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ABSTRACT 

Longitudinal deep sequencing of viruses can provide detailed information about intra-host 
evolutionary dynamics including how viruses interact with and transmit between hosts. Many analyses 
require haplotype reconstruction, identifying which variants are co-located on the same genomic 
element. Most current methods to perform this reconstruction are based on a high density of variants 
and cannot perform this reconstruction for slowly evolving viruses. We present a new approach, 
HaROLD (HAplotype Reconstruction Of Longitudinal Deep sequencing data), which performs this 
reconstruction based on identifying co-varying variant frequencies using a probabilistic framework. 
We test this method with synthetic data sets of mixed cytomegalovirus and norovirus genomes, 
demonstrating high accuracy when longitudinal samples are available. 
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INTRODUCTION 

Next generation sequencing (NGS) of virus populations derived from medical and biological samples 
can deepen our understanding of virus biology, pathogen evolution, host-pathogen interactions, 
transmission dynamics and the development of drug resistance (Houldcroft, et al. 2017; Leung, et al. 
2017; Moncla, et al. 2017). While smaller than bacterial and eukaryotic genomes, virus genomes are 
still much larger than the individual reads that are obtained through next generation sequencing. 
Detailed analyses often require determining which variants are found together in the same genome 
or genomic segment, a process known as haplotype reconstruction. This is commonly performed by 
identifying variants at sites that are close enough to be found on the same reads. If these variants are 
sufficiently dense, co-localised variants across the genome can be ‘stitched together’, resulting in the 
determination of whole genome haplotypes (Posada-Cespedes, et al. 2017). Unfortunately, viruses 
such as human cytomegalovirus (HCMV) can have long regions with few segregating sites, making it 
impossible to connect variants that span these regions.  

There is increased focus on monitoring intra-host evolutionary dynamics using longitudinal 
sequencing, where samples are obtained from a single patient at multiple time points. Selection and 
drift result in changes in the relative frequencies of the haplotypes and thus in the frequencies of the 
variants that they contain. In such cases, we can use co-variation of variant frequencies to provide an 
additional source of information for haplotype reconstruction, even when these variants are far apart 
in the genome. In order to take advantage of this additional source of information, we created a new 
method for reconstructing whole-genome haplotypes from longitudinal sequence data (HAplotype 
Reconstruction Of Longitudinal Deep sequencing data, HaROLD), which was then used to analyse the 
high diversity of HCMV samples (Cudini, et al. 2019). We describe this method and demonstrate its 
utility and accuracy with synthetic data, both when multiple samples are available (as in the case for 
longitudinal sampling), as well as for single samples. 

RESULTS 

Evaluation based on synthetic data sets 

In order to evaluate the ability of HaROLD to reconstruct haplotypes and estimate the relative 
haplotype frequencies, we created two sets of synthetic sequence data consisting of mixtures of 
whole genome sequences from GenBank, with multiple mixtures representing the results of 
longitudinal sampling. These data were broken into individual paired reads of length 250 and 
sequencing errors typical for Illumina sequencing were introduced. Set one consisted of mixtures of 
two to four norovirus sequences (approximately 7.5 kb in length), while the second set was assembled 
from two to three human cytomegalovirus (HCMV) sequences (approximately 230 kb). The sets of 
sequences ranged in similarity between 98.6% to 99.7% identity. The various synthetic sets are 
summarised in Tables 1 and 2. 

The performance of HaROLD for these data is represented in Figures 1 and 2. With the norovirus data, 
the reconstructed haplotypes were highly accurate, occasionally missing one or two bases at the end 
of the sequences (Figure 1A). The haplotype frequencies estimated by HaROLD were also highly 
accurate, with differences between the actual and estimated frequencies ranging from 0 to 0.002 
(Figure 1B). Excellent results were also obtained with the synthetic data derived from HCMV; the 
reconstructed haplotypes were highly similar to the original sequences (similarity > 0.997) (Figure 2A) 
with differences between the actual and computed haplotype frequencies ranging from 0 to 0.06 
(Figure 2B). 
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Utility of longitudinal sampling 

In contrast to most methods for 
haplotype reconstruction, HaROLD 
is formulated to take advantage of 
the availability of multiple 
longitudinal samples. In order to 
evaluate the importance of these 
longitudinal samples, we used 
HaROLD to reconstruct the 
haplotypes in our synthetic data sets 
without using this in additional 
information. This was accomplished 
by applying HaROLD to each sample 
independently, neglecting the 
presence of other related samples. 
As can be seen in Figures 1 and 2, the 
performance of HaROLD on single 
independent samples was generally 
worse, highlighting with the 
advantage of using longitudinal 
sampling information. Even so, the 
accuracies of the haplotype 
reconstructions were generally 
quite high, especially for the shorter 
norovirus sequences and when 
there were relatively few haplotypes 

Comparison with other methods  

We compared the performance of 
HaROLD with two haplotype 
reconstruction techniques. The first 
method, CliqueSNV, constructs an 
allele graph based on linkage 
between variants (Knyazev 2020). 
The second method, EVORhA 
(Pulido-Tamayo, et al. 2015), is one 
of the few other haplotype 
reconstruction methods which also 
considers variant frequencies. 

EVORhA generally estimated a larger 
number of haplotypes than present 

in the sample (ranging from 1 to 5 additional haplotypes), and consistently yielded haplotypes that 
most resembled the input reference sequence required for EVORha. The performance of EVORhA in 
estimating the relative haplotype frequencies was uneven. 

On the norovirus datasets, CliqueSNV yielded more accurate haplotype sequences than EVORhA; 
frequency accuracy was, however, uneven. We were not able to successfully apply CliqueSNV to the 

Table 1. Summary of the longitudinal norovirus synthetic data sets 
used to test the accuracy of the haplotype reconstruction 
methods.  

Table 2. Summary of the longitudinal human cytomegalovirus 
synthetic data sets used to test the haplotype reconstruction 
methods. Samples highlighted in grey are used in the single time 
point test. 
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Table 1. 
 
 

Set Sample composition Similarity between haplotypes 
(Percentage identity) 

2 haplotypes 
Low similarity 
5 time points 

 
 
 Original samples 

Synthetic 
Samples A: KJ19283 B: MH218631 

1 0 0 
2 10 90 
3 20 80 
4 40 60 
5 50 50 

 A 
B 98.6 

 

2 haplotypes 
High similarity 
5 time points 

 
 
 Original samples 

Synthetic 
Samples A: KC175323 B: KJ196279 

1 0 100 
2 10 90 
3 20 80 
4 40 60 
5 50 50 

 A 
B 99.7 

 

3 haplotypes 
5 time points 

 
 

 Original samples 
Synthetic 
Samples A: KC631827 B: KJ196283 C: MH218631 

1 20 30 50 
2 40 30 30 
3 60 30 10 
4 80 20 0 
5 70 30 0 

 A B 
B 99.3  
C 98.9 98.6 

 

4 haplotypes 
5 time points 

 
 

 Original samples 
Synthetic 
Samples A: KC176323 B: KJ196279 C: KJ196283 D: MH218631 

1 0 0 30 70 
2 0 20 30 50 
3 0 30 30 40 
4 30 20 40 10 
5 40 20 40 0 

 A B C 
B 99.7   
C 99.4 99.0  
D 99.3 98.9 98.6 
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Table 2. 
 

Set Sample composition Similarity between haplotypes 
(Percentage identity) 

2 haplotypes 
Low similarity 
3 time points 

 
 
 Original samples 

Synthetic 
Samples A: KP745652.1 B: KP745644.1 

1 0 100 
2 10 90 
3 30 80 

 A 
B 99.1 

 

2 haplotypes 
High similarity 
3 time points 

 
 
 Original samples 

Synthetic 
Samples A: KU221098.1 B: KT726952.2 

1 0 100 
2 20 80 
3 40 60 

 A 
B 99.4 

 

3 haplotypes 
Low similarity 
3 time points 

 
 

 Original samples 
Synthetic 
Samples A: KP745652.1 B: KP745644.1 C: KP745670.1 

1 20 50 30 
2 40 40 20 
3 60 30 10 

 A B 
B 99.1  
C 99.0 99.0 

 

3 haplotypes 
High similarity 
3 time points 

 
 

 
Synthetic 
Samples A: KU221098.1 B: KT726952.2 C: KJ361953.1 

1 80 20 0 
2 60 30 10 
3 40 40 20 

 A B 
B 99.4  
C 99.4 99.4 

 

 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 27, 2020. ; https://doi.org/10.1101/444877doi: bioRxiv preprint 

https://doi.org/10.1101/444877
http://creativecommons.org/licenses/by-nd/4.0/


 

 

4 

HCMV datasets due to memory issues, despite the program running on an HPC node with greater than 
70GB of memory).  

In all these measures, HaROLD consistently outperformed these other techniques. Although the 
accuracy of the results declined when HaROLD ignored the presence of longitudinal samples and 
considered each sample independently, even in such cases the results obtained with HaROLD were 
generally equal or superior to these other two methods.  

As an example of the consequences of the different reconstruction accuracies on downstream 
analyses, we estimated the diversity of the various samples based on the reconstructed haplotypes, 
as shown in Figure 3. The haplotypes generated by EVORhA and CliqueSNV generally produced 
exaggerated estimates of the within-sample diversity, with the exception of the two haplotypes test 

sets in norovirus where the haplotypes produced 
by EVORhA resulted in an underestimate. The 
haplotypes generated by HaROLD resulted in 
significantly better estimates of the diversity, 
especially when the reconstruction took 
advantage of the presence of longitudinal 
samples.  

DISCUSSION  

The majority of methods for reconstructing 
haplotypes rely on reads that contain multiple 
polymorphic sites, and thus require a sufficiently 
density of polymorphic sites so that the distances 
between such sites are closer together than the 
read length. Unfortunately, this is not always the 
case, especially for viruses such as HCMV where 
much of the observed sequence diversity is 
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Figure 1. Violin plots showing the accuracy of 
haplotype reconstruction in the norovirus test set. 
(A) The accuracy of reconstructed sequence 
(pairwise distance between the actual sequence and 
reconstructed sequence).  (B) The accuracy of 
computed frequencies (1 – |actual frequency – 
computed frequency|). 

Figure 2. Violin plots showing the accuracy of 
haplotype reconstruction in the HCMV test set. (A) 
The accuracy of reconstructed sequence.  (B) The 
accuracy of computed frequencies. 
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Figure 3. Accuracy of sample diversity estimations 
based on reconstructed haplotypes for norovirus test 
set (A) and HCMV test set (B). True sequence diversity 
shown with black diamonds. 
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confined to short intervals between protein coding regions. Even when there is copious variation, 
there may be closely related haplotypes where the haplotype-defining variants are separated by 
distances greater than the read length, making it difficult to assign these variants correctly to the 
otherwise similar haplotypes.  HaROLD was motivated by the increasing availability of multiple 
samples that are likely to share haplotypes, such as longitudinal studies of within host evolution or 
samples from an outbreak cluster. Under such conditions, variant frequencies can provide an 
important additional source of information for making accurate haplotype reconstructions. Notably, 
HaROLD generates haplotypes as accurate or more accurate than other tested methods even when 
multiple samples were not available. This greater accuracy was achieved with significantly less 
computing power and memory than the other methods we used for comparison, allowing rapid 
analysis of sequence data, even for bigger DNA viruses such as HCMV.  

It is difficult to determine how many haplotypes there are in the sample, even with perfect 
information. One could consider every unique sequence in the sample as a different haplotype, but in 
this case the number of haplotypes would often be so large as to make any further analysis impractical. 
Alternatively, one could consider haplotypes as representing clusters of closely related sequences that 
do not need to be all exactly identical. In this case, there is some flexibility in how one defines the 
term ‘closely related’. HaROLD is generally conservative about the number of haplotypes. In particular, 
the refinement method does not add an additional haplotype unless the improvement in the log 
likelihood is sufficient to justify the resulting increase in the number of parameters. The resulting 
haplotypes then include some amount of variation, which is provided as output to the user. In 
particular, the output reports the probability that a sequence belonging to a haplotype would have 
any of the four bases found in each site. When these probabilities are sufficiently definitive, a base is 
assigned in the multiple sequence alignment. An ambiguous base is presented when a definitive 
assignment cannot be made. 

MATERIAL AND METHODS 

We briefly describe the methods here. Further details are included in the Supplementary materials. 

Initial estimation 

Consider a set of related samples that have been analysed using NGS. These may, for instance, 
represent a series of virus samples that have been extracted from a single patient at various time 
points. We initially assume that these samples contain a common set of haplotypes but in differing 
proportions, an assumption that will be relaxed at a later stage. Note that the number of samples can 
be as small as one, and each sample does not necessarily contain every haplotype.  

We start with an assumed total number of haplotypes for the set of samples. Following quality control 
and assembly of the reads, for each sample we count the number of each type of base observed at 
each position in the resulting alignment. The observed number of each base depends on a) the 
frequencies of the haplotypes in that sample, b) the base found at that position in each of the 
haplotypes, and c) the probability of making an erroneous measurement at that site. As the error rate 
may be different at different sites and on different strands, we consider that this rate is drawn from a 
Dirichlet distribution. We first find the maximum likelihood estimate of the haplotype frequencies in 
each sample and the parameters defining the error rate distribution. We account for our initial 
ignorance of the haplotype sequences by summing this likelihood over all possible ways the different 
bases observed at that position can occur in the different haplotypes; if three different bases are 
observed at that position and our current model involves five haplotypes, we sum over all 3! = 243 
possible assignments of bases to haplotypes. We also integrate over the distribution of error rates. In 
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this manner, the sequences of the haplotypes and the site- and strand-specific error rates initially 
represent nuisance parameters.  

Following estimation of the haplotype frequencies and error rate distribution parameters, we 
determine how much each assignment of bases to haplotypes contributes to the overall likelihood. 
This allows us to calculate the posterior probability of each assignment of bases to haplotypes. By 
summing over these posterior probabilities, we can compute the marginal posterior probability that 
a base is found at that site in each of the haplotypes. If these probabilities are sufficiently definitive, 
an assignment is made. The a posteriori marginal probability of each base is included in the output. 

We perform this procedure for a range of different numbers of haplotypes. As increasing the number 
of haplotypes increases the number of ways of assigning bases to each of the haplotypes, decreasing 
the prior probability of any given assignment, the log likelihood typically decreases when the number 
of haplotypes increases beyond that necessary to represent the data. We select the number of 
haplotypes that maximise the log likelihood.  

The run time is strongly dependent on the number of haplotypes, average read depth and size of the 
virus; run times for the synthetic data described in Tables 1 and 2 (7.5kb, 1 to 4 haplotypes and  235kb, 
1 to 3 haplotypes) ranged from 6s to 30m on a single HPC node (8G). This can be longer in some cases, 
generally dominated by the estimation of the error rate parameters. The calculations can, 
correspondingly, be greatly sped up if these parameters are estimated and fixed. HaROLD supports 
multiple threads. 

Further refinement 

The method described above takes advantage of the presence of the same haplotype in multiple 
samples at various frequencies. It assumes that these haplotypes are identical in the various samples, 
neglecting processes such as mutations. It also ignores the information that forms the basis of most 
haplotype reconstruction methods, the presence of multiple variants on the same read. The next step 
is to relax these assumptions and use variant co-localisation to refine the haplotypes. 

For this next stage, each sample is analysed individually. We start with the estimated frequencies of 
each haplotype in this sample, and the a posteriori probability of each base at each site in each 
haplotype, as output from the previous program. The haplotypes are then optimised by assigning the 
reads, probabilistically, to the various haplotypes. The number of reads assigned to each haplotype is 
used to adjust the frequencies of each haplotype. The reads are then re-assigned until the haplotype 
frequencies have converged. The resulting assigned reads are then used to update the probability of 
the bases found in each site in all of the reads assigned to each haplotype. This process of is performed 
until convergence. 

If requested by the users, a number of modifications of the haplotypes are considered. These include 
a) recombination of two haplotypes, where corresponding regions of the haplotype sequences are 
swapped, b) gene conversion, where a region of one haplotype sequence is overwritten by the 
corresponding region of a different haplotype sequence, c) merging of two haplotypes into a single 
new haplotype, reducing the total number of haplotypes by one, and d) dividing a single haplotype 
into two new haplotypes, increasing the total number of haplotypes by one. After each proposed 
modification, the haplotype sequences and frequencies are re-optimised until convergence. The 
modification is then rejected or accepted based on the comparison of the Akaike Information Criterion 
(AIC) (Akaike 1974) of this new set compared with the AIC of the set of haplotypes prior to the 
attempted modification.  
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DATA AND SOFTWARE AVAILABILITY 

The software HaROLD and other materials used is available in the GitHub repository 
https://github.com/ucl-pathgenomics/HAROLD 

SUPPLEMENTARY DATA 

Supplementary Data are available at BioRciv.  
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