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Abstract 16 

 17 

Background 18 

Repeated culture reduces within-sample Mycobacterium tuberculosis genetic diversity due 19 

to selection of clones suited to growth in culture and/or random loss of lineages, but it is 20 

not known to what extent omitting the culture step altogether alters genetic diversity. We 21 

compared M. tuberculosis whole genome sequences generated from 33 paired clinical 22 

samples using two methods. In one method DNA was extracted directly from sputum then 23 

enriched with custom-designed SureSelect (Agilent) oligonucleotide baits and in the other it 24 

was extracted from mycobacterial growth indicator tube (MGIT) culture. 25 

 26 

Results 27 

DNA directly sequenced from sputum showed significantly more within-sample diversity 28 

than that from MGIT culture (median 5.0 vs 4.5 heterozygous alleles per sample, p=0.04). 29 

Resistance associated variants present as HAs occurred in four patients, and in two cases 30 

may provide a genotypic explanation for phenotypic resistance.  31 

 32 

Conclusions 33 

Culture-free M. tuberculosis whole genome sequencing detects more within-sample 34 

diversity than a leading culture-based method and may allow detection of mycobacteria 35 

that are not actively replicating. 36 

 37 

Key words: Mycobacterium tuberculosis; drug-resistant tuberculosis; whole genome 38 

sequencing; sputum; within-patient diversity; heteroresistance  39 
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Background 40 

 41 

International efforts to reduce tuberculosis (TB) infections and mortality over the last two 42 

decades have only been partially successful. In 2017, 10 million people developed TB and it 43 

has overtaken HIV as the infectious disease responsible for the most deaths worldwide(1, 44 

2). Drug resistance is a major concern with a steady rise in the number of reported cases 45 

globally and rapid increases in some areas(1). Patients with Mycobacterium tuberculosis 46 

resistant to the first line drugs rifampicin and isoniazid are classed as having multidrug-47 

resistant (MDR) TB and usually treated with a standardised second line drug regimen for at 48 

least nine months, which is also used for rifampicin monoresistance(3, 4). With the 49 

emergence of resistance to fluoroquinolones and aminoglycosides (extensively drug-50 

resistant [XDR] TB) there is an increasing need for individualised therapy based on drug 51 

susceptibility testing (DST). Individualised therapy ensures patients are treated with 52 

sufficient active drugs which can prevent selection of additional resistance, improve 53 

treatment outcomes and reduce duration of infectiousness(5-8). 54 

 55 

Traditionally, phenotypic culture-based DST was used to identify drug resistance but this is 56 

being replaced by rapid genetic tests that detect specific drug resistance-conferring 57 

mutations. Next generation whole genome sequencing (WGS) of M. tuberculosis is being 58 

increasingly used in research and clinical settings to comprehensively identify all drug 59 

resistance associated mutations(9). M. tuberculosis has a conserved genome with little 60 

genetic diversity between strains and no evidence of horizontal gene transfer(10), but more 61 

detailed analysis of individual patient samples with WGS has identified genetically separate 62 

bacterial subpopulations in sequential sputum samples(11-16) and across different 63 
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anatomical sites(17). This within-patient diversity can occur as a result of mixed infection 64 

with genetically distinct strains or within-host evolution of a single infecting strain(18).  65 

 66 

Bacterial subpopulations can be detected in clinical samples after sequencing reads are 67 

mapped to a reference genome where multiple base calls are detected at a single genomic 68 

site. These heterozygous alleles (HAs) at sites associated with drug resistance (resistance 69 

associated variants, RAVs) may reflect heteroresistance, where a fraction of the total 70 

bacterial population is drug susceptible while the remainder is resistant(19). Identification 71 

of genetic diversity within clinical samples may improve detection of RAVs over currently 72 

available rapid genetic tests(19) and can be achieved with freely available WGS analysis 73 

toolkits(20-22). Identifying RAVs could improve individualised therapy, prevent acquired 74 

resistance(12), and give insight into bacterial adaptation to the host.  75 

 76 

M. tuberculosis WGS is usually performed on fresh or stored frozen cultured isolates to 77 

obtain sufficient purified mycobacterial DNA(23, 24). However, the culture process can 78 

change the population structure from that of the original sample due to genetic drift 79 

(random loss of lineages) and/or the selection of subpopulations more suited to growth in 80 

culture(25-27). Repeated subculture leads to loss of genetic diversity and 81 

heteroresistance(28). Additionally, in the normal course of M. tuberculosis infection, some 82 

bacteria exist as viable non-culturable persister organisms that are hypothesised to cause 83 

the high relapse rate seen following treatment of insufficient duration. Although these 84 

organisms may be identified in sputum by techniques such as reporter phages or culture 85 

with resuscitation promoting factors(29, 30) they are likely to be missed by any sequencing 86 

method reliant on standard culture. 87 
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 88 

WGS directly from sputum without enrichment is challenging(23). It has recently been 89 

improved by depleting human DNA during DNA extraction(31). We have previously reported 90 

the use of oligonucleotide enrichment technology SureSelect
 
(Agilent, CA, USA) to sequence 91 

M. tuberculosis DNA directly from sputum(32) and demonstrated its utility in determining a 92 

rapid genetic drug resistance profile(33, 34).  93 

 94 

It remains unclear to what extent WGS of cultured M. tuberculosis samples underestimates 95 

the genetic diversity of the population in sputum samples. One previous study of 16 patients 96 

did not identify increased genetic diversity in M. tuberculosis DNA sequenced directly from 97 

sputum compared to DNA from culture(31), whereas another study of mostly drug 98 

susceptible patients showed sequencing directly from sputum identified a slight excess of 99 

HAs relative to culture(33). Here we reanalyse heterozygous alleles (HAs) for the 12 100 

available paired sequences with >60-fold mean genome coverage from that study(33) in 101 

addition to 21 newly collected samples from patients with MDR-TB and further explore the 102 

genomic location of the additional diversity identified. 103 

 104 

Results 105 

 106 

Patient Characteristics and Drug Susceptibility Testing 107 

 108 

Whole genome sequences were obtained for 33 patients from both mycobacterial growth 109 

indicator tube (MGIT) culture and direct sputum sequencing. The patients were 110 

predominantly of black African ethnicity (83%) and 50% were HIV positive. First line 111 
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phenotypic drug susceptibility testing (DST) results identified 20 patients with MDR-TB and 112 

one with rifampicin monoresistance. In addition there were two isoniazid monoresistant 113 

patients and ethambutol resistance was detected in 7 patients. Second-line phenotypic DST 114 

was performed for patients with rifampicin-resistant or MDR-TB and identified one case of 115 

kanamycin resistance (Table 1). 116 

 117 

All samples had mean genome coverage of 60x or above with at least 85% of the genome 118 

covered at 20x (Supplementary Material: Table 1). We observed greater mean coverage 119 

depth in sputum-derived sequences than MGIT sequences (median 173.7 vs 142.4, p=0.03, 120 

Supplementary Material: Table 1), and so mapped reads were randomly downsampled to 121 

give equal mean coverage depth in each pair. A genotypic susceptibility profile was 122 

determined by evaluating MGIT WGS for consensus-level RAVs using a modified version of 123 

publicly available lists(22, 35). Genotypic RAVs predicted all rifampicin phenotypic resistance 124 

and >95% of isoniazid phenotypic resistance. Ethambutol genotypic RAVs were poorly 125 

predictive of phenotypic resistance in line with findings from other studies(36) (Table 1). 126 

The patient with kanamycin phenotypic resistance was correctly identified by an rrs a1401g 127 

RAV. No full phenotypic fluoroquinolone phenotypic resistance was identified, but several 128 

colonies from patient F1013 did grow in the presence of ofloxacin (although not enough to 129 

be classified as resistant). The consensus sequences from this patient harboured a gyrB 130 

E501D mutation which is believed to confer resistance to moxifloxacin but not other 131 

fluoroquinolones, which may explain the borderline phenotypic DST result(37). 132 

 133 

Genetic Diversity 134 

 135 
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To compare consensus sequences from sputum and MGIT, a WGS consensus sequence-level 136 

maximum likelihood phylogenetic tree was constructed (Supplementary Material: Figure 1). 137 

As expected, all paired sequences were closely related, with a median difference of 0.0 138 

(range 0-1) single nucleotide polymorphisms (SNPs). Samples from patients F1066 and 139 

F1067 were closely related with only one consensus-level SNP separating all four consensus 140 

sequences. There was no obvious epidemiological link between these patients (although 141 

this study was not designed to collect comprehensive epidemiological information) and they 142 

lived 20km apart in Durban. However, both patients were admitted contemporaneously to 143 

an MDR treatment facility and sampled on the same day. DNA extraction and sequencing 144 

occurred on different runs. Therefore the close genetic linkage may represent direct 145 

transmission within a hospital setting, a community transmission chain or an unlikely cross-146 

contamination during sample collection. 147 

 148 

Having established congruence between sputum and MGIT sequences at the consensus 149 

level we then compared genetic diversity by DNA source. We first defined a threshold for 150 

calling variants present as heterozygous alleles (HAs) in our entire dataset by using a range 151 

of minimum read count frequencies as described in the methods (Figure 1). Below a 152 

minimum of three supporting reads there was an exponential increase in the number of HAs 153 

identified, which may be indicative of the inclusion of sequencing errors. To reduce this risk, 154 

we used a threshold of a minimum of four supporting reads. 155 

 156 

Genetic diversity may occur because of within-host evolution or mixed infection. To identify 157 

mixed infection we used a SNP-based barcode(38) to scan all HAs for a panel of 413 robust 158 

phylogenetic SNPs that can resolve M. tuberculosis into one of seven lineages and 55 sub-159 
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lineages. We found three phylogenetic SNPs among the HAs. In all cases the heterozygous 160 

phylogenetic SNP originated from the same sublineage as other SNPs present at 100% 161 

frequency, and there were no cases of HAs indicating the presence of more than one lineage 162 

or sublineage. We screened for mixed infection with the same sublineage by screening 163 

samples by HA frequency and then using Bayseian model based clustering in samples with 164 

≥10 HAs as described previously(39). This identified mixed infection in the sputum sample 165 

from patient F1096, which had 261 heterozygous alleles, greater than ten times that in any 166 

other sample. This patient was therefore excluded from further analyses. 167 

 168 

As a first step to comparing diversity between sputum and MGIT sequenced samples we 169 

looked at the location of genetic diversity within the M. tuberculosis genome. HAs were 170 

widely dispersed across the genome at similar sites in both sputum and MGIT samples. The 171 

genes with the greatest density of HAs are shown in Table 2.  172 

 173 

Notably, genetic diversity was found in the ribosomal RNA (rRNA) genes (rrs and rrl) 174 

uniquely in sputum samples, compared to other genes where distribution of diversity 175 

between MGIT and sputum was more balanced. As rRNA contains regions that are highly 176 

conserved across bacteria(40), we considered the possibility that SureSelect baits targeting 177 

rRNA genes were capturing both M. tuberculosis and other bacterial species. To evaluate 178 

this, metagenomic taxonomic assignment was performed on all reads by sampling reads 179 

that were not assigned to M. tuberculosis (i.e. presumed contaminants from other bacteria). 180 

We then performed a BLAST search against the most diverse genes listed in Table 2 which 181 

indicated that a sizeable proportion of non-M. tuberculosis reads from directly sequenced 182 

sputum had a BLAST hit of at least 30 bases to M. tuberculosis rrs and rrl genes that encode 183 
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rRNA (330 BLAST hits from sputum sequences vs 4 BLAST hits from MGIT sequences, median 184 

8.5% vs 0.0%, p<0.01, Supplementary Material: Figure 2). There were no BLAST hits against 185 

any of the other genes with ≥2 sputum HAs apart from rpoC, for which there were 3 BLAST 186 

hits from sputum sequences but none from MGIT sequences (median 0.0% for both sputum 187 

and MGIT sequences), indicating that this issue appears largely specific to rRNA. To 188 

determine if contaminating reads were contributing to HAs identified in intergenic regions, 189 

we repeated this analysis for all intergenic regions with ≥2 sputum HAs (Supplementary 190 

Material: Table 2). There were no BLAST hits to any of these regions, suggesting that this is 191 

not the case. The taxonomic assignment of these contaminating reads were typical of 192 

genera composing the oral flora, with a high representation of Actinomyces, Fusobacterium, 193 

Prevotella, and Streptococcus (Supplementary Material: Figure 3).  194 

 195 

This supported the hypothesis that the baits may enrich rRNA from other organisms so rRNA 196 

genes were excluded from further analysis. The difference in diversity between sputum and 197 

MGIT sequences can be explained by the selective nature of MGIT media which will enrich 198 

M. tuberculosis sequences and the decontamination step used to kill non-mycobacteria 199 

prior to culture inoculation. Importantly the frequency of HAs in other highly diverse genes 200 

between sequencing strategies was more balanced (Table 2) in addition to the lack of BLAST 201 

hits of contaminating reads to these genes.  202 

 203 

After excluding the sample with mixed infection and removing rRNA gene sequences we 204 

compared the frequency of HAs in sputum and MGIT. There were 265 HAs identified across 205 

all sputum samples compared to 200 in MGIT samples (median 5.0 vs 4.5, p=0.04, 206 

Supplementary Material: Table 1). In both sputum and MGIT samples, the majority of HAs 207 
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were indels, and non-synonymous mutations were more commonly frameshift than 208 

missense mutations (Table 3). The distribution of HAs by patient is shown in Figure 2.  209 

 210 

Genetic diversity in drug resistance genes 211 

 212 

HAs in drug resistance associated regions, including promoters and intergenic regions, were 213 

individually assessed. Four of the 32 patients with single strain infection had RAVs present 214 

as HAs in at least one gene, which are shown in Table 4. Patient F1002 had three 215 

compensatory mutations in rpoC present at HAs in both sequences. As described above, the 216 

strains from patients F1066 and F1067 were highly related with only one consensus SNP 217 

difference between all four sequences. Both had phenotypic high level isoniazid resistance 218 

with no consensus-level katG or inhA mutation, but had frameshift katG mutations present 219 

as HAs which have the potential to cause resistance(41). F1066 and RF021 had Rv1979c and 220 

pncA mutations respectively at low frequency in sputum only which have the potential to 221 

confer phenotypic resistance to clofazimine (Rv1979c) and pyrazinamide (pncA), although 222 

no phenotypic testing was performed for these drugs.  223 

 224 

Discussion 225 

 226 

In this study we performed whole genome sequencing using DNA from sputum and MGIT 227 

culture in paired samples from 33 patients and compared within-patient genetic diversity 228 

between methods. All paired sequences were closely related at the consensus level, and 229 

WGS predicted phenotypic drug susceptibility with over 95% sensitivity and specificity for 230 

rifampicin and isoniazid in line with published data(42).  231 
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 232 

We find that the rRNA genes have high levels of diversity in sputum samples, but believe 233 

this is due to non-mycobacterial DNA hybridising to the capture baits. This conclusion is 234 

borne out by the taxonomic assignment of reads aligning to these genes in common oral 235 

bacteria. We therefore excluded these from further analysis, and recommend others using 236 

enrichment from sputum do similarly. We find more diversity when sequencing directly 237 

from sputum with significantly more unique heterozygous alleles (HAs) than sequencing 238 

from MGIT culture (p=0.04). 239 

 240 

The understanding of within-patient M. tuberculosis genetic diversity is becoming 241 

increasingly important as the detection of rare variants has been shown to improve the 242 

correlation between phenotypic and genotypic drug resistance profiles(19) and can identify 243 

emerging drug resistance(11, 12). Not including a culture step avoids the introduction of 244 

bias towards culture-adapted subpopulations and the impact of random chance and is also 245 

likely to incorporate DNA from viable non-culturable mycobacteria. A reduction in genetic 246 

diversity has previously been shown with sequential M. tuberculosis subculture(25, 28), but 247 

was not confirmed by a study performing WGS directly from sputum(31). However, the 16 248 

paired sputum and MGIT samples compared by Votintseva(31) had a minimum of 5x 249 

coverage compared to a minimum 60x coverage in this study, and were likely to contain less 250 

genetic material as they were surplus clinical rather than dedicated research samples.  251 

 252 

Two-thirds of the patients with MDR-TB had already been treated for drug susceptible-TB 253 

(DS-TB), and additional diversity in sputum samples may represent early adaptation to drug 254 

pressure. As direct sputum sequencing does not rely on live mycobacteria, DNA from 255 
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recently killed M. tuberculosis is likely to also be sequenced, meaning that recent genomic 256 

mutations are likely to be represented as HAs. 257 

 258 

In two patients, RAVs present as HAs provided a likely genotypic basis for otherwise 259 

unexplained phenotypic resistance. Given the small total number of resistance mutations in 260 

this study, it is not possible to draw conclusions about the frequency of heterozygous RAVs 261 

in directly sequenced sputum. However the presence of heterozygous RAVs in both MGIT 262 

and sputum sequences reinforces the biological importance of these mutations. 263 

 264 

To reduce the risk of sample cross contamination, paired samples were extracted on 265 

different days, prepared in different sequencing libraries and sequenced on different runs. 266 

However it is not possible to completely exclude the possibility of contamination during 267 

sample collection and between different samples processed in batches. A further limitation 268 

of this study is that it can be difficult to distinguish low frequency variants from sequencing 269 

error. The SureSelect library preparation protocol for sputum sequencing incorporates more 270 

PCR cycles than that used for MGIT sequencing, which may increase the risk of error. Where 271 

possible this could be evaluated further by performing technical sequencing replicates on 272 

extracted DNA samples, although this was not possible due to insufficient surplus material 273 

and financial constraints. To reduce the risk of sequencing errors we used high read and 274 

mapping quality thresholds, and required a stringent 98% identity between sequenced 275 

reads and the reference genome. Low frequency variants of particular clinical importance 276 

could be confirmed by resequencing the same DNA samples.  277 

 278 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2019. ; https://doi.org/10.1101/446849doi: bioRxiv preprint 

https://doi.org/10.1101/446849
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13

Conclusions 279 

 280 

Directly sequencing M. tuberculosis from sputum is able to identify more genetic diversity 281 

than sequencing from culture. Understanding within-patient genetic diversity is important 282 

to understand bacterial adaptation to drug treatment and the acquisition of drug resistance. 283 

It also has potential to identify low frequency RAVs that may further enhance the prediction 284 

of drug resistance phenotype from genotype. 285 

 286 

Methods 287 

 288 

Patient enrolment 289 

Adult patients presenting with a new diagnosis of sputum culture positive TB were included 290 

in the study. Patients were recruited in London, UK (n=12) and Durban, South Africa (n=21). 291 

All patients recruited in Durban were Xpert MTB/RIF (Cepheid, CA, USA) positive for 292 

rifampicin resistance. Two sputum samples were collected prior to starting the current 293 

treatment regimen, with one inoculated into mycobacterial growth indicator tube (MGIT) 294 

culture (BD, NJ, USA) and the other used for direct DNA extraction. Therefore for patients 295 

with drug susceptible-TB (DS-TB), sputum was collected prior to taking any TB therapy, 296 

while patients starting MDR-TB treatment may have already taken treatment for DS-TB if 297 

this was intiated prior to resistance results being available. 298 

 299 

Ethics, Consent and Permissions 300 

All patients gave written informed consent to participate in the study. Ethical approval for 301 

the London study was granted by NHS National Research Ethics Service East Midlands–302 
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Nottingham 1 (reference 15/EM/0091). Ethical approval for the Durban study was granted 303 

by University of KwaZulu-Natal Biomedical Research Ethics Committee (reference 304 

BE022/13). 305 

 306 

Microbiology 307 

MGIT samples were incubated in a BACTEC MGIT 960 (BD, NJ, USA) until flagging positive. 308 

Phenotypic DST data for London samples were those provided to treating hospitals by Public 309 

Health England. Phenotypic DST were performed using equivalent standardised methods. 310 

For Durban samples this was the solid agar proportion method (Supplementary Material: 311 

Methods) and for London samples the resistance ratio method(43). 312 

 313 

DNA extraction and sequencing 314 

Positive MGIT tubes were centrifuged at 16,000g for 15 minutes and the supernatant 315 

removed. Cells were resuspended in phosphate-buffered saline before undergoing heat 316 

killing at 95°C for 1 hour followed by centrifugation at 16,000g for 15 minutes. The 317 

supernatant was removed and the sample resuspended in 1mL sterile saline (0.9% w/v). The 318 

wash step was repeated. DNA was extracted with mechanical ribolysis before purification 319 

with DiaSorin Liaison Ixt (DiaSorin, Italy) or CTAB(44). NEBNext Ultra II DNA (New England 320 

Biolabs, MA, USA) was used for DNA library preparation.  321 

 322 

Sputum samples for direct sequencing were heat killed, centrifuged at 16,000g for 15 323 

minutes and the supernatant was removed. DNA extraction was performed with mechanical 324 

ribolysis followed by purification using DiaSorin Liaison Ixt (DiaSorin, Italy) or DNeasy blood 325 

& tissue kit (Qiagen, Germany)(44). Target enrichment was performed using SureSelect with 326 
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a custom-designed bait set covering the entire positive strand of the M. tuberculosis 327 

genome as described previously(33). Batches of 48 multiplexed samples were sequenced on 328 

NextSeq 500 (Illumina, CA, USA) 300-cycle paired end runs with a mid-output kit. 329 

Sequencing was performed by the Pathogen Genomics Unit at University College London in 330 

a dedicated laboratory where one sequencing run was processed at a time. All paired 331 

samples were extracted, prepared and sequenced on different days. The National Center for 332 

Biotechnology Information Sequence Read Archive (NCBI SRA) accession number for each 333 

sample is shown in Supplementary Material: Table 3.  334 

 335 

Read mapping 336 

DNA sequence reads were adapter and quality trimmed then aligned to the H37Rv 337 

reference genome (GenBank accession NC_000962.3) with Trim Galore v0.4.4(45) and 338 

BBMap v38.32(46), with mapped reads stored in an output bam file. Duplicate reads were 339 

removed with Picard tools v1.130(47) MarkDuplicates and coverage statistics generated 340 

with Qualimap v2.2.1(48). For each sample pair, the bam file with greater mean genome 341 

coverage was randomly downsampled to that of the paired sample with Picard tools 342 

v1.130(47) DownsampleSam. All further analyses were performed using these 343 

downsampled bam files. Command line parameters used are specified in the Supplementary 344 

Material: Methods.  345 

 346 

Variant calling 347 

Variant calling for comparison for HA counts was performed with FreeBayes v1.2(49). 348 

Variants falling in or within 50 bases of PE/PPE family genes and repeat elements were 349 

excluded using vcfinteresect in vcflib(50). For the initial analysis of genetic diversity, variants 350 
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were included if supported by ≥2 reads, with ≥1 forward and reverse read, no read position 351 

bias, a minimum mapping quality of 30 and base quality of 30. The minimum supporting 352 

read threshold was then increased in a stepwise fashion from 2 to 15. Variant calling files 353 

where variants were supported ≥4 supporting reads including ≥1 forward and reverse read 354 

were used to compare HA frequency and location and to screen for mixed infection. 355 

 356 

The phylogenetic tree was constructed by calling variants with VarScan v2.4.0(51) 357 

mpileup2cns as this is able to generate consensus-level calls at each reference sequence 358 

base. SNPs were then used to generate a sequence of equal length to the reference using a 359 

custom perl script and these sequences were combined in a multi-alignment fasta file. SNP 360 

sites were extracted from this alignment using snp-sites v2.4.1(52), and pairwise SNP 361 

differences calculated using snp-dists v0.6.3(53). Extracted SNP sites were used to generate 362 

a maximum likelihood phylogenetic tree using RaxML v8.2.12(54) which was visualised using 363 

FigTree v1.4.3. 364 

 365 

Identification of Mixed Infection 366 

All samples were screened for evidence of mixed infection using described methods(39). In 367 

brief, any sample with 10 or fewer heterozygous SNPs, or between 11 and 20 heterozygous 368 

SNPs where heterozygous SNPs were ≤1.5% of all SNPs was classified as not mixed. For 369 

other samples, the Baysian mixture model analysis(39) was used where samples with a 370 

Bayesian information criterion value >20 for presence of more than one strain were 371 

assumed to be mixed.  372 

 373 

Metagenomic assignment 374 
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Sequencing reads were classified using Kraken v0.10.6(55) against a custom Kraken 375 

database previously constructed from all available RefSeq genomes for bacteria, archaea, 376 

viruses, protozoa, and fungi, as well as all RefSeq plasmids (as of September 19
th

 2017) and 377 

three human genome reference sequences(56). The size of the final database after shrinking 378 

was 193 Gb, covering 38,190 distinct NCBI taxonomic IDs.  379 

 380 

To assess the proportion of contaminating reads that could generate spurious diversity 381 

when mapped to M. tuberculosis ribosomal genes, we randomly subsampled 100 reads 382 

taxonomically assigned as non-M. tuberculosis and performed a BLAST search with blastn 383 

v2.2.28(57) against each gene as described from the H37Rv reference genome. We only 384 

analysed hits of at least 30 bases. 385 

 386 

Statistics 387 

Statistical analyses were performed with Prism v8.0 (Graphpad, CA, USA). Mean coverage 388 

depth statistics, number of HAs and BLAST hits of contaminating reads in paired samples 389 

were compared using a two-tailed Wilcoxon matched-pairs signed rank test.  390 

 391 

Abbreviations 392 

 393 

DST drug susceptibility testing 

DS-TB drug susceptible-tuberculosis 

HA heterozygous allele 

MDR-TB multidrug resistant-tuberculosis 
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MGIT mycobacterial growth indicator tube 

RAV Resistance associated variant 

rRNA ribosomal RNA 

SNP single nucleotide polymorphism 

TB tuberculosis 

WGS whole genome sequencing 

 394 

 395 

  396 
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Tables 435 

 436 

Drug 

Resistance by 

phenotypic DST 

Resistance by 

genotypic DST 

Genotypic DST 

sensitivity 

Genotypic DST 

specificity 

First line drugs 

Rifampicin 21/32 (65.6%) 21/33 (63.6%) 21/21 (100%)* 21/21 (100%) 

Isoniazid 22/32 (68.8%) 24/36 (66.7%) 21/22 (95.5%) 23/24 (95.8%) 

Ethambutol 7/31 (22.6%) 15/34 (44.1%) 7/7 (100%) 7/15 (46.7%) 

Second line drugs 

Ofloxacin 0/22 (0.0%) 1/22 (4.5%) N/A 0/1 (0%)** 

Kanamycin 1/22 (4.5%) 1/22 (4.5%) 1/1 (100%) 1/1 (100%) 

 437 

Table 1. Phenotypic and genotypic drug susceptibility testing (DST) results and sensitivity 438 

and specificity of genotypic DST relative to phenotypic DST. Phenotypic DST available for 439 

first line drugs for 32 of the 33 patients, and for second line drugs for 22 patients who 440 

demonstrated rifampicin drug resistance. *In one directly-sequenced sputum samples 441 

rifampicin RAVs were missed due to low coverage, although they were identified in the 442 

corresponding MGIT sample. **This sample had <1% of colonies grow in the presence of 443 

ofloxacin, so is categorised as sensitive but may have low-level or heteroresistance to 444 

fluoroquinolones (see main text). 445 

  446 
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 447 

Gene 

Heterozygous alleles 

per base 

Total number of 

heterozygous alleles Functional category 

Sputum MGIT Sputum MGIT 

rv1319c 0.021 0.021 33 33 

Metabolism and 

respiration 

rrs 0.016 0.000 25 0 16S ribosomal RNA 

rrl 0.006 0.000 19 0 23S ribosomal RNA 

ppsA 0.003 0.001 15 4 Lipid metabolism 

rv2082 0.006 0.006 13 14 Unknown function 

accE5 0.006 0.000 3 0 Lipid metabolism 

lppB 0.005 0.005 3 3 

Probable surface 

lipoprotein 

pks12 0.000 0.001 3 10 Lipid metabolism 

rv2319c 0.003 0.005 3 4 Stress protein 

lppA 0.003 0.002 2 1 

Probable surface 

lipoprotein 

rpoC 0.001 0.001 2 3 

RNA polymerase beta' 

subunit 

rv3888c 0.002 0.001 2 1 

Probable membrane 

protein 

vapC25 0.005 0.000 2 0 Possible toxin 

vapC31 0.005 0.002 2 1 Possible toxin 

 448 
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Table 2. Genes with ≥2 heterozygous alleles (HAs) across all sputum samples, ordered by 449 

greatest number of HAs per base.  450 
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 451 

 Sputum variants MGIT variants 

Total variants 24480 25465 

Total variants present as HAs 

(% of total variants) 

265 (1.1%) 200 (0.8%) 

Median HAs per sample 5.0 4.5 

Variant type (% all HAs) 

SNP 

MNP 

Insertion 

Deletion 

Complex 

 

217 (81.9%) 

2 (0.8%) 

4 (1.5%) 

24 (9.1%) 

18 (6.8%) 

 

174 (87.0%) 

0 (0.0%) 

1 (0.5%) 

15 (7.5%) 

10 (5.0%) 

Coding change (% all HAs) 

Non-synonymous (missense) 

Non-synonymous (frameshift) 

Synonymous 

Intergenic 

 

93 (35.1%) 

6 (2.3%) 

57 (21.5%) 

109 (41.1%) 

 

77 (38.5%) 

7 (3.5%) 

57 (28.5%) 

59 (29.5%) 

 452 

Table 3. Variants identified in MGIT and sputum derived sequences from paired samples. 453 

Values given represent totals for 32 paired samples. SNP = single nucleotide polymorphism; 454 

MNP = multi-nucleotide polymorphism.  455 

  456 
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 457 

Patient 

ID 

Phenotypic 

resistance 

Mutation 

Frequency 

(MGIT/sputum) 

Description 

F1002 Rifampicin rpoB S450L 100%/100% 

High confidence 

resistance mutation 

F1002 Rifampicin rpoC G332R(58) 82.6%/21.7% 

Putative compensatory 

mutations 

F1002 Rifampicin rpoC L516P(58) 12.7%/7.7% 

F1002 Rifampicin rpoC P1040S(59) 21.7%/12.3% 

F1066 Isoniazid (high) katG N218fs 0.0%/6.9% 

Possible resistance 

mutations, not 

previously described 

F1066 

Clofazimine – 

not tested 

Rv1979c G376D 0.0%/0.5% 

F1067 Isoniazid (high) katG N218fs 10.7%/7.6% 

RF021 

Pyrazinamide – 

testing failed 

pncA Q122H 0%/2.5% 

 458 

Table 4. Resistance associated variants present as heterozygous alleles (HAs). 459 

  460 
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 30

Figure legends 625 

 626 

Figure 1. Variation in total number of heterozygous alleles (HAs) identified across all 36 627 

patients in sequences generated from sputum and MGIT depending on minimum supporting 628 

read count threshold.  629 

 630 

Figure 2. Number of heterozygous alleles (HAs) found in directly sequenced sputum only 631 

(sputum), MGIT (MGIT) only or in both samples (shared) by patient. 632 

 633 
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