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Abstract

Recent and classical work has revealed biologically and medically significant subtypes in
complex diseases and traits. However, relevant subtypes are often unknown,
unmeasured, or actively debated, making automatic statistical approaches to subtype
definition particularly valuable. We propose reverse GWAS (RGWAS) to identify and
validate subtypes using genetics and multiple traits: while GWAS seeks the genetic
basis of a given trait, RGWAS seeks to define trait subtypes with distinct genetic bases.
Unlike existing approaches relying on off-the-shelf clustering methods, RGWAS uses a
bespoke decomposition, MFMR, to model covariates, binary traits, and population
structure. We use extensive simulations to show these features can be crucial for power
and calibration. We validate RGWAS in practice by recovering known stress subtypes in
major depressive disorder. We then show the utility of RGWAS by identifying three
novel subtypes of metabolic traits. We biologically validate these metabolic subtypes
with SNP-level tests and a novel polygenic test: the former recover known metabolic
GxE SNPs; the latter suggests genetic heterogeneity may explain substantial missing
heritability. Crucially, statins, which are widely prescribed and theorized to increase
diabetes risk, have opposing effects on blood glucose across metabolic subtypes,
suggesting potential have potential translational value.

Author summary

Complex diseases depend on interactions between many known and unknown genetic
and environmental factors. However, most studies aggregate these strata and test for
associations on average across samples, though biological factors and medical
interventions can have dramatically different effects on different people. Further,
more-sophisticated models are often infeasible because relevant sources of heterogeneity
are not generally known a priori. We introduce Reverse GWAS to simultaneously split
samples into homogeneoues subtypes and to learn differences in genetic or treatment
effects between subtypes. Unlike existing approaches to computational subtype
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identification using high-dimensional trait data, RGWAS accounts for covariates, binary
disease traits and, especially, population structure; these features are each invaluable in
extensive simulations. We validate RGWAS by recovering known genetic subtypes of
major depression. We demonstrate RGWAS is practically useful in a metabolic study,
finding three novel subtypes with both SNP- and polygenic-level heterogeneity.
Importantly, RGWAS can uncover differential treatment response: for example, we show
that statin, a common drug and potential type 2 diabetes risk factor, may have
opposing subtype-specific effects on blood glucose.

Introduction 1

Distinguishing subtypes can be essential for treatment, prognosis, and learning basic 2

disease biology. For example, breast cancer has subtypes distinguished by tumor 3

hormone receptor status that have different genetic risk variants, population structure, 4

comorbidities, treatment responses and risks, and prognoses [1, 2]. Many other common 5

diseases have known, biologically distinct subtypes [3–7], often involving distinct tissues 6

or biological pathways, including two diseases we study: depression [8] and type 2 7

diabetes (T2D) [9, 10]. Genetically distinct subtypes can arise from gene-environment 8

interactions [11–13]; gene-gene interactions [14, 15]; or disease misclassification, which is 9

well documented but usually ignored [16]. 10

We aim to learn and validate genetic subtypes in a two-step approach we call reverse 11

GWAS (RGWAS). First, we infer subtypes by clustering multiple traits with a new 12

finite mixture of regressions method we designed specifically for large, multi-trait 13

GWAS datasets (MFMR). The core assumption of MFMR is that the subtypes differ in 14

distribution for many traits. Second, we assess the causal biological distinction between 15

the subtypes by testing for SNP- and polygenic-level effect heterogeneity. We also test 16

heterogeneity for non-genetic covariates, like medical interventions, which can 17

distinguish the subtypes pragmatically [17–20]. These tests can be more powerful 18

because genetic effects are usually small. 19

Unlike recent approaches to uncover subtypes [21–30], the first RGWAS step corrects 20

for population structure, handles binary traits, and scales to tens of thousands of 21

samples. Distinct from recent, complementary tests for genetic heterogeneity [22, 31–34], 22

the second RGWAS step offers p-values, polygenic tests, and covariate adjustment. 23

After we use genetics to validate inferred subtypes, we use the subtypes in turn to 24

increase explained heritability, uncover genetic and treatment heterogeneity, and 25

increase GWAS power. These applications resemble methods that infer heterogeneity 26

from, for example, population structure [35] or technical artifacts [36,37]. 27

We first introduce the two-step RGWAS approach. We then evaluate extensive 28

simulations and find that RGWAS, but not several other previous and novel approaches, 29

is calibrated and powerful. We then validate RGWAS in real data by recovering known 30

SNP interactions with stress in major depression. Finally, we use RGWAS in a 31

metabolic cohort and uncover three novel subtypes with polygenic, SNP, and treatment 32

effect heterogeneity: subtypes increase explained heritability by ∼65%; identify 4 33

subtype-specific SNP effects, including 3 with known metabolic interactions; and find 34

that statin, a widely prescribed drug that may increase diabetes risk [38–40], has 35

opposing effects on blood glucose across subtypes. 36
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Results 37

Reverse GWAS is calibrated and powerful in simulations 38

We simulate from the full MFMR model to assess RGWAS (Methods, Supplementary 39

Section 3). We add noise that is correlated across traits; large main subtype effects; and 40

a covariate matrix G containing null, homogeneous, and heterogeneous SNPs. We use 41

27 quantitative traits and 3 binary traits and simulate K = 2 subtypes (or K = 1). 42

We test several other methods to find subtypes in step 1 (Methods). First, we use 43

Gaussian Mixture Models (GMM) to represent covariate-unaware methods, e.g. 44

k-means [27,30] and TDA [21,25,26]. Second, we use a new Canonical Correlation 45

Analysis (CCA) approach that defines the subtype vector z as the top phenotypic CC. 46

Third, we use the true z to show the best-case scenario with perfect subtyping (Oracle). 47

We then use z in the step 2 heterogeneity test, defined by (3), conditioning on the 48

main effects of z (Figure 1). We aggregate 1,000 simulated datasets and, per dataset, 49

the quantitative traits and SNPs in each category. Binary traits give similar results 50

(Supplementary Figure 2). 51
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Fig 1. SNP heterogeneity tests at nominal p = .01. SNPs are either null (a);
homogeneous (hom, c); or truly heterogeneous (het, d); we also test hom SNPs in
simulations with no subtypes (b). Hom SNPs explain 4% of variance and het SNPs
explain .4% (triangles) or vice versa (circles).

RGWAS with MFMR is calibrated and almost perfectly obtains the oracle subtypes 52

(Supplementary Figure 3) and power (Figure 1d). Crucially, it remains calibrated even 53

when K = 1 (Figure 1b), so RGWAS discoveries validate the existence of subtypes. 54

Further, when K > 2 subtypes were simulated, MFMR with fixed K = 2 lost power but 55

remained calibrated (Supplementary Figure 4). 56

Conversely, GMM is miscalibrated by an order of magnitude when K = 1, making it 57

unreliable for subtype validation (Figure 1b). GMM cannot distinguish covariate from 58

subtype, and it is inflated when homogenoues effects are stronger than heterogeneous 59

(Figure 1c, Supplementary Figure 4). 60

CCA has low power but seems calibrated and, sometimes, to outperform the oracle 61

(Supplementary Figure 4). But this is a Pyrrhic victory: by smoothing over traits, CCA 62

causes bias, which adds signal for heterogeneous traits but inflates FPR (Supplementary 63

Figure 5 and Section 4). 64

We also tried the top phenotypic PC for z, which performed like a lower-power CCA 65

(Supplementary Figure 1). The top genetic PC [24], instead, had very low power. 66

We next simulated “Case/Control” data by ascertaining a binary trait to have 50% 67

in-sample prevalence (Supplementary Figure 2). Little changed qualitatively, though all 68

methods, even the oracle, had slight FPR inflation for large N because ascertainment 69

violates the assumed model [41]. 70

Intuitively, subtypes are clusters of covariate-adjusted traits. Variables that 71

confound subtype structure, then, should included as covariates, while variables that 72

may have different distributions between subtypes should be included as traits. 73
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(Covariates are ignored by methods like GMM.) Nonetheless, this distinction can be 74

unclear in practice, which we test by treating a covariate like a trait (or vice versa). 75

MFMR remained calibrated, unlike GMM (Supplementary Figure 6). 76

Finally, we simulated an even mixture of two populations and 10,000 SNPs from a 77

Balding-Nichols model with FST = .1 (Supplementary Section 3.2). We repeated our 78

simulations using 12 simulated SNPs for G and adding population main effects of 79

varying strength. For MFMR and the oracle, we condition on three genetic PCs and 80

their interactions with z in step 2. MFMR remains calibrated and powerful while CCA 81

and GMM suffer substantial FPR inflation, even for completely null SNPs 82

(Supplementary Figure 2). Including PCs in step 2 after using GMM in step 1 can 83

partially reduce inflation, but only when subtypes are truly present. 84

RGWAS recovers known CONVERGE subtypes 85

Only one GWAS of clinical depression has reported replicated associations with major 86

depression (MD) [42]. A possible explanation for this lack of GWAS hits is genetic, 87

environmental, and/or diagnostic heterogeneity, suggesting RGWAS may be useful. 88

The CONVERGE study recruited and deeply phenotyped Han Chinese women with 89

recurrent MD and matched controls. Cases were carefully ascertained to minimize 90

environmental heterogeneity, comparatively amplifying biological heterogeneity. We 91

used N = 9, 303 samples measured on 31 binary and 10 quantitative traits. We 92

conditioned on an intercept, age, and ten genetic PCs as heterogeneous covariates. We 93

jointly imputed the covariates and traits (Methods). 94
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Fig 2. Genetic heterogeneity in the CONVERGE major depression dataset.
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shown for each subtype. (c) Per-subtypes odds ratios (±2 s.e.) for two SNPs discovered
by (homogeneous) GWAS [42] (left) and three SNPs discovered using known
subtypes [43] (right). (d) Subtype sizes.

The inferred subtypes with K = 2 are summarized in Figure 2. As expected, the 95

subtypes distinguish lifetime adversity: the aggregate measure “Stress” is split [43]. 96
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We tested five SNPs for effect heterogeneity across subtypes (Figure 2c). The first 97

two (rs35936514 and rs12415800) were discovered in the initial GWAS [42] and we use 98

as negative controls for heterogeneity. For positive controls, we use three SNPs 99

(rs7526682, rs11577545, and rs950893) previously found to interact with “Stress” [43]. 100

As expected, the homogeneous SNPs are nearly genome-wide significant, and RGWAS 101

successfully assigns all five SNPs. The heterogeneous SNPs show only modest 102

homogeneous signal because they have essentially no effect in the “Stress” subtype. 103

We chose K = 2 using prior knowledge that MD can be split by (binary) stress. We 104

assessed this empirically by evaluating the MFMR likelihood on held-out data, which 105

supported K > 1 subtypes (Supplementary Figure 7). K = 3 creates an MD-only 106

subtype, so we do not pursue K ≥ 3. 107

New metabolic subtypes with genetic and pragmatic significance 108

We next applied RGWAS to metabolic traits measured in METSIM [44]. By combining 109

genetic, environmental, metabolomic, and disease measurements, METSIM allows 110

studying the pathway from risk factors to metabolic consequences to altered disease risk. 111

We studied 6,248 unrelated Finnish men. We used three binary traits: 854 samples 112

had T2D, 3,524 had pre-diabetes (preT2D), and 541 had coronary heart disease (CHD); 113

we excluded 15 samples with T1D. We used 13 quantitative traits, including 6 PCs of 114

228 nuclear magnetic resonance (NMR) metabolite measurements (capturing 77% of 115

variance). As covariates, we used three genetic PCs, age, age2, and smoking, alcohol, 116

statin, diuretic, and beta-blocker use. 117

We study K = 3 to compromise between parsimony and the cross-validated 118

log-likelihood, which broadly supports 1 < K ≤ 8 (Supplementary Figure 7). To test 119

robustness to perturbations, we used five-fold cross-validation. We found that 93% of 120

originally co-clustered pairs (i.e. same most likely subtype) remained together, showing 121

that people from the same population can be accurately assigned to existing subtypes. 122

The three inferred metabolic subtypes are summarized in Figure 3. They primarily 123

distinguish the metabolomic PCs, which are aggregates of 228 NMR traits. To elucidate 124

the subtypes, we fit logistic regressions on the raw NMR traits, conditional on statin, 125

and studied those with nominal p < .01 (despite [27,29], these p-values are not 126

calibrated). We first compared the large blue group to the combined orange and green 127

groups, which suggested the blue group had less esterified cholesterol in small HDL and 128

higher histidine and relative amounts of omega-3 fatty acid. Next, comparing orange to 129

green indicated orange had more free but less esterified cholesterol, especially in large 130

LDL, and that orange has more polyunsaturated fats and phenylalanine. 131
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Fig 3. Three inferred metabolic subtypes in METSIM. (a) Quantitative and
(b) binary distributions for covariates (grey labels, left) and traits (black lables, right).
(c) Subtype sizes. (d) Across-trait distribution of ordinary (black) and additional
subtype-specific heritabilities (colors) from Free GxEMM.
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Genetic metabolic heterogeneity 132

To test for polygenic subtype heterogeneity, we first used IID GxEMM and found 133

significant subtype-specific heritability for 12/16 traits (p < .05/16, Figure 4), 134

biologically distinguishing the subtypes. Further, this analysis increases average 135

heritability estimates from 22.3% to 36.7% (Supplementary Figure 8), showing unknown 136

subtypes can mask substantial heritability. As fixed effects, we used subtype main 137

effects, age, age2, and three genetic PCs; for CHD, LDL, HDL, TG, and the NMR PCs, 138

we also included statin. Variance explained is calculated after residualizing fixed 139

effects [45]. The richer Free GxEMM fits significantly better than IID for 11/16 traits 140

(p < .05/16, Supplementary Figure 8) and suggests, on average across traits, that 141

orange and green subtypes have higher heritability than blue, which has roughly zero 142

specific heritability (Figure 3d). 143
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Fig 4. Polygenic heterogeneity in the inferred metabolic subtypes. Left:
Point estimates ± 2 s.e. Right: Across-trait estimate distribution. h2GREML is the
standard heritability estimate [46]. h2hom and h2het are the heritability estimates from
IID GxEMM. Variance explained is on the observed scale for binary traits. The ‘Hom.’
p-value tests h2GREML > 0; the GxE p-value tests h2het = 0.

With ∼6,000 samples, we do not have power for genome-wide heterogeneity tests. 144

Instead, we test known metabolic GWAS SNPs–68 from T2D and 13 from CHD 145

(Methods). We found four heterogeneous SNP-trait associations at p = .05/81. The 146

orange and green effect estimates had opposite sign for 2/4, and all blue estimates were 147

near zero. Together with the Free GxEMM results, this suggests that the blue group is 148

a type of baseline and that partially overlapping biological pathways are specifically 149

activated in the smaller groups. 150

These SNPs have several known metabolic interactions. rs10401969 is a splice 151

variant for SUGP1 that affects downstream splicing in the gene targeted by statins, 152

HMGCR [47]; it also interacts with an APOE SNP on fenofibrate response [48]. 153

rs7138803 interacts with exercise for obesity [49] and features in an obesity score 154

interacting with diet [50]. rs780094 interacts with another SNP for fasting glucose [51], 155

suggestively interacts with diet [52], broadly affects lipid levels, and is one of three 156

SNPs in a risk score interacting with postprandial and post-fenofibrate cholesterol [53]. 157

We next performed a genome-wide scan with the global, K df test (GxEWAS). This 158

cannot establish SNP heterogeneity, but it can increase power over GWAS when 159

heterogeneity exists. GxEWAS and GWAS give largely consistent results (Table 1, 160

Supplementary Figure 9), as expected because the homogeneous and global tests are not 161

independent. Nonetheless, GxEWAS is a valuable complement to GWAS as it discovers 162

10 additional loci (though GxEWAS misses 19/60 GWAS loci). 163

To mimic prior approaches, we repeated the GxEWAS with covariate-unaware tests 164

and GMM subtypes. Genome-wide QQ-plots were highly inflated for K ∈ {2, 3, 4} 165

(Supplementary Table 1). Notably, λGC was even inflated for the binary traits, which 166

we excluded from GMM so it would converge. This inflation can easily be mistaken for 167
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Fig 5. Significant metabolic subtypes effect heterogeneity. Subtype-specific
effect estimates shown ± 2 s.e. (a) SNPs found with MFMRX test on 81 metabolic
SNPs (p = .05/81). (b) Heterogeneous statin effect on blood glucose found with MFMR
test on 16 traits (p = .05/16); statin LDL effect seems, misleadlingly, heterogeneous.
For interpretation, we show estimates using on our main metabolic subtypes.

Gluc. BMI LDL HDL TG PC 1 PC 2 PC 3 PC 4 PC 6
GWAS 3 0 7 7 8 6 4 0 5 19

GxEWAS 4 1 6 7 4 2 5 1 4 16
Both 2 0 6 5 3 1 3 0 4 16

Table 1. Number of genome-wide significant loci for GWAS and GxEWAS.
Bold indicates a locus not discovered by the other method (r2 < .2). No loci were found
for CHD, insulin, or WHR. Both approaches found a single preT2D locus. We excluded
NMR PC 5 because of GxEWAS inflation.

strong, ubiquitous signal when evaluating only candidate SNPs. The RGWAS λGC were 168

comparatively modest, with a maximum of 1.34 (after excluding NMR PC 5, with 169

λGC = 1.83). Despite modest inflation for some traits, RGWAS substantially 170

outperforms existing methods. Similar conclusions hold for the global, K df test. 171

Pragmatic metabolic heterogeneity 172

We tested for statin effect heterogeneity to assess the pragmatic value of the metabolic 173

subtypes. Using our test for large-effect covariates, only glucose had significant statin 174

heterogeneity at p = 0.05/16 (p = 1.0× 10−4); this was even clearer conditional on T2D 175

(p = 2.5× 10−6). There is no obvious FPR inflation as statin only has one other 176

significantly heterogeneous effect across other traits and K ∈ {3, 4, 5}. This is consistent 177

with statin interactions with age [38] and genetically predicted LDL [40] on T2D, and 178

also fenofibrate’s interaction with lipid levels on cardiovascular risk [54]. By contrast, 179

large meta-analyses did not find inter-study statin heterogeneity [38,39]. 180

To provide calibrated p-values, these analyses used the large-effect RGWAS test 181

where MFMR treats statin as homogeneous. This test demonstrates statin effect 182

heterogeneity in METSIM, which is further supported by tests with K = 4 and K = 5 183

(T2D-adjusted heterogeneity p = 1.2× 10−5 and 7.6× 10−4, respectively). The p-value 184

is insignificant for K = 2, indicating insufficient resolution. 185
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We next tested statin heterogeneity with our primary metabolic subtypes (derived 186

treating statin as heterogeneoues inside MFMR) with a heterogeneous linear regression 187

on glucose, conditioning on our standard covariates and T2D (Figure 5b). The results 188

indicate statin increases blood sugar in most people–consistent with [38,39]–but also 189

that it may decrease glucose in the smaller, higher-risk orange and green groups. 190

Since METSIM measured two time points, we tested the predictive value of our 191

baseline subtypes for conversion from preT2D to T2D. We fit logistic regression on time 192

2 T2D status for the 1,924 baseline prediabetics. Subtypes significantly correlated with 193

T2D conversion (p = 0.003), with orange and green converting less than blue. This 194

remained true when conditioning on our standard covariates (p = .031). This also shows 195

the subtypes persist over time, unlike prior, directly age-dependent T2D subtypes [55]. 196

Subtype-Specific Tissue Heritability Enrichment 197

Some traits, including metabolic diseases [15,56], have disparate genetic effects acting 198

through distinct cell types, tissues, or biological processes. Subtypes that differentiate 199

biological modes of action at this systems-level would be more easily interpretable and 200

useful for basic research and precision treatment. 201

We used LDSC-SEG to partition subtype-specific heritability across GTEx tissues 202

for several traits (Supplementary Section 5) [57]. We use a merely suggestive p = .01 203

threshold rather than attempting to account for testing multiple tissues and traits. 204

First, homogeneous subtype meta-analysis found pancreas enrichment for NMR PC 5, 205

LDL, insulin, and triglycerides (Supplementary Figure 10). Second, heterogeneous 206

meta-analysis found five cell type-trait pairs with subtype-specific enrichments, 207

including transformed fibroblasts-NMR PC 5, in line with the complex roles of 208

cholesterol in skin cells and NMR PC 5, and frontal cortex-blood glucose. 209

Discussion 210

In a purely descriptive sense, inferring subtypes is easy: applying any clustering 211

algorithm to any data produces subgroups. But existing methods cannot go beyond such 212

descriptions because they are liable to downstream FPR inflation. By contrast, RGWAS 213

is calibrated in simulation, recovers known MD subtypes, and produces biologically and 214

pragmatically validated metabolic subtypes. RGWAS handles covariates, mixed binary 215

and quantitative traits, residual trait correlations, and is implemented in the simple, free 216

rgwas R package, available with a vignette at https://github.com/andywdahl/rgwas. 217

There are several limitations to RGWAS. First, like other two step methods, 218

RGWAS fails to propagate first-step uncertainty. Similarly, although we do not imagine 219

there is a “true” K, more can always be done to better choose K. Also, while we have 220

tested a variety of simple decompositions to learn subtypes, others may perform better, 221

especially where domain-specific tools exist. In particular, MFMR is conceptually 222

similar to a matrix factorization/depth-two linear network, suggesting inner layers of 223

appropriate neural networks may define useful subtypes. 224

There are also specific limitations to our inferred stress subtypes in CONVERGE. 225

First, our stress measurements were retrospective and self-reported, meaning our stress 226

traits could be biased by MD status. Second, our analysis was not entirely without 227

domain supervision because we included the aggregate trait “Stress” that was 228

previously manually constructed [43]. Nonetheless, RGWAS identified the key trait 229

amongst dozens, and our METSIM analysis demonstrates that RGWAS can be useful 230

without any domain guidance. 231

MFMR is only a first step toward genetic subtyping, and there are many possible 232

extensions. Sparsifying penalties can be incorporated by replacing CM steps with calls 233
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to third-party software and could extend MFMR to higher-dimensional traits and 234

covariates. A random-effect version of MFMR could improve power to detect polygenic 235

subtypes, though computational issues are non-trivial. MFMR could also be adapted to 236

count data, zero-inflation, higher-order arrays, or missing data. Theoretically, it would 237

be interesting to let subtypes vary between traits, which MFMR can capture only with 238

large K. Instead of an i.i.d. prior on z, MFMR could model z with a multinomial 239

logistic regression to estimate, test, and correct for effects on z, which can be directly 240

interesting [58] and can clarify the interpretation of heterogeneity [59]. Or, instead, we 241

could use a continuous prior on z with a factor analysis model [22]. Finally, MFMR 242

could be applied only within diseased individuals to directly define subtypes of disease; 243

however, this requires fundamentally different step 2 tests, and subtype heterogeneity is 244

not generally disease relevant [31]. 245

Our polygenic approach to subtype validation with GxEMM provides a much needed 246

power advantage over SNP-level heterogeneity tests at the cost of resolution; 247

conceptually, polygenic risk score tests lie between [33,60]. But SNP-level precision is 248

not needed to meet our criterion for biologically meaningful subtypes, making GxEMM 249

invaluable for subtype validation. Nonetheless, its assumed linear model can confuse 250

non-linear effects for heterogeneity. Similar issues arise in generalized linear models, as 251

the existence of effect heterogeneity depends on link function. In particular, tests for 252

differential disease heritability give different results on the liability and observed 253

scales [61, 62], reducing confidence in our GxEMM results for T2D and CHD. Particular 254

forms of non-linearity, e.g. ascertained binary traits, can be accommodated under 255

genetic homogeneity [63–68], which may be extensible to heterogeneity. 256

Although we focused on fixed- and random-effect interaction tests to establish 257

heterogeneity between subtypes in step 2, it may also be useful to apply recent, 258

complementary heterogeneity tests. For example, Subtest could be used to assess 259

differences between K = 2 disease-only subtypes [31]. For large K, on the other hand, 260

StructLMM is a natural complement to GxEMM: the latter is more powerful because it 261

uses genome-wide information and a richer GxE model, but the former has SNP-level 262

resolution and scales to dramatically larger N and K. Similarly, large-K subtypes could 263

be post-processed with hierarchical clustering and tested with TreeWAS [33]. Broadly, 264

any heterogeneity test can be used in the second step, as we demonstrated with our 265

LDSC-SEG application in METSIM. 266

While we did assess tissue-specificity in our metabolic clusters in step 2, we did not 267

actively encourage subtypes to be differentiate tissues in step 1. In the future, we will 268

do this by incorporating tissue specific genetic risk scores as heterogeneous covariates 269

inside MFMR, which will allow the algorithm to prioritize tissue-specific subtypes. 270

Finally, as MFMR seeks clusters that are unaffected by confounders like population 271

structure, age or sex, it may be useful for clustering in settings where protecting certain 272

information is important for privacy or fairness [69]. In this sense, MFMR is to GMM 273

roughly as AC-PCA [70] or contrastive PCA [71] are to ordinary PCA. 274

Methods 275

Ethics Statement 276

CONVERGE: The study protocol was approved centrally by the Ethical Review Board 277

of Oxford University (Oxford Tropical Research Ethics Committee) and the ethics 278

committees of all participating hospitals in China. All participants provided written 279

informed consent. 280

METSIM: The Ethics Committee of the University of Eastern Finland and Kuopio 281

University Hospital approved the METSIM study, and this study was conducted in 282
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accordance with the Helsinki Declaration. All participants provided written informed 283

consent. 284

RGWAS step 1: clustering with MFMR to find subtypes 285

We derive a novel clustering algorithm, multitrait finite mixture of regressions (MFMR), 286

beginning from the standard regression model for interaction. Assuming a quantitative 287

trait y, covariates X, discrete subtypes z, and a focal covariate g putatively interacting 288

with z, the model is: 289

yi = Xi,α+ γzi + giβzi + εi (1)

Xi, is a vector of Q control covariates, like genetic PCs or sex, with homogeneous effect 290

sizes α. zi ∈ {1, . . . ,K} is a K-level factor specifying the subtype for individual i, and 291

γk are its main effects. β is the vector of subtype-specific g effects. We say g is 292

homogeneous if β1 = . . . = βK ; otherwise, g is heterogeneous. We assume ε is i.i.d. 293

Gaussian with mean zero. 294

MFMR generalizes (1) in several complementary directions. First, we allow a matrix 295

of heterogeneous covariates–G instead of g. Second, we learn the subtypes (z) instead of 296

assuming they are known (giving a Finite Mixture of Regressions, FMR) by assuming zi 297

are i.i.d. Categorical: 298

P (zi = k|p) = pk for k = 1, . . . ,K (2)

Third, we generalize y a matrix Y of Multiple traits (MFMR), which adds power for 299

subtypes that affect the distribution of many traits. This power is crucial in practice 300

because genetic interactions are often weak. 301

Finally, we model binary traits with probit link functions to mitigate the spurious 302

local modes that plague methods like k-means. For example, this issue led others to 303

discard roughly half their data post hoc [30]. This model is computationally prohibitive 304

even for modest B, which we address with a novel conditional independence assumption. 305

This induces constraints in our optimization which we solve with block matrix identities 306

(Supplementary Section 2.3). 307

We fit MFMR with an Expectation Conditional-Maximization (ECM) algorithm. 308

Our ECM generalizes standard EM for Gaussian Mixture Models. Both iterate between 309

z updates in E-steps and parameter updates (e.g. α and β) in (C)M steps. 310

When fitting MFMR in step 1, a covariate that will be tested for heterogeneity in 311

step 2 can either be ignored (MFMRX), included in X (MFMR, our default), or 312

included in G (MFMR+). In Gaussian mixture models, covariates can only be ignored 313

(GMM) or added as traits (GMM+) [30]. MFMR+ and GMM+ overfit in simulations, 314

causing false positive rate (FPR) inflation (Supplementary Figure 1). Conversely, 315

MFMRX and GMM underfit homogeneous covariates, which also inflates FPR (Figure 316

1). MFMR strikes a balance: the homogeneous effect is adjusted but subtypes are not 317

tuned to the heterogeneous effect. This resembles a score test as the alternate is tested 318

by fitting only the null. However, small-effect covariates, like SNPs, can be safely 319

ignored [72], enabling genome-wide testing with MFMRX. 320

We note that MFMR generalizes several well-known models. If binary traits and X 321

are excluded and the covariates G are reduced to an intercept, MFMR becomes GMM. 322

When P = 1 and z is known, MFMR becomes a standard gene-environment interaction 323

(GxE) model with discrete environments/subtypes. Finally, if P = 1 and βk = β0 for all 324

k, MFMR reduces to linear/probit regression. 325

RGWAS step 2: calibrated tests to validate subtypes 326

For simplicity, we assume there are K = 2 subtypes and just one interacting covariate, g. 327

These assumptions mean the output from step 1 is just a vector z, where zi is the 328
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subtype 1 probability for sample i, and that the interaction model takes a simple form: 329

y ∼ X̃α+ zγ + gδ + (g ∗ z)β + ε (3)

X̃ collects all background covariates, like genetic PCs, unlike existing subtype validation 330

tests that largely ignore population structure [23,25,28,30]. ∗ is element-wise 331

multiplication, but it can be generalized to allow K > 2 and a matrix G instead of a 332

single covariate g. 333

We consider three tests for g: the homogeneity test for δ 6= 0 given β = 0; the 334

heterogeneity test for β 6= 0 with free δ; and the global test for δ, β 6= 0 [73]. The 335

homogeneity test has 1 degree of freedom (df), the heterogeneity test has K − 1 df, and 336

the global test has K df. We focus on the heterogeneity test, which establishes that g 337

has differential effects across subtypes and thus that the subtypes differ in causal 338

biology (if g is genetic) or pragmatically (e.g. if g is a treatment). We assume ε is i.i.d 339

and test with linear or logistic regression. 340

We also use a polygenic version of (3), GxEMM [62], to jointly model and test β 341

across all SNPs with random effects. GxEMM uses a predefined inter-sample genetic 342

similarity matrix [45,74] to partition phenotypic heritability into a component shared 343

between subtypes (h2hom) and subtype-specific components. GxEMM is useful for 344

genetic subtyping because the test σ2
1 = · · · = σ2

K = 0 is a powerful way to demonstrate 345

that subtypes have partially distinct genetic bases when sample size is too low to 346

discover individual subtype-specific SNP effects. We fit both Free GxEMM, which 347

learns specific heritabilities in each subtype (h2k), and IID GxEMM, which assumes 348

subtypes have equal heritability (h2k = h2het for all k). 349

Other approaches to infer subtypes 350

We develop a novel subtyping approach by applying CCA to G and the joint binary and 351

quantitative phenotype matrix (Y b : Y ), both centered and scaled, and taking z to be 352

the top phenotypic CC. CCA (and phenotypic PCA) defines z as a linear trait 353

combination, implying its heterogeneity tests cannot be trait-specific (Supplementary 354

Section 4). Nonetheless, sparse estimators can resolve this problem in theory, and CCA 355

is computationally efficient (Supplementary Figure 3). 356

We also tested GMM, which models samples as draws from one of K multivariate 357

Gaussians. We fit GMM to the quantitative traits with a standard EM algorithm [75]. 358

We consider GMM similar, in the sense of covariate-unawareness, to k-means, which 359

struggles even more with binary traits, and TDA, a proprietary package. 360

Most similar to MFMR, LIMMI aims to identify GxE with unknown E in gene 361

expression [22]. Beyond many technical differences, LIMMI and MFMR are built for 362

disjoint scenarios: MFMR only fits tens of traits, but LIMMI only fits hundreds of 363

samples, preventing its use in our setting. 364

METSIM dataset 365

We selected metabolically relevant SNPs by taking published GWAS SNPs for T2D or 366

CHD. We used the 153 T2D SNPs in Table 1 of [76] as known T2D SNPs. We had 367

genotyped 86 of these SNPs, which we reduced further to 68 roughly independent SNPs 368

(r2 < .1). We used the 65 CHD SNPs in Supplementary Table 2 of [77] as known CHD 369

SNPs, 13 of which we genotyped (all r2 < .1). We filtered the original 10,070 person 370

dataset so all pairwise kinships were below 0.05, as in [45]. 371
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Phenotype imputation 372

We imputed missing data before running MFMR in CONVERGE. We jointly imputed 373

covariates and traits with a sample-wise i.i.d. Gaussian model (MVN-impute from [78]). 374

We thresholded imputed entries in Y b to {0, 1} in order to retain the downstream 375

logistic regression framework. By contrast, discarding samples with any missing data 376

reduces sample size by roughly half and the known positive SNP interactions were no 377

longer recovered. 378

We imputed METSIM similarly, including all 228 NMR traits at the imputation step. 379

We used softImpute to accommodate the wide matrix [79]. 380
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