 

We have found a large correlation between the significant weight maps obtained by 
different atlases in the decision classification. The magnitude of the weight of a specific 
voxel quantifies the contribution of this voxel to the model, and its sign informs us about 
its relationship to the Accept or to the Reject class. For the L1-MKL approach, we found 
large correlation values for all atlases except for the Schaefer one. This means that for 
most of atlases, the resulting weights associated with each model are very similar, which 
highlights the stability of the classification methods regardless of the atlas used. 
Interesting, we found the largest correlations in the weight maps obtained by the four 
Cambridge atlases, which are all derived from the same clustering algorithm (BASC). 
This result supports the idea that the mathematical framework employed to delimitate the 
different brain regions is important, since it can influence the success of the subsequent 
analyses. On the other hand, the poor performance of L1-MKL when the Schaefer atlas 
is used can be due to the conjunction of a sparse method and an atlas with a large number 
of regions, as mentioned in the previous section. It is important to note that our results do 
not invalidate the use of ambitious atlases aiming at obtaining a detailed parcellation of 
each cortical region. However, if these parcellations do not accurately match the actual 
brain organization (e.g. computing an atlas separately for each participant from his/her 
neural data), sparse solutions are not recommended. Unlike L1-MKL, L2-MKL obtained 
a large correlation score between each pair of atlases (see Table 2). Thus, L2-MKL adapts 
to different idiosyncrasies and leads to a common solution for different brain mappings. 
This means that the weight maps that guide the classification are essentially the same 
regardless of the atlas used, so that it is possible to successfully employ this approach 
even without a clear hypothesis about the brain organization in a specific context. 

 
Nevertheless, these results are only valid when there are large differences in the neural 

activity associated with the two classes to distinguish from. Our findings in the valence 
classification differ substantially from those obtained in the decision classification. L1-
MKL results (summarized in Table 5) show that we could hardly compute the correlation 
between two pairs of atlases: the first one, AICHA and Harv-Oxf; the second, AICHA 
and BN. In addition, none of the significant results provided by these atlases share any 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2018. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

voxel with the Searchlight results, which illustrates that weight maps are similar from a 
mathematical perspective, but make a null contribution to the neuroscience standpoint. 
Results obtained by L2-MKL are summarized in Table 6 and conclusions derived from 
them are essentially the same than L1-MKL. We could only compute the correlation 
between two pairs of atlases: Schaefer-AICHA and Schaefer-Yeo2011. From these three 
atlases, Schaefer is the one that leads to a larger overlap with Searchlight: 3.81%. 
However, none of these significant voxels are shared by AICHA and Yeo2011. This 
reflects that the two versions of MKL are not able to identify informative regions in 
contexts where differences in the neural activity between the two conditions are 
minimum.  

 
5.4 Directionality of the weights 

 
One of the main advantages of using weights instead of accuracy is the directionality 

that they provide. We have evaluated the sign of each weight within the significant 
regions for each of the three atlas-based methods for the decision classification, where it 
is easy to evaluate whether the sign of the weight is correct or not from a psychological 
standpoint. In this experiment, participants used one hand to accept an offer and the other 
one to reject it. The decoding analysis should mark as informative motor-related areas 
since the only difference in the classification evaluated is the hand used. However, it is 
worth remembering that the hand employed was counterbalanced across participants: odd 
subjects used their right/left hand to accept/reject an offer, whereas for even subjects the 
order was shifted. We obtained exactly the expected results: the three approaches led to 
a map in which weights were organized according to their sign. For odd participants, 
regions associated with the acceptance of an offer (use of the right hand) were localized 
in the left hemisphere, with a positive sign. On the other hand, regions that contained 
information when the offer was rejected (left hand) were found in the right hemisphere, 
with a negative weight. More importantly, the informative regions for even participants 
shifted: positive weights were found in the right hemisphere, whereas weights with a 
negative sign were found in the left hemisphere. These results are very similar to those 
obtained by the univariate approach (see Figure 6): regions with a larger activation when 
participants accept/reject an offer match the sign of the weights of the different 
multivariate methods. However, atlas-based approaches use normalized data, which 
eliminates the differences in the global activation levels associated to each condition. 
Thus, these methods identify areas that show a different spatial distribution of the 
information, while the univariate approach purely relies on differences in the activation 
level. 

 
 

6 Conclusion 

In this study, we compared three different atlas-based approaches to Searchlight to assess 
their ability to identify informative brain regions for cognitive contrasts that generate 
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either large or small differences in neural activity. We have shown for the first time that 
these methods can be used as an alternative to Searchlight since they localize informative 
regions when there are large differences between the neural activity associated with the 
two classes to distinguish from. These results are consistent across atlases. Moreover, the 
use of weight maps provides additional information to accuracies, combining the 
sensitivity of decoding analyses and the directionality of univariate results. However, 
results change drastically when the differential neural activity is much lower. Methods 
based on MKL are highly affected by the discrepancy of actual brain organization and 
the one proposed by the atlases. On the other hand, ABLA is the only approach that 
identifies informative regions in accordance with previous research. Our results pave the 
way for finding a method that leads to a large spatial accuracy in the identification of 
subtle changes of neural activity. Future studies are needed to widen the findings of this 
study by evaluating the performance of these methods when the brain parcellations are 
specifically computed for each participant, which may substantially improve the 
neuroanatomical functional precision. This combination might boost their sensitivity and 
widen their adequacy in different contexts, especially when an accurate parcellation is 
crucial. 
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Table 1: Summary of the results obtained for the different methods and atlases in the 
decision classification. 

 

Method 

 

Atlas 

 

Accuracy 
(%) 

 

Significant 
voxels 

SL 
voxels 

defined 
in atlas 

Overlap 
with SL 

(%) 

 

Regions 

 

Significant 
regions 

ABLA 

L1-MKL 

L2-MKL 

Camb12 

Camb12 

Camb12 

81.51 

86.2 

72.43 

4704 

4704 

2654 

4302 

4302 

4302 

61.69 

61.69 

61.69 

12 

12 

12 

1 

1 

1 

ABLA 

L1-MKL 

L2-MKL 

Camb20 

Camb20 

Camb20 

81.51 

85.02 

65.21 

3692 

3692 

2598 

4302 

4302 

4302 

58 

58 

58 

20 

20 

20 

1 

1 
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L1-MKL 

L2-MKL 

Camb36 

Camb36 

Camb36 

81.51 

89.37 

74.74 

982 
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1000 

4302 

4302 

4302 

21.36 

21.36 

21.36 

36 

36 

36 

1 

1 
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ABLA 

L1-MKL 

L2-MKL 

Camb64 

Camb64 

Camb64 

81.51 

84.62 

70.31 

3740 

982 

7613 

4302 

4302 

4302 

63.34 

21.36 

21.36 

64 

64 

64 

1 

1 
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ABLA 

L1-MKL 

L2-MKL 

AICHA 

AICHA 

AICHA 

81.51 

86.76 

69.53 

1802 

636 

2867 

3291 

3291 

3291 

48 

19.23 

60.13 

192 

192 

192 
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11 
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L1-MKL 
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Yeo2011 

Yeo2011 

Yeo2011 

81.51 

87.34 

71.35 
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2731 

3137 
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56.39 

56.07 

56.39 

17 

17 

17 
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Harv-Oxf 

Harv-Oxf 

Harv-Oxf 
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70.58 
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48 
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2 
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81.51 
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2051 
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246 
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L2-MKL Brainnetome 66.53 1129 3057 28.39 246 5 

ABLA 

L1-MKL 

L2-MKL 

Schaefer 

Schaefer 

Schaefer 

81.51 

77.84 

71.61 

1558 

465 

1926 

3137 

3137 

3137 

42.9 

14.5 

51.35 

400 

400 

400 

23 
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Table 2: Correlation between the significant weight maps across the different atlases after 
applying the L1-MKL method in the decision classification. 

L1-Multi Kernel Learning 

Atlas Camb 
12 

Camb 
20 

Camb 
36 

Camb 
64 

AICHA Yeo2011 Harv-
Oxf 

Brainnetome Schaefer018 

Camb12 1 0.974 0.906 0.936 0.889 0.937 0.539 0.383 0.144 

Camb20 0.974 1 0.908 0.951 0.934 0.947 0.564 0.552 0.125 

Camb36 0.906 0.908 1 0.975 0.933 0.911 0.497 0.568 0.1 

Camb64 0.936 0.951 0.975 1 0.963 0.933 0.542 0.573 0.081 

AICHA 0.889 0.934 0.933 0.963 1 0.882 0.61 0.549 0.088 

Yeo2011 0.937 0.947 0.911 0.933 0.882 1 0.566 0.528 0.193 

Harv-Oxf 0.539 0.564 0.497 0.542 0.61 0.566 1 0.172 0.051 

Brainnetome 0.383 0.552 0.568 0.573 0.549 0.528 0.172 1 0.109 

Schaefer 0.144 0.125 0.1 0.081 0.088 0.193 0.051 0.109 1 
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Table 3: Correlation between the different atlases after applying the L2-MKL method in 
the decision classification.  

L2-Multi Kernel Learning 

Atlas Camb 
12 

Camb 
20 

Camb 
36 

Camb 
64 

AICHA Yeo2011 Harv-
Oxf 

Brainnetome Schaefer018 

Camb12 1 0.927 0.94 0.926 0.845 0.768 0.837 0.72 0.829 

Camb20 0.927 1 0.958 0.973 0.776 0.71 0.795 0.64 0.762 

Camb36 0.94 0.958 1 0.981 0.795 0.721 0.789 0.663 0.776 

Camb64 0.926 0.973 0.981 1 0.805 0.738 0.798 0.67 0.783 

AICHA 0.845 0.776 0.795 0.805 1 0.948 0.94 0.904 0.973 

Yeo2011 0.768 0.71 0.721 0.738 0.948 1 0.897 0.857 0.945 

Harv-Oxf 0.837 0.795 0.789 0.798 0.94 0.897 1 0.849 0.945 

Brainnetome 0.72 0.64 0.663 0.67 0.904 0.857 0.849 1 0.889 

Schaefer 0.829 0.762 0.776 0.783 0.973 0.945 0.945 0.889 1 
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Table 4: Summary of the results obtained for the different methods and atlases in the 
valence classification. 

 

Method 

 

Atlas 

 

Accuracy 
(%) 

 

Significant 
voxels 

SL 
voxels 

defined 
in atlas 

Overlap 
with SL 

(%) 

 

Regions 

 

Significant 
regions 

ABLA 

L1-MKL 

L2-MKL 

Camb12 

Camb12 

Camb12 

51.77 

48.44 

50.71 

2095 

0 

0 

911 

911 

911 

41.49 

0 

0 

12 

12 

12 

1 

0 

0 

ABLA 

L1-MKL 

L2-MKL 

Camb20 

Camb20 

Camb20 

51.77 

48.18 

50.74 

0 

0 

0 

911 

911 

911 

0 

0 

0 

20 

20 

20 

0 

0 

0 

ABLA 

L1-MKL 

L2-MKL 

Camb36 

Camb36 

Camb36 

51.77 

49.74 

49.22 

0 

0 

406 

911 

911 

911 

0 

0 

0 

36 

36 

36 

0 

0 

1 

ABLA 

L1-MKL 

L2-MKL 

Camb64 

Camb64 

Camb64 

51.77 

46.88 

51.75 

341 

549 

0 

911 

911 

911 

7.14 

0 

0 

64 

64 

64 

1 

1 

0 

ABLA 

L1-MKL 

L2-MKL 

AICHA 

AICHA 

AICHA 

51.77 

47.1 

52.83 

663 

780 

35 

729 

729 

729 

20.58 

0 

0 

192 

192 

192 

5 

5 

1 

ABLA 

L1-MKL 

L2-MKL 

Yeo2011 

Yeo2011 

Yeo2011 

51.77 

46.15 

50.97 

0 

0 

1010 

709 

709 

709 

0 

0 

1.7 

17 

17 

17 

0 

0 

1 

ABLA 

L1-MKL 

L2-MKL 

Harv-Oxf 

Harv-Oxf 

Harv-Oxf 

51.77 

47.18 

48.33 

439 

145 

0 

715 

715 

715 

21.4 

0 

0 

48 

48 

48 

1 

1 

0 

ABLA 

L1-MKL 

Brainnetome 

Brainnetome 

51.77 

43.34 

438 

349 

738 

738 

7.99 

0 

246 

246 

3 

3 
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L2-MKL Brainnetome  51.19 137 738 0 246 1 

ABLA 

L1-MKL 

L2-MKL 

Schaefer 

Schaefer 

Schaefer 

51.77 

46.24 

49.14 

61 

123 

302 

708 

708 

708 

4.8 

0.14 

3.81 

400 

400 

400 

1 

2 

6 
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Table 5: Correlation between the significant weight maps across the different atlases after 
applying the L1-MKL method in the valence classification. 

L1-MKL 

Atlas Cam
b 12 

Cam
b 20 

Cam
b 36 

Cam
b 64 

AICH
A 

Yeo201
1 

Harv
-Oxf 

Brainnetom
e 

Schaefer01
8 

Camb12 1 - - - - - - - - 

Camb20 - 1 - - - - - - - 

Camb36 - - 1 - - - - - - 

Camb64 - - - 1 - - - - - 

AICHA - - - - 1 - 0.217 0.428 - 

Yeo2011 - - - - - 1 - - - 

Harv-Oxf - - - - 0.217 - 1 - - 

Brainnetom
e 

- - - - 0.428 - - 1 - 

Schaefer - - - - - - - - 1 
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Table 6: Correlation between the significant weight maps across the different atlases after 
applying the L2-MKL method in the valence classification. 

L2-MKL 

Atlas Cam
b 12 

Cam
b 20 

Cam
b 36 

Cam
b 64 

AICH
A 

Yeo201
1 

Harv
-Oxf 

Brainnetom
e 

Schaefer01
8 

Camb12 1 - - - - - - - - 

Camb20 - 1 - - - - - - - 

Camb36 - - 1 - - - - - - 

Camb64 - - - 1 - - - - - 

AICHA - - - - 1 - - - 0.975 

Yeo2011 - - - - - 1 - - 0.99 

Harv-Oxf - - - - - - 1 - - 

Brainnetom
e 

- - - - - - - 1 - 

Schaefer - - - - 0.975 0.99 - - 1 
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Figure 1: Significant voxels obtained by the Searchlight approach and the ABLA 
method for all the atlases used in the decision classification. 
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Figure 2: Significant voxels obtained by the Searchlight approach and the L1-MKL 
method for all the atlases used in the decision classification. 
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Figure 3: Significant voxels obtained by the Searchlight approach and the L2-MKL 
method for all the atlases used in the decision classification. 
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Figure 4: Summary of the results obtained for the decision classification by Searchlight, 
ABLA and univariate approaches. The latter two show large differences between the 
two groups considered (odd/even participants). Searchlight only provides information 
about the significance of each voxel itself, so that no separation between groups was 

considered. 
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Figure 5: Summary of the results obtained for the decision classification by Searchlight, 
L1-MKL and univariate approaches. The latter two show large differences between the 
two groups considered (odd/even participants). Searchlight only provides information 
about the significance of each voxel itself, so that no separation between groups was 

considered.  
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Figure 6: Summary of the results obtained for the decision classification by Searchlight, 
L2-MKL and univariate approaches. The latter two show large differences between the 
two groups considered (odd/even participants). Searchlight only provides information 
about the significance of each voxel itself, so that no separation between groups was 

considered.  

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 18, 2018. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 40 

  

Figure 7: Significant voxels obtained by Searchlight and ABLA method for all the 
atlases used in the valence classification.  
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Figure 8: Significant voxels obtained by Searchlight and L1-MKL methods for all the 
atlases used in the valence classification. 
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Figure 9: Significant voxels obtained by Searchlight and L2-MKL method for all the 
atlases used in the valence classification. 
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