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Abstract 
Correlations of resting-state functional magnetic resonance imaging (rsfMRI) signals are 

being widely used for assessing functional connectivity of healthy and diseased brains. However, 
an association was recently observed between rsfMRI connectivity modulations and head motion 
and regarded as a causal relationship, which has raised serious concerns about the validity of 
many rsfMRI findings. Here, we studied the origin of this rsfMRI-motion association and its 
relationship to arousal modulations. By using a template-matching method to locate arousal-
related fMRI changes, we showed that the effects of high motion time points on rsfMRI 
connectivity are due to their significant overlap with arousal-affected time points. The finding 
suggests that the association between rsfMRI connectivity and head motion arises from their co-
modulations at transient arousal modulations, and this information is critical not only for proper 
interpretation of motion-associated rsfMRI connectivity changes but also for controlling the 
potential confounding effects of arousal modulation on rsMRI metrics.  
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Introduction 
Resting-state functional magnetic resonance imaging (rsfMRI) signal correlations have been 
widely used to assess functional brain connectivity and greatly improved our understanding of 
intrinsic organization of healthy and diseased brains (1–3). However, the validity of a large body 
of rsfMRI studies was recently challenged by findings about the relationship between head 
motion and rsfMRI connectivity (4–7). Subjects associated with larger head motions during 
scanning were found to show significantly stronger local rsfMRI connectivity and weaker long-
range connectivity (6). Consist with this relationship, scrubbing rsfMRI time frames with severe 
head motion successfully reduced local and recovered long-range brain connectivity (7). More 
recently, the head motion was further suggested to mediate the correlation between the rsfMRI 
connectivity and behavioral measurements (8). To date, the observed motion-connectivity 
relationship has been interpreted as a causal relationship with the assumption that the head 
motion corrupts rsfMRI data and thus functional connectivity derived from it. The relationship is 
also regarded as a piece of evidence for non-neuronal contributions to the rsfMRI connectivity. 
  
However, the neuronal contribution to this motion-connectivity relationship cannot be 
completely ruled out. A major motion metric, i.e., differentiated signal variance (DVARS) (9), 
measures large fMRI signal modulations that are not necessarily caused by the motion, and it 
often detects brain-wide, synchronized fMRI changes (often called the “global signal”), which 
have been consistently linked to low vigilance brain states (10–16) and appear to be at least 
partly neuronal (17). This global fMRI signal was recently found to arise from global brain co-
activations that are induced by an event of transient arousal modulation with a characteristic 
electrophysiological signature (18). This finding, along with the known association between head 
motion and sleepiness (19), suggests a possibility that the transient arousal modulations cause 
both head motion and rsfMRI connectivity changes and thus a spurious relationship between the 
two. The validity of this hypothesis would reconcile a few puzzling observations about the 
motion-connectivity relationship. For example, the specific sensory-dominant pattern of the 
arousal-related global co-activations (18) may explain systematic and divergent changes in local 
and long-range rsfMRI connectivity associated with head motion. The hemodynamic delay of 
neurovascular coupling may account for the long-lasting (more than 10 seconds) effects of 
motion on the rsfMRI connectivity (4, 20). It may also provide a new perspective for 
understanding the observation that the same amount of head motion causes significant rsfMRI 
connectivity changes across subjects but not different sessions from the same subject (21).  
 
A clear understanding of the origin of the motion-connectivity relationship is critical for a proper 
interpretation of findings from a large body of rsfMRI studies. Towards this goal, we use the 
Human Connectome Project (HCP) data (22) to examine the role of transient arousal 
modulations in mediating the association between head motion and rsfMRI connectivity changes. 
Utilizing a template of the global co-activation pattern induced by a transient arousal event (18), 
we derived a drowsiness index to locate arousal-related rsfMRI changes. We then demonstrated 
that the effect of motion-based temporal scrubbing on rsfMRI connectivity should be attributed 
to arousal-related rsfMRI changes. We further understand this result by elucidating a rather 
complicated temporal relationship between the motion and arousal metrics through a trial-based 
analysis. Finally, we demonstrated, with simulation, how the arousal-related fMRI co-activations 
can cause systematic modulations in whole-brain rsfMRI connectivity similar to those associated 
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with head motions. Overall, the results suggest that the association between head motion and 
rsfMRI connectivity is not causal but mediated by transient arousal modulations.  
 
Results 
We analyzed HCP rsfMRI data of 469 subjects who completed all four resting-state sessions in 
two different days. Four indices were derived from the rsfMRI signals. Framewise displacement 
(FD) (23) and DVARS (9) have both been used for assessing head motion, but they may present 
different information since the former is derived directly from image alignment parameters 
whereas the latter quantifies the amplitude of fMRI changes between consecutive time points. 
Since the global rsfMRI signal has been consistently shown to be sensitive to brain vigilance 
states (10–16), we take its envelop amplitude (GSA) as an approximate estimate for 
instantaneous arousal level. It was shown recently that the large global rsfMRI peak originates 
from a global fMRI co-activation that is induced by a transient arousal event and shows a 
sensory-dominant pattern (18). To incorporate this spatial information, we adapt the idea of a 
template-matching approach (24), correlate this global co-activation pattern with individual 
rsfMRI volumes, and then take the envelop amplitude as an index to estimate arousal 
fluctuations (Fig. 1). Because the large global co-activation and the associated 
electrophysiological event appear mostly at intermediate states of vigilance (18), such as drowsy 
state and light sleep, we name the fourth metric as the drowsiness index (DI) (See Methods for 
details about how to derive these four metrics).  
 
Motion and arousal metrics are related to arousal  
All four metrics showed a tendency of increasing amplitude over the course of rsfMRI scanning. 
This effect was much stronger for the arousal indices, i.e., the GSA and DI, but also present for 
the motion metrics, i.e., the FD and DVARS (Fig. 2A). This temporal trend likely indicates an 
increasing probability for subjects becoming drowsy or falling asleep, which is consistent with a 
previous finding that a significant proportion of subjects fell asleep within 3 minutes into the 
resting-state scanning (25).  
In addition to the intra-subject trend, we also examined the relationship between these metrics 
and arousal-related behavioral measures across subjects. Towards this goal, we correlated the 
individual’s DI score, defined as the mean DI averaged over all 4 sessions, with the Pittsburgh 
Sleep Questionnaire (PSQ) items provided along with fMRI data by the HCP. FD and DI are 
significantly correlated with multiple PSQ items. The items correlated with DI appear to be 
related to the sleep propensity of subjects. The subjects who go to bed later (p = 9.4x10-4) and 
have less amount of sleep (p = 0.027) showed significantly higher DI scores. In contrast, FD is 
significantly correlated with the items reflecting the comfort in sleeping position. The subjects 
who reported to snore (p = 3x10-5), cannot breathe comfortably (p = 0.0070), or felt too hot (p = 
0.027) during sleep are associated with significantly higher FD values (Fig. 2B and Table 1). In 
addition, the individual DI score is also found significantly higher in a group of subjects who 
were noted to be sleeping during the resting-state fMRI scanning (Fig. 2C). Overall, both the 
intra- and inter-subject analyses suggest a close relationship between those motion and arousal 
metrics, particularly DI, and brain arousal levels.  
 
Temporal scrubbing effects on rsfMRI connectivity based on different metrics 
Scrubbing time points with a high value in motion metrics has become a commonly used 
approach to alleviate the influence of the motion on rsfMRI connectivity (4, 7). Here we 
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compared the effects of temporal scrubbing on rsfMRI connectivity based on the four metrics. 
We assessed the whole-brain rsfMRI connectivity using Pearson’s correlation coefficients 
between fMRI time courses of each possible pair of 264 regions of interest (ROIs) (26), then 
estimated temporal scrubbing effects using the connectivity difference before and after scrubbing 
time points with the top 25% values in a specific metric.  
 
Consistent with the previous findings (4–7), the temporal scrubbing based on FD and DVARS 
decreased local but increased long-range rsfMRI connectivity (Fig. 3A and 3B). Nevertheless, the 
scrubbing based on FD, which were computed directly from image alignment parameters (23), 
showed a much smaller effect than the DVARS-based scrubbing. This could be due to the fact 
that DVARS (9) is, by definition, sensitive to large fMRI changes that are not necessarily caused 
by the head motion. Scrubbing time points of high GSA values produced a similar level of effect 
on the rsMRI connectivity as the DVARS-based scrubbing (Fig. 3C). The largest changes in 
local and long-range rsfMRI connectivity were observed with excluding the top 25% DI time 
points (Fig. 3D). Therefore, the arousal-related fMRI changes, flagged by high DI values, affect 
rsfMRI connectivity in a similar way as head motion does but to a much larger extent.  
 
We then examined metric-specific scrubbing effects since significant overlaps are expected 
between scrubbed time points based on different metrics. Indeed, 39% of scrubbed, i.e., 9.81% of 
the total, time points are the same for the DVARS- and DI-based scrubbing, and this value is 
significantly higher (p = 0; permutation test, n = 10,000) than the one (6.25% of the total) 
expected if these two metrics are completely independent. After excluding these overlapped time 
points from scrubbing, i.e., retaining them for rsfMRI connectivity assessments, the DVARS-
specific scrubbing produced no significant changes on either local or long-range rsfMRI 
connectivity, but the effect of DI-specific scrubbing remained large (Fig. 4). A similar result was 
obtained for the pair of FD and DI (Fig. S1). The finding clearly suggests that the effect of 
motion-based scrubbing on rsMRI connectivity should be entirely attributed to time points of 
high DI values, which are closely related to arousal modulations.  
   
Temporal relationship between the motion and arousal metrics 
A clear understanding of the above findings would require details about the temporal relationship 
between the motion and arousal metrics. Cross-correlation functions calculated between all 
possible pairs of FD, DVARS, and DI revealed a rather complicated temporal relationship 
among them. The cross-correlation function between DI and DVARS had a single peak at the 
zero delay (Fig. 5A, left), whereas FD and DI reached their maximum correlation with DI being 
shifted ahead by about 9 seconds (Fig. 5A, middle). More interestingly, the cross-correlation 
function for the FD-DVARS pair showed two separate peaks with one at the zero delay and the 
other with a significant delay (Fig. 5A, right). The peak correlation between FD and DI is smaller 
than those of the other two pairs.  
 
To understand this complex relationship, we employed a trial-based analysis to examine the 
relative timing of large changes in different metrics, as well as the variability of this relationship 
over time. The feasibility of this analysis lies in the observation that FD often shows large, 
abrupt spikes that appear to drive its correlation with DVARS and DI (Fig. S2). We identified 
3331 FD spikes by finding FD peak points that are 3 standard deviations above the mean. 
Removing these spikes (4.2 % of the total points) would bring down the covariance between FD 
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and DVARS by 79 % (from 0.0169 to 0.0036). We then extracted FD, DVARS, and DI segments 
centering on the FD spikes and sorted these segments according to DI values at 9.36 seconds, 
where we expected to see large peaks according the FD-DI correlation function (Fig. 5A, middle). 
We found that a subset of the FD spikes is followed by a DI peak delayed by ~9 second, and they 
correspond to two separate DVARS peaks (Fig. 5B, bottom trials). In comparison, there are also 
FD spikes that are associated with only a zero-lag DVARS peak (Fig. 5B, top trials). We also 
displayed the DVARS scrubbing mask (Fig. 5C, right), as well as its overlap with (Fig. 5C, 
middle) and difference from (Fig. 5C, left) the DI scrubbing mask for all these trials. As 
expected, the overlap between the DVARS and DI masks, which is responsible for the scrubbing 
effect on rsfMRI connectivity (Fig. 4), corresponds mostly to the delayed DI/DVARS peaks 
following the FD spikes (Fig. 5C, middle). In other words, the head motions that are not 
followed by arousal-related fMRI changes, i.e., the large DI peaks, are not associated with 
significant changes in rsfMRI connectivity (top trials in Fig. 5B and 5C). The above analysis was 
repeated with replacing DI with GSA, as well as the GSA calculated with excluding the entire 
sensorimotor cortex, and the major results remained the same (Fig. S3). Thus, it is unlikely that 
the DI peaks following the FD spikes are caused by sensorimotor activations responsible for the 
head motion. Instead, the FD spikes and delayed DI peaks in a subset of trials likely originate 
from transient arousal modulations, and their relative delay may reflect, at least partly, the 
hemodynamic delay between neural/behavioral signals and fMRI.  
 
Arousal-related global co-activation and systematic rsfMRI connectivity changes 
The motion-related rsfMRI connectivity changes have been found to show systematic patterns, 
including the opposite modulations in local and long-range connectivity (5–7). We have shown 
so far that the motion-associated rsfMRI connectivity changes are actually caused by the high DI 
time points with a global co-activation pattern of arousal relevance. Although the sensory-
dominant pattern of this global co-activation (Fig. 1A) is expected to promote local connectivity 
in sensory areas, it is much harder to understand intuitively how this co-activation pattern may 
reduce long-range rsfMRI connectivity especially given the global signal regression procedure. 
To address this issue, we simulated chunks of fMRI signals with this global co-activation pattern, 
inserted them into real rsfMRI data, and then examined rsfMRI changes caused by removing 
them. Scrubbing these simulated chunks of data with the global co-activation pattern indeed 
reduced the local but increased the long-range rsfMRI connectivity, similar to the DVARS-based 
temporal scrubbing (Fig. 6A). Expanding these 1D profiles of distance dependency to 2D 
matrices of inter-regional connections revealed that the reduced connectivity resided mostly 
within the sensory regions as expected whereas the increased connections were largely across 
brain networks, which resembled the effect of DVARS-based scrubbing (r = 0.38, p = 0, Fig. 6B 
and 6C). This simulation clearly showed how the arousal-related rsfMRI modulations, i.e., the 
global co-activation with a sensory-dominant pattern, can result in systemic rsfMRI connectivity 
changes.  
 
Discussion 
Here we showed that the association between head motion and rsfMRI connectivity, which has 
been interpreted as a causal relationship (4–7), may arise spuriously from transient arousal 
modulations. We first developed an fMRI-based arousal index, i.e., DI, to track arousal 
modulations and validated this index through its correlations with arousal-related behavioral 
measures. We then showed that the effect of temporal scrubbing based on the motion parameters, 
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i.e., FD and DVARS, on rsfMRI connectivity is actually attributed to time points associated with 
transient arousal modulations. We further elucidated complex temporal relationships among the 
motion and arousal indices using a trial-based analysis, and the relationship between rsfMRI 
connectivity and the global co-activation pattern of arousal relevance using simulation.  
 
The association between head motion and rsfMRI connectivity can be linked to arousal 
modulations in two ways. First, a significant proportion of this relationship comes spuriously 
from the use of DVARS, a widely used index for quantifying head motion based on fMRI signal 
itself. The DVARS index is defined as the root mean square of whole brain fMRI signal changes 
between consecutive time points and thus sensitive to any large, widespread fMRI changes. 
Although it was designed to detect head motion (9), it should be also sensitive to transient 
arousal modulations, which have been shown to induce large, global fMRI changes (10–16). The 
two DVARS peaks that correspond to the FD spike and following DI peak in our trial-based 
analysis (Fig. 5B, bottom trials) likely represent these two types of DVARS modulations. On the 
other hand, the observed coupling between the FD spikes and DI peaks, though with a significant 
time delay, could be the second source of the motion-rsfMRI relationship and account for the 
marginal scrubbing effect based on FD, which is derived from image alignment parameters and 
thus closely related to real head motions. The sleepiness induced by sleep deprivation has been 
found to be associated with more head motions compared with wakefulness (19). Similar to the 
coupling between the FD and DI peaks, this could be caused by transient arousal modulations 
and associated physiological changes during the drowsy and sleepy states. It is also worth noting 
that the DI/GSA peak following the FD spike should not be attributed to head motion related 
sensorimotor activity and associated fMRI changes since removing the entire sensorimotor 
cortex from the GSA calculation had almost no effects on the result (Fig. S3).  
 
The role of arousal modulations in causing the spurious motion-rsfMRI relationship explains a 
few puzzling observations. First, the effect of head motion on rsfMRI connectivity persists for, 
and even reach its peak at, more than 10 seconds (4, 20). Although this observation has been 
explained from the perspective of spin-history artifacts (27), this explanation may not be 
satisfactory because the spin-history artifact induced by a brief motion should not last for so long 
and show its peak effect after 10 seconds (20). This prolonged effect is even longer than the 
typical hemodynamic delay between neural and fMRI signals. However, this characteristic time 
is roughly consistent with the delay we observed here between FD spikes and DI peaks. The co-
occurrence of FD spikes and large fMRI changes (the large DI/GSA) could be mediated by 
transient arousal events, and their relative time delay may include both the hemodynamic delay 
and their relative phases in the arousal event. Second, the motion-related rsfMRI connectivity 
changes are not only distance dependent but also show very systematic spatial patterns (7). 
Although this is hard to understand from the perspective of head motion, which is relatively 
random, it is consistent with the sensory-dominant fMRI co-activations associated with arousal 
modulations. We indeed confirmed, with simulation, that the arousal-related fMRI changes, i.e., 
the global fMRI co-activation pattern, modulates the similar set of rsfMRI connections as the 
motion-based scrubbing procedure.  
 
Transient arousal modulations may also mediate the correlations between rsfMRI signals and 
other measurements in a similar way. Strong correlations have been found between rsfMRI 
signal/connectivity and physiological signals, e.g., the heart rate and respiratory volume, which 
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was also regarded as evidence for non-neuronal contributions to rsfMRI (28–30). However, the 
rsfMRI-physiology correlation was recently found significant only under a sleep-conducive eyes-
closed condition but not under a more alert eyes-open condition (29). This correlation was also 
dependent on the EEG alpha power, an indicator of brain vigilance state (29).Therefore, it is 
likely that the rsfMRI-physiological correlation may arise from the effects of transient arousal 
modulations on both autonomic functions and fMRI signals. This hypothesis is consistent with 
the observation that the FD motion is not only followed by the global fMRI signal change but 
also co-varies with respiratory modulations (20). In fact, the respiratory modulations, e.g., a deep 
breath, at transient arousal modulations might be the direct cause of head motion and account for 
increased head motion under the sleepy condition (19). Similarly, one should be cautious about 
the confounding effects of arousal in rsfMRI studies of various brain diseases, a significant 
portion of which are either associated with disrupted sleep and circadian rhythms or treated with 
medicines that can modulate brain arousal state (31–35). Thus, it is important to differentiate 
rsfMRI changes caused by disease-related brain reorganization from those merely reflecting 
disease-associated vigilance changes. Arousal may affect cognitive performance given its known 
role in attention regulation and information processing (36), and the ability of regulating arousal 
state may also be correlated with other subject traits (37). Therefore, transient arousal 
modulations might be partly responsible for the correlation observed between rsfMRI 
connectivity/dynamics and behavioral measures (38–40). Given these potential confounding 
effects of the arousal, researchers should be cautious about large global fMRI signals, high DI 
values, and the sensory-dominant pattern in their rsfMRI findings, which are all indicators of 
arousal-related fMRI changes.  
 
Properly controlling the effects of arousal modulations on rsfMRI signals is critical for 
unraveling real changes in functional brain connectivity. Prospective studies need to better 
control and monitor arousal fluctuations during resting-state scans, which can be achieved by, for 
example, avoiding rsfMRI experiments under sleep-conducive eyes-closed condition and/or 
including EEG or eyelid video with fMRI acquisitions. Retrospective analyses on existing 
datasets should try to minimize the arousal’s influence with appropriate post-processing 
procedures. Although the global signal regression can largely suppress the arousal-related 
component, the residual effect on rsfMRI connectivity is clearly present (Fig. 6). Given that the 
arousal modulations take the form of transient events that are temporally separable, removing 
arousal-contaminated time points from the analysis could be a way of reducing the arousal’s 
influence. The DI used in this study and other fMRI-based arousal indices (24, 41) are preferred 
metrics for such temporal censoring procedures and expected to locate arousal-related fMRI 
changes more accurately than the motion parameters. However, even assuming the temporal 
censoring can effectively remove the direct effect of the transient arousal modulations, it is 
unclear whether the brain connectivity/dynamics are modulated even outside of the time periods 
of those arousal events under drowsy and sleepy conditions. A more conservative way of 
controlling the arousal’s effect would be to completely discard sessions/subjects showing large 
arousal modulations, which can be assessed again according to the fMRI-based arousal indices, 
such as DI, if no external arousal measure available. Alternatively, this could be done by 
including individuals’ arousal score as a nuisance variable into the statistical model that 
compares rsfMRI metrics under different groups or brain conditions.   
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The DI, an fMRI-based arousal index, was used to locate arousal-related fMRI changes. It was 
derived by correlating individual fMRI volumes with the global co-activation pattern that has 
been shown to be induced by an electrophysiological event of transient arousal modulation (18). 
The similar template-matching methods were used for arousal estimation with different 
templates, including the fMRI correlation maps of the EEG arousal index or behavioral arousal 
index defined by eyelid positions (24, 41). These different templates show very similar sensory-
dominant patterns and may thus originate from the same event of arousal modulations (18). 
These fMRI-based arousal indices can capture the intra-subject dynamics and the inter-subject 
variability of arousal modulations. These indices can provide a flexible and convenient estimate 
of the brain arousal level to any data sets with rsfMRI data, including recent large-scale imaging 
initiatives collected from healthy subjects and patients, e.g., the UK Biobank (42) and 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (43). Along with other imaging and 
behavioral data, this may create new opportunities to understand arousal regulation mechanisms 
as well as the arousal’s role in neurological diseases showing abnormal arousal regulations, e.g., 
Alzheimer’s disease (44, 45).  
 
In summary, the rsfMRI connectivity changes associated with head motion are not caused by the 
motion itself but by transient arousal modulations, which have been shown to induce profound 
fMRI changes. The arousal-related fMRI change may potentially confound the relationships 
between rsfMRI connectivity and other measures. Caution should be exercised if large global 
rsfMRI signals, higher values in fMRI-based arousal indices, or sensory-dominant brain maps is 
found in rsfMRI analyses.  
 

Methods 
 
HCP data 
The human connectome project (HCP) 500-subject data release was used. The HCP 500-subject 
data release included 526 subjects who were scanned on a 3T Siemens Skyra scanner. We 
limited our analyses to 469 subjects (age: 29.2 ± 3.5 years, 275 females) who completed all four 
rsfMRI sessions. Each subject contributed four 15-min sessions on two separate days (two 
sessions per day). The data were acquired with multiband echo-planar imaging with a temporal 
resolution of 0.72 sec and spatial resolution of 2-mm isotropic voxels.  
 
The HCP MR minimal preprocessing pipelines were applied. MR functional pipelines applied to 
the fMRI data included the following steps: distortion correction, motion correction, registration 
to structural data, and conversion to gray-ordinates standard space. Next, the resting state fMRI 
data were run over the HCP FIX-ICA denoising pipeline to remove artifacts. In addition to the 
minimal preprocessing pipelines, we smoothed the data temporally (0.001-0.1 Hz) and further 
standardized each voxel’s signal by subtracting the mean and dividing the standard deviation. 
 
Framewise displacement (FD) 
Framewise displacement (FD) was estimated using a method described previously (23). 
Specifically, FD was calculated as the sum of absolute values of six differentiated head 
realignment parameters at each frame as follows:  

��� � |∆���| � �∆���� � |∆���| � |∆	�| � |∆
�| � |∆��| 
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where ���� ��� ���� are three translational parameters and �	�  
�  ��� are three rotational 
parameters. |∆���| � �������� � ���� and the other parameters were calculated in the same way. 
The three rotational parameters were calculated as the displacement of millimeters converted 
from degrees on the sphere surface with a radius 50 mm, which was the approximate average 
distance from the cerebral cortex to the center of the human head.  
 
DVARS  
DVARS is defined as the rate of fMRI signal changes over the entire brain at each frame (9). 
Global signal regression was applied on the HCP minimal rsfMRI preprocessed data before 
calculating DVARS. DVARS is calculated as the root mean square value within the whole brain 
of differentiated fMRI time courses at each frame: 

������∆��� � ���∆�������	� � ��������� � ���������	� 
where ������ is the image intensity at locus � at the �th frame and the angle brackets indicate the 
spatial average from the whole brain.  
 
Global signal amplitude (GSA) and drowsiness index (DI) 
Global signal was calculated as the mean signal averaged over all gray matter voxels, and the 
global signal amplitude (GSA) is then defined as the envelop amplitude of the global signal. 
Adapting a template-matching strategy (24), the spatial correlation between the global co-
activation pattern and rsfMRI volumes at individual time points was calculated and its envelop 
amplitude was defined as the drowsiness index (DI).   
 
ROIs 
All fMRI time courses used in this study were extracted from a set of 264 regions of interest 
(ROIs), which are spheres of 10 mm diameter centered on the coordinates given by a previous 
study (26). The rsfMRI correlations among the 264 ROIs were calculated after the global signal 
regression procedure.   
 
Relating arousal-related behavioral measures to the motion and arousal metrics 
Among a total of 295 behavioral, demographic, and physiological measures released with the 
HCP data set, we selected and correlated 20 items from the Pittsburgh Sleep Questionnaire (PSQ) 
with mean FD, DVARS, GSA and DI averaged over four sessions of each subject. Bed times 
after midnight were treated as the original bed times plus 24 hours.  
 
Temporal scrubbing procedure 
The first and last 20 time points from FD, DVARS, GSA and DI time courses were removed 
from the subsequent analyses since they showed an abnormal pattern that likely resulted from the 
ICA-FIX procedure. Temporal masks were generated to mark the 25% time points of all the 
subjects showing the highest values in FD, DVARS, GSA, and DI, respectively. A control mask 
was also created by circularly shifting the FD mask by 600 time points. In addition, the DVARS-
specific and DI-specific masks were generated by excluding their overlapped part. Temporal 
scrubbing was performed with respect to different masks. RsfMRI correlations of the 264 pre-
defined ROIs were computed for scrubbed (�
) and unscrubbed (�) data for each subject. Their 
difference (Δ� � �
 � �) was calculated and then averaged across subjects. The differences (Δ�) 
were plotted as a function of Euclidean distance between the ROIs. The rsfMRI connectivity 
changes for ROI pairs with a Euclidean distance of 13 ~ 49 mm and of 125 ~ 161 mm were 
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averaged to represent local and long-range connectivity changes respectively. Similar results 
were obtained for the pair of FD-based and DI-based masks.  
 
Temporal relationship among FD, DVARS and DI 
Cross-correlation functions between each pair of FD, DVARS and DI were calculated. The mean 
of FD, DVARS, and DI time courses were removed to reduce inter-subject variation in the 
baselines. FD spikes were located by finding peaks exceeding 3 standard deviations above the 
mean within each FD time course. Segments of the FD, DVARS, and DI time courses centering 
on the FD spikes (±28.8 seconds) were extracted respectively. Segments of FD, DVARS, and DI 
were sorted according to the DI values at 9.36 second, where a proportion of DI segments show 
consistent peaks. After sorting, the first and last 400 segments were averaged and their difference 
was also calculated. GSA segments were calculated and processed in the same way with and 
without excluding the sensorimotor regions. The corresponding segments of the DVARS-based 
mask as well as its overlap with and difference from the DI-based mask were extracted and 
processed.    
 
Simulation 
The simulation was used to understand the systematic changes in rsfMRI connectivity caused by 
the global fMRI co-activation pattern of arousal relevance. The template of the global co-
activation pattern was convolved with the canonical hemodynamic response function to generate 
chunks of simulated rsfMRI data with each containing 46 brain volumes. The fluctuation 
amplitude of simulated data was scaled to match with that of the real data. Eight chunks were 
randomly inserted into the real rsfMRI data of the 100 subjects with the lowest DI scores. The 
template of the global co-activation pattern was convolved by canonical hemodynamic response 
function to generate chunks of simulated rsfMRI data, which were then inserted into the rsfMRI 
data of the 100 subjects who show lowest DI scores. The rsfMRI data containing the simulated 
chunks went through the global signal regression procedure. The pair-wise correlations between 
the 264 ROIs were then calculated before and after removing the simulated portion, and their 
differences were regarded as the rsfMRI connectivity changes caused by the global co-activation 
pattern that has been shown to be induced by an event of transient arousal modulation (18). The 
264 ROIs were classified into different brain networks using a brain atlas from (26).  
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Figures  
 

 
Figure 1   Drowsiness index (DI) derived in a representative subject. (A) The global fMRI co-
activation pattern, which has been shown to be induced by an event of transient arousal 
modulation, is used as a template for deriving DI. Sensorimotor, visual, and auditory regions 
show larger signal increase than other cortical regions and some subcortical areas show signal 
decreases. (B) An example of the DI time course of a representative subject. DI is defined as the 
envelop amplitude (solid black) of the spatial correlations (dashed gray) between the global co-
activation pattern (A) and individual fMRI volumes.  
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Figure 2 Motion and arousal metrics are related to brain arousal. (A) The amplitude of FD, 
DVARS, GSA, and DI increases over the course of resting-state scanning. Time courses of the 
four metrics, which were normalized with respect to their initial values during the first 14.4 
seconds (20 TRs), are shown for each of 469 subjects (top panels), as well as their averages 
(bottom panels). (B) Cross-subject correlations between the mean FD, DVARS, GSA, and DI 
scores and two PSQI items, i.e., Bedtime and Amount of Sleep. Significant correlations were 
found between these two arousal-related behavioral measures and the DI scores, with Pearson’s 
correlation coefficients and corresponding p-values (FDR corrected) being shown on the top. (C) 
114 subjects, who were noted to be sleeping during the resting-state scanning sessions, show 
significantly higher DI score compared with the other subjects who were not. The error bar 
represents the standard error of the mean (SEM). The asterisks represent the level of significance
***, p < 0.001.  
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Figure 3 Effects of temporal scrubbing on resting-state fMRI connectivity. Removing time points 
with the top 25% values in FD (A), DAVRS (B), GSA (C), and DI (D) reduced the local but 
increased the long-range rsfMRI correlations between the 264 pre-defined brain ROIs, whereas 
temporal scrubbing using a control mask, which is created by circularly shifting the FD mask by 
600 time points, produced no effects on rsfMRI connectivity (E). A comparison of temporal 
scrubbing based on different metrics (F) suggests that the DI-based scrubbing has the largest 
effect on rsfMRI connectivity.  
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Figure 4 The effect of the DVARS-based scrubbing on rsfMRI connectivity diminished with 
retaining the high DI volumes. After removing the overlapped time points (9.81% out of 25%) 
between the DVARS and DI masks from temporal scrubbing, i.e., retaining them for assessing 
rsfMRI connectivity, the DVARS-specific scrubbing (orange square) produced no effects on the 
local and long-range rsfMRI connectivity. In contrast, the effect of the DI-specific scrubbing 
(light green square) remains significant. The local (ROI pairs with a distance between 13 and 49 
mm) and long-range (ROI pairs with a distance between 125 and 161 mm) rsfMRI connectivity 
changes are summarized as a bar plot and shown as an inset in the top region. The error bar 
represents SEM across subjects. The asterisks represent the level of significance: *, 0.01 < p < 
0.05, and ***, p < 0.001.  
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Figure 5 Temporal relationships among FD, DVARS and DI. (A) Cross-correlation functions of 
FD, DVARS, and DI. A zero-lag peak appears at the DI-DVARS correlation function (left); the 
maximum correlation between FD and DI appears with a ~9 seconds delay (middle); and the 
DVARS-FD correlation function shows two distinct peaks (right). The cross-correlation 
functions are averaged across subjects with the shaded region representing area within 1 SEM. 
(B) Segments of FD (left), DI (middle), and DVARS (right) were extracted with respect to the 
3331 identified FD spikes (time 0) and sorted according to the DI values at 9.36 seconds. The top
(red) and bottom (green) 400 segments were averaged and their differences (cyan) were also 
calculated. The shadow represents regions within one SEM. The black arrows indicate time zero. 
(C) Corresponding segments of the DVARS-based mask (right), its overlap with (middle) and 
difference from (left) the DI-based mask were also extracted and shown. The average of these 
segments is also shown on the right side of each panel with the shadow representing regions 
within one SEM. 
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Figure 6 The global fMRI co-activation results in systematic rsfMRI connectivity changes. (A) 
Scrubbing simulated rsfMRI data with the global co-activation pattern (purple) reduced the local 
but increased the long-range rsfMRI correlations, similar to the DVARS-based temporal 
scrubbing (green). Expanding these 1D profiles into 2D matrices of inter-regional connectivity 
modulations further highlights the similarity between the two (B: Scrubbing simulated data; C: 
DVARS-based temporal scrubbing): the connectivity reductions are mainly within the sensory 
networks whereas the increase of connectivity are largely cross networks. The spatial correlation 
between (B) and (C) was 0.38 with p = 0. Resting-state network abbreviations: VIS: visual 
network; SM: somatomotor; AUD: auditory network; CON: cingulo-opercular; VAN: ventral 
attention; SAL: salience network; DAN: dorsal attention; FPN: fronto-parietal; DMN: default 
mode network; SUB: subcortical; CB: cerebellar; NON: uncertain network.  
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Tables 
 

Table 1. Correlation of alert-related behavioral measures with FD, DVARS, GSA and DI 
Behavioral 
measures 

FD DVARS GSA DI 
Pearson �  � values Pearson �  � values Pearson �  � values Pearson �  � valuess 

PSQI_Score 0.14 0.027 0.060 0.30 0.045 0.47 0.063 0.30 
Bed time 0.11 0.098 0.15 0.016 0.19 0.00094 0.19 0.00094 

Amount of 
sleep -0.12 0.074 -0.030 0.65 -0.089 0.15 -0.14 0.027 

Minutes to fall 
asleep 0.080    0.22    0.0092  0.89    0.10     0.11    0.12    0.067   

Get up time 0.020    0.70     0.093   0.14    0.12    0.07    0.093   0.14    
Cannot get to 

sleep within 30 
minutes 

0.12    0.070    0.055   0.36    0.062   0.31    0.073   0.25    

Wake up 
during sleep 0.11    0.081   -0.0045  0.93    -0.0083  0.89    0.023   0.73    

Get up to use 
bathroom 0.070    0.28    -0.031   0.64    -0.031   0.64    -0.047   0.45    

Breathe 
uncomfortably 0.16    0.0070   0.097   0.12    0.062   0.31    0.090    0.15    

Snore loudly 0.23    0.000030 0.17    0.0031  0.014   0.84    0.049   0.43    
Feel too cold 0.10     0.11    0.070    0.26    0.015   0.83    0.046   0.46    
Feel too hot 0.14    0.027   0.044   0.48    -0.10     0.11    -0.056   0.35    
Have bad 

dream 0.078   0.23    0.0087  0.89    0.068   0.27    0.072   0.25    

Have pain 0.077   0.23  0.076   0.24 -0.061   0.31    -0.043   0.49    
Other sleep 

troubles -0.0050   0.93    -0.072   0.25    -0.097   0.12    -0.11    0.10     

Overall sleep 
quality 0.075   0.25    0.0042  0.93    0.057   0.35    0.10     0.11    

How often 
taken sleep 
medicine 

-0.041   0.51    0.016   0.83    -0.039   0.53    -0.067   0.28    

Trouble staying 
awake 0.10     0.11    0.061   0.31    0.078   0.23    0.095   0.13    

Trouble 
keeping up 
enthusiasm 

0.074   0.25    0.072   0.25    -0.029   0.65    0.0098  0.89    

Have bed 
partner or 
roommate 

-0.042   0.50    -0.11    0.089   -0.095   0.13    -0.070    0.26    
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