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ABSTRACT  1 
 
Despite considerable efforts to characterize the ecology of bacteria and fungi in the built 2 
environment (BE), the metabolic mechanisms underpinning their colonization and successional 3 
dynamics remain unclear. Here, we applied bacterial/viral particle counting, qPCR, 16S and ITS 4 
rRNA amplicon sequencing, and metabolomics to longitudinally characterize the ecological 5 
dynamics of four commonly used building materials maintained at high humidity conditions 6 
(~94% RH). We varied the natural inoculum provided to each material by placing them in different 7 
occupied spaces, and we wet the surface of half of the samples of each material to simulate a 8 
flooding event. As expected, different materials showed different bacterial and viral particle 9 
abundance, with wet materials having higher growth rates and lower alpha diversity compared to 10 
non-wetted materials. Wetting described the majority of the variance in bacterial, fungal and 11 
metabolite structure, and material type only influenced bacterial and metabolic diversity, while 12 
location of inoculation was only weakly associated with bacterial and fungal beta diversity. 13 
Metabolites indicative of microbial activity were identified, as were those that were native to the 14 
surface material. Glucose-phosphate was abundant on all materials (except mold-free gypsum) and 15 
was correlated with Enterobacteriaceae, which could indicate a potential bacterial nutrient source. 16 
A compound consistent with scopoletin, a plant metabolite with antimicrobial activity, was 17 
significantly negatively correlated with Bacillus and positively correlated with Pseudomonas and 18 
enriched in medium density fiberboard (MDF) materials. In wet samples, the alkaloids nigragillin 19 
and fumigaclavine C, both with antimicrobial properties, were significantly positively correlated 20 
with the fungal phylum Ascomycota. Nigragillin, was also negatively correlated with Bacillus and 21 
Pseudomonas abundance. Thiabendazole and azoxystrobin (anti-fungal compounds) were highly 22 
abundant on mold-resistant gypsum wallboard and likely directly influenced the decreased fungal 23 
growth observed on this material. The mold-resistant gypsum material also showed a significant 24 
increase in bacterial alpha diversity, and bacterial and viral particle abundance, as well as a 25 
decrease in metabolite diversity, likely a result of reduced fungal growth. Penicillium taxa were 26 
positively correlated with thiabendazole, which suggested the persistence of resistant strains. Also, 27 
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specific to the wet samples, Bacillus abundance was positively correlated with the azoxystrobin, 28 
suggesting bi-directional competitive adaptation, and positively correlated with metabolites known 29 
to interfere with Pseudomonas biofilm formation, which could explain the anti-correlation 30 
between these taxa. As expected, high moisture conditions enabled faster growth of inoculating 31 
microorganisms, whose composition, chemistry, and competition was shaped by surface material, 32 
suggesting that both fungal and bacterial growth need to be considered when determining the 33 
impact of dampness in built environments.  34 
 35 
INTRODUCTION 36 
 37 

The microbiology of the built environment comprises bacteria, archaea, fungi, viruses and 38 
protists, all of which maintain growth potentials under varying physicochemical regimes. Many 39 
recent studies of this ecosystem have applied molecular sequencing techniques to characterize 40 
microbial community relationships and dynamics under varying occupant density, building type 41 
and location, environmental conditions, and material type (Lax et al., 2017; Adams et al., 2016; 42 
Chase et al., 2016; Stephens, 2016; Lax et al., 2014). However, most of these studies have 43 
investigated communities sampled from relatively dry materials on which microbes are likely 44 
biologically inactive unless they experience liquid water or high relative humidity (RH) (Chase et 45 
al., 2016). It is widely accepted that fungal growth can occur at RH >75-80% and material decay 46 
can occur at RH >95%, depending on material (Viitanen et al., 2010, Johansson et al., 2012). 47 

Dampness is a fairly common occurrence in buildings, with approximately half of all 48 
homes in the U.S. having experienced dampness or mold (IAQ Report - Prevalence of Building 49 
Dampness). Building material dampness occurs for different reasons, including: bulk liquid entry 50 
from floods, extreme weather events, and plumbing system problems; rain or snow entry through 51 
leaks in building envelopes and roofing systems; and high water vapor content resulting from 52 
moisture migration through building materials or condensation of warm humid air on cold surfaces 53 
(IAQ Report - Nature and Causes of Building Dampness). Dampness and the presence of visible 54 
mold have been consistently associated with adverse human health outcomes, including respiratory 55 
and allergic effects (Mendell et al., 2011, Quansah et al., 2012, Fisk et al., 2010, Jaakkola et al., 56 
2013). Hypotheses to potentially explain these associations include a combination of exposure to 57 
specific microbial agents (Institute of Medicine, 2004), varied gene expression and metabolism 58 
(Hegarty et al., 2018), and the release of fungal metabolites including mycotoxins (Miller et al., 59 
2014) and microbial volatile organic compounds (mVOCs) (Roze et al., 2013). 60 

Although fungal growth on building materials has been studied for decades (Hyvärinen et 61 
al., 2002, Gravesen et al., 1999, Hoang et al., 2010; Pasanen et al., 1992), only a limited number 62 
of studies have used molecular techniques to investigate bacterial and fungal growth, microbial 63 
community dynamics, and/or metabolic activity on common buildings materials exposed to liquid 64 
water and/or high humidity conditions (Coombs et al., 2017). Therefore, we characterized the 65 
bacterial and fungal concentration and diversity, as well as the production of microbial metabolites, 66 
on samples of four common building materials incubated at ~94% relative humidity: oriented 67 
strand board (OSB), medium density fiberboard (MDF), gypsum wallboard, and mold-resistant 68 
gypsum wallboard. We varied the BE source of inoculation and purposely wet half of the samples 69 
to assess how indoor microbial sources and the presence of liquid water influence community 70 
structure and metabolite profiles of these materials over multiple time points. We used several 71 
techniques to quantify microbial growth and microbial community composition and functional 72 
metabolism including: bacterial and viral like particle counts, image processing of visible mold 73 
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growth, qPCR, amplicon sequencing of 16S and ITS rRNA marker genes, and metabolomics. 74 
Results from these different methods were integrated via co-occurrence network approaches, 75 
which provided insights into microbial community organization and environmental interaction. 76 
Improved understanding of how bacterial and fungal metabolism is shaped by environmental 77 
properties (e.g., the presence of water, surface material composition) and inoculating source (e.g., 78 
building location, occupancy patterns) could have important implications for architectural design, 79 
construction, building management, and occupant health (Rand et al., 2017). Therefore, 80 
determining the microbial metabolic dynamics in these high RH environments should be an 81 
important research priority. 82 
 83 
 
RESULTS  84 
 85 
Experimental Setup 86 
 87 
Our study used four building materials types: oriented strand board (OSB), medium density 88 
fiberboard (MDF), regular gypsum wallboard, and mold-resistant (i.e., mold-free, or ‘MF’) 89 
gypsum wallboard. Coupons of 5 cm × 5 cm of each material type were naturally inoculated at 90 
two different locations for about 50 days each. After the inoculation period concluded, the time 91 
that occupants were coming in close proximity was reported with similar values, a 0.16% and 92 
0.18% of total time. The material coupons were sampled for off-line biological and chemical 93 
analysis at 7 different sampling time points, referred to here as TP0, TP1, TP2, TP3, TP4, TP5, 94 
and TP6. The initial samples (TP0) were taken just after retrieving the samples from the field 95 
inoculation and represent non-wetted, naturally inoculated samples previously held at normal 96 
residential humidity condition. After inoculation, half of each set of materials from each location 97 
were submerged in tap water in separate pans for ~12 hours to simulate the process of wetting of 98 
building materials due to a flood or leak. Different sampling strategies were tested and after 99 
statistical verification all samples of the same type were combined as technical replicates (Figure 100 
S1). Microbial datasets were later rarefied to same sequencing depth: 1,000 reads for bacteria and 101 
10,000 reads for fungi. Unfortunately, rarefaction removed all bacterial samples from MDF 102 
materials, which had very low read counts. After rarefying the data, a comparison of the control 103 
and non-control samples reflected that control samples looked very similar in bacterial and fungi 104 
diversity than non-control samples, (mantel  >= 0.49 and >= 0.43 for location 1 and location 2 105 
respectively, all with a p < 1E-05), perhaps because air could still transmit through the non-106 
hermetic foil cover and microbes from the interior of the wood (not killed with the sterilization) 107 
could have found their way to the surface. Highlighting that the coupon itself could still be an 108 
important contributor to microbial diversity for all samples. From these results, the control location 109 
was treated indistinctly than the other two locations. For more details see Materials and Methods 110 
section.  111 
 112 
Visible growth, particulate counts and qPCR 113 
 114 
Visible microbial growth occurred much faster and covered a far greater percentage of the surface 115 
area on wet tiles than on non-wetted tiles (Figure 1A). OSB and MDF had the greatest coverage 116 
and fastest growth: all wet OSB and MDF tiles reached at least 50% visible microbial coverage by 117 
day 20, while non-wetted tiles of these types reached < 25% coverage. No growth was ever visible 118 
on the mold-resistant gypsum tiles. Epifluorescence microscopy revealed that counts of bacterial 119 
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like particles (BLP) and viral-like particles (VLPs) calculated on samples TP0 to TP3 were 120 
strongly correlated (R2 = 0.65, p = 2.8e-23) (Figure 1B), with VLP counts statistically lower than 121 
bacterial counts in all samples (ANOVA <=10-4) and in both wet and non-wet conditions (two 122 
sided non-parametric t-test p <=0.035) Figure 1C). This is in keeping with previous research that 123 
found very low VLP:bacteria ratios in the indoor environment (Prussin et al., 2015, Gibbons et al., 124 
2015). In our dataset, the mean VLP-bacteria ratio was 0.86 ± 0.07, with a minimum of 0.61 and 125 
a maximum of 1.02 across all samples. 126 
 127 
While BLP (only estimated for TP0 to TP3 samples) and bacterial qPCR agree that wetted samples 128 
had higher counts than non-wetted samples, cell counts inferred from these two methods 129 
drastically differ for different material types and over time. Most notably, the MF-gypsum had the 130 
greatest BLP counts but also the lowest 16S rRNA qPCR counts (6-fold or more lower than other 131 
materials). Moreover, the BLP cell counts were essentially constant over time, while qPCR counts 132 
steadily increased, with TP6 being 4-fold greater than TP1 and 209-fold greater than TP0 counts. 133 
To further confirm the differences, we calculated the overall correlation between paired bacterial 134 
qPCR and BLP counts and the results were not significant, emphasizing different biases for each 135 
method.  136 
 137 
For fungal qPCR we observed MF-gypsum had the lowest abundance, while all other materials 138 
had a range of 20 to 118-fold increase over MF-gypsum. Wetted samples revealed a 4-fold increase 139 
in qPCR read abundance over non-wetted samples. Also, the qPCR read abundance increased 140 
steadily over time, in such a way that TP6 was 11-fold greater than TP1 and 750-fold greater than 141 
TP0 counts. 142 
 143 
Bacterial, fungal and metabolite diversity 144 
 
The bacterial and fungal communities in our study tended to decrease in diversity over time, as 145 
measured by the Shannon Index (Shannon H’), which incorporates both the richness and evenness 146 
of the community.  Given that our data was rarified to an even depth before analysis, this decrease 147 
in diversity is indicative of the increasing relative abundance of certain community members, and 148 
suggests the preferential proliferation of certain taxa in the inoculating community. In our 16S 149 
dataset, wet samples experienced faster declines in diversity than non-wetted samples, and were 150 
significantly lower in diversity at the end of the study than non-wetted samples (Figure 2A), 151 
suggesting that certain bacterial taxa grew quickly in the wet environment and became dominant 152 
within the community. In our ITS dataset, we also observed a faster decline in diversity in wet 153 
samples, although wet samples were significantly more diverse than non-wetted samples by the 154 
end of the study (Figure 2B). The decrease in fungal diversity in wetted samples was not 155 
monotonic, with an initially steep decline and a subsequent increase. This may reflect fast growth 156 
by a small number of taxa that quickly dominated the community, followed by the growth of other 157 
taxa with slower growth rates. Similar patterns are observed when looking at the diversity changes 158 
for each individual material (Figure S2) with the exception of a lack of bacterial growth for wet 159 
MDF samples and reduced bacterial growth on dry OSB after the study was half way completed. 160 
In contrast, we observed no significant changes in the metabolic diversity over time for either wet 161 
or non-wetted samples (Figure 2C).  162 
 
Microbial Compositional Changes 
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 5 

 
Across all samples, the diversity of bacteria within the community was significantly correlated to 163 
the diversity of fungi (Corr = 0.28, p=0.0003) (Figure 3A). Interestingly, neither bacterial nor 164 
fungal diversity was significantly correlated to the metabolite diversity, perhaps because of a 165 
narrower range of observed metabolite diversity compared to the taxonomic datasets. We observed 166 
striking changes in the relative abundance of certain bacterial (Figure 3B) and fungal (Figure 3C) 167 
genera over time, which were largely dependent on wetting condition. In the 16S rRNA dataset, 168 
Bacillus almost immediately came to dominate wet samples, with an average relative abundance 169 
as high as 50% after the 2nd time point, even though it represented a negligible part of the 170 
community at the start of sampling. Bacillus abundance also increased in non-wetted samples, 171 
although to a much smaller extent. A similar pattern was observed for the genera Pseudomonas 172 
and Erwinia, which also represented a very small fraction of community diversity at the start of 173 
sampling but quickly increased in abundance in wet (but not non-wetted) samples. Interestingly, a 174 
very large percentage of reads from early time point samples, both wet and non-wet, were of 175 
chloroplast origin. In wet samples, the number of chloroplast reads quickly declined as the 176 
bacterial genera proliferated. In non-wetted samples, chloroplast read abundance remained high, 177 
and dominated the sequencing effort to such an extent that discarding those reads would have 178 
dropped the majority of non-wetted samples below the rarefaction depth. While these likely 179 
represent residual DNA signatures from the plant material used to construct each tile material, we 180 
have chosen to keep them in the analysis. Figure S3A shows how this dynamic slightly vary for 181 
each different material type. 182 
 
The majority of reads in the ITS dataset that could be taxonomically assigned to a genus belonged 183 
to one of two genera: Eurotium and Penicillium. Eurotium abundance was negligible at the 184 
beginning of community succession but quickly flourished in non-wetted samples, becoming the 185 
most abundant known genus in those samples by time point 2 (Figure 3C). By contrast, Eurotium 186 
did not become abundant across wet samples. Penicillium abundance was, on average, consistently 187 
higher in wet samples than in non-wetted samples, and its abundance was significantly anti-188 
correlated to Eurotium relative abundance (corr = -0.12, p = 0.033). These taxa-specific changes 189 
were mirrored by community level differentiation, where wet vs. non-wetted tiles of the same 190 
material and inoculating location became significantly more dissimilar (Bray Curtis, Spearman’s 191 
Correlation, p<0.01) in both their bacterial and fungal community structure over time (Figure 3D). 192 
Figure S3B shows how this dynamic slightly vary for each different material type. 193 
 194 
Environmental Factors Associate with Microbial and Metabolite Diversity 195 
 
We used ANOSIM to calculate the factors significantly correlated with differences in the microbial 196 
communities across our three datasets. Bray-Curtis dissimilarity was calculated for the 16S, ITS, 197 
and metabolite datasets, and ANOSIM was used to determine whether distances between samples 198 
of the same metadata factor (i.e. wetting condition, inoculating location, and material) were 199 
significantly lower than distances between samples of different types (Figure S4). In our 16S 200 
rRNA dataset, wetting condition, location, and material each had a significant impact on bacterial 201 
community structure (all p <0.0001 based on 105 randomized permutations), with wetting having 202 
the most pronounced effect (R = 0.418). In general, non-wetted samples tended to be more similar 203 
to each other than wet samples were to each other, which is likely due to the dominance of a single 204 
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chloroplast OTU. Material had a less pronounced effect (R=0.247) and location had the least 205 
evident effect on bacterial community structure (R=0.133).  206 
 
Interestingly, fungal community structure was not significantly described by variance in material, 207 
while location had a relatively weak (R = 0.129) though highly significant (p < 0.0001) association, 208 
suggesting that variations in fungal communities that settle on materials (which have been shown 209 
to be driven largely by outdoor fungal communities, e.g., Adams et al., 2013) influence community 210 
structure upon experiencing wetting and high RH conditions. Wetting condition was by far the 211 
most influential factor influencing fungal community structure (R = 0.564, p < 0.0001), and in 212 
contrast to the bacterial data, wet samples were much more similar to each other than were non-213 
wetted samples. Metabolite diversity within the community was also affected by wetting condition 214 
(R = 0.276, p < 0.0001), with non-wetted samples more similar to each other than wet samples. 215 
Material also played a significant role in metabolite diversity (R = 0.231, p < 0.0001), and mold-216 
free gypsum samples were particularly metabolically similar, likely due to the lack of fungal 217 
growth and the underlying chemical composition of the material. Inoculating location had no 218 
significant effect on the diversity of metabolites despite having a significant effect on both the 219 
bacterial and fungal community membership. We visualized sample similarity using non-metric 220 
multi-dimensional scaling (NMDS) ordination based on Bray-Curtis dissimilarity (Figure 4). We 221 
converted material, location, and wetting condition into binary variables (1 = yes, 0 = no), which 222 
were fit onto the ordination, keeping only the significant vectors (R2 values for each vector and 223 
their significance is presented in Table S1). Visually, both bacterial and fungal beta diversity was 224 
more differentiated by wetting condition due to the significant increase in growth on wetted tiles, 225 
while metabolites were visually differentiated by both wetting condition and surface material, 226 
likely due to the underlying chemistry of the material and then the subsequent metabolic activity 227 
of the microbes when tiles were wetted. 228 
 229 
Bacterial and fungal network co-occurrence 230 
 
Using SparCC (Friedman & Alm, 2012), an algorithm developed to quantify correlations on 231 
microbial compositional data (data that has been subject to rarefaction), and a correlation threshold 232 
>0.4, uncovered co-occurrence patterns between taxa from each kingdom. In the bacterial network 233 
(Figure S5) three co-occurrence clusters were identified, the Bacillus cluster, Pseudomonas 234 
cluster, and a cluster comprising chloroplasts and mitochondria. As expected these groups 235 
correspond with the most abundant taxa. On all wet materials and on all samples of gypsum (both 236 
wet and non-wet), 95% of associations between Bacillus and Pseudomonas were negative 237 
correlations (Figure S6 and S7). On non-wetted OSB, MDF and MF-Gypsum there were no 238 
negative correlations between Pseudomonas and Bacillus. Interestingly, there is a dramatic 239 
increase in the absolute number of significant co-occurrence relationships between bacterial OTUs 240 
in wet (74) versus non-wetted samples (48), which is a 54% increase in the number of edges. In 241 
the fungal correlation network, Penicillium OTUs co-occurred with many unknown fungal genera, 242 
while OTUs corresponding to Aspergillus and its subset, Eurotium, maintained monophyletic 243 
clusters (Figure S8). As with the bacterial co-occurrence networks, fungal OTUs associated with 244 
wet tiles had negative correlations among each other, although the number was much smaller than 245 
for bacteria. Only 7 fungal OTUs were negatively correlated on wet materials, mainly between 246 
unknown genera and an abundant Penicillium OTU (Figure S9). Strikingly, unlike bacteria, the 247 
absolute number of significant co-occurrence relationships between fungal OTUs declined in wet 248 
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(555) versus non-wetted samples (1,133), which was a 104% decrease in the number of edges, 249 
suggesting an inverse co-abundance response between bacteria and fungi during growth. 250 

To better understand the co-associations between bacteria and fungi, 16S and ITS OTUs were co-251 
correlated in a single network. A random walk-based method uncovered four distinct modules 252 
within the network, with a modularity of 0.45 (Figure 5A). In general, the taxa present in each 253 
sample tended to cluster within an individual network module (median sample association to 254 
module = 0.88). We correlated various metadata factors to module membership (Figure 5B) and 255 
observed that wetting condition had a significant impact on which samples dominated each 256 
module: modules 1 and 3 were associated with wet samples, while modules 2 and 4 were associated 257 
with non-wetted samples (Figure 5C). Location 1 samples dominated module 3, while Location 2 258 
samples dominated module 1 (Figure 5D). Overall, wetting condition appears to be the most 259 
important factor driving community succession, resulting in two different community structures 260 
even when the source community is identical. We also visualized the nodes that were assigned to 261 
the genera previously discussed in Figure 3. Nodes in the bacterial genera Bacillus, Pseudomonas, 262 
and Erwinia, as well as the fungal genus Penicillium, were nearly exclusively enriched in the two 263 
wet-associated modules (1 and 3), while chloroplast reads and Eurotium nodes all clustered within 264 
the non-wetted modules (2 and 4; Figure 5E).  265 

Metabolite network co-occurrence 266 
 
A co-occurrence network correlation was calculated for the sample metabolite profiles (Figure 6). 267 
As these data are not compositional, we built this network using significantly positive Spearman 268 
correlations between nodes and included only the 1,000 most abundant metabolites in the dataset. 269 
This resulted in a network with 149,316 edges (density = 0.30) when the significance threshold 270 
(alpha) was set to 0.001. Using the same module discovery method described above, we uncovered 271 
7 distinct modules (modularity = 0.32), excluding 12 metabolites around the periphery of the 272 
network that clustered into modules of <5 nodes. Three modules (3, 4, and 7) were significantly 273 
correlated with wet samples, while modules 1, 2, 5 and 6 were associated with non-wetted samples. 274 
There was almost no correlation between network modules and inoculating locations, further 275 
suggesting that while location (and hence the primary inoculating microbes) may influence 276 
community taxonomic diversity, it does not appear to strongly affect metabolic diversity during 277 
growth. The abundance of metabolites in module 7 were anti-correlated with all other modules, 278 
but specifically with module 2 (corr =-0.87, p<0.001). Module 7 is dominated by wet samples at 279 
later time points, suggesting that community succession in wet environments may converge to a 280 
common metabolic profile, which is wholly distinct from the non-wetted samples in module 2. 281 
 282 
Metabolite features can predict sample type 283 
 284 
Random Forest analysis was employed to determine the metabolites associated with various 285 
sample types. Models classifying whether a sample was wet had an average accuracy of 98% (error 286 
ratio = 25, with expected random error 0.5), and wet-samples were never misclassified as a non-287 
wetted sample in any of the 10 model iterations. Models classifying samples based on material 288 
were similarly successful, with an average accuracy of 97% (error ratio = 25, with expected 289 
random error 0.75). Metabolomics models were much less successful at predicting the inoculating 290 
location, with a mean success of 72% (error ratio = 2.36 with expected random error 0.67). We 291 
sought to gain insight into the chemical composition of metabolites that comprise the signatures 292 
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observed in these models. Feature importance scores were assigned to compounds based on their 293 
relative contributions to predicting sample type. For both the wetting condition dependent and 294 
material dependent groups, we selected the 100 highest-scoring metabolite features for further 295 
examination and chemical identification (Figure S10). Wet samples were enriched with 98 of the 296 
100 top-scoring metabolites that differentiated wet and non-wetted. None of these compounds 297 
were automatically identified by mzCloud, so the metabolites were analyzed via external database 298 
searches, and compound classes were designated based on fragmentation spectra. A diverse set of 299 
compound families was observed, including compounds likely to be carbohydrates and 300 
glycoconjugates, fatty acids, prenol lipids, sterol lipids, polyketides, and glycerolipids, as well as 301 
several pyridine derivatives including a form of vitamin B6, indicative of microbial activity and 302 
growth and compounds associated with the surface materials.  303 
 304 
Metabolites that were highly enriched in wet vs non-wetted conditions underwent additional 305 
manual analysis for confident structural identification. One of these metabolites was identified as 306 
Nigragillin (C13H22N2O, accurate mass = 222.1723), which is a fungal alkaloid first identified in 307 
Aspergillus niger (Isogai et al., 1975). Nigragillin abundance was significantly enriched in wet 308 
MDF and OSB samples (505- and 280-fold, respectively) compared to non-wetted samples. 309 
However, no significant differences in nigragillin were observed for gypsum or MF-gypsum. In 310 
both wet MDF and OSB the nigragillin concentration increases over time (Figure S11). Another 311 
high-scoring metabolite showed MS/MS fragmentation consistent with Fumigaclavine C 312 
(C23H30N2O2, accurate mass = 366.2291), which is a fungal alkaloid first identified in Aspergillus 313 
fumigatus (Cole et al., 1977). Fumigaclavine C was enriched in wet samples of gypsum, MDF, 314 
and OSB (23-, 26-, and 13-fold increase in comparison to non-wetted samples, respectively), with 315 
equivalent abundance in mold-free gypsum regardless of wetting. While the concentration of 316 
Fumigaclavine C remained flat or increased slowly in most materials, wet gypsum showed a 317 
dramatic increase in abundance at TP3 and 4 (Figure S11).  318 
 319 
Metabolites that were predictive of material type (OSB, MDF, Gypsum and MF-Gypsum) were 320 
also further analyzed to determine how these materials influence the chemical composition of 321 
metabolites. Of these metabolites, 80% eluted with a retention time of >7 minutes, indicating a 322 
skew toward more hydrophobic compounds. This suggests that hydrophobic compounds are more 323 
diverse between the materials and therefore could have greater influence on microbial metabolism 324 
than the ubiquitous hydrophilic components. Two of these metabolites were identified by MzCloud 325 
search: glucose-phosphate, which was about 10-fold less abundant in MF-gypsum compared to all 326 
other materials, and scopoletin, a metabolite produced by the plants with antimicrobial activity 327 
Lerat et al., 2009, Gnonlonfin et al., 2012, Nascimento et al., 2013), which was about 60-fold more 328 
abundant in MDF samples than in other materials and could be influencing the reduced bacterial 329 
growth on this material (Figure S11). Thiabendazole and azoxystrobin, known anti-fungal 330 
compounds (Clausen & Yang, 2007, Balba, 2007), were highly overrepresented on MF-Gypsum, 331 
333 and 595-fold respectively more abundant than the average content for the other three materials, 332 
and as such are likely some of the active compounds in MF-Gypsum. 333 
 334 
Microbe-metabolite co-occurrences 335 
 336 
The abundances of Nigragillin and Fumigaclavine C were each significantly positively correlated 337 
with a fungal OTU annotated to the phylum Ascomycota (corr = 0.66, FDR p = 0.0004), which 338 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/444521doi: bioRxiv preprint 

https://doi.org/10.1101/444521
http://creativecommons.org/licenses/by/4.0/


 

 9 

contains species known to produce such alkaloids. Both Nigragillin and Fumigaclavine C have 339 
been reported to display antibacterial activity (Magdy et al., 2017 & Pinheiro et al., 2013). 340 
Interestingly, Nigragillin was negatively correlated with the abundance of Bacillus and 341 
Pseudomonas OTUs; this could suggest fungal competition for space and resources (Mille-342 
Lindblom et al., 2006) against bacteria, and in the specific case of MDF, when Nigragillin 343 
abundance was greatest no bacterial growth was detected (Figure S2, Figure S11). The abundance 344 
of glucose-phosphate was significantly correlated to the proportion of a dominant 345 
Enterobacteriaceae OTU, a genus which is known to synthesize it (Herter et al., 2006) (corr = 0.72, 346 
FDR p = 0.000002). Thiabendazole was positively correlated with Penicillium abundance (corr = 347 
0.80, FDR p < 10-9). As thiabendazole is prevalent and persistent in the natural environment, this 348 
correlation may indicate the presence of thiabendazole-resistant Penicillium strains colonizing the 349 
material from the built environment (Holmes & Eckert, 1999). 350 
 351 
Co-occurrence networks were constructed between the bacterial OTUs and metabolites (SparCC 352 
correlation of >0.4; Figure S12) to explore further specific microbe-metabolite associations and 353 
possible mechanistic interactions. Significant correlations were observed between Bacillus OTUs 354 
and lipids including fatty acids and monoacylglycerophosphocholine compounds, which are likely 355 
to indicate cell wall and biofilm formation (Diomande et al., 2015, Dubois-Brissonnet et al., 2016). 356 
Interestingly, Bacillus OTUs were also positively correlated to other lipid classes including diols 357 
and flavonoids, which have all been observed to interfere with Pseudomonas biofilm formation 358 
(Kong et al., 2014; Jensen et al., 2014). In addition, the abundance of two fatty acids, one diol, 359 
and azoxystrobin, were positively correlated with Bacillus and negatively correlated with 360 
Pseudomonas. Conversely, scopoletin was positively correlated with Pseudomonas and negatively 361 
correlated with Bacillus (Figure S13). These additional antagonistic compound interactions 362 
between Bacillus and Pseudomonas could represent either competitive interactions between these 363 
organisms or different adaptation to the different materials and wetting conditions. 364 
 365 
DISCUSSION 366 

As expected, wetted materials had higher bacterial and fungal growth rates and were dominated 367 
by a few particular microbes, most notably the bacterial genera Bacillus, Erwinia, and 368 
Pseudomonas and the fungal genera Eurotium and Penicillium. This dominance led to an overall 369 
lower alpha diversity compared to non-wetted tiles. Wetting condition and material type described 370 
the majority of the variance in bacterial, fungal and metabolite structure. Interestingly, each wetted 371 
material showed its own unique microbe-metabolite dynamics.  372 

Gypsum and MF gypsum were mostly colonized by Bacillus, with gypsum being a less selective 373 
environment, which allowed for several bacterial species to thrive on the same coupon 374 
simultaneously, each of them with high relative abundance and apparently sharing both the 375 
physical space and resources. In contrast, MF gypsum prevented most fungal growth and allowed 376 
Bacillus to dominate with little competition. MDF selected for fungal growth primarily, which 377 
allowed for the rapid accumulation of the antibacterial chemical, nigragillin, which is known to be 378 
made by the Aspergillus fungi.  On OSB material, nigragillin and fumigaclavine C, a second 379 
fungal-synthesized antibacterial metabolite, may play important roles in microbial growth 380 
dynamics. Nigragillin, Fumigaclavine C, and Aspergillus relative abundance each gradually 381 
increases over time, whereas the abundance of Pseudomonas declines after the antibacterial 382 
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metabolites reach peak abundance, suggesting a dose dependent response (Figure S11). These 383 
observations bolster our hypothesis that production of antibacterial metabolites by Aspergillus may 384 
inhibit the proliferation of surrounding bacteria. Also, there is a human health risk associated with 385 
the proliferation of the Aspergillus fungi in the BE. While the most common species identified in 386 
our data was Aspergillus penicillioides, a common indoor fungus in damp buildings with known 387 
associations to allergies and asthma (Edwards et al., 2012, Hay et al., 1992), other Aspergillus 388 
species are known to be able to produce mycotoxins (including aflatoxins), molecules that have 389 
been associated with cancer and immunosuppression on humans (Roze et al., 2013).   390 

MOLD-RESISTANT GYPSUM 391 
 392 
Traditional wood-based building materials contain natural polymers such as cellulose and lignin 393 
that are susceptible to degradation by fungal colonization (Gravesen et al., 1999, Pasanen et al., 394 
1992). With some fungi having been shown to produce mycotoxins including aflatoxins that could 395 
affect human health (Roze et al., 2013, Rand et al., 2017), building materials such as mold-resistant 396 
gypsum have been developed, which contain antifungal compounds intended to discourage fungal 397 
growth. We were particularly interested to examine the microbial communities on these surfaces 398 
and as expected, found that fungal growth was diminished on MF-gypsum compared to other 399 
materials. However, it appeared that the scarcity of fungal colonies made way for bacterial species 400 
to flourish with less competition; on non-wetted materials we observed MF-gypsum bacterial 401 
particle counts greater than on the other three materials, and on wetted materials while the MF-402 
gypsum bacterial counts were second to MDF, the abundance level between non-wetted and wetted 403 
tiles, unlike MDF, remained minimally changed. This raises the potential that pathogenic bacteria 404 
colonization could occur on MF-gypsum and if wetted could grow and lead to negative health 405 
outcomes. In terms of metabolite production, thiabendazole and azoxystrobin were some of the 406 
anti-fungal compounds found in high abundance and overall a similar subset of compounds 407 
accounted for most of the metabolite abundance on this material, indicating lower metabolic 408 
diversity when the colonization is dominated by bacterial growth. We also detected a correlation 409 
between thiabendazole and Penicillium, which suggested the persistence of thiabendazole-resistant 410 
fungal strains. 411 
 412 
DIVERSITY AND INTERACTION BETWEEN MICROBES AND ENVIRONMENT 413 
 414 
Additionally, certain lipid metabolites (indicative of biofilm formation) showed significant 415 
positive correlation with both Bacillus and Pseudomonas OTUs, and these lipids were negatively 416 
correlated with the abundance of chloroplast OTUs, indicating that when bacteria and metabolites 417 
indicative of biofilm formation are detected in greater abundance, we see a proportional reduction 418 
in plant-associated signal. Similar to the lipids, metabolites annotated to organic molecules and 419 
vitamins were also negatively correlated with the chloroplast OTUs, which suggests that bacterial 420 
growth, indicated by increased proportion of 16S, cellular counts and associated metabolites, tends 421 
to swamp out the background material-chloroplast signal. We hypothesize that this may be because 422 
these molecules are being produced by bacteria colonizing and forming biofilms on the woody 423 
material. When the relative abundance of the bacteria increases, it reduces our ability to detect 424 
chloroplast sequences (based on a given sequencing depth); as such this negative correlation is 425 
likely due to the increased abundance of the microbes that mediate the production of these 426 
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metabolites, reducing the detection frequency of specific chloroplast OTUs, and not due to some 427 
mechanistic relationship between the wood and these molecules 428 
 429 
MICROBIAL-METABOLITE INTERACTIONS. 430 
 431 
Pseudomonads and Bacillus are often the main contributors to biofilm formation on material 432 
surfaces in the built environment (Ronan et al., 2013; Powers et al., 2015; Raaijmakers et al., 433 
2010). Biofilms are complex extracellular matrices formed by bacteria through the excretion of 434 
lipopeptide biosurfactants, to provide attachment to a surface to support colocalization with a 435 
nutrient source and protection from dehydration and chemical activity. Some of these lipopeptide 436 
biosurfactants produced by Pseudomonas and Bacillus species have been shown to have lytic or 437 
growth-inhibitory activity against many microorganisms such as bacteria, viruses, mycoplasmas, 438 

and fungi (Raaijmakers et al., 2010). Powers et al. demonstrated that Pseudomonas protegens 439 
produces antibiotics that inhibit biofilm formation and sporulation in Bacillus subtilis. They also 440 
found that Pseudomonas putida secretes an unknown inhibitory compound that prevented biofilm-441 
associated gene expression. In our study we demonstrate a number of compounds known to have 442 
potential biofilm inhibitory qualities that also co-correlate with either Pseudomonas or Bacillus 443 
abundance, suggesting potential competitive activity between these organisms. While 444 
Pseudomonas–Bacillus interactions have been shown to be competitive, interspecies interactions 445 
within the genus Bacillus are also important in the formation of biofilms, lipids like hydroxy fatty 446 
acids and mono-acyl-glycerophosphocholines could be building blocks or residual products of the 447 
biofilm creation (Shank et al., 2011, Diomande et al., 2015, Dubois-Brissonnet et al., 2016). 448 
 449 
 450 
CONCLUSION 451 
 452 
The simultaneous collection of environmental, metabolomic and microbial profiles reveals 453 
insights into the chemical signals that may govern BE microbial communities under high humidity 454 
conditions, as well as providing evidence that these the membership compete for space and 455 
resources. Here we show that wetting condition can profoundly alter both fungal and bacterial 456 
community succession, and that the taxa which dominate samples after wetting or exposure to high 457 
humidity are not abundant in non-wetted materials and have little relation to the skin-associated 458 
taxa which dominate samples of indoor environments. After wetting, the microbial community 459 
undergoes a successional trajectory that can result in similar metabolic diversity even when 460 
taxonomic diversity remains variable. We further show that while material choice significantly 461 
influences bacterial diversity, the same is not true of fungal diversity. In summary, BE microbial 462 
ecology once seen as a wasteland (Gibbons, 2016) could rather be seen as a desert environment 463 
mostly formed with smaller assemblages that can rapidly become an active ecologically dynamic 464 
community if water, in liquid or vapor form, is added. When a material experience high moisture 465 
conditions, both fungal and bacterial growth rapidly accelerate and the metabolites associated with 466 
their adaptation to different surface materials and competition for resources demonstrate ready 467 
made eco-evolutionary adaptation to this sporadic availability of a crucial resource; this 468 
phenomenon is very similar to what has been observed in real desert soil microbiomes (Neilson et 469 
al., 2017), as well as in very different ecosystems, such as sediments exposed to oil pollution 470 
(Handley et al., 2017). 471 
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Methods 472 
 
Test materials  473 

Four building materials were used in this study: oriented strand board (OSB), medium density 474 
fiberboard (MDF), regular gypsum wallboard, and mold-resistant (i.e., mold-free, or ‘MF’) 475 
gypsum wallboard. All samples were purchased new from a home improvement store in Chicago, 476 
IL. The building materials were cut into 5 cm × 5 cm coupons for testing. The material coupons 477 
were sterilized by UV irradiation for 20 minutes followed by surface cleaning with a 70% ethanol 478 
solution.  479 

Inoculation  480 

The building material coupons were naturally inoculated by placing them uncovered on the floor 481 
inside two residences for a period of approximately 50 days each. The goal was to allow for natural 482 
settling of microbes from each indoor environment onto the material surfaces. Another set of test 483 
coupons was covered with aluminum foil and kept in the laboratory for the same duration to be 484 
used as a control group. Each set of test coupons included 44 coupons for each type of building 485 
material (i.e., 176 coupons in total) to allow for multiple subsequent sampling strategies. One set 486 
of test coupons was placed inside a 6th floor apartment unit with two adult occupants and a medium 487 
sized dog located in downtown Chicago, IL (Location 1). The other set of materials was placed 488 
inside a 2-story single-family residence without any pets near the main campus of Illinois Institute 489 
of Technology, approximately 8 km south of the downtown residence (Location 2). During the 490 
inoculation periods, built environment metadata (Ramos & Stephens 2014) were collected in each 491 
residence, including temperature (T) and relative humidity (RH) using Onset HOBO U12 data 492 
loggers and occupant presence within ~1 m range of the samples using Onset UX90 data loggers. 493 
Coupons at a third location (the Built Environment Research Laboratory at the of Illinois Institute 494 
of Technology) were covered with aluminum foil to minimize natural inoculation, serving as a 495 
control group. 496 

Wetting and incubation  497 

After inoculation, half of each set of materials (i.e., 22 coupons each) from each location, as well 498 
as 22 coupons from the control group, were submerged in sterilized tap water in separate pans for 499 
~12 hours to simulate the process of wetting of building materials due to a flood or leak. The other 500 
half of each set of materials (i.e., the other 22 coupons each) from each location and the other 22 501 
coupons from the control group were not submerged in water. Next, to encourage fungal growth 502 
on all of the building materials, all of the material coupons were placed in trays (each tray 503 
contained all 22 coupons of one type of material from one location or control group) and were 504 
incubated at room temperature (24 ± 2.7°C) inside a static airtight chamber (0.9 m × 1.2 m × 0.4 505 
m). Salt solutions (potassium nitrate) were used to maintain high RH near ~94% for the duration 506 
of the experiment. Temperature and RH in the chamber were also recorded using Onset HOBO 507 
U12 data loggers.  508 

Sampling procedures  509 

The material coupons were sampled for off-line biological and chemical analysis at 7 different 510 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/444521doi: bioRxiv preprint 

https://doi.org/10.1101/444521
http://creativecommons.org/licenses/by/4.0/


 

 13 

sampling time points, referred to here as: TP0, TP1, TP2, TP3, TP4, TP5, and TP6. The initial 511 
samples (TP0) were taken just after retrieving the samples from the field inoculation and represent 512 
non-wetted, naturally inoculated samples previously held at normal residential humidity 513 
conditions. The remaining sampling time points occurred every ~5 days. At each time point, a new 514 
coupon of each material from each condition that had never been swabbed before was swabbed, 515 
while duplicates of previously un-swabbed samples were also swabbed periodically (at TP0, TP2, 516 
TP4, and TP6) for comparison. Two samples (‘TP0’ and ‘TP0 duplicated’) were also swabbed at 517 
every time point to investigate whether repeatedly swabbing the surfaces impacted the results. 518 
Duplicates of both previously swabbed and previously un-swabbed samples were also included to 519 
investigate whether or not natural inoculation and subsequent growth was evenly distributed across 520 
multiple coupons. Figure S1 illustrates the experimental setup and Figure S14 shows coupons’ 521 
photographs at TP5 and TP6 for each one of the three locations. Details of swabbing procedure at 522 
each time point are described below.  523 

First, sampling reagents were prepared as follows. Phosphate-buffered saline (PBS) was used for 524 
microbial samples that were to be analyzed for DNA and formaldehyde was used for microbial 525 
samples that were to be analyzed by microscopy. For PBS, 500 μl 1X PBS was added to 1.7 ml 526 
microtubes for each sample to be collected. For formaldehyde, 100 μl 4% paraformaldehyde was 527 
added to 1.7 ml microtubes for each sample. Microcentrifuge tubes were filled with ethanol 528 
solution (200 μl 50% EtOH) to preserve samples for surface chemistry/metabolomics analysis.  529 

For subsequent DNA sequencing and analysis, the entire surface of the test coupons was swabbed 530 
using two BD Screw Cap SWUBETM Polyester swabs for approximately 20 sec. The same 531 
researcher swabbed every time to keep the swabbing process consistent. One of the double swabs 532 
was placed into the tube with PBS and frozen for shipping for subsequent sequencing. The tip of 533 
the other of the double swabs was placed into microtubes and the swab tips were vortexed for 10 534 
seconds. 100 μL of sample buffer was removed added to the tube containing 100 μL 4% 535 
paraformaldehyde for fixation. These fixed samples were stored in a refrigerator at 4°C and then 536 
sent to the San Diego State University team for running numerical counts of cells and virus 537 
particles using microscopy.  538 

For surface and microbial chemistry analysis (i.e., metabolomics), another test coupon was 539 
swabbed using a cotton-tipped applicator that is dipped in ethanol (Petras et al., 2016). The end of 540 
the swabs were cut directly into pre-prepared collection tubes, stored at 4 ̊C for 2-3 hours, and then 541 
stored at -20 ̊C overnight. Swabs were then removed with clean forceps the next morning, then re-542 
sealed into the microcentrifuge tubes and sent to the Northwestern University team on ice at -20 ̊C 543 
or lower. Overhead photos of each tray of coupons were also taken at each time point for image 544 
analysis using ImageJ to calculate the percentage of visible microbial growth coverage (Hoang et 545 
al. 2010). 546 

Viral-like particle and bacterial microscopy counts  547 

Epifluorescence microscopy was used to ensure that all samples contained bacteria and virus-like 548 
particles and to estimate their abundance. 100 μL of the paraformaldehyde-fixed samples were 549 
resuspended into 5 mL of sterile 0.02 μm filtered water. Each suspended sample was then filtered 550 
onto a 0.02 μm Whatman Anodisc filter membrane (Thurber et al., 2009). The filters were stained 551 
with 1X SYBR Gold and incubated for 10 minutes in the dark. Each filter was washed and mounted 552 
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onto slides to be observed. Visualization was performed using a QImaging Retiga EXi Fast Cooled 553 
Mono 12-bit microscope and Image-Pro Plus software was used to collect digital images and 554 
estimate VLP and bacterial abundances. 555 

Metabolomics analysis 556 
 
Samples were analyzed by High-Performance Liquid Chromatography and High-Resolution Mass 557 
Spectrometry and Tandem Mass Spectrometry (HPLC-MS/MS). Specifically, the system 558 
consisted of a Thermo Q-Exactive in line with an electrospray source and an Agilent 1200 series 559 
HPLC stack including a binary pump, degasser, and autosampler, outfitted with a column (Waters 560 
XBridge BEH Shield RP18, 100x2.1 mm, 5µm particle size with matching guard). The mobile 561 
phase A was H2O with 0.1% Formic Acid; B was Acetonitrile with 0.1% Formic Acid. The 562 
gradient was as follows: 0-0.5 min, 98% A; 5 min, 80% A; 10-10.5 min, 5% A; 10.6-15 min, 98% 563 
A, with a flow rate of 400 μL/min. The capillary of the ESI source was set to 275 °C, with sheath 564 
gas at 40 arbitrary units and the spray voltage at 4.0 kV.  In positive polarity mode, MS1 data was 565 
collected at a resolution of 35,000.  The precursor ions were subsequently fragmented using the 566 
higher energy collisional dissociation (HCD) cell set to 30% normalized collision energy in MS2 567 
at a resolution power of 17,500. Data were processed with Compound Discoverer 2.0 (Thermo 568 
Fisher) with MS/MS metabolite identifications made by comparing experimental MS/MS spectra 569 
with library spectra from MZCloud (lower cutoff score of 90% match).  570 
 571 
For the metabolites that were selected for more in-depth characterization, classification of structure 572 
or substructure was performed by searching databases such as the Dictionary of Natural Products, 573 
the LIPID MAPS Structure Database, and GNPS (Global Natural Products Social Molecular 574 
Networking). Predicted structures resulting from a matched intact mass (≤10 ppm error) were 575 
subsequently validated through manual analysis of fragmentation mass spectra. 576 
 577 
Metabolite differential abundances (fold calculations) were calculated from Compound Discoverer 578 
median peak areas for each compound including all three sampled locations. 579 
 580 
DNA extraction and sequencing 581 

To perform DNA extraction, the Qiagen DNeasy Powersoil HTP kit was used with a modified 582 
protocol optimized for low-biomass samples. Swab tips were inserted into each well of the bead 583 
plate, and then cut off using a sterilized wire cutter. The manufacturer’s protocol was then 584 
followed, with the following modifications: before cell lysis, the bead plates (containing beads, 585 
bead solution, swabs, and the C1 solution) were heated for 20 minutes at 60°C in a water bath. 586 
Additionally, the protocol steps using solutions C2 and C3 were combined into a single step, by 587 
adding 150 μl each of C2 and C3 together to the lysed sample in the 1 ml plate. 588 

The DNA obtained from the DNA extraction was used for both high-throughput 16S/ITS 589 
sequencing, and qPCR. The 16S sequencing targeted the V4 region of the bacterial 16S rRNA 590 
gene, using the primer pairs 515F/806R. The ITS sequencing targeted the highly variable fungal 591 
internal transcribed spacer region located between the 5.8S and 18S rRNA genes. Both primer sets 592 
used the same reaction mix and thermocycler instructions: Reaction mix: 9.5 μL of molecular 593 
biology grade H2O, 12.5 μL of Accustart II PCR Toughmix, 1 μL each of forward and reverse 594 

primers at 5 μM, and 1 μL of sample DNA for a total reaction volume of 25 μL.  595 
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To make both the 16S and ITS amplicons, the following PCR program was used: Initial denaturing 596 
step at 94°C for 3 minutes, followed by 35 cycle of: 94°C for 45 seconds, 50°C for 60 seconds, 597 
and 72°C for 90 seconds, followed by a final extension step of 72°C for 10 minutes. The resulting 598 
amplicons were quantified using the Picogreen dsDNA binding fluorescent dye on a Tecan Infinity 599 
M200 Pro plate reader and pooled to 70 ng DNA per sample using the Eppendorf epMotion 5075 600 
liquid handling robot. Primers and PCR reagents were removed using Agencourt AMPure beads, 601 
and then the clean amplicon pool was sequenced at Argonne National Laboratory’s Environmental 602 
Sample Preparation and Sequencing Facility, following the Earth Microbiome Protocol (Caporaso 603 
et al., 2011). Sequencing was performed on an Illumina Miseq using V3 chemistry, generating 604 
2x150nt reads. 605 

qPCR was performed using a Roche LightCycler 480 II. The 515F/806R primer pair was used 606 
again for amplification, using a mix of 10 μL Light Cycler 480 SYBR Green I Master mix, 6 μL 607 
of molecular biology grade H2O, 1 μL of 515F primer (10 μM), 1 μL of 806R primer (10 μM), 608 

and 2 μL of template DNA for a total of 20 μL per reaction. The following thermocycler conditions 609 
were used: (1) 95°C for 5 minutes, (2) 95°C for 10 seconds, (3) 45°C for 45 seconds, (4) Measure 610 
fluorescence, with steps 2 through 4 repeated 50 times. To determine the copy number of the 16S 611 
gene (and therefore the number of organisms per swab), a standard curve was generated using a 612 
serial dilution of a plasmid containing the E. coli 16S rRNA gene. 613 

 614 
Treatment of Technical Replicates 615 
 
We used Mantel test to determine whether the bacterial communities on replicate tiles (tiles on the 616 
same tray sampled at the same time) significantly resembled each other and preserved patterns of 617 
beta-diversity. We began by calculating the Bray-Curtis dissimilarity between each pair of samples 618 
taken from the same tile type using the beta_diversity.py function from the software QIIME 1.9.1 619 
(Caporaso et al., 2010), producing dissimilarity matrices for each sampling type. Then the Mantel 620 
test and false discovery rate adjustment was performed using the mantel and p.adjust functions in 621 
the Vegan and stats R packages. For all comparisons between the sampling types the mantel 622 
statistic (which measures the stress in the fit of the two matrices) was significantly high (mantel  623 
>= 0.67 for fungi and >= 0.5 bacteria (all p < 1E-05) (Table S2 (Fungi) and S3 (Bacteria)). Based 624 
on the highly significant resemblance between tile types, we treated all samples of the same type 625 
as technical replicates, meaning that all combinations of material, location, wetting condition, and 626 
time point had either 2 (time point 0), 3 (time points 1, 3, and 5), or 4 (time points 2, 4, and 6) 627 
replicates.  628 
 
Rarefaction and statistical analyses 629 

After sequencing and sample merging, bacterial and Fungi OTU tables were rarefied to 1,000 and 630 
10,000 reads respectively for statistical analyses. Rarefaction and statistical analyses were 631 
performed using R. 632 

Random forest analyses 633 

Random forest models were implemented using the “randomForest” R package. Samples from 634 
timepoint 0 were removed from the dataset. Models were built with 1000 trees and 10-fold cross 635 
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validation. For each of the 10 models for each metadata criterion, a randomly drawn 70% of 636 
samples (100 samples) were used for model training and the remaining 30% (44 samples) were 637 
used for validation.  638 

NMDS 639 

We visualized sample similarity using non-metric multi-dimensional scaling (NMDS) ordination 640 
based on Bray-Curtis dissimilarity. Metadata vectors were fit onto the ordination using the envfit 641 
command in the Vegan R package. We converted material, location, and wetting condition into 642 
dummy variables (1 = yes, 0 = no) and, in the case of the bacterial and fungal datasets; also fit 643 
vectors of relative abundance for the common genera described in Figure 3. We assessed 644 
significance of each of the vectors using 105 permutations, and removed non-significant vectors 645 
from the figure. The R2 values for each vector and their significance is presented in Table S1 646 

Co-occurrence networks 647 

Traditional correlation networks are unsuited to genomic survey data as these data are relative, 648 
rather than absolute, measures of community composition. Since the relative abundances of all 649 
taxa within each sample must sum to 1, the fractions are not independent and will often exhibit 650 
negative correlations to each other regardless of the true correlation in absolute abundance. To 651 
avoid these compositional effects, we generated our networks using SparCC (Friedman & Alm, 652 
2012), a correlation metric based on log-ratio transformed data that is specifically suited to 653 
compositional genomic surveys. Pseudo-p values for each correlation were generated through 654 
comparison from 100 to 1,000 bootstraps of the permuted OTU table.  655 

For the same kingdom and microbe-metabolite networks only samples where either bacteria or 656 
fungi and metabolites were found in detectable levels after rarefaction were used (N=83, N= 91 657 
respectively). Additionally, only bacterial OTUs with >9 reads, fungi OTUs with >99 reads, and 658 
metabolites with > 5’000,000 abundance in the rarified dataset were used for a total number of 630 659 
bacterial OTUs, 352 fungi OTUs and 426 metabolites. Figures were generated using CAVNet R 660 
package (Cardona, 2017) and only displayed the higher correlation threshold (positive or negative) 661 
greater than 0.4. 662 

For the network encompassing both bacteria and fungi, the OTUs reads threshold remained the 663 
same but only samples with both 16S and ITS data were kept (N = 153) producing a new subset 664 
of bacterial and fungi OTUs, 590 and 581 OTUs respectively. This dataset produced a co-665 
occurrence network with 1,171 nodes. Only positive correlations with a pseudo-p < 0.05 were 666 
included, resulting in a network with 33,509 edges (density = 0.052). The network was ordinated 667 
using the Fruchterman-Reingold Algorithm (edge-weighted, force-directed) in the igraph R 668 
package, with node size based on the log read count of each OTU across all samples (with ITS 669 
counts first divided by 10 to equalize rarefaction depth between datasets). We used the Walktrap 670 
method (Pons & Latapy, 2005) to uncover dense subgraphs (modules) within the network, which 671 
may correspond to distinct community structures. We chose Walktrap (which is based on random 672 
walks within the network) as our method of community inference due to its computational 673 
tractability and its accuracy at uncovering subgraphs regardless of network size (Yang et al., 2016). 674 
We used random walks of four steps, which resulted in four distinct modules with a network 675 
modularity of 0.45 676 
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FIGURES 852 

 853 

 854 

Figure 1: Microbial growth rates vary across sample types. (A) Percent of surface area covered 855 
by visible microbial growth through time (n=168, 4 materials, 3 locations, 2 wetting conditions, 7 856 
time points). Color indicates tile material, point shape indicates inoculating location, and line type 857 
indicates whether the tile was wet before incubation. (B) Correlation in the counts of bacteria-like 858 
(BLP) and viral-like particles (VLP) across all tiles (n=96 samples, 4 materials, 3 locations, 2 859 
wetting conditions, 4 time points). (C) Boxplots of BLP and VLP counts by wetting condition and 860 
by material (n=96 samples).  861 
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 862 
Figure 2: Change in the Shannon Index of samples over time. Points represent individual 863 
samples and the trend lines are a smoothed moving-average of the mean and shaded regions 864 
indicate the standard error (n=338, 330 and 144 samples for 16S, ITS and Metabolomics, 865 
respectively) 866 
 

 
Figure 3: Overview of community succession. (A) Fungal diversity and bacterial diversity are 867 
significantly correlated across communities (n=153 samples). Points represent individual samples, 868 
colored by the time point at which the sample was taken. (B) Changes in the relative abundance 869 
of selected bacterial genera over the course of succession (n=338 samples). Lines represent a 870 
smoothed moving average of the mean. Genus is indicated by color and wetting condition is 871 
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indicted by line style. Average community diversity (Shannon H’ at OTU level, as in Figure 3) is 872 
indicated by black lines with standard error indicated by the gray shaded region. Genus abundance 873 
is indicated on the left y-axis and Shannon H’ is indicated on the right y-axis. (C) Changes in the 874 
relative abundance of selected fungal genera over the course of succession (n=330 samples). 875 
Formatting is as in (B). (D) Wet vs. non-wetted replicates of tiles of the same material and 876 
inoculating location become increasingly dissimilar over the course of community succession 877 
(n=338, 330 samples for 16S and ITS, respectively). The y-axis is the Bray-Curtis distance 878 
between replicates. Spearman correlation between community dissimilarity and time is indicated 879 
in the legend error 880 
 

 
Figure 4: NMDS plots illustrate clustering of sample diversity by sample type. Each row 881 
comprises four identical NMDS plots (n=338, 330 and 144 samples for 16S, ITS and 882 
Metabolomics, respectively). The leftmost plot illustrates the ordination’s association with 883 
environmental variables and the remaining plots color sample points by various metadata factors. 884 
The stress on the NMDS plot is indicated in the rightmost plot in each row error  885 
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Figure 5: Network of SparCC OTU correlations. (A) Edge-weighted, spring-embedded 886 
network ordination, with nodes colored by module membership. Node shape represents node type 887 
(16S or ITS) and node size is based on the log-transformed abundance of each node (n=153 with 888 
both 16S and ITS, respectively). (B) Correlations between metadata factors (treated as dummy 889 
variables where true = 1 and false = 0) and the percent of reads in network modules. Non-890 
significant correlations are not shown. (C) Taxa enriched in wet or non-wetted samples, as 891 
determined through a two-sided non-parametric t-test with 105 permutations. (D) Taxa enriched in 892 
samples originating from an individual inoculating location, with statistical methods as in (A). (E) 893 
Taxonomy of nodes in the genera included in Figure 4.  894 
 

 
Figure 6: Metabolite co-occurrence network. (A) Network of significantly positive spearman 895 
correlations between metabolites, with network module indicated by color (n=144 samples). (B) 896 
Metabolites enriched in wet or non-wetted samples, as determined through a two-sided non-897 
parametric t-test with 105 permutations. (B) Metabolites enriched in samples originating from an 898 
individual inoculating location, with statistical methods as in (B). (C) Correlations between 899 
metadata factors (treated as dummy variables where true = 1 and false = 0) and the percent of 900 
metabolites in network modules. Non-significant correlations are not shown.     901 
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Figure S1: Experimental setup of project. Illustration of the experimental setup and coupon 902 
sampling procedures. 903 
 

 
Figure S2: Change in the Shannon Index by material over time. Points represent individual 904 
samples (n=338, 330 samples for 16S and ITS, respectively) and the trend lines are a smoothed 905 
moving-average of the mean and shaded regions indicate the standard error  906 
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 908 
Figure S3: Microbial succession by material over time Changes in the relative abundance of 909 
selected microbial genera for each material over the course of succession. (n=338, 330 samples for 910 
16S and ITS, respectively). (A) Lines represent a smoothed moving average of the mean. Genus 911 
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is indicated by color and wetting condition is indicted by line style. (B) Changes in the relative 912 
abundance of selected fungal genera over the course of succession. Formatting is as in (A) 913 
 914 
 915 

 
Figure S4: ANOSIM quantifies the influence of metadata factors on the dissimilarity 916 
between samples. Columns represent different metadata factors and rows represent the three 917 
datasets in this study (n=338, 330 samples for 16S and ITS, respectively). Boxplots depict the 918 
range of ranked Bray-Curtis dissimilarities within and between factors (lower rank = lower 919 
dissimilarity). Boxplot width indicates the number of samples represented by the boxplot  920 
 921 
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Figure S5: Bacteria-Bacteria co-occurrence network. Co-occurrence network (from n=83 922 
bacteria samples) shows highly correlated bacteria form monophyletic clusters for samples 923 
containing more abundant taxa  924 
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 926 
Figure S6: Bacteria-Bacteria co-occurrence network on wet samples. Co-occurrence network 927 
(from n=39 wet samples) shows how Pseudomonas and Bacillus are anticorrelated on wet samples 928 
for samples containing more abundant taxa  929 
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 932 
Figure S7: Bacteria-Bacteria co-occurrence network on gypsum samples. Co-occurrence 933 
network (from n=24 gypsum samples) shows how Pseudomonas and Bacillus are anticorrelated 934 
on all gypsum samples 935 
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 938 
Figure S8: Fungi-Fungi co-occurrence network. Co-occurrence network (from n=91 fungi 939 
samples) shows highly correlated fungi forms mostly monophyletic clusters 940 
 941 
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 944 
Figure S9: Fungi-Fungi co-occurrence network on wet samples. Co-occurrence network (from 945 
n=58 wet samples) shows how certain Fungi OTUs are anticorrelated on wet samples  946 
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 948 
Figure S10: Random forest metabolite selection heatmap. Random forest learning was used to 949 
select the metabolites that most distinctly identify each environmental condition, wetted or non-950 
wetted, wood material type and inoculation location (n=144 samples and 3187 metabolites), the 951 
100 highest-scoring metabolite features for each condition where selected for further examination. 952 
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 954 
Figure S11: Metabolite and microbial succession on wet samples by material over time.  955 
Changes in the relative abundance of selected bacterial genera for each material over the course of 956 
succession (n=39, 58 and 72 wet samples for bacteria, fungi and metabolites, respectively). Lines 957 
represent a smoothed moving average of the mean. Genus and metabolites are indicated by 958 
different colors  959 
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 960 
Figure S12: Bacteria-Metabolite co-occurrence network. Bacteria and Metabolite paired co-961 
occurrences suggesting biochemical exchanges (from n=83, 144 samples, respectively). Lipid and 962 
hydroxyl compounds are strongly connected to Bacillaceae groups. Some specific lipids correlate 963 
positively with bacteria and negatively with wood material (plants). Vitamins and small carbon 964 
compounds negatively correlate with the wood material (plants). 965 
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 966 
Figure S13: Bacteria-Metabolite co-occurrence network for Bacillus and Pseudomonas 967 
interactions only. Bacteria and Metabolite paired co-occurrences suggesting biochemical 968 
exchanges (from n=83, 144 samples, respectively). Nigragillin is negatively correlated with both 969 
Pseudomonas and Bacillus. Azoxystrobin correlates negatively with Pseudomonas, but positively 970 
with Bacillus. Hydroxyl compounds correlates negatively with Pseudomonas but positively with 971 
Bacillus 972 
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 975 
Figure S14: Photographs of wood coupons from different materials and wetting conditions 976 
at TP5 and TP6.  Bacterial and Fungal growth on coupons surface photographs for (A) location 977 
1 (B) location 2 and (C) control location. 978 
 979 
 980 

 981 
Table S1: ANOSIM results calculate the factors significantly correlated with differences in the 
microbial communities across our three datasets, Bacteria, fungi, Metabolomics 
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Table S2: Mantel test results calculate the correlation among fungi samples across different 
sampling strategies. 

 

 

Table S3: Mantel test results calculate the correlation among bacteria samples across different 
sampling strategies. 
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