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Abstract 
Hippocampal episodic memory is fundamentally relational, consisting of links between events 
and the spatial and temporal contexts in which they occurred. Such relations are also important 
over much shorter time periods, during online visual perception. For example, how do we assess 
the relative spatial positions of objects, their temporal order, or the relationship between their 
features? Here, we investigate the role of the hippocampus in such online relational processing 
by manipulating visual attention to different kinds of relations in a dynamic display. While 
undergoing high-resolution fMRI, participants viewed two images in rapid succession on each 
trial and performed one of three relational tasks, judging the images’ relative: spatial positions, 
temporal onsets, or sizes. As a control, they sometimes also judged whether one image was 
tilted, irrespective of the other; this served as a baseline item task with no demands on relational 
processing. All hippocampal regions of interest (CA1, CA2/3/DG, subiculum) showed reliable 
deactivation when participants attended to relational vs. item information. Attention to 
temporal relations was associated with more robust deactivation than the other conditions. One 
possible interpretation of such deactivation is that it reflects hippocampal disengagement. If 
true, there should be reduced information content and noisier, less reliable patterns of activity 
in the hippocampus for the temporal vs. other tasks. Instead, analyses of multivariate activity 
patterns revealed more stable hippocampal representations in the temporal task. Additional 
analyses showed that this increased pattern similarity was not simply a reflection of the lower 
univariate activity. Thus, the hippocampus differentiates between relational and item processing 
even during online visual perception, and its representations of temporal relations in particular 
are robust and stable. Together, these findings suggest that the relational computations of the 
hippocampus, known to be important for memory, extend beyond this purpose, enabling the 
rapid online extraction of relational information in visual perception. 
 
 
 
 
Keywords: attention, medial temporal lobe, relational representations, representational 
similarity analysis 
  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/446443doi: bioRxiv preprint 

https://doi.org/10.1101/446443
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 

Our perception of the world is not merely a collection of the myriad items in the 

environment. We do not perceive items in isolation, but rather in terms of their relationship to 

other items and the context in which they occur. Such relational discriminations are ubiquitous 

in everyday life. When placing two paintings side-by-side on a wall, we might make fine spatial 

discriminations to determine whether one is shifted vertically with respect to the other. 

Knowledge of which of two cars arrived first at an intersection might determine which of them 

has the right of way. When deciding which piece of fruit to buy at a grocery store, we might find 

it useful to compare their sizes.  

Although relational attention is a key component of visual perception, studies of 

attention have traditionally focused on perception of individual features or locations (Kastner & 

Ungerleider, 2000; Maunsell & Treue, 2006). As a consequence, the neural substrates of 

relational judgments in online visual perception have been largely unexplored (though see 

Franconeri et al., 2012; Michal et al., 2016). One candidate system for supporting relational 

attention is the hippocampus, a structure traditionally studied for its role in long-term memory, 

and particularly for relational forms of long-term memory (Eichenbaum & Cohen, 2014). 

One possibility is that the scope of relational processing in the hippocampus is limited 

to long-term memory, insofar as some have argued that the hippocampus is a dedicated 

memory system (Squire, Stark, & Clark, 2004). Alternatively, the hippocampus may perform 

relational computations in a more general way across many domains of cognition (Aly & Turk-

Browne, 2018; Olsen, Moses, Riggs, & Ryan, 2012; Yonelinas, 2013), and may therefore also be 
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involved in relational perception. In the current study, we addressed this question by comparing 

BOLD activity in the hippocampus when attention is directed to individual items vs. to the 

relations between items. If the hippocampus plays a general role in relational processing, even 

on the short timescale of perception, its activity should be modulated by the demand to attend 

to items vs relations. 

A second question of interest concerns the types of relational representations the 

hippocampus might support. Studies implicating the hippocampus in relational memory have 

largely focused on spatial and temporal processing (Eichenbaum, 2017). For example, the 

hippocampus is necessary for allocentric spatial navigation (Burgess, Maguire, & O'Keefe, 2002), 

and contains “place cells” that fire when an animal is in a specific location in the environment 

(Ekstrom et al., 2003; O'Keefe & Dostrovsky, 1971). The hippocampus also contains “spatial 

view cells”, which respond to locations that an animal is looking at, even in the absence of 

navigation (Rolls & Wirth, in press).  These findings inspired proposals that the hippocampus is 

important for memory of spatial context (Burgess, Becker, King, & O'Keefe, 2001; Davachi, 

2006; Eichenbaum et al., 2007) and for the construction of spatially coherent scenes (Maguire & 

Mullally, 2013).  

Hippocampal activity also represents the temporal order of experience (Barnett, O'Neil, 

Watson, & Lee, 2014; Eichenbaum & Cohen, 2014; Kesner & Hunsaker, 2010; Manns, Howard, 

& Eichenbaum, 2007; Paz et al., 2010; Ranganath, in press; Sakon et al., 2014). For example, 

during quiet wakefulness and sleep, hippocampal place cells fire in the same sequential order 

as in previous navigation episodes (Carr, Jadhav, & Frank, 2011). Indeed, some hippocampal 

cells (“time cells”) fire during successive moments in a temporal delay, keeping a record of 
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elapsed time (MacDonald, Lepage, Eden, & Eichenbaum, 2011; Pastalkova, Itskov, 

Amarasingham, & Buzsaki, 2008). These studies in rodents converge with work in humans that 

demonstrates a critical role of the hippocampus in memory for temporal sequences (see Davachi 

& DuBrow, 2015; Ranganath & Hsieh, 2016).  

Although the spatial and temporal representations of the hippocampus have received 

the most attention, there is also evidence that the hippocampus is critical for other kinds of 

relational memories as well (Eichenbaum, 2004; Konkel, Warren, Duff, Tranel, & Cohen, 2008; 

Konkel & Cohen, 2009; McKenzie et al., 2016).  For example, Konkel et al. (2008) presented 

triplets of novel visual objects to patients with hippocampal damage. The object triplets were 

presented in a particular spatial arrangement and appeared in a particular order. The object 

triplets were first presented in a study phase, and memory for them was subsequently tested. 

There were 3 kinds of memory tests, which assessed memory for different kinds of relations 

between the triplets: spatial, sequential, and associative relations. In the spatial test, patients 

were shown the objects again and asked to report whether the objects occurred in the same 

locations during the study phase. In the sequential test, they were to report whether the items 

were presented in the same sequential order during the study phase. In the associative test, 

they were to report whether the items were all shown together during the study phase. Patients 

with damage to the hippocampus performed at chance in all three tasks, suggesting that the 

hippocampus is critical for relational memory beyond the spatial and temporal domains. 

Motivated by these studies, we incorporated multiple relational tasks in the current work: in 

addition to tasks requiring judgments of spatial and temporal relations, we include a task 

assessing size relations to test the specificity of relational processing in the hippocampus. 
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Importantly, our current study tested online relational attention, unlike the Konkel et al., study, 

which was a test of relational long-term memory. 

We collected high-resolution structural and functional MRI data in order to examine the 

role of different hippocampal subfields in online relational processing. We segmented the 

hippocampus into subiculum, CA1, and a combined region of interest for CA2, CA3, and 

dentate gyrus (which cannot be separated at the resolution of our fMRI scans). Below, we 

describe our predictions for these subfield regions of interest. 

First, hippocampal subfield CA1 has been linked to both spatial and temporal processing 

(Eichenbaum, 2014). For example, CA1 activity codes for the position of items and their spatial 

context (McKenzie et al., 2014), and tracks changes in the locations of perceived items vs their 

remembered positions in memory (Duncan et al., 2012). CA1 activity patterns are also 

modulated by spatial attention (Aly & Turk-Browne, 2016a, 2016b). Moreover, time cells were 

first discovered in CA1 (MacDonald et al., 2011; Pastalkova et al., 2008); such cells may be 

important for discriminating the passage of time on the order of seconds or less, as needed in 

the online temporal attention task in the current study. Indeed, CA1 is necessary for 

discriminating between memories that were experienced close to one another in time  (Gilbert 

et al., 2001). We therefore predicted that CA1 would be modulated by both spatial and 

temporal attention.  

In contrast to CA1, the literature is mixed on the role of CA3 in processing temporal 

information, with some (Farovik, Dupont, & Eichenbaum, 2010; Kesner & Hunsaker, 2010; Salz 

et al., 2016) but not all (Mankin et al., 2012) studies linking this region to the representation of 

time or sequences. There is evidence that neural activity in CA2 codes for the passage of time, 
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though this might be on the order of hours to days (Mankin et al., 2015). Finally, to our 

knowledge, no studies have examined the dentate gyrus for potential time cells, but lesions to 

the dentate gyrus do not impair the ability to make fine temporal discriminations in memory 

(Gilbert et al., 2001).  Because of the mixed evidence on seconds-level timing in CA2, CA3, and 

dentate gyrus, we made no a priori predictions about whether our combined CA2/3/DG region 

of interest would be modulated by temporal attention. We did, however, expect this region to 

be modulated by spatial attention (e.g., Aly & Turk-Browne, 2016a,  2016b).  

The subiculum plays an important role in spatial processing and navigation (Boccara et 

al., 2010; Dalton & Maguire, 2017; Hodgetts et al., 2017; Lever et al., 2009; Taube et al., 1990), 

so we expected it to be modulated by spatial attention (e.g., Aly & Turk-Browne, 2016a, 2016b). 

To our knowledge, there is very little work on temporal processing signals in subiculum, but 

there is evidence that subiculum activity patterns are shaped by temporal regularities in 

experienced events (Schapiro et al., 2012). Thus, it is possible that subiculum will also be 

modulated by attention to temporal relations. 

If the hippocampus plays a role in processing all forms of relations — not just spatial and 

temporal — we would additionally expect modulation by attention to size relations. We did not 

have predictions about subfield dissociations for the size task, given the lack of past work 

exploring this form of relational processing in the hippocampus. 

To assess if modulation by online relational attention was specific to the hippocampus, 

we also examined regions of interest in the surrounding medial temporal lobe (MTL) cortex: 

parahippocampal cortex (PHC), perirhinal cortex (PRC), and entorhinal cortex (ERC). PHC has 

been consistently linked to the processing of spatial (Diana, Yonelinas, & Ranganath, 2007; 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 20, 2018. ; https://doi.org/10.1101/446443doi: bioRxiv preprint 

https://doi.org/10.1101/446443
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

Epstein & Kanwisher, 1998) and temporal (Turk-Browne et al., 2012) context, so we predicted 

that it would be modulated by attention to both spatial and temporal relations. PRC has been 

consistently linked to the processing of items (Diana, Yonelinas, & Ranganath, 2007), although 

recent studies have also linked it to representations of spatial (Bos et al., 2017) and temporal 

(Naya & Suzuki, 2011) context. Thus, it is possible that PRC will be modulated by attention to 

both spatial and temporal relations as well. Finally, like CA1, entorhinal cortex (ERC) codes for 

both spatial and temporal information (Eichenbaum, 2014; Hafting et al., 2005; Kraus et al., 

2015; Tsao et al., 2018), so we predicted that this region would be modulated by both spatial 

and temporal attention.  

Although we predict that MTL cortex will be modulated by relational attention, there is 

an alternative possibility. It has been argued that the hippocampus is unique in forming flexible, 

relational representations between items (Eichenbaum, Otto, Cohen, 1994). If so, then MTL 

cortex might only be modulated by attention to items and not modulated by attention to spatial, 

temporal, or size relations. 

To summarize, our approach allows us to test the type and ubiquity of relational 

representations in the medial temporal lobe: whether such representations exist on the order 

of seconds during the time-course of perception, how broadly relational computations are 

applied beyond the spatial and temporal domains, and whether online relational 

representations are limited to the hippocampus or are also properties of MTL cortex.  
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Methods 

Participants 

Fifteen participants (8 female, ages 22-33), with normal or corrected-to-normal vision 

participated for monetary compensation. The study was approved by the Princeton University 

Institutional Review Board and all participants provided informed consent. 

Stimuli 

Stimuli were grayscale images of faces and scenes, equated for luminance. Faces had 

neutral expressions; half were male and half were female. Half of the scenes were indoor scenes 

and half were outdoor scenes. Stimuli were presented on a projector screen at the back of the 

MRI scanner bore and were viewed through a mirror attached to the head coil. We selected 

stimuli from a pool of 96 faces and 96 scenes, each of which was presented once per run. 

Stimuli could be presented within a range of spatial positions on the screen. The center 

of the reference image on each trial was randomly chosen to be between 0-20 pixels to the left 

or right of fixation. The reference images also ranged in size on each trial, starting at 81 x 81 

pixels and varying up to 10 pixels smaller or larger. Varying the overall position and size of each 

image increased demands on relational processing (see below), because the relational tasks 

could not be performed by attending to only one of the images (e.g., by looking for an 

established larger size if only a single “large” and a single “small” image size had been used). 

In other words, this variation in absolute position and size was the baseline for relative 

differences between the two images that served as the basis of the relational tasks, requiring a 

focus on relative rather than absolute properties. 

Procedure 
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On each trial, participants were presented with a face and a scene, one above the other 

(Figure 1). The two items were presented so that one of them was to the left of the other, one 

appeared first on the screen first, and one of them was smaller than the other. Correspondingly, 

three relational attention tasks were possible: spatial, timing, and size. In addition, each item 

could, independently of the other, be tilted clockwise or counterclockwise, which enabled an 

item attention task that did not require relational processing. After the presentation of each 

pair, participants were shown a response cue (either black or gray) that pointed up or down, 

indicating which item should be used as the reference for the task judgment. In the spatial task, 

participants indicated whether the cued item was to the left of the other item. In the timing task, 

they indicated whether the cued item appeared first. In the size task, they indicated whether 

the cued item was smaller than the other. In the item task, they indicated whether the cued item 

was tilted or not. A post-cueing design was used, instead of a pre-cuing design, because if a 

cue was presented prior to the onset of a trial, participants would be able to perform the item 

task by attending to the cued item alone. With a post-cue design, participants had to attend to 

both items for the relational and the item tasks.  

We included an additional task, in which participants indicated whether the post-cue was 

black or not, to provide another potential baseline. However, the item task provides a tighter 

control: as in the relational tasks, the item task required that participants attend to both images 

presented on each trial (because of the post-cue), with the key difference being that the images 

could be processed separately and did not need to be judged against each other. Thus, we 

used the item task as the control against which to examine hippocampal modulation by the 

relational tasks.  
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These tasks were completed in a block design, with instructions given prior to each block 

via on-screen message: “spatial”, “timing”, “size”, “item”, or “cue”.  

 

 

Figure 1. Experimental design. On every trial, participants were presented with a face and a 
scene, one above and one below fixation. One image was to the left of the other, one appeared 
on the screen first, and one was smaller than the other. In addition, each item could 
independently be tilted clockwise or counterclockwise. Participants were cued before every 
block of 8 trials with the name of the task they were to perform on that block: one of the three 
possible relational attention tasks (spatial, timing, and size) or the item task. After the 
presentation of each image pair, participants were shown a response post-cue (either black or 
gray) that pointed up or down, indicating which item should be used as the reference for the 
task judgment. Trials lasted 2s in duration, though the two images were shown on the screen 
for only 300ms. 

 

Pre-scan behavioral session 

To prevent neural differences across tasks from being confounded by differences in task 

difficulty, we used a staircasing procedure to equate performance across the tasks as much as 

possible. Each participant completed a behavioral session the day before the scan to staircase 

performance to 75% accuracy. To reach this performance threshold for each task, we made trial-

Spatial task: 
Was the cued 
item to the left? 
Timing task: 
Was the cued item 
presented first? 

Item task: 
Was the cued 
item tilted? 

Size task: 
Was the cued 
item smaller? 

300 ms
2 s
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by-trial adjustments to the relational parameters: spatial separation, temporal delay, and size 

differences between images for the relational tasks; the degree of tilt of the images for the item 

task; and shade of gray of the cue for the cue task. A separate staircase was run for each task. 

All participants completed one block of 60 trials of each task with initial parameters 

(Table 1). Participants then completed 4-5 staircased runs. Each run contained one block of 64 

trials for each of the 5 tasks, with the order of blocks counterbalanced across runs and with the 

five image dimensions fully counterbalanced within block (vertical position, category [face or 

scene], spatial position, size, and tilt of cued item). When participants responded correctly 4 

trials in a row, we increased difficulty by one step. If they responded incorrectly on a trial, we 

decreased difficulty by one step. Participants controlled the onset of trials by pressing a button 

to continue to the next one. 

The final parameters from each participant’s staircasing session (average parameters in 

Appendix A) were then set as the parameters for their fMRI session, with the aim of equating 

performance across tasks in the scanner as best possible. However, these environments differed, 

with staircasing conducted on a laptop in a testing room and the fMRI stimuli projected on a 

screen from a different computer and viewed with a mirror. In particular, the rear-projection 

display system during fMRI had worse perceived contrast, and so the luminance of the cue had 

to be adjusted slightly. 
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Task Parameter Initial 
value 

Step 
size 

Lower 
bound 

Upper 
bound 

Reference 
variability 

Spatial horizontal 
offset 

30px 0.5px 0px 150px -20px – 20px 
from center 

Timing temporal 
delay 

0.20s 0.0167s 0s 0.2335s N/A 

Size size difference 30px 0.5px 0px 30px 151px – 
171px 

Item degree of tilt 30° 1° 0° 45° N/A 

Cue color of cue 100 1 0 110 N/A 

 
Table 1. Task parameters for the staircasing procedure. The first column indicates the 
tasks that participants performed. The second indicates the relevant parameter under 
manipulation. The third contains the initial values of each of the parameters (e.g., images 
were horizontally offset by 30px with respect to each other). Step size refers to the amount 
by which we changed the parameter of interest during the staircasing procedure (e.g., 
whenever participants performed 4 trials of the spatial task correctly in a row, we decreased 
the horizontal offset by 0.5 pixels). The parameters were not able to go lower than the lower 
bound (5th column) or above the upper bound (6th column). For the spatial and size tasks, the 
relevant parameter (position and size, respectively) of the reference image was varied to 
avoid the possibility that participants could perform the task by attending to only one of the 
items. The last column shows the variability possible in the reference image. The value for 
color indicates whether the cue was black (a value of 0) or some shade of gray (a value 
between 1 and 110). 

 

fMRI session 

Attention tasks. Runs of the attention tasks consisted of an on-off block design, with 

twelve 16-s blocks of attention tasks (“on”) interleaved with 8-s blocks of fixation (“off”). Task 

blocks consisted of 8 trials in which a face and scene (identity determined pseudorandomly) 

appeared above & below fixation. Trial onsets (i.e., the onset of the first item) were time-locked 

to the repetition time (TR = 2s) and triggered by the scanner. The duration of the stimulus that 

appeared onscreen first was 300ms. As determined from the staircasing session, there was a 

spatial offset, temporal delay, and size difference between the images on every trial, and each 
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image could be tilted. Also, as in the behavioral session, we drew from a range of reference 

spatial positions and image sizes so that the relational tasks could not be performed by only 

attending to one of the images. Each run contained 12 blocks: 4 blocks of the item task, 4 of 

the cue task, and 4 of one of the relational tasks. This led to 3 run types — spatial runs, timing 

runs, and size runs — depending on which relational task was performed. In total, participants 

completed 384 trials of the cue task and item task, and 128 trials of each of the relational tasks. 

Participants completed all 4 runs for a particular relational task consecutively. The order of runs 

was counterbalanced across participants and the order of blocks within a run was 

counterbalanced within participants. 

Localizer run. Participants completed a category localizer with alternating blocks of 

individual faces or scenes. Participants responded with a button box to indicate whether faces 

were male or female and whether scenes were indoor or outdoor. The structure and timing of 

the blocks followed the attention task runs (2s trials, 8 trials per block, 16s task/8s fixation, 12 

blocks per run). The order of blocks was counterbalanced across subjects. Data from this run 

were not used in the current study. 

 

fMRI methods 

Data acquisition. MRI data were acquired with a 3T Siemens Skyra scanner. Functional 

images were collected with a gradient-echo EPI sequence (TR = 2000ms; TE = 37ms; FA = 71º; 

matrix = 128 x 128). Each of 149 volumes contained 27 slices (1.5mm isotropic) perpendicular 

to the long axis of the hippocampus. The partial-volume images were optimized for 

hippocampal imaging, and therefore excluded parts of occipital, parietal, and frontal cortices. 
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A high-resolution 3D T1-weighted MPRAGE scan was collected for registration. A high-

resolution T2-weighted turbo spin-echo scan (60 slices; 0.4x0.4mm in-plane; 1.5mm thickness) 

was collected for manual segmentation of hippocampal subfields and MTL cortex. 

Preprocessing. fMRI data were analyzed with FSL and MATLAB. The first five volumes of 

each run were discarded for T1 equilibration. All images were skull-stripped to improve 

registration. The images were preprocessed with motion correction (MCFLIRT), slice-time 

correction, spatial smoothing (5mm FWHM), high-pass filtering (144s cutoff), and FILM 

prewhitening. 

Region of interest segmentation. Manual segmentation of hippocampal subfields and 

MTL cortex were conducted using published criteria (Aly & Turk-Browne, 2016b; Duvernoy, 

2005; Insausti, 1993; Insausti et al., 1998; Mueller & Weiner, 2009; Pruessner et al., 2002; 

Yushkevich et al., 2010). We segmented these regions of interest (ROIs) on the T2-weighted 

scans of each participant. MTL ROIs were entorhinal cortex (ERC), perirhinal cortex (PRC), and 

parahippocampal cortex (PHC). Hippocampal subfield ROIs were subiculum (SUB), CA1, and a 

combined region for CA2, CA3, and dentate gyrus (CA2/3/DG). All ROIs were traced on coronal 

slices using FSLview along the entire length of the hippocampus. Sample segmentations, for 

one anterior slice and one posterior slice, are shown in Figure 2. 
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Figure 2. Regions of interest. Example segmentation from one participant is shown for one 
anterior and one posterior slice. Regions of interest were hand-drawn on individual-participant 
T2 images. The hippocampal regions of interest were subiculum, CA1, and a combined region 
of interest for CA2, CA3, and dentate gyrus (CA2/3/DG). The medial temporal lobe cortex 
regions of interest were entorhinal cortex [ERC], perirhinal cortex [PRC], and parahippocampal 
cortex [PHC]. 
 

The anterior border of PRC was defined as the most anterior slice in which the collateral 

sulcus (CS) was visible. The posterior border of PRC was the last slice in which the hippocampal 

head was visible (Poppenk, Evensmoen, Moscovitch, & Nadel, 2013). The lateral border was at 

the base of the lateral bank of CS. The medial border depended on whether or not ERC was 

present. For slices without ERC, the border of PRC coincided with the amygdala. For slices with 

ERC, the medial border was found halfway up the medial bank of CS. PHC was traced from the 

first slice of the hippocampal body to the last slice of the hippocampal tail. The lateral border 

of PHC was perpendicular to the lateral bank of the collateral sulcus. The medial border was the 

border with SUB, perpendicular to the gray matter bend. The anterior border of ERC was found 

one slice anterior to the start of the frontotemporal junction. The posterior border was the last 
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slice with the hippocampal head. The lateral border was PRC, and the medial border was the 

border with SUB, perpendicular to the gray matter bend. CA1, CA2/3/DG, and SUB were traced 

on all slices in which the hippocampal formation was visible. The medial border of the subiculum 

was ERC in slices containing the hippocampal head and PHC in slices containing the body and 

tail. At its most anterior slice, the subiculum comprised the entire ventral aspect of the 

hippocampus (Duvernoy, 2005); the lateral boundary (with CA1) gradually moved medially until, 

at the body of the hippocampus, the lateral boundary was at the medial edge of the 

hippocampus at the point where it pinches into a tear shape. CA1 curved around the lateral 

edge of the hippocampus and bordered CA2/3 at the dorsal aspect of the hippocampus. The 

boundary between CA1 and CA2/3/DG was determined by the thickness of CA1 on that slice 

— usually the upper and lateral 2-3 rows of voxels in the hippocampal formation. 

Univariate analysis. We estimated stimulus-evoked BOLD responses with a general linear 

model (GLM) containing block regressors convolved with a canonical hemodynamic response 

function (HRF), which captured the mean evoked response across blocks. Each run was modeled 

separately in first-level analyses. The 4 runs of the same condition were then combined in 

second-level analyses. For each condition, we registered the parameter estimate images to the 

participant’s T2 image, converted the parameter estimates to percent signal change, and 

extracted the average percent signal change over all voxels in each hippocampal and MTL ROI. 

We then performed random effects t-tests across participants. To isolate signals related to 

relational processing specifically, we compared evoked activity for each relational task vs. the 

item task. 
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Multivariate pattern similarity analysis. We combined the first-level analyses for even and 

odd runs of each type (spatial, timing, size) in a second-level analysis. We then registered the 

parameter estimate images to the participant’s T2-weighted anatomical image and extracted 

the parameter estimate for each voxel of every ROI for each of the tasks. To calculate pattern 

similarity for each task and ROI, we reshaped into vectors the across-voxel activity patterns in 

each ROI. The pattern similarity score for that task and ROI was the correlation between the 

vectors from even and odd runs. For example, pattern similarity for the timing task was the 

Pearson correlation between the mean pattern of activity across voxels for the timing task during 

odd runs and the mean pattern of activity across voxels for the timing task during even runs. For 

each participant, task, and ROI, we averaged the pattern similarity measures across the left and 

right hemispheres of the brain — we did not predict hemispheric differences and therefore this 

reduced the number of statistical comparisons. Because the item task was included in all three 

relational run types, we calculated pattern similarity for the item task in each run type separately, 

and then averaged across run types, resulting in an overall item pattern similarity score. As 

described above for univariate analyses, to isolate information related to relational processing, 

we compared pattern similarity for each relational task to the item task. 

Multivariate-univariate dependence (MUD) analysis. Univariate and multivariate measures 

are not necessarily independent (Coutanche, 2013; Davis et al. 2014). Indeed, univariate effects 

(i.e., modulation of overall activity levels) can often drive multivariate ones (i.e., similarity of 

activity patterns). We therefore quantified the relationship between univariate and pattern 

similarity measures to assess whether attentional modulation effects in each measure were 
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related or distinct, using an approach known as “multivariate-univariate dependence” (MUD) 

analysis (Aly & Turk-Browne, 2016a). 

The MUD analysis consists of computing the contribution of each voxel to pattern 

similarity and then calculating the Pearson correlation between these contribution scores and 

voxels’ level of activity. This quantifies and describes the relationship between univariate activity 

and pattern similarity: a positive correlation indicates that voxels with the highest activity 

contribute most to pattern similarity, a negative correlation indicates that voxels with the lowest 

activity contribute most to pattern similarity, and a zero correlation indicates that a balance of 

activation and deactivation leads to a stable pattern. 

To implement the MUD analysis, we used the same vectors of parameter estimates that 

we extracted for the pattern similarity analyses. For each participant, ROI, and task, we first 

normalized the parameter estimates by subtracting the mean and dividing by the root sum-of-

squares. We then computed, for each voxel in an ROI, the product of these normalized values 

from even and odd runs. These products provide a voxel-specific measure of multivariate 

“influence” — the extent to which a voxel contributed to the pattern similarity measure for that 

task. Voxels with a positive product (i.e., two positive values or two negative values) contribute 

to positive pattern similarity, whereas voxels with a negative product (i.e., one positive and one 

negative value) contribute to negative pattern similarity. Moreover, the magnitude of the 

product is proportional to the contribution — the larger the product in absolute terms, the 

greater the “influence”. The sum of these normalized products across voxels is equivalent to 

the Pearson correlation, hence the relationship between the sign/magnitude of the product and 

the contribution to pattern similarity. 
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For each voxel, we also obtained the mean level of univariate activity for each task. 

Finally, we correlated the multivariate influence scores (i.e., the normalized products) with 

univariate activity across voxels, for each ROI and task. A reliable correlation across participants 

(whether positive or negative) would suggest that univariate activity and pattern similarity at 

least partly capture similar information in the data (see Aly & Turk-Browne, 2016a, for 

simulations that demonstrate the efficacy of this approach). 

 

Results 

Behavior 

We examined reaction times (RTs) and accuracy for each task of interest: the item task, 

and the spatial, timing, and size relational tasks (Table 2). Inverse efficiency (RT/accuracy; 

Townsend & Ashby, 1978), a measure of behavior that accounts for speed/accuracy tradeoffs, 

was matched across relational tasks (F(2,28) = 0.51, p = 0.60). Because behavioral performance 

was not different between the relational tasks, a task-difficulty explanation of hippocampal and 

MTL activity differences between these tasks (see below) is unlikely. That said, the lack of a 

behavioral difference between the relational tasks is a null effect that we cannot overly interpret, 

as failure to demonstrate a difference is not strong evidence for equality. 

Despite our efforts to balance performance across all tasks, the item task resulted in 

better performance than the relational tasks (all pairwise comparisons of inverse efficiency, p < 

0.01). Nevertheless, the item task served as a common baseline across relational tasks and so 

this cannot explain neural differences between relational tasks. 
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Task Accuracy (%) RT 
(seconds) 

Inverse 
Efficiency 

Spatial 74.86 (7.33) .95 (.16) .0128 
Timing 78.18 (12.70) .98 (.16) .0128 

Size 71.67 (11.15) .94 (.16) .0133 
Item 86.00 (6.40) .89 (.16) .0104 

Table 2. Behavioral performance. Means are shown with standard deviation in parentheses.  

Evoked univariate activity 

Compared to the item task, the timing task led to deactivation in all hippocampal and 

MTL cortical ROIs (Figure 3A-F; PHC: t(14) = -6.23, p = 0.000022; PRC: t(14) = -5.61, p = 

0.000064; ERC: t(14) = -4.88, p = 0.00024; SUB: t(14) = -5.28, p = 0.00011; CA1: t(14) = -6.20, 

p = 0.000023; CA2/3/DG: t(14) = -5.76, p = 0.000049). The spatial task was associated with 

deactivation relative to the item task in the MTL cortical ROIs (PHC: t(14) = -3.17, p = 0.0068; 

PRC: t(14) = -3.13, p = 0.0073; ERC: t(14) = -2.54, p = 0.024) but not the hippocampal ROIs 

(SUB: t(14) = -1.07, p = 0.30; CA1: t(14) = -1.76, p = 0.10; CA2/3/DG: t(14) = -1.84, p = 0.09). 

There were no differences in univariate activity between the size task and the item task in any 

ROI (PHC: t(14) = 0.50, p = 0.63; PRC: t(14) = -0.20, p = 0.85; ERC: t(14) = 0.42, p = 0.68; SUB: 

t(14) = 0.95, p = 0.36; CA1: t(14) = 0.47, p = 0.65; CA2/3/DG: t(14) = 1.26, p = 0.23). 

Comparing the relational tasks directly, each of the hippocampal and MTL cortical ROIs 

showed significant differences (i.e., main effect of relational task, PHC: F(2,28) = 16.68, p = 

0.000017; PRC: F(2,28) = 8.73, p = 0.0011; ERC: F(2,28) = 8.308, p = 0.0015; SUB: F(2,28) = 

12.58, p = 0.00013; CA1: F(2,28) = 14.28, p = 0.000053; CA2/3/DG: F(2,28) = 16.18, p = 

0.000021). Follow-up t-tests showed that the timing task was associated with stronger 

deactivation compared to both the spatial and size tasks in all ROIs (all ps < 0.005). 
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Figure 3. Univariate evoked activity. Percent signal change for the spatial, timing, and size 
relational tasks, relative to activity for the item task, in each MTL cortical ROI (A: 
parahippocampal cortex [PHC]; B: perirhinal cortex [PRC]; C: entorhinal cortex [ERC]) and each 
hippocampal ROI (D: subiculum [SUB]; E: CA1; F: CA2/3/DG). Error bars reflect +/–1 SEM across 
subjects.  

 

It is important to note that this pattern of results cannot be attributed to our finding that 

the item task was easier than the relational tasks. For example, one alternative explanation for 

the timing task deactivation relative to the item task is that more difficult tasks lead to greater 

suppression of “default mode” processing in the MTL (Greicius, Supekar, Menon, & Dougherty, 

2009). However, if we were simply observing default-mode suppression for more difficult tasks, 

we should have observed more deactivation for all relational tasks vs. the item task, because the 

item task was easier than all relational tasks. This is not the pattern that we observed, particularly 

for the size task, which often showed numerically higher activity levels compared to the item 

task. Furthermore, after correcting for multiple comparisons, there were no relationships 
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between univariate activity and behavioral performance across participants, further arguing 

against the notion that deactivation reflects difficulty with the task (although this is a null effect 

that should not be over-interpreted). Below, we explore another form of the disengagement 

hypothesis in more detail. 

Multivariate pattern similarity 

Does hippocampal deactivation for the timing task reflect disengagement? As noted 

above, this cannot be based on task difficulty per se, given the lack of reliable deactivation for 

the other relational tasks in the hippocampus. However, perhaps the timing task engages other 

brain regions, which in turn reduce the need for active hippocampal processing. If the 

hippocampus is disengaged during the timing task, then representations in the hippocampus 

should not contain task-related information and should instead be governed by noise or other 

idiosyncratic, task-irrelevant processing. Accordingly, activity patterns in the hippocampus 

should be unreliable across repetitions of the timing task and show reduced pattern similarity. 

Alternatively, reduced mean activity could reflect a sharper, sparser representation of attended 

information resulting from demands on relational processing supported by the hippocampus, 

which would in turn be associated with stable patterns of activity (Aly & Turk-Browne, 2016a, 

2016b; Kok, Jehee, & de Lange, 2012).  

To assess these alternatives, we performed pattern similarity analyses, with a special 

interest in the timing task because it was the only task associated with robust deactivation in the 

hippocampus (Figure 4). These analyses revealed more stable patterns of activity during the 

timing task relative to the item task in SUB (t(14) = 2.28, p = 0.038) and CA1 (t(14) = 3.22, p = 
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0.0062), but no other ROIs (PHC: t(14) = 0.64, p = 0.53; PRC: t(14) = 1.40,  p= 0.18; ERC: t(14) 

= 1.50, p = 0.15; CA2/3/DG: t(14) = 1.48, p = 0.16).  

In contrast, there were no differences between pattern similarity for the spatial task vs 

item task or the size task vs item task in any hippocampal or MTL cortical ROI (Spatial vs Item: 

PHC: t(14) = 0.20, p = 0.84; PRC: t(14) = 0.57, p = 0.58; ERC: t(14) = 0.98, p = 0.34; SUB: t(14) 

= -0.10, p = 0.92; CA1: t(14) = 0.80, p = 0.44; CA2/3/DG: t(14) = -0.57, p = 0.57; Size vs Item: 

PHC: t(14) = 0.47, p = 0.65; PRC: t(14) = -0.74, p = 0.47; ERC: t(14) = -1.76, p = 0.10; SUB: t(14) 

= 0.17, p = 0.86; CA1: t(14) = 2.06, p = 0.06; CA2/3/DG: t(14) = 0.59, p = 0.57).  

These data suggest that reduced hippocampal activity (in subiculum and CA1) in the 

timing task may reflect sharpening of representations rather than disengagement from the task. 

The subiculum effect, however, was weak and did not survive correction for multiple 

comparisons across regions (FDR corrected p = 0.114). In contrast, the CA1 effect is robust even 

after correcting for multiple comparisons (FDR corrected p = 0.037). Because we were 

interested in the timing task in particular (given the univariate results), we corrected for multiple 

comparisons across regions of interest, but not across the relational tasks. 

 

Figure 4. Multivariate pattern similarity for the timing task. Pearson correlation between 
activity patterns in each ROI for odd vs. even runs of the timing task, relative to the correlation 
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between activity patterns for the item task. Subiculum [SUB] and CA1 showed greater pattern 
similarity for temporal attention vs. item attention. Error bars reflect +/–1 SEM across subjects. 
* p < 0.05 
 

Multivariate-univariate dependence analysis 

Subiculum and CA1 showed lower levels of activity for the timing task (Figure 3D-E) but 

higher pattern similarity for the timing task (Figure 4). Is the increase in pattern similarity a result 

of univariate deactivation in these ROIs (see Coutanche, 2013)? For example, is the stability of 

the activity pattern simply a consequence of some voxels consistently deactivating in the timing 

task, or does the pattern reflect information that is not captured in terms of a mean response? 

To address this question, we conducted a multivariate-univariate dependence (MUD) analysis to 

quantify the relationship between univariate activity levels in each voxel and its contribution to 

pattern similarity (Figure 5; Aly & Turk-Browne, 2016a). Insofar as deactivation is responsible for 

pattern similarity, we should observe a negative relationship in the MUD analysis: voxels with 

the lowest activity levels should be the largest contributors to pattern similarity. However, there 

was no reliable relationship between voxels’ univariate activity and their contribution to pattern 

similarity for the timing task in SUB (t(14) = 0.81, p = 0.43) or CA1 (t(14) = 0.61, p = 0.55).  

The absence of a correlation between univariate activity and contributions to pattern 

similarity across voxels suggests that it is neither high nor low univariate activity that is driving 

pattern stability: instead,  the elevated pattern similarity in the timing task reflects a balance of 

voxel activation and deactivation that together underlie the stable pattern (see simulations in 

Aly & Turk-Browne, 2016a, for a demonstration). However, this interpretation rests on a null 

result (the absence of a relationship between univariate activity and pattern similarity); thus, a 
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Type II error cannot be ruled out. Future studies using the MUD analysis will be important for 

characterizing when the hippocampus does, and does not, show dependencies between 

univariate activity and multivariate pattern similarity. 

 

 
Figure 5. Multivariate-univariate dependence analysis for the timing task. The contribution 
of each voxel to pattern similarity was estimated by normalizing BOLD activity over voxels within 
each ROI, separately for the timing task in even and odd runs, and computing pairwise products 
across runs. To estimate multivariate-univariate dependence, these products were then 
correlated with the average univariate activity in the timing task for each voxel. Neither SUB nor 
CA1 showed a relationship between the two measures, suggesting that deactivated voxels were 
not solely responsible for increased pattern similarity. Error bars reflect +/–1 SEM across 
subjects. 

 

 

Discussion 

Attention has been studied primarily in terms of individual features and locations, but 

our experience of the world is fundamentally relational, consisting of representations of items 

and their associations to other items and the global context. We examined the neural substrates 

of relational attention, focusing on the hippocampus because of its critical role in relational 

forms of long-term memory (Cohen et al., 1999; Eichenbaum & Cohen, 2014; Ryan, Althoff, 

Whitlow, & Cohen, 2000). According to some theories (Squire et al., 2004), the hippocampus is 
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a dedicated memory system, and thus its role in relational processing should be limited to 

relational memory. Alternatively, the relational computations of the hippocampus might support 

a more general function, and contribute to relational processing across domains of cognition 

from perception to long-term memory (Aly & Turk-Browne, 2018; Shohamy & Turk-Browne, 

2013; Yonelinas, 2013). In the current study, we tested the hypothesis that the hippocampus 

would be recruited by relational attention even during online perceptual processing, with no 

demands on long-term memory. Moreover, we tested whether the hippocampus is specialized 

for some types of relational processing (e.g., spatial or temporal), or plays a broader role in 

other types of relations as well (e.g., relative size).  

We found strong deactivation throughout the hippocampus when participants attended 

to temporal relations, as compared to attending to items. This reduction in univariate activity 

was accompanied by an increase in multivariate pattern similarity in the timing task relative to 

the item task. These results echo other findings showing that reductions in activity can be 

accompanied by increases in information content in patterns of activity (Aly & Turk-Browne, 

2016a, 2016b; Bell, Summerfield, Morin, Malecek, & Ungerleider, 2016; Kok et al., 2012), and 

raises the possibility of sparse, sharper representations in the hippocampus when attention is 

directed to temporal relations. Further analyses indicated that higher pattern similarity in the 

timing task was not simply a consequence of lower levels of activity: instead, the stable patterns 

of activity in the timing task were a result of a balance of activation and deactivation. Finally, the 

selectivity of this pattern of results to temporal attention is unlikely to be due to differences in 

task difficulty, because all relational tasks were matched in behavioral performance.  
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We also found that entorhinal, perirhinal, and parahippocampal cortices were all 

modulated by both spatial and temporal relational attention. However, these regions were 

deactivated for relational vs item attention, and did not show more stable patterns of activity 

for relational vs item attention. Thus, the current study cannot rule out that these regions were 

simply disengaged during the relational attention tasks, and this finding requires further 

investigation. 

 

What is represented in the hippocampus during online attention? 

What is the content of the sharpened representations in the hippocampus during 

temporal attention? One possibility is that these stable activity patterns represent a specific, yet 

abstract, attentional state. Another possibility is that these stable activity patterns do not 

represent an abstract attentional set, but rather represent precise information about the 

components of stimuli that are attended on the temporal attention trials (e.g., a short-term 

representation of whether the upper vs lower part of the screen changed first). Our current 

results cannot adjudicate between these possibilities, because both components (the abstract 

attentional set, and the precise features that are attended) are inherent aspects of the attention 

task. Indeed, it is difficult to conceive of any study design that can separate the brain’s 

representation of an abstract attentional state from its representation of the attended features, 

because the attended features are a key aspect of defining the attentional state in the first place. 

What can be concluded, however, is that the patterns of activity in the hippocampus for 

temporal attention code for the commonalities of that attentional state across different trials 

that vary in terms of the visual images presented and their precise timing. 
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Are the results of the current study merely reflecting relational long-term memory in the 

hippocampus? We think that this is unlikely for several reasons. For example, one might argue 

that participants are incidentally encoding the stimuli into memory. While this is certainly 

possible, that is not enough to explain our results. If memory were the driving force behind the 

differential hippocampal modulation we observed across tasks, then there must have been 

different amounts of incidental encoding in these tasks — but there is no reason why that should 

be true. Even if different amounts of incidental encoding were occurring across tasks, our 

dissociation between univariate activity and pattern similarity in the hippocampus complicates 

the interpretation. Specifically, greater pattern similarity (in the timing task) and greater 

univariate activity (in the other tasks) have both been linked to better memory encoding in the 

hippocampus (Carr et al., 2013; Wolosin, Zeithamova, & Preston, 2013). 

Thus, our results cannot be accounted for by appealing to long-term memory, and 

instead concur with recent neuropsychological and neuroimaging studies highlighting a role for 

the hippocampus in online processing without demands on long-term memory, including visual 

perception and attention tasks (e.g., Aly et al., 2013; Aly & Turk-Browne, 2016a; Lee et al., 2012; 

Warren, Duff, Tranel, & Cohen, 2011; Zeidman & Maguire, 2016; Zeidman, Mullally, & Maguire, 

2015). These findings challenge the traditional perspective of the hippocampus as a dedicated 

declarative memory system (Squire et al., 2004; Squire & Wixted, 2011), and highlight the reach 

of the hippocampus to attention and perception. 

 

Space and time in the hippocampus 
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Along with long-term memory, studies of the hippocampus have also focused 

extensively on its role in representing space (Bird & Burgess, 2008; Bussey & Saksida, 2005; 

Kumaran & Maguire, 2005; Nadel, 1991; O'Keefe & Nadel, 1978). Recently, however, there has 

been increased focus on the importance of the hippocampus for temporal processing — both 

its contribution to the temporal organization of memories (Davachi & DuBrow, 2015; 

Eichenbaum, 2013; Howard & Eichenbaum, 2013; Hsieh, Gruber, Jenkins, & Ranganath, 2014; 

Jenkins & Ranganath, 2010; Paz et al., 2010; Schapiro et al., 2016; Staresina & Davachi, 2009), 

as well as the perception of time (Barnett, O'Neil, Watson, & Lee, 2014; Palombo, Keane, & 

Verfaellie, 2016). For example, the hippocampus contains “time cells” whose successive activity 

signals the passage of time (Eichenbaum, 2014; MacDonald et al., 2011; Pastalkova et al., 2008). 

Beyond space and time, some studies support the view that the hippocampus engages in 

relational processing irrespective of content (Eichenbaum, 2004; Hannula, Tranel, & Cohen, 

2006; Konkel et al., 2008; McKenzie et al., 2016; Schiller et al., 2015). Most previous work with 

fMRI, however, has focused on one aspect of relational processing (e.g., spatial relations) and 

thus has not been in a position to test these different perspectives. By comparing multiple 

relations in the same experiment (see Konkel et al., 2008 for a similar approach in a patient study 

of memory), our findings were able to highlight a special role for the hippocampus in the online 

processing of temporal relations.  

We observed reliable deactivation throughout all hippocampal subfields during 

attention to temporal relations. However, pattern similarity was higher during temporal 

attention in subiculum and CA1, but not CA2/3/DG. One might have expected stable activity 

patterns for temporal attention in CA2/3/DG, given that CA3, like CA1, contains time cells (Salz 
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et al., 2016), and is implicated in temporal and sequential processing more generally, including 

on the order of seconds (Farovik et al., 2010; Kesner & Hunsaker, 2010). However, our region 

of interest also includes CA2 and dentate gyrus, which have not yet (to our knowledge) been 

implicated in seconds-level timing (see Mankin et al., 2015 for timing on the order of hours to 

days; also see Gilbert et al., 2001). Thus, the lack of pattern stability for temporal attention in 

CA2/3/DG is inconclusive and requires further investigation with studies that can separately 

examine CA3, CA2, and DG. 

Likewise, the lack of an effect for spatial relational attention in the hippocampus is 

unexpected given extensive evidence that the hippocampus is involved in spatial processing 

(Eichenbaum & Cohen, 2014), including spatial relational attention (Aly & Turk-Browne, 2016a, 

2016b). One possibility is that the hippocampus is involved in fine relational discriminations (e.g., 

Aly et al., 2013; Barnett et al., 2014) but is not required when such discriminations can be solved 

on the basis of individual featural comparisons (Baxter, 2009; Bussey & Saksida, 2005). However, 

we designed the tasks so that such feature-level comparisons would not be sufficient to support 

performance — that is, the jitter in spatial location and size was meant to ensure that attention 

to, and comparison of, both items was required to do the relational tasks. Thus, another 

possibility is that the hippocampus only becomes involved in spatial processing given sufficiently 

complex or “high-resolution” task demands (Aly et al., 2013; Yonelinas, 2013). For example, the 

hippocampus is engaged by the demand to attend to, and find similarities or differences in, 

spatial layouts of complex, naturalistic scenes (Aly & Turk-Browne, 2016a, 2016b; Aly et al., 

2013; Lee et al., 2012). It is possible that our spatial relational task does not sufficiently tax the 
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abstract and flexible spatial representations of the hippocampus, and can be solved on the basis 

of relational representations elsewhere. 

This raises an important question for future research: Does the hippocampus become 

involved at the same level of  complexity when assessing relations in the spatial and temporal 

domains?  Or do some types of relations require the hippocampus at an earlier level of 

complexity than others? These are difficult problems to solve, but these limitations point to a 

need in the field: a need to define what is “complex” or “high resolution” with enough precision 

that these definitions can be used to generate testable hypotheses about when the 

hippocampus should, and should not, be involved in any given task. 

 

Transformation of relational representations from perception to memory 

In studies of long-term memory encoding and retrieval, the hippocampus shows greater 

univariate activity for relational memory vs item memory (see Davachi, 2006 for review). This 

contrasts with our current findings, in which the hippocampus showed less univariate activity for 

relational vs item attention. An open question is why the direction of the relational vs item effect 

switches from perception to memory. There are at least three possibilities.  

The first possibility is that there are two different relational computations in the 

hippocampus. One supports in-the-moment attention and perception, is sharply tuned, and is 

associated with reductions in univariate activity. The other supports long-term memory, is more 

integrative, and is associated with enhancements in univariate activity.  

A second possibility is that the same set of relational computations in the hippocampus 

is expressed in different ways in perception and memory: the initial representation is sharp and 
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sparse, but over time is transformed to a more integrated representation. We believe that this 

second possibility is unlikely, because the hippocampus shows greater univariate activity for 

relational vs item encoding, arguing against the emergence of a univariate activity enhancement 

over the time course of consolidation.  

A final possibility lies somewhere in between: the hippocampus has a common set of 

relational computations, but these computations are differently taxed during perception and 

memory. In attention and perception tasks, stimuli are often repeated many times, presented 

for a short duration, and only have to be processed enough to accomplish the task in the 

immediate moment. In memory tasks, a stimulus might be shown only once, and elaborative 

processing is helpful during both encoding (to create a distinct memory representation) and 

retrieval (to bring to mind associated details). These task demands might prioritize a finely-

tuned, sharp, and short-lasting representation during attention/perception tasks, and a richer, 

more integrated, longer-lasting representation during memory tasks.  

Importantly, this viewpoint suggests that it is not perception vs memory per se that 

produces these differences in the properties of hippocampal representations, but the demands 

of the typical tasks used to study these cognitive processes (see Aly & Yonelinas, 2012, for a 

similar perspective). This perspective predicts that making a perception (or attention) task more 

like a memory task would yield greater hippocampal activity for relational vs item perception (or 

attention). This might be accomplished by more closely matching perception tasks to the 

encoding phase of long-term memory studies; for example, by showing stimuli only once each, 

and for a longer duration. Including a long-term memory test following the perception task 

would enable separate examination of hippocampal effects related to memory encoding vs 
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those related to perceptual processing (e.g., as in Lee, Brodersen, & Rudebeck, 2013). These 

and other approaches will be useful for characterizing relational representations in the 

hippocampus during perception and memory, and determining whether a single set of 

underlying computations supports both. 

Conclusions 

Attention gates what we perceive and remember, and yet we know relatively little about 

how attention modulates neural activity in the hippocampus. Recent work has made important 

progress in elucidating how the hippocampus is modulated by the focus of attention (Aly & 

Turk-Browne, 2016a, 2016b, 2017), in line with the current findings. We provide evidence that 

the hippocampus is differentially involved in relational and item attention, even during online 

visual perception. Attention to temporal relations reduces hippocampal activity and increases 

hippocampal pattern stability, with balanced activation and deactivation producing a sharpened 

representation. These findings show that the relational computations of the hippocampus can 

extend beyond long-term memory, enabling the rapid online extraction of relational information 

during visual perception. 
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Appendix A 

 
 Horizontal 

Offset  
(pixels) 

Temporal Delay 
(seconds) 

Size 
Difference 

(pixels) 

Degree of 
Tilt  

(angle) 

Color of 
Cue 

(shading: 
0=black; 

110=gray) 
Mean 5.73 0.11 4.8 3.53 33.6 

Standard 
Deviation 

2.63 0.13 2.18 0.99 20.5 

Appendix A. Mean and standard deviation of final parameters from each participant’s 
staircasing session. 
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