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Abstract 

Recent studies have shown a critical role for the gastrointestinal microbiome in brain and behavior via a 

complex gut–microbiome–brain axis, however, the influence of the oral microbiome in neurological 

processes is much less studied, especially in response to the stimuli in the oral microenvironment such 

as smoking. Additionally, given the complex structural and functional networks in brain system, our 

knowledge about the relationship between microbiome and brain functions on specific brain circuits is 

still very limited. In this pilot work, we leverage next generation microbial sequencing with functional 

MRI techniques to enable the delineation of microbiome-brain network links as well as their relations to 

cigarette smoking. Thirty smokers and 30 age- and sex- matched non-smokers were recruited for 

measuring both microbial community and brain functional networks. Statistical analyses were 

performed to demonstrate the influence of smoking on: the taxonomy and abundance of the 

constituents within the oral microbial community, brain functional network connectivity, and 

associations between microbial shifts and the brain signaling network. Among smokers, we found 

significant decrease in beta diversity (p = 6×10
-3

) and identified several classes (Betaproteobacteria, 

Spirochaetia, Synergistia, and Mollicutes) as having significant alterations in microbial abundance. 

Metagenomic analyses demonstrate that the microbiota with altered abundance are mainly involved in 

pathways related to cell processes, DNA repair, immune system, and neurotransmitters signaling. One 

brain functional network connectivity component with marginal difference between smokers and 

nonsmokers (p = 0.033) consists of connectivity between default network and other task-positive 

networks (i.e., executive control network). This brain functional component was also significantly 

associated with some smoking- and immune- related oral microbiota, suggesting potential influence of 

smoking-induced oral microbiome dysbiosis in regulating brain functional connectivity, possibly through 

immunological or neurotransmitter signaling pathways. This work is the first attempt to link oral 

microbiome and brain functional networks, and provides the support for future work in characterizing 

the role of oral microbiome in mediating smoking effects on brain activity. 
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Introduction 

Nicotine, an addictive substance, has been reported to influence brain function and human behavior, 

including cognitive function and endogenous information processing networks [1]. Functional magnetic 

resonance imaging (fMRI) enables the delineation of the interactions among diverse brain functional 

modules involved in nicotine use or dependence, helping to understand how the brain is functionally 

altered due to smoking or cessation. Studies have reported negative association between the severity of 

nicotine dependence and dorsal anterior cingulate cortex (dACC) connectivity strength with several 

other regions including the ventrium and insula [2, 3], suggesting the use of resting state dACC 

functional connectivity as a biological measure of nicotine addiction. Consistent reduction of dACC-

insula connectivity was also found in smokers who relapsed when quitting compared to those who 

remained abstinent [4]. Cole et al. [5] reported that cognitive withdrawal improvement after nicotine 

replacement was associated with enhanced connectivity between executive cognitive network (ECN) 

and default mode network (DMN). After acute nicotine administration, non-smokers showed reduced 

activity within the DMN and increased activity in extra-striate regions within the visual attention 

network, suggesting a shift in network activity from internal to external information processing [6]. 

Other data also indicated the critical role of insula, together with the ACC in influencing the dynamics 

between large-scale brain networks [1]. Significant lower connectivity strength between Left ECN and 

DMN networks was found in chronic smokers compared to nonsmokers [7]. Chronic nicotine use also 

showed negative impact on functional network connectivity within ECN network.  

Smoking can affect oral health by altering the microbial ecosystem in the oral cavity. There are around 

600 types of bacterial species inhabiting the human oral cavity, which live together synergistically [8]. 

Bacteria can colonize and form complex communities in the oral cavity on a range of surfaces including 

on the teeth, the tongue, or under the gum with each surface representing a specific microenvironment 

with slightly variant conditions. The oral microbiome helps to maintain oral health, but composition is 

sensitive to environmental disruptions including smoking cigarettes or antibiotic intake [9]. The balance 

of the microbial ecosystem is disturbed by these alterations, dysbiosis, resulting in diseases such as 

periodontitis or respiratory diseases [10-12]. Smoking can directly influence the oral microbiome and 

perturb oral microbial ecology through a variety of mechanisms including antibiotic effects or oxygen 

deprivation [13]. Evidence suggests smoking drives colonization of marginal and subgingival spaces with 

highly diverse biofilms resulting in a pro-inflammatory response from the host [14]. Investigators also 

found that smokers harbored more pathogenic, anaerobic microbes in the subgingival space than non-

smokers [15]. Use of 16s RNA sequencing has demonstrated a shift in the abundances of particular 

microbiota in smokers compared to non-smokers including an increase in pathogenic microbes 

associated with increased risk of oral diseases [16]. Kumar et al. identified an increase in periodontal 

pathogens belonging to the genera Fusobacterium, Cardiobacterium, Synergistes, and Selenomonas in 

tobacco users [14]. Wu et al. showed depletion in the abundance of microbes associated with oral 

health including from the phylum Proteobacteria and genera Capnocytophaga, Peptostreptococcus and 

Leptotrichia in smokers shifting functional pathways, which could potentially lead to smoking-related 

diseases[17].  
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In the past few years, many studies have shown a critical role of the gastrointestinal microbiome in brain 

development, function, and behavior via the complex microbiome-gut–brain axis [18, 19]. It has been 

suggested that the communications between the microbiome and brain is bidirectional through multiple 

pathways including the hypothalamic-pituitary-adrenal axis (HPA), neurotransmitter pathways, immune 

signaling, and recognition of bacterial or host metabolites. Research has found that hormonal changes 

along the HPA axis due to neurological reactions within the brain to stress or anxiety can impact 

microbiome composition. Inversely, gastrointestinal microbial perturbations have been shown to impair 

recognition memory and cognitive function in hippocampus. Microbiota are also involved in several 

neurotransmitter pathways including dopaminergic, serotonic, and glutamatergic signaling, which are 

well known in modulating neurogenesis and brain function. Animal models have demonstrated 

increased levels of noradrenaline, dopamine, and serotonin in the striatum and hippocampus, and 

reduced expression of N-methyl-D-aspartate receptor subunits in the hippocampus, cortex, and 

amygdala in germ-free mice, suggesting the role of the microbiome in regulating the levels of these 

neurotransmitters in the brain. The microbiome has also been reported to affect neurogenesis and 

development given its possible influence on brain-derived neurotropic factor expression in multiple 

brain regions. Neuroinflammation plays a critical role in brain and behavioral abnormalities, disrupting 

synaptic plasticity and neurogenesis among cortical and limbic areas [20]. Certain bacteria (e.g., 

Bacteroidetes) are believed to stimulate neuroinflammation via increased brain-blood-barrier 

permeability and toll-like receptor 4 (TLR4)-mediated inflammatory pathways [21]. With such a close 

relationship between the gastrointestinal microbiome and brain function, researchers have identified 

several neurological disorders correlated to changes in gastrointestinal microbial populations including 

autism, major depression disorders, and neurodegenerative disorders. 

 While most studies focus on the influence of gut microbiome on brain signaling, the potential 

role of the oral microbiome in regulation of neurological activity is much less studied. Recent work has 

demonstrated that oral microbial perturbations are associated with neurodegeneration (e.g., 

Alzheimer’s diseases, Parkinson’s disease, and Glaucoma) [22-24]. Bacterial endotoxin from the oral 

cavity is tied to chronic, subclinical inflammation, development of neurodegeneration, and has even 

been localized to the brain tissue of patients suffering from Alzheimer’s disease [22]. As the second most 

taxonomically diverse body site, the oral microbiome consists of some bacteria that are specific to the 

oral cavity while also sharing microbes found within the in gastrointestinal microbiome. As such, it is not 

surprising that some oral and gut microbiota show concordant disease associations [25] indicating a 

potential connection between the two sites contributing to inflammatory diseases [26, 27]. With these 

linkages and close proximity to the brain, there is high potential for oral dysbiosis, similar to 

gastrointestinal dysbiosis, to effect brain activity. However, knowledge of the constituents and 

interactions of the oral microbiome is still limited, especially in relation to how the compositional 

changes influence neurological signaling in the context of disease. 

Despite recent advances in understanding of the gut-brain axis, there is still a significant gap in 

knowledge as to the role of the microbiome on different regions or circuits involved in brain function. 

Neuroimaging is a powerful tool enabling the delineation of microbiome influences on specific brain 

circuitry using similar applications designed for brain functional mapping and neurological disease 
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diagnosis [28]. While recent studies have identified the influence of changes in the gastrointestinal 

microbiome to activation of brain circuits related to memory and depression [29-31], there has not been 

investigation into the potential link between the oral microbiome and brain function. In this work, we 

leveraged next generation 16s sequencing and resting-state fMRI techniques to explore the effects of 

changes in oral microbiome composition on brain function. Smoking directly influences the constitution 

of the oral microbiome allowing for examination of fluctuations in brain activity that are potentially 

correlated with shifts of the oral microbial populations. Saliva samples and resting-state fMRI scans from 

60 individuals were collected, and the associations between bacterial populations and neurological 

signaling (e.g., brain functional connectivity) due to smoking were examined. Influence of bacterial 

fluctuations caused by smoking on brain functional abnormalities is demonstrated showing the potential 

role of oral microbiome in brain connectivity dysfunction in smoking. 

Materials and Method 

Participants 

Sixty subjects were used for the analyses, including 30 smokers with FTND (Fagerstrom test for nicotine 

dependence [32]) score >6 and 30 age- and sex-matched, non-smokers (FTND score <=6). Subjects 

consisted of 45 males and 15 females (Fisher exact test p = 1) between the ages of 21 and 56 

(37.2±10.65; p = 0.98) years. Group difference tests on age, AUDIT (the alcohol use disorders 

identification test [33]) score, and marijuana smoking (the number of marijuana smoking days) via two-

sample t-test, and sex by Chi-square test can be seen in Table 1. Subjects with injury to the brain, brain-

related medical problems, bipolar or psychotic disorders, or illicit drugs users (confirmed through 

urinalysis) were excluded.  

Table 1. Demographics of subjects 

 Smoker (n=30) Nonsmoker (n=30) p 

Age 37.23±9.58 37.17±11.78 0.98 

Sex(F/M) 21/8 20/7 1 

Alcohol (AUDIT score) 8.43±9.27 14.1±7.55 0.012 

Marijuana smoking 12.27±25 5.57±13.11 0.2 

FTND score 8.87±1.57 5.57±1.96 - 

 

16S rRNA sequencing  

Saliva samples were collected for 16S rRNA amplicon sequencing. Participants provided 5 ml of saliva in 

a sterile 50 ml conical centrifuge tube and stored in a refrigerator until the DNA was extracted. 

Sequencing was performed in the same laboratory using an Illumina MiSeq covering variable region V4 

with primers (5’GGAGGCAGCAGTRRGGAAT-3’ and 5’-CTACCRGGGTATTAAT -3’). Raw sequence data 

were demultiplexed and quality controlled by applying the pipeline in DADA2, generating a number of 

unique sequences, similar to operational taxonomic unit (OTU) by clustering sequences with 100% 

identity accuracy in the previous pipeline [34]. Each sequence was trimmed to have the length of 150 
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base pairs and was aligned by the mafft tool to build a phylogenetic tree. A classifier for taxonomy 

assignment was trained based on sequences and taxonomic results from Greengenes database 

(http://greengenes.lbl.gov) with a 99% similarity. The classifier was then applied to the identified 

sequences for taxonomic assignment. Assigned sequences were further agglomerated at the genus, 

family, and class levels for taxonomic analyses. All of the processing scripts were implemented on a 

QIIME2 (https://qiime2.org/, 2017.12 release) platform. 

Resting state fMRI imaging  

Fifty-six of participants also had resting state functional MRI (rsfMRI) by a 3 T Siemens TIM Trio 

(Erlangen, Germany) scanner. Images were acquired by Echo-planar EPI sequence (TR=2000 ms, TE=29 

ms, flip angle=75°) with an 8-channel head coil. Each volume consisted of 33 axial slices (64×64 matrix, 

3.75×3.75 mm
2
, 3.5 mm thickness, 1 mm gap). Image preprocessing was performed as previously 

described [35]. Briefly, this included slice-timing correction, realignment, co-registration and spatial 

normalization. By transforming the images to the Montreal Neurological Institute (MNI) standard space, 

we kept those with the root mean square of head movement not exceeding 3 standard deviations, 

despiked time courses by DVARS method [36], and smoothed images using a FWHM Gaussian kernel of 

size 6 mm. The data were then analyzed by group independent component analysis (gICA) with 120 and 

100 components for the first and second decomposition levels respectively [37]. Thirty-nine out of the 

100 components were selected with low noise and free of major artifacts. Spatial map of each selected 

component was z-transformed to identify the main brain areas. Time course corresponding to each 

component was then filtered using a band-pass filter 0.01–0.15 Hz. Finally, resting state functional 

network connectivity (FNC) matrices were calculated for each subject based on the correlation 

coefficients between the time courses of all possible pairs formed with the 39 chosen components.  

Analysis of oral microbiome 

We tested the overall microbiota composition difference between smoking and non-smoking groups by 

comparing cross-sample distance. Raw read counts were first rarefied at 2020 sequences/sample. 

Weighted and unweighted UniFrac distances and Bray-Curtis distance were assessed by R package 

‘vegan’ [38] and tested for group difference by applying permutational MANCOVA (‘Adnois’ function in 

vegan package) controlling for age, sex, alcohol AUDIT score, and marijuana smoking score. Principal 

coordinate analysis (PCoA) plots were generated based on the first two principle coordinates from each 

type of distance matrix to compare the dissimilarity among samples in the subspace spanned by the first 

two dimensions.  

The OTU table of raw read counts was normalized to the table of relative abundances at different taxa 

levels. The taxa present in less than 20% of subjects were filtered out, resulting 163 OTUs, 73 genera, 

and 20 classes. Each taxon was tested for the relative abundance difference between smoking and non-

smoking groups by Wilcox ranked sum test. Those taxa with significant group difference, were further 

tested controlling for age, sex, alcohol and marijuana smoking by Zig function in MetagenomeSeq 

package [39]. Zig method models raw counts using multivariate Gaussian distribution and taking into 

account of zero abundance in large proportion of subjects for each taxon.  
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Analysis of resting state fMRI imaging 

Each element in the FNC matrix indicates the correlation between any two functional regions within the 

brain. We transformed the FNC matrix of each subject to the vector and concatenated all FNC matrices 

across subjects to form the matrix C with the dimension of n (subjects) by m (FNC links). To reduce the 

dimension of large number of FNC links, we applied ICA algorithm to decompose matrix C into the 

multiplication of two full rank matrices by C = AS, where matrix S contains independent FNC 

components with similar cross-individual difference and matrix A is the loading matrix which shows the 

presentation of each component on the subjects. ICASSO algorithm was applied to obtain four reliable 

FNC components and each corresponding loading was tested for group difference by two-sample t-test. 

For the component with significant group difference, multiple regression model was further applied by 

controlling for covariates. 

Linking microbiota with FNC 

After obtaining significant FNC component and taxa with the above analyses, we further tested the 

association between FNC component and taxa using Zig function with the following model design: 

Taxon ~ FNC+ smoking status + age + sex + alcohol + marijuana 

We tested taxa from OTU, genus, and class levels, and reported the significant associations with nominal 

p<0.05. Multiple comparisons in all tests were corrected by false discovery rate (FDR) method. 

Functional analysis of predicted metagenomes 

Metagenome content in the samples was inferred from 16S rRNA microbial data, normalized by copy 

number count to account for the differences of the number of 16S rRNA copies between taxa, and then 

functional metabolic pathways were predicted based on the Kyoto Encyclopedia of Gene and Genomes 

(KEGG) catalog [40], using Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States (PICRUSt) [41]. Analyses revealed 328 metabolism pathways at level 3 were predicted. Of these, 

66 pathways were removed due to presence in less than 10% of samples. Group difference of each 

metabolism pathway between smokers and non-smokers was tested using Welch’s t-test from the 

Statistical Analysis of Metagenomic Profiles (STAMP) softwarec[42]. Multiple comparisons were 

corrected by FDR with cut-off set as 0.15 for significance. For the KEGG pathways and OTUs or genera 

significantly associated with smoking status, we further used Spearman's rank correlation to examine 

their relationship. 

Results 

Overall Microbiome composition between smoking groups 

To determine whether overall microbiome composition differed between smokers and nonsmokers, we 

performed principal coordinate analysis on unweighted UniFrac, weighted UniFrac and Bray-Curtis 
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phylogenetic distances. Without controlling for covariates, we found significant group difference in 

unweighted UniFrac distance (p= 6×10
-3

) and Bray-Curtis distance (p= 0.025) under 9999 times 

permutation. The differences were still significant (p= 4×10
-3

 and 0.027, respectively) after controlling 

covariates (age, sex, alcohol score and marijuana smoking). No significant differences were found in 

weighted UniFrac (p= 0.2).  

 

(A)   (B) 

Figure 1. PCoA analysis of microbial composition between smoking and non-smoking groups based on (A) 

Unweighted Unifac distance and (B) Bray-Curtis distance. Dark blue shapes are representative of the 

center of their associated grouping. 

Identification of taxa differences between smokers and nonsmokers 

To determine the compositional differences in the salivary microbiota of smokers and nonsmokers, we 

examined the relative abundance of taxa at OTU, class, and genera levels. For each taxon, we tested 

their group difference by non-parametric rank sum test. For taxa with significant group difference (FDR≤ 

0.1), a further multivariate test was applied controlling for covariates (age, sex, alcohol score and 

marijuana smoking). Figure 2 and Table 2 show the relative abundance and log fold change (logFC= 

log2(observed/reference)) of significant taxa by multivariate test at the OTU, class, and genus levels. We 

found that class Betaproteobacteria significantly differed in smokers with a clear depletion as compared 

to non-smokers (logFC= -0.35, p= 3.2×10
-2

). Within this class, it was genera Lautropia (logFC= -1.99, p= 

7.4×10
-3

) and Neisseria (logFC= -1.16, p= 8.5×10
-3

) specifically that were reduced in smokers. Other 

bacteria displaying significant differences between smokers and non-smokers included Treponema (class 

Spirochaetes), TG5 (class Synergistia), and Mycoplasma (class Mollicutes), which all had significant 

enrichment in smokers. Additionally, within the smoking population, there was a significant increase in 

relative abundance of both genus Bacteroides and the family Mogibacteriaceae (logFC= 2.24, p= 7.9×10
-4

; 

logFC= 2.92, p= 3.1×10
-4

, respectively) not seen at the class level. 
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Lower-level analyses on OTU identified 13 OTUs from 7 classes showing significant difference between 

smoking and non-smoking groups. Besides the classes identified above, we also found 2 OTUs from 

genus Actinomyces and Rothia in class Actinobacteria with higher abundance in smokers compared to 

non-smokers. The abundance of three OTUs from genera Tannerella and Prevotella (in class Bacteroidia) 

and one from genus Fusobacterium were also significantly increased in smokers. On the contrary, 2 

OTUs from genera Oribacterium and Selenomonas were depleted in smokers. 

 

 

      (A)

 

      (B)

 

      (C) 
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Table 2: List of taxa with significant difference between smoking and non-smoking groups at OTU, genus 

and class levels. 

 

 

Differential FNC component between groups 

Among four rsfMRI components derived by applying ICA on the FNC matrix, there was one component 

with the corresponding loading vector showing marginally significant difference between smoking and 

non-smoking groups (nominal p= 0.033), as shown in Fig. 3A. The group difference remained significant 

after controlling for covariates (p= 0.04) suggesting higher loading in smokers compared to nonsmokers. 

All of the top 13 FNC links with absolute(z-scored weights)> 2.5 in the component had negative weights 

(Fig. 3B), which indicates that the strength of those FNC links was significantly reduced in smoking group. 

Fig. 3C shows the connectives among functional networks from the top contributing FNC links in the 

component. The brain regions of those connected functional networks were plotted in Fig. 3D. Altered 

connectivity was mainly between DMN and visual network (VIS), Salience network (SAL), and cognitive 

controls network (ECN), as well as between Precunes (PRE) network and VIS. As listed in Table S1 and Fig. 

Taxa identified by multivariate test Relative Abundance 

Class Order Family Genus Species Smoker Nonsmo

kers 

logFC FDR 

Species level         

Actinobacteria Actinomycetales Actinomycetaceae Actinomyces spp 7.8E-3 1.5E-3 2.35 1.1E-04 

Actinobacteria Actinomycetales Micrococcaceae Rothia mucilaginosa 1.6E-02 6.3E-03 1.39 8.3E-04 

Bacteroidia Bacteroidales Porphyromonadaceae Tannerella forsythia 1.1E-03 4.1E-04 1.42 1.4E-02 

Bacteroidia Bacteroidales Prevotellaceae Prevotella oris 1.7E-03 7.1E-04 1.23 3.1E-03 

Bacteroidia Bacteroidales Prevotellaceae Prevotella spp 7.1E-04 2.8E-04 1.32 1.3E-02 

Clostridia Clostridiales Eubacteriaceae Eubacterium saphenum 7.9E-04 1.0E-04 2.92 2.4E-04 

Clostridia Clostridiales Lachnospiraceae Oribacterium asaccharolyticum 1.4E-03 2.9E-03 -1.04 1.9E-02 

Clostridia Clostridiales Veillonellaceae Selenomonas spp 1.9E-03 5.5E-03 -1.52 1.6E-03 

Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium nucleatum 9.8E-03 4.5E-03 1.14 5.1E-02 

Betaproteobacteria Burkholderiales Burkholderiaceae Lautropia mirabilis 9.9E-04 4.1E-03 -2.06 2.6E-03 

Synergistia Synergistales Dethiosulfovibrionaceae TG5 mobile 7.7E-04 1.4E-04 2.44 1.3E-04 

Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma hyosynoviae 1.5E-03 3.4E-04 2.15 5.5E-03 

         

Genus level         

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides  3.5E-04 7.4E-05 2.24 7.9E-04 

Clostridia Clostridiales Eubacteriaceae Eubacterium  7.5E-04 9.8E-05 2.92 3.1E-04 

Betaproteobacteria Burkholderiales Burkholderiaceae Lautropia  1.0E-03 4.1E-03 -1.99 7.4E-03 

Betaproteobacteria Neisseriales Neisseriaceae Neisseria  1.8E-02 4.0E-02 -1.16 8.5E-03 

Spirochaetes Spirochaetales Spirochaetaceae Treponema  1.8E-02 7.6E-03 1.27 1.4E-03 

Synergistia Synergistales Dethiosulfovibrionaceae TG5  1.7E-03 6.0E-04 1.53 1.3E-03 

Mollicutes Mycoplasmatales Mycoplasmataceae Mycoplasma  1.9E-03 3.9E-04 2.28 4.6E-04 

         

Class level         

Betaproteobacteria     2.2E-02 5.0E-02 -0.35 3.2E-02 

Spirochaetes     1.8E-02 7.6E-03 0.38 2.1E-03 

Synergistia     1.7E-03 6.0E-04 0.46 4.0E-03 

Mollicutes     3.2E-03 1.9E-03 0.23 1.8E-02 
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S1, the DMN network was involved in several functional regions including anterior cingulate cortex (ACC)

left angular gyrus and posterior cingulate cortex (PCC) with some precuneus overlap. The VIS group was

composed of right fusiform/lingual gyrus, left middle occipital gyrus and right inferior occipital gyrus

Most of the connectivities between DMN and VIS networks were negative except the link between

PCC/precunes and LMOG, indicating stronger anti-correlation between DMN and VIS in smokers. In

addition, inferior frontal gyrus (IFG) from ECN network, right supramarginal gyrus from SAL network,

precuneus from PRE network and supplementary motor area from SEN network were all connected to

DMN network, and the connectivity strengths were increased in smokers. In contrast, we found reduced

connectivity strength between PRE and VIS in smokers.  

Figure 3. (A) The loading of identified FNC component in smokers compared to nonsmokers; (B) Top FNC

links with z-scored weights abs (z-score)> 2.5 in the component; (C) The top contributing connectivity

among the functional networks from the selected component; (D) Brain regions of those functiona

networks involved the top FNC links. 

Association test between FNC component and microbiome 

After identifying both taxa and FNC component showing significant group difference, we further tested

the associations between each taxon and the FNC component. Table 3 lists those taxa significantly
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associated with FNC component. The abundance of both Treponema (class Spirochaetes) and TG5 (class 

Synergistia) were negatively associated with the FNC strength in the component while Neisseria (class 

Betaproteobacteria) demonstrated an opposite relationship. Genus Actinomyces (class Actinobacteria) 

showed significant negative relationship with FNC strength only in smokers (logFC= 2.36, p= 4.9×10
-7

), 

and Bacteroides (class Bacteroidia) had a marginal association with FNC loading, suggesting higher 

abundance of Bacteroides related to lower FNC connectivity strength in the component. In addition, 

Mogibacteriaceae from phylum Firmicutes was significantly related to FNC alteration with negative 

correlation. Lower-level analysis further identified that the abundance of species from genera Prevotella 

and Rothia were significantly increased along with lower FNC strength in smokers.  

+: the significance was shown in smoking group only. 

 

Functional metabolism pathway prediction 

Among the 262 KEGG pathways predicted for microbial function, we identified 23 pathways showing 

significant difference in abundance between smokers and non-smokers (FDR< 0.15) as shown in Fig. 4. 

These pathways mainly involved metabolism and genetic information processing. The overall abundance 

of metabolic pathways was significantly altered in smokers. Enriched pathways included those involved 

with metabolism (vitamins and cofactors, terpenoids and polyketides, amino acids, nucleotides, and 

glycans) and genetic information processing. Depleted pathways were involved with energy and lipid 

metabolism, membrane transport, and xenobiotics biodegradation (i.e., drug metabolism-cytochrome 

P450). Examination of the relationship between microbiota and the metabolic findings demonstrated 

that alterations in the abundance of microbiota were highly correlated to these pathways (correlation = 

[-0.6,0.6]) as shown in Fig. S1.   

Taxa Association with rsfMRI 

component 

Class Order Family Genus Species logFC Statistic FDR 

Species level 

Actinobacteria Actinomycetales Actinomycetaceae Actinomyces mucilaginosa 2.35 120.9 4.9E-07
+

 

Actinobacteria Actinomycetales Micrococcaceae Rothia forsythia 1.39 19.8 6.2E-02 

Bacteroidia Bacteroidales Prevotellaceae Prevotella oris 1.23 43.2 5.8E-06 

Clostridia Clostridiales Eubacteriaceae Eubacterium saphenum 2.92 34.0 1.1E-04 

Genus level 

Bacteroidia Bacteroidales Bacteroidaceae Bacteroides  2.24 15.12 6.2E-02 

Clostridia Clostridiales [Mogibacteriaceae] Unclassified  2.92 35.09 7.1E-05 

Betaproteobacteria Neisseriales Neisseriaceae Neisseria  -1.16 -20.18 3.7E-02 

Spirochaetes Spirochaetales Spirochaetaceae Treponema  1.27 18.78 5.0E-02 

Synergistia Synergistales Dethiosulfovibrionaceae TG5   1.53 13.04 3.7E-02 

Class level 

Betaproteobacteria     -0.35 -20.15 3.7E-02 

Synergistia     0.46 14.80 2.9E-02 

Mollicutes     0.23 18.76 1.9E-02 
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Figure 4. The 23 out of 262 KEGG functional pathways show significant changes in abundance between 

smokers and non-smokers (FDR q-value< 0.15). Those pathways were predicted from 16S rRNA 

microbiome sequencing using the PICRUSt algorithm. Mean proportion (colored bar) indicates the 

relative abundance of the pathway in each group. The difference of mean proportions between groups 

as well as the 95% confidence interval shows the effect size of relative abundance change for each 

pathway. 

 

Discussion 

In this work, we specifically set out to determine if correlations existed between shifts in the oral 

microbial population and changes in brain signaling networks due to smoking. To achieve this, we used 

the standards of 16s rRNA sequencing to characterize the microbial composition in the saliva of 

participants (smokers versus nonsmokers), and rsfMRI to measure brain functional activity in these 

same participants. Data delineating microbial shifts was consistent with previously reported findings for 

changes in the oral cavity due to smoking. Likewise, changes in brain functional activity also matched 

with previous results found due to smoking. When correlative analyses were performed on with these 

data sets, some microbial oral populations were found to have significant correlation with particular 

neurological signaling networks. While the influence of the gastrointestinal microbiome on neurological 

activity has been an area of intense study, this report provides evidence that the oral microbiome also 

influences neurological signaling and may provide new therapeutic opportunities for treatment of 

neurological disorders. 
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As stated, results from 16s rRNA sequencing were consistent with previously reported results for 

changes in the oral microbiome due to smoking. We found significant changes in microbial composition 

in both unweighted UniFrac and Bray-Curtis distances with smaller variation within smokers than 

nonsmokers, showing less microbial diversity in the salivary microbiome of smokers. Taxonomic analyses 

identified drastic abundance changes on multiple taxa at different levels. Gram-negative bacteria from 

the genera Lautropia and Neisseria, and from the class Betaproteobacteria showed depletion in the 

smokers in line with previous [14, 16]. Other genera were enriched in smokers including Bacteroides [43], 

Treponema [14][44],TG5, and Mycoplasma [43]. Within this data set, some significantly enriched species 

were not identified by the genera level analysis; however, these changes were also consistent with 

previously published results. These included: Actinomyces spp. and Rothia mucilaginosa from the gram-

negative class Actinobacteria [17], Tannerella forsythia[45], and Prevotella oris and Prevotella spp. from 

Bacteroidales [46][47]. Most of these enriched microbiota are anaerobes compared to aerobic Neisseria, 

consistent with the finding of higher abundance of anaerobes in subgingival plaque samples of smokers, 

suggesting the depleting of oxygen in oral cavity induced by smoking [15]. 

KEGG analysis identified several microbial metabolic pathways involved in functional changes seen 

during smoking. This is perhaps not surprising as cigarette smoke has been reported to be highly 

associated with DNA damage, lipid peroxidation and antioxidant impairment, and protein modification 

and misfolding, thereby inducing severe cellular damage [48, 49]. These influences may affect the oral 

microbiome community with its direct proximity to toxins from cigarette smoking. We found significant 

enrichment of metabolic pathways involving the proteasome, protein export and the ubiquitin system 

all of which are involved in protein degradation and recycling in the cell- essential for cellular processes 

such as proliferation, signaling, and immune responses [50]. The up-regulation of these pathways 

indicates the role of smoking in disrupting protein modification and cellular processes of the microbial 

constituents within the oral cavity. Other pathways related to DNA repair and replication- including 

folate biosynthesis- were also significantly activated in the oral microbiome of smokers. The 

involvement of proteasome function and DNA repair pathways enhanced in the smoking population may 

be due to increased cellular dysfunction and DNA damage induced by smoking. Additionally, enrichment 

was also found in pathways related to small amino acid production such as glutamate and glutamine, 

and glutamatergic synapse and tyrosine metabolism, which are related to neurotransmitter release and 

potentially interact with nervous system in changing neuronal activity of smokers such as addiction and 

craving [51, 52]. On the contrary, some metabolisms are significantly depleted in smokers such as 

metabolisms of lipid energy (i.e., alpha-linolenic and sulfur), and xenobiotics biodegradation (i.e., drug 

metabolism-cytochrome P450), which is in line with previous studies [17, 53]. 

Analysis of neurological signaling in smokers versus nonsmokers identified one FNC component with 

significant group difference that was involved in connectivity among DMN, VIS, SAL, ECN and PRE 

functional networks, which is in line with our previous studies [35]. DMN is mostly related to self-

referential and episodic memory processing, which is down-regulated in task performance [54]. The 

other networks are activated corresponding to different tasks such as visual, cognitive control, attention 

and moment-to-moment information processing, namely ‘task-positive’ regions [55]. Functional MRI 

studies in both task performance and resting state have reported the tight coupling between DMN and 
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other task positive networks with negative correlations (anti-correlation) [55-57]. In our work, we found 

similar anti-correlations between DMN and the other networks (e.g., VIS, SAL and ECN) with reduced 

connectivity (i.e., increased negative coupling) in smokers after withdrawal when compared to 

nonsmokers. Reduced connectivity within and between DMN and ECN networks were reported in 

chronic smokers compared to nonsmokers, showing larger decreases of connectivity strength with 

heavier nicotine use [7]. For smokers following withdrawal, the connectivity within DMN was enhanced 

but decreased within ECN, and the DMN-ECN coupling was reduced along with cognitive impairment [5]. 

Additional studies found increased coupling among medial orbital prefrontal cortex, the dorsal medial 

PFC, striatum, and visual cortex over the course of 1 h acute abstinence, which is consistent with our 

findings [58]. The activation of these regions, which relate to reward system and also fall in the DMN 

network, indicates the relation of DMN with withdrawal-induced craving. Our results combined with the 

above findings suggest dynamic modulation in functional coupling between DMN and task-positive 

networks when subjects smoke or go through withdrawal as compared to nonsmokers. These findings 

are concordant with the hypothesis that network dynamics shift away from task positive areas after 

nicotine withdrawal in order to maintain homeostasis in a brain [5]. 

 

By correlating changes in oral microbial abundance with a brain FNC component, we identified several 

microbiota and functional pathways related to brain function. Prevotella oris (class Bacteroidia), a 

common gram-negative, anaerobic bacterium of the normal oral flora has been associated with the 

development of brain absences and other neurological syndromes (i.e., Lemierre's syndrome) through 

production of IgA proteases to promote virulence and initiate an immune response [59, 60]. Another 

member of the class Bacteroidia, Bacteroides, has the ability to produce complex, pro-inflammatory 

neurotoxins that may induce inflammation in oral cavity and further contribute to development of 

inflammation in the brain, increasing brain-blood-barrier permeability through the circulatory system 

[61]. Neisseria, including Neisseria meningitidis, stimulate the immune system through a variety of 

mechanisms and invade the neurological nervous system during infection [62]. Similarly, Treponema 

infects the brain via branches of the trigeminal nerve [63]. All of these bacteria, whose populations are 

influenced by smoking, affect the immune system and are capable of influencing neurological processes 

through either direct or indirect means. In this study, we demonstrate these bacteria have significant 

associations with brain function in a smoking-dependent manner, suggesting  potential pathways exist 

for members of the oral microbiome to influence neurological signaling in the brain, similar to how gut 

microbiome-brain interactions occur [64]. Along the gut-brain axis, inflammatory mediators and 

neurotransmitter signaling pathways play important roles in bidirectional modulation. Our functional 

pathway prediction analysis identified enrichment in several neurotransmitter-related pathways among 

oral microbiota such as glutamate-glutamine, glutamatergic synapse, and tyrosine metabolism. 

Production of neurotransmitters from these pathways (i.e., glutamate, glutamine and dopamine) is 

stimulated by smoking and they are highly involved in reward circuit neural functions for smoking 

dependence, or craving after withdraw [65, 66]. The high correlations between some FNC-related 

microbiota and these neurotransmitters signaling pathways demonstrates the potential of these specific 

microbiota together with other oral microbiota to influence brain function through neurotransmitter 

signaling pathways. 
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This study explores the association between fluctuations within the oral microbiome and the brain 

functional network in smokers. While some associations were identified here, sampling of a larger 

population would strengthen these findings. Additionally, although we tried to control for alcohol 

consumption and marijuana smoking score, their complex interactions with cigarette smoking with 

respect to the oral microbiome community and brain function may still confound our results. As such, 

follow on studies should employ stricter criteria for selection of the smoking and non-smoking control 

group are suggested. Despite these limitations, this study represents the first evidence of correlation 

between population shifts within the oral microbiome and changes in neurological signaling. As the oral 

cavity is an easily accessible environment, as compared to the gastrointestinal tract, further study offers 

opportunity for development of novel therapeutics for neurological syndromes.      
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