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16 Abstract

17 Live cell time-lapse microscopy, a widely-used technique to study gene expression and protein 

18 dynamics in single cells, relies on segmentation and tracking of individual cells for data 

19 generation. The potential of the data that can be extracted from this technique is limited by the 

20 inability to accurately segment a large number of cells from such microscopy images and track 

21 them over long periods of time. Existing segmentation and tracking algorithms either require 

22 additional dyes or markers specific to segmentation or they are highly specific to one imaging 

23 condition and cell morphology and/or necessitate manual correction. Here we introduce a fully 

24 automated, fast and robust segmentation and tracking algorithm for budding yeast that 

25 overcomes these limitations. Full automatization is achieved through a novel automated seeding 

26 method, which first generates coarse seeds, then automatically fine-tunes cell boundaries using 

27 these seeds and automatically corrects segmentation mistakes. Our algorithm can accurately 

28 segment and track individual yeast cells without any specific dye or biomarker. Moreover, we 

29 show how existing channels devoted to a biological process of interest can be used to improve 

30 the segmentation. The algorithm is versatile in that it accurately segments not only cycling cells 

31 with smooth elliptical shapes, but also cells with arbitrary morphologies (e.g. sporulating and 

32 pheromone treated cells). In addition, the algorithm is largely independent of the specific 

33 imaging method (bright-field/phase) and objective used (40X/63X). We validate our algorithm’s 

34 performance on 9 cases each entailing a different imaging condition, objective magnification 

35 and/or cell morphology. Taken together, our algorithm presents a powerful segmentation and 

36 tracking tool that can be adapted to numerous budding yeast single-cell studies. 
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37 Introduction 

38 Traditional life science methods that rely on the synchronization and homogenization of cell 

39 populations have been used with great success to address numerous questions; however, they 

40 mask dynamic cellular events such as oscillations, all-or-none switches, and bistable states [1-5]. 

41 To capture and study such behaviors, the process of interest should be followed over time at 

42 single cell resolution [6-8]. A widely used method to achieve this spatial and temporal resolution 

43 is live-cell time-lapse microscopy [9], which has two general requirements for extracting single-

44 cell data: First, single-cell boundaries have to be identified for each time-point (segmentation), 

45 and second, cells have to be tracked over time (tracking) [10, 11]. 

46

47 One of the widely-used model organisms in live-cell microscopy is budding yeast Sacchromyces 

48 cerevisiae, which is easy to handle, has tractable genetics, and a short generation time [12, 13]. 

49 Most importantly in the context of image analysis, budding yeast cells have smooth cell 

50 boundaries and are mostly stationary while growing, which can be exploited by segmentation 

51 and tracking algorithms. Thus, in contrast to many mammalian segmentation approaches that 

52 segment only the nucleus, use dyes to stain the cytoplasm [14-17], use manual cell tracking [18] 

53 or extract features using segmentation-free approaches [19], we expect yeast segmentation to be 

54 completely accurate using only phase or bright-field images. Hence, budding yeast segmentation 

55 and tracking pose a complex optimization problem in which we strive to simultaneously achieve 

56 automation, accuracy, and general applicability with no or limited use of biomarkers. 

57

58 Several different methods and algorithms have been created to segment and track yeast cells. To 

59 reach high accuracy, some of these algorithms rely on images where cell boundaries and/or the 
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60 cell nuclei are stained [20-22]. However, with staining, one or several fluorescent channels are 

61 ‘occupied’, which limits the number of available channels that could be used to collect 

62 information about cellular processes [23]. In addition, using fluorescent light for segmentation 

63 increases the risk for photo-toxicity and bleaching [24]. Thus, it is desirable to segment and track 

64 cells using only bright-field or phase images. 

65

66 Another commonly used method, ‘2D active contours’, fits parametrized curves to cell 

67 boundaries [25]. Existing yeast segmentation algorithms using this method typically take 

68 advantage of the elliptical shape of cycling yeast cells [26-28]. Another way to take advantage of 

69 the prior information on cell shape is to create a shape library where shapes from an ellipse 

70 library and cells are matched [29]. Although these methods can be very accurate, they tend to be 

71 computationally expensive [29], and, to the best of our knowledge, they are not tested on any 

72 non-ellipsoidal morphologies, e.g. sporulating or pheromone treated cells. Moreover, in many 

73 cases they have to be fine-tuned to the specific experimental setup used [27, 29]. 

74

75 Here we present a fully automated segmentation and tracking algorithm for budding yeast cells. 

76 The algorithm builds on our previously published algorithm [30], improves its accuracy and 

77 speed significantly, and fully automatizes it by introducing a novel automated seeding step. This 

78 seeding step incorporates a new way for automated cell boundary fine-tuning and automated 

79 correction of segmentation errors. Our algorithm is parallelizable, and thus fast, and segments 

80 arbitrary cell shapes with high accuracy. Our algorithm does not rely on segmentation specific 

81 staining or markers. Still, we show how information about cell locations can be incorporated into 

82 the segmentation algorithm using fluorescent channels that are not devoted to segmentation. To 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/444018doi: bioRxiv preprint 

https://doi.org/10.1101/444018
http://creativecommons.org/licenses/by/4.0/


5

83 demonstrate the versatility of our algorithm we validate it on 9 different example cases each with 

84 a different cell morphology, objective magnification and/or imaging method (phase / bright-

85 field). 

86

87 Results 

88 Automated seeding

89 When segmenting yeast cells over time, it is advantageous to start at the last time-point and 

90 segment the images backwards in time [30], because all cells are present at the last time point 

91 due to the immobility of yeast cells. Thus, instead of attempting the harder problem of detecting 

92 newborn cells (buds), we only have to follow existing cells backwards in time until they are born 

93 (disappear). To segment the cells, we therefore need an initial segmentation of the last time-

94 point, which is fed to the main algorithm that uses the segmentation of the previous time point as 

95 the seed for the next time point.

96

97 This seeding step was previously a bottleneck since it was semi-automated and required user-

98 input. To fully automate the segmentation algorithm, we developed a novel method to automate 

99 this seeding step. Here we present the general outline of this method. For a detailed explanation 

100 see the supplementary material and the accompanying annotated software. 

101

102 The automated seeding algorithm has two main steps (Fig 1): First, watershed algorithm is 

103 applied to the pre-processed image of the last time point (Fig 1A-C). Second, the resulting 

104 watershed lines are automatically fine-tuned, and segmentation mistakes are automatically 

105 corrected (Fig 1D and 1E). 
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106

107 Fig 1. Automated seeding overview. 

108 (A) Example phase image. (B) First step of automated seeding algorithm: Pre-processing and 

109 watershed. In this step, the watershed transform is applied to the processed image. (C) Phase 

110 image with watershed lines (yellow). (D) Flowchart of the second step of automated seeding: 

111 Automated correction and fine-tuning. At this step, the cell boundaries are automatically fine-

112 tuned, and segmentation errors are automatically corrected. (E) The result of the automated 

113 seeding step. Each cell boundary is marked with a different color. 

114

115 Pre-processing and watershed. During this step, the image is processed before the 

116 application of the watershed transform, with the aim of getting only one local minimum at each 

117 cell interior, so that each cell area will be associated with one segmented region after the 

118 application of the watershed transform. To this end, the image is first coarsely segmented to 

119 determine the cell and non-cell (background) regions of the image (Fig 1B, Processing/Filtering, 

120 binary image on the bottom left). Based on this coarse segmentation, we only focus on the cell 

121 colonies. Next, cell contours and interstices are identified by exploiting the fact that they are 

122 brighter than the background pixels and cell interiors (Fig 1B, Cell Contours). To detect such 

123 pixels, we use mean and standard deviation filtering (Fig 1B, Processing/Filtering, top images) 

124 and label pixels that are brighter than their surroundings as cell contour pixels. Once these cell 

125 contour pixels are determined, we apply a distance transform to this binary image and further 

126 process the transformed image (Fig1B, Distance Transform and Processed Image). Next, we 

127 apply a watershed transform to the resulting image (Fig 1C). Note that even though the 

128 watershed lines will separate the cells, they do not mark the exact boundaries (Fig 2A). In 
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129 addition, sometimes multiple, or lack of, local minima within cells leads to situations where 

130 multiple cells are merged as one or a cell is divided into multiple regions (under/over-

131 segmentation, Fig 2B and 2C). 

132

133 Fig 2. Automated correction & fine-tuning step examples. 

134 (A) Refining cell boundaries: The watershed lines do not mark the exact cell boundaries (first 

135 column, magenta). Our algorithm automatically fine-tunes these watershed lines and marks the 

136 correct cell boundary (third column, red). (B) Under-segmentation correction: Sometimes the 

137 watershed lines merge multiple cells (first column, magenta). Such mistakes are detected and 

138 corrected automatically (fourth column, red). (C) Over-segmentation correction: Sometimes the 

139 watershed lines divide a cell into multiple pieces (first column). After applying the segmentation 

140 subroutine several times, each piece converges towards the correct cell segmentation and thus the 

141 pieces overlap significantly (fourth column). If the overlap between two pieces are above a 

142 certain threshold, then they are merged (fifth column, red). (D) Distribution of Overlaps: The 

143 algorithm sometimes assigns the same pixels to adjacent cells (Also see section Distribution of 

144 overlapping cell locations), which leads to overlapping cell locations. Such overlaps (fourth 

145 column, yellow) are distributed among the cells based on their scores. 

146

147 Automated correction and fine-tuning. To refine the cell boundaries and to 

148 automatically correct segmentation mistakes, we implemented the second step (Fig 1D), which 

149 takes as the input the watershed result from the previous step and gives as the output the final 

150 automated seed (Fig 1E). For each cell, this algorithm focuses on a subimage containing the 

151 putative cell region determined by the watershed lines. First, the algorithm checks whether the 
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152 putative cell area contains more than one cell (under-segmentation), i.e. whether the putative cell 

153 region needs to be divided. This is achieved by testing the stability of the putative cell location 

154 under different parameters: the previous pre-processing and watershed step is applied on the 

155 subimage, but this time with multiple thresholds for determining the cell contour pixels. Each 

156 threshold has a ‘vote’ for assigning a pixel as a cell pixel or a non-cell pixel, which eventually 

157 determines whether the area will be divided. If the putative cell is divided, then each piece is 

158 treated separately as an independent cell (Fig1D, blue box). Next, the subimage is segmented 

159 using a version of the previously published segmentation subroutine [30] (See supplementary 

160 material section Review of the previously published subroutine.), in which the image is 

161 segmented multiple rounds using the result of the previous segmentation as the seed for the next 

162 segmentation. Through these segmentation iterations the coarse seed obtained by the watershed 

163 transform converges onto the correct cell boundaries fine-tuning the segmentation. Also, this step 

164 generates a score for each putative cell, which is an image carrying weights representing how 

165 likely each pixel belongs to the cell. These scores are used in case the same pixels are assigned to 

166 adjacent cells, leading to overlapping cell locations. If these overlaps are small, the algorithm 

167 distributes them among the cells based on the scores generated at the segmentation step (Fig 2D. 

168 See also section Distribution of overlapping cell locations.). If the intersection between two 

169 putative cell regions is above a certain threshold, then the algorithm merges these two regions to 

170 correct over-segmentation mistakes (Fig 2C). 

171

172 To test our automated seeding step, we applied it to a wide range of example cases: (1) cycling 

173 cells imaged by phase contrast with 40X objective and (2) 63X objective, (3) sporulating cells 

174 imaged by phase contrast with 40X objective, (4) cln1 cln2 cln3 cells imaged by phase contrast 
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175 with 63X objective, (5-8) cln1 cln2 cln3 cells exposed to 3, 6, 9 and 12nM mating pheromone 

176 (α-factor) imaged by phase contrast with 63X objective, and (9) bright-field images of cycling 

177 cells imaged with 40X objective. Note that bright-field images were briefly processed before 

178 feeding them into the seeding algorithm (see section Bright-field images.).

179

180 Next, the segmentations were scored manually (Table 1). Cells whose area were correctly 

181 segmented over 95% were scored as ‘correct’. A significant fraction of the segmentation 

182 mistakes was minor, and they were automatically corrected within 10 time points after the seed 

183 was fed into the segmentation and tracking algorithm (Table1). Note that most of the seeding 

184 errors emerged from cells with ambiguous cell boundaries, such as dead cells. 

185

186 Table 1: Automated Seeding Performance

Initial fraction of 

correctly 

segmented cells 

%

Final fraction 

of correctly 

segmented 

cells after 10 

time points

Average # 

of time 

points 

needed for 

correction

N cells # 

Fields

of

View

40X – cycling 95.9% 98.6% 3.6 435 2

63X – cycling 95.2% 97.3% 5.8 293 3

40X- sporulating 96.6% 96.9% 2 352 2

63X – 0 nM 92.5% - - 67 3

63X– 3nM 93.7% 95.8% 5.3 143 4

63X – 6 nM 90.2% - - 102 4
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63X – 9 nM 86.24% 89.9% 5.2 109 6

63X –12nM 71.64% - - 67 5

Bright-field 95.5% - - 308 2

187 0, 3, 6, 9, 12 nM refer to α-factor concentrations used for treating cln1cln2cln3 cells. #:Number

188

189 Finally, we implemented a correction step after the automatic seeding, where faulty seeds can be 

190 adjusted or removed semi-automatically. For screening or large-scale applications this step can 

191 be omitted with little loss of accuracy. 

192

193 Computational Performance

194 When segmenting an image, the algorithm first segments each cell independent of other cells by 

195 focusing on a subimage containing a neighborhood around the cell’s seed. Through 

196 parallelization of this step, we significantly improved the speed of our algorithm. 

197

198 To demonstrate the gain in runtime we segmented an example time-series of images sequentially 

199 without parallelization and in parallel with varying number of workers (i.e. parallel processors). 

200 The example time-series had 200 images and 360 cells on the last image, which amounted to 

201 25377 segmentation events. With 40 workers the algorithm runs about15-times faster (263 min 

202 vs 17 min, Fig 3A). Note that after about 26 workers, there is no significant difference in 

203 runtime, since the time gain is limited by the longest serial job. Also, overhead communication 

204 time increases with increasing number of workers offsetting the time gain. 

205

206 Fig 3. Time gain, speedup and efficiency achieved by parallelization. 
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207 An example field of view imaged over 10 hours (200 time points, 360 cells at the last time point) 

208 was segmented sequentially and in parallel with varying number of workers. (A) Runtimes. (B) 

209 Speedup is calculated by dividing the sequential execution time by the parallel execution time. 

210 With 40 workers the algorithm runs 15.4 times faster. (C) Efficiency is the speedup per 

211 processor. Note that the efficiency goes down as the number of processors increases.

212

213 We also calculated the performance measures speedup and efficiency [31]. The speedup is the 

214 ratio of the runtime without parallelization to runtime with  processors. The speedup increases 𝑛

215 as the number of workers increases, but eventually levels off (Fig 3B). Next, we calculated the 

216 efficiency, which is the speedup divided by the number of processors. This gives a measure of 

217 how much each processor is used on average [31]. The efficiency is highest for 2 processors and 

218 it decreases as the number of processors are increased (Fig 3C). 

219

220 Personal computers with quad processing cores can run successfully with four workers, which 

221 sped up the runtime about 3.5 times with the example images. Thus, even in the absence of a 

222 computing core, one can significantly improve the efficiency of the algorithm on a personal 

223 computer.

224

225 Distribution of overlapping cell locations

226 Phase contrast microscopy, which produces a sharp contrast between cells and background, is in 

227 general preferable for yeast segmentation and tracking. Yet phase imaging always produces a 

228 phase halo around objects [32] that might produce ‘false’ cell boundaries in the context of 

229 densely packed cells (Fig 4A). When these ‘false’ boundaries invade the neighboring cells, the 
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230 segmentation algorithm might assign the same pixels to multiple cells in a way that their 

231 segmentations overlap (Fig 4B and 4C, white pixels in Cell Locations). 

232

233 Fig 4. Distribution of overlapping cell locations.

234 (A) Example phase image showing two neighboring cells: There is a bright halo (phase halo) 

235 around the cells in phase images. When cells are touching, these halos can create a false cell 

236 boundary detected by the algorithm. Thus, the algorithm sometimes assigns the same pixels to 

237 neighboring cells leading to overlapping cell locations. (B-C) Example cells imaged with 40X 

238 (B) and 63X (C) objectives. Cell Locations: Overlaps between neighboring cells are highlighted 

239 as white areas. Each cell location is represented with a different color. Example Cell Score: 

240 Each individual cell has a cell score, which carries weights for whether a pixel should belong to 

241 the cell. Previous Algorithm: Overlapping regions among the cells were excluded from the 

242 segmentation in the previous algorithm [30]. Improved Segmentation: In the new algorithm 

243 such overlapping regions are distributed among the cells based on their scores, which improves 

244 the segmentation at the cell boundaries significantly. (D-E) Comparison of cell areas with and 

245 without distributing the overlapping regions for 40X (D) and 63X (E) objectives for example 

246 cells. Cells imaged over 10 hours (100 time points) were segmented with and without 

247 distributing the overlapping pixels. By distributing the overlapping pixels, the majority of cells 

248 gained cell area (75% for 40X and 97% for 63X, see Table 2). Percent area gain is calculated by 

249 dividing the difference of the cell area with and without distributing the intersections by the area 

250 with distributing the intersections and then multiplying the result by 100. Next, the average 

251 percent cell area gain versus average size is plotted. To this end, cell sizes are grouped in 50-

252 pixel increments (40X) or in 100-pixel increments (63X). The average size of each group is 
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253 plotted against the average percent size gain in that group. The error bars show the standard error 

254 of the mean. Note that for small cells (buds) area gain percentage is higher than mother cells 

255

256 In the initial version of our algorithm [30], such overlapping regions were excluded from the 

257 segmentation (Fig 4B and 4C, Previous Algorithm). To improve the segmentation accuracy, we 

258 developed a method to segment these overlapping areas as well (Fig 4B and 4C, Improved 

259 Segmentation). After the cells are segmented individually, the cell locations are compared to 

260 detect the overlapping pixels. Next, any such overlapping pixels are distributed based on the 

261 scores among cells with overlapping locations. Note that this step is also implemented for 

262 automatic seeding (Fig 1D and Fig 2C). 

263

264 To validate this procedure, we segmented cycling cells imaged for 10 hours (100 time points) 

265 with 40X and 63X objectives with or without correction for overlapping cell locations and 

266 compared the results (Fig 4 B-E, Movie S1 and S2). Distributing the overlapping regions 

267 significantly improved the segmentation as measured by the increase of correctly segmented cell 

268 area. Specifically, the vast majority of cells had a non-zero area gain (75%/97% for 40X/63X, 

269 Table 2). The cells with an area gain, had increased their area 2.3 ± 2.6% (40X, N40X=5154) and 

270 2.7 ± 2.8% (63X, N63X=4838) on average. The percent cell area gain is calculated as:

271

272 % cell area gain =
𝐴𝑟𝑒𝑎𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ‒ 𝐴𝑟𝑒𝑎𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠

𝐴𝑟𝑒𝑎𝑤𝑖𝑡ℎ 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠
× 100

273

274 We also tested this correction method for cells with abnormal morphologies. To this end we used 

275 a yeast strain that lacks two out of three G1 cyclins (cln1cln3) and where the third (cln2) was 
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276 conditionally expressed in our microfluidics-based imaging platform. Specifically, we grew cells 

277 for one hour before we arrested the cell cycle and added variable amounts of mating pheromone 

278 (0, 3, 6, 9, or 12 nM α-factor) which lead to various yeast morphologies (Fig 5 A-E, Movies S3-

279 7) [33, 34]. By distributing the overlapping cell locations, here we noticed again a significant 

280 area gain (Table 2). Taken together, this demonstrates that the boundary correction method 

281 works and is robust across varying conditions. 

282

283 Fig 5. Segmentation of cells subject to varying levels of pheromone treatment. 

284 (A-E) First column shows the phase images of cln1 cln2 cln3 cells without α-factor (A) and with 

285 varying levels of α-factor treatment (B-E). Note that the shapes get progressively more irregular 

286 as the concentration of the α-factor increases. Second column shows the histogram of % area 

287 gain by distributing the overlapping segmentation regions. Note that histograms are capped at 

288 10%. Third column shows the relationship between size of the cell and the percent cell area gain. 

289 The cell sizes are grouped in 100-pixel increments. The average size of each group is plotted 

290 against the average percent size gain in that group. The error bars show the standard error of the 

291 mean. Note that for small cells area gain percentage is higher than that for larger cells.

292

293 Table 2: Area Gain by Distribution of Overlapping Pixels

% Cell Area Gain

(given there is a 

gain)

Pixel Gain

(given there is a 

gain)

% of 

Segmentations 

with

Area Gain Mean Std Mean Std

# Data 

Points with 

Area Gain

# Fields 

of View

40X 74.6% 2.3% 2.6% 6.8 5.4 5154 2
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cycling

63X 

cycling

96.7% 2.7% 2.8% 22.4 16.7 4838 2

63X

0 nM 

76.7% 2.0% 2.7% 18.3 17.1 7557 3

63X

3 nM

84.8% 2.3% 3.0% 23.2 24.6 10899 2

63X

6 nM

93.3% 1.9% 2.5% 21.0 20.8 7975 3

63X

9 nM 

82.2% 1.4% 1.8% 13.3 15.0 8324 3

63X

12 nM

82.1% 1.5% 1.6% 12.0 9.8 5531 3

294 0, 3, 6, 9, 12 nM refer to α-factor concentrations used for treating cln1cln2cln3 cells. 

295

296 Robustness of segmentation

297 The ability of a segmentation algorithm to correct an error is a key requirement for correct 

298 segmentation over a large number of time points. Otherwise, once an error is made, for example 

299 due to an unexpectedly large movement of a cell or a bad focus at one time point, it will linger 

300 throughout the segmentation of consecutive time points and errors will accumulate. Our 

301 algorithm can correct such errors, since it is robust to perturbations in the seed, i.e. even if there 

302 is a segmentation error at one time point, when the algorithm is segmenting the next time point 

303 using the previous wrong segmentation as a seed, it can still recover the correct cell boundaries.
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304

305 To test the robustness of our algorithm to errors in the seed (i.e. segmentation of the previous 

306 time point), we picked 340 cells randomly and perturbed their seed by removing 10-90% of the 

307 total cell area (Fig 6A). Then, we ran the segmentation algorithm with these perturbed seeds. 

308 Over 97% of these cells were fully recovered by the segmentation algorithm (Fig 6B). Out of the 

309 340 cells the algorithm could not recover only 9 cells, which had from 65.5 to 85.9% of their 

310 seed removed. On average it took 2.6 ± 2.6 (N=331) time points for the segmentation algorithm 

311 to correct segmentation mistakes and the time points required to correct the seed error increased 

312 with the severity of the perturbation (Fig 6C). These results demonstrate that our algorithm can 

313 correct segmentation mistakes automatically at subsequent time points and, thus, is well suited 

314 for long-term imaging.  

315

316 Figure 6. Robustness of the segmentation algorithm to perturbations in the seed.

317 (A) Example cell: The seed of the example cell is perturbed by randomly removing 40% of the 

318 seed. The algorithm uses this perturbed seed to segment the cell at time t-1 and recovers the cell 

319 with only minor mistakes. The algorithm fully recovers the cell in two time points. Note that the 

320 algorithm segments the cells backwards in time, thus time points are decreasing. (B) The seeds 

321 of 340 cells were perturbed by randomly removing 10-90% of the seed. The cells are grouped 

322 based on the severity of perturbation, i.e. percent seed area removed, in 25% increments. Mean 

323 fraction of fully recovered cells are plotted for each group. Note that out of 340 cells, only 9 of 

324 them were not recovered by the algorithm. (C) The cells are grouped based on the perturbation in 

325 25% increments and the average number of time points required to fully recover the correct cell 

326 segmentation is plotted for each group. Number of time points required to fully recover the cells 
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327 increase with the severity of the seed perturbation. The error bars show standard error of the 

328 mean.

329

330 Note that the robustness of the algorithm to perturbations is also exploited in the automatic 

331 seeding step. Even if the watershed lines produce seeds that are away from the real cell 

332 boundary, our algorithm can use those as seed and converge onto the real cell boundaries (Fig 

333 1A). Also, when a cell is over-segmented, i.e. divided into multiple pieces, each piece acts like a 

334 perturbed seed and converge onto the correct segmentation. This is why such pieces overlap 

335 significantly after running the segmentation subroutine several times (Fig 1D).

336

337 Utilizing fluorescent channels that are not dedicated to segmentation 

338 to improve image contrast 

339 A common way to improve segmentation accuracy is to mark cell boundaries by fluorescent dyes 

340 or markers [17]. However, such techniques occupy fluorescent channels solely for segmentation, 

341 increase the risk of phototoxicity, and/or complicate the experimental setup due to added 

342 requirements with respect to cloning (fluorescent proteins) or chemical handling (dyes). 

343 It is therefore desirable to limit the number of fluorescent channels dedicated to segmentation if 

344 possible. 

345

346 Nonetheless, if any proteins whose localization is at least partially cytoplasmic are fluorescently 

347 tagged (dedicated to some biological process of interest), then they can potentially be used to 

348 improve the segmentation. Since a large fraction of all proteins exhibit at least partial 

349 cytoplasmic localization [35], this is a quite common situation. To take advantage of such cases 
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350 we developed a method that integrates multi-channel data into the segmentation algorithm. 

351 Specifically, this is done by forming a composite image of the phase image (Fig 7A) and the 

352 fluorescent channel (Fig 7B), which has high contrast between cell interior and the boundary 

353 (Fig 7C).

354

355 Fig 7. Utilizing a fluorescent channel for improving the segmentation of sporulating cells. 

356 (A) Example phase image, GFP-channel image and the composite image. In the phase image, 

357 spores have very bright patches unlike cycling cells. The composite image is created using the 

358 phase and GFP-channel images. Note that Vma1-GFP channel is not dedicated to segmentation. 

359 (B) Segmentation results using the phase image and using the composite image. Using the 

360 composite image corrects for the slight out of focus phase image and significantly improves the 

361 segmentation. (C-D) Comparison of segmentations with phase and composite images. Example 

362 cells were imaged for 20 hours (100 time points) and segmented with phase or the composite 

363 images. (C) Out of 32868 cell segmentation events, 89.5% of them have a greater area when the 

364 composite image is used for segmentation. (D) Comparison of errors in segmentation with phase 

365 or composite images. Blue no error, green minor error. Minor errors decreased significantly 

366 when using composite images were used for segmentation. 

367

368 To test this approach, we applied it to yeast cells imaged through the process of spore formation. 

369 Such cells, unlike cycling and mating pheromone treated cells, exhibit regions with high phase 

370 contrast (white) within the cells (Fig 7A). Moreover, sporulating cells also exhibit morphological 

371 changes when the ellipsoidal yeast alters shape to the characteristic tetrahedral ascus shape [36]. 

372 Here we used a strain, where the Subunit A of the V1 peripheral membrane domain of the 
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373 vacuolar ATPase, VMA1, is tagged with GFP marking the vacuole boundaries [37]. Note that this 

374 biomarker is not dedicated for segmentation; thus, it is a good trial candidate to explore how our 

375 method improves segmentation using a biomarker that is not dedicated to segmentation.

376

377 We picked two example fields of view, which are segmented over 20 hours (100 time points), 

378 amounting to 32868 segmentation events. We segmented these using phase images or composite 

379 images. Next, we scored the errors manually and compared the cell areas for each segmentation 

380 event that was correctly segmented by both images. We found that 99.3% of the correctly 

381 segmented cells had a different cell area and on average they had 12.8 ± 12.0% bigger cell area 

382 when composite images are used (Table 3, Fig 7C, Movies S8 and S9). More specifically, we 

383 found that 89.5% of the cells have a bigger area when composite image is used for segmentation; 

384 0.7% had the same area, and 9.9% had less cell area. The size distributions of cells segmented 

385 using phase and composite images were significantly different (two-sample Kolmogorov-

386 Smirnov test, p<0.001).

387

388 Table 3: Cell Area with Phase Image and Composite Image

% cell Area Gain

(including negatives 

and zeros)

Pixel Gain% of 

segmentations 

with

area 

difference

Mean Std Mean Std

# Data 

Points

# 

Fields 

of 

View

Sporulating 

Cells

99.3% 12.8% 12.0% 45.4 39.8 32868 2
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389 #: Number

390

391 In addition, the accuracy of segmentation improved significantly by using composite images. To 

392 quantify the accuracy of segmentation, we scored manually the errors in an example field of 

393 view, which was segmented with phase images or composite images. A cell is considered 

394 accurately segmented if over 95% of its area was segmented correctly. If a segmentation was 90-

395 95% correct, we labeled it as a minor error. Using composite images, the fraction of correctly 

396 segmented cells increased from 75.9% to 99.4% (Table 4, Fig 7D). We found that using the 

397 composite image corrects segmentation mistakes that arise due to slightly out of focus phase 

398 images. 

399

400 Table 4: Algorithm Performance with Phase Image and the Composite Image.

Method Used Phase Only Composite Image 

# of segmented cells 63 63

# of segmentation events 6300 6300

Fraction of accurate 

segmentations

75.9% 99.4%

Fraction of minor 

segmentation errors

24.1% 0.6%

Fraction of individual time-

series without any errors

52.4% 87.3%

# Fields of view 1 1

401 #: Number
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402 Bright-field images 

403 Bright-field images are widely used for live-cell imaging, however they are often low contrast 

404 and unevenly illuminated [28]. Thus, it is harder to accurately segment cells using bright-field 

405 images. 

406 To test our algorithm on bright-field images, we segmented two example fields of view imaged 

407 with bright-field for five hours (100 time points) (Fig 8A, Movie S10). First, we processed the 

408 bright-field images to make the cell boundaries more prominent. To this end, we applied top-hat 

409 transformation to the complement of the bright-field images (Fig 8B) [38]. We were able to 

410 successfully segment bright-field images using our segmentation algorithm (Fig 8C; See section 

411 Overall performance for quantification of errors).

412

413 Fig 8. Segmentation of bright-field images.

414 (A) Example bright-field image. (B) Bright-field image is processed before segmentation by 

415 applying a top-hat transform to its complement. (C) Segmentation of the image. Each cell 

416 boundary is marked with a different color.  

417

418 Overall performance

419 To rigorously test our segmentation algorithm, we segmented 9 different example cases and 

420 evaluated our algorithm’s performance. The errors were scored manually. We counted a cell as 

421 ‘correctly segmented’ if over 95% of its area was segmented correctly. If the segmentation was 

422 90-95% correct, we labeled it as a minor error. The rest of the errors are called major errors. 

423
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424 The performance of the algorithm is presented in Table 4 and Fig 9. In all example cases at least 

425 92% of the segmentation events were correct. This reached to 99% for some of the example 

426 cases. These results demonstrate that our algorithm reaches high accuracy at diverse budding 

427 yeast segmentation applications. 

428

429 Fig 9. Overall performance of segmentation examples.

430 Sorted cell traces for every example case. Time points where the cell is not yet born are dark 

431 blue. Correct segmentations are labeled blue, minor errors green and major segmentation errors 

432 yellow. The errors were scored manually. For quantification see Table 4.

433

434 Table 4: Overall Performance of all Example Cases

40X 

cycling

63X 

cycling

40X

sporulating

0 

nM

3 

nM

6 

nM

9

nM

12

nM

Bright

Field

Total # of 

segmented 

cells

156 101 162 66 64 57 44 33 169

Total number 

of 

segmentation 

events

6957 5030 16199 9903 13122 13030 10134 6908 11116

Fraction of 

accurate 

segmentations

99.4% 99.4% 99.4% 99.4% 97.9% 97.7% 99.9% 97.6% 92.0%

Fraction of 0.6% 0.6% 0.6% 0.3% 0.4% 0.7% 0.1% 1.8% 6.9%
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minor 

segmentation 

errors

Fraction of 

major 

segmentation 

errors

0% 0% 0% 0.3% 1.7% 1.6% 0% 0.6% 1.1%

Fraction of 

individual 

time-series 

without any 

errors

92.9% 95.0% 90.7% 90.9% 81.25% 84.2% 93.2% 78.8% 63.3%

# fields of view 2 3 2 3 2 3 3 3 2

435 0, 3, 6, 9, 12 nM refer to α-factor concentrations used for treating cln1cln2cln3 cells. 

436

437 Discussion 

438 The generation of single cell data from live-cell imaging relies on accurate segmentation and 

439 tracking of cells. Once accurate segmentation is achieved, single-cell data can be extracted from 

440 a given image time-series [39]. Here we introduce a fully automated and parallelizable algorithm 

441 that accurately segments budding yeast cells with arbitrary morphologies imaged through various 

442 conditions (phase / bright field) and objectives (40X/63X). This algorithm improves the accuracy 

443 and the speed of the previously published one [30] and adapts it to segmentation of different 

444 yeast cell morphologies and imaging conditions (Fig 10, Improvements are highlighted in red 

445 boxes.). In addition, we developed a novel seeding step, which replaces the semi-automatic 
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446 seeding of the previous algorithm and enables us to have a fully automatic segmentation 

447 algorithm. Since our algorithm can work with no user input, it can be used for large scale single-

448 cell screens.

449

450 Fig 10. Overview of the segmentation and tracking algorithm. 

451 First, the automated seeding step segments the image of the last time point. This seed is fed into 

452 the algorithm, which segments the images backwards in time and uses the segmentation of the 

453 previous time point as a seed for segmenting the next time point. The segmentation at a given 

454 time point is summarized in the blue box. Improvements over the previously published algorithm 

455 [30] are highlighted in red boxes. 

456

457 The algorithm presented here runs significantly faster than the previous algorithm through 

458 parallelization. Even in the absence of a computing core, significant time gain can be achieved 

459 on a personal computer with two or four processors.

460

461 Parallel segmentation of individual cells sometimes leads to assignment of the same pixels to 

462 neighboring cells due to false boundaries created by phase halos. Here the algorithm distributes 

463 such overlapping regions, which improved the cell area by 1.4-2.8%. The effect of this 

464 distribution is more prominent when cells are densely packed. Note that by simply omitting the 

465 overlapping pixels the segmentation would still be considered accurate, however, with budding 

466 yeast we aim to perfect the segmentation.

467

468 Another aim in budding yeast segmentation is to limit the use of fluorescent markers and dyes. 
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469 Here we show how fluorescent channels that are devoted to a biological process of interest and 

470 not to segmentation, can be used to improve the segmentation significantly. The information 

471 about the cell location from the fluorescence of the tagged protein and/or autofluorescence of the 

472 cells can be incorporated into the phase images by forming composite images using fluorescent 

473 channels. In this way, we show a way to utilize existing information about the cell locations in 

474 other channels.

475

476 One of the strengths of our algorithm is its ability to automatically correct segmentation mistakes 

477 at subsequent time points. This property is also exploited in the automatic seeding step to correct 

478 mistakes in the seed without user input. Given the versatility and accuracy of our algorithm, we 

479 believe that it will improve long-term live cell imaging studies in numerous contexts.

480

481 Materials and methods 

482 Algorithm Outline 

483 See supplementary material for algorithm outline and the software.

484

485 Media

486 SCD (1% succinic acid, 0.6% sodium hydroxide, 0.5% ammonium sulfate, 0.17% YNB (yeast 

487 nitrogen base without amino acids/ammonium sulfate), 0.113% dropout stock powder (complete 

488 amino acid), 2% glucose, YNA [40] (0.25% yeast extract, 2% potassium acetate)

489

490 Cell Culture and Microscopy
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491 The images were taken with a Zeiss Observer Z1 microscope equipped with automated hardware 

492 focus, motorized stage, temperature control and an AxioCam HRm Rev 3 camera. We used a 

493 Zeiss EC Plan-Neofluar 40X 1.3 oil immersion objective or Zeiss EC Plan-Apochromat 63X 1.4 

494 oil immersion objective. The cells were imaged using a Y04C Cellasic microfluidics device 

495 (http://www.cellasic.com/) using 0.6 psi flow rate. Cells were kept at 25 °C. For details of the 

496 strains see Table 5.

497 Cycling Cells. PK220 cells were imaged in SCD every 3 min with 40X or 63X objective, 

498 either with phase contrast or bright field. Exposure times are 40 ms for 40X phase, 80 ms for 

499 63X phase and 20 ms for 40X bright field.

500 Sporulating Cells. YL50 cells were imaged in YNA every 12 min. For details of the 

501 sporulation protocol see [41]. Exposure times are 15 ms for phase and 30ms for the GFP channel.

502 Pheromone Treated Cells. JS264-6c cells received 1h SCD, then they received SCD for 

503 5.5h with mating pheromone (0,3, 6, 9 or 12 nM) and 10X Methionine. Images were taken with 

504 63X objective every 1.5 min. 

505

506 Table 5: Saccharomyces Cerevisiae Strains

Name Genotype Source

PK220 MAT a/MATα, his3/his3, trp1/trp1, LEU2/leu2, 

ura3/ura3, IME1/ime1 pr::IME1pr-NLS-mRuby3-

URA3, WHI5/WHI5-mKOκ-TRP1, VMA1/VMA1-

mNeptune2.5-kanMX, ERG6/ERG6-mTFP1-HIS3

Doncic Lab

JS264-6c MATa bar1::URA3 cln1::HIS3 cln2Δ cln3Δ::LEU2 [42]
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ADE2 trp1::TRP1- MET3pr-CLN2 FAR1-Venus-

kanMX WHI5-mCherry-spHIS5

YL50 MAT a/MATα, his3/his3, trp1/trp1, LEU2/leu2, 

ura3/ura3, BAR1/bar1::Ura3, IME1/ime1 

pr::IME1pr-NLS-mCherry-URA, WHI5/WHI5-

mKOκ-TRP1, VMA1/VMA1-GFP-HIS, 

FAR1/Far1::kanMX

Doncic Lab

507 JS264-6c is isogenic with W303 (leu2-3,112 his3-11,15 ura3-1 trp1-1 can1-1) and PK220 and 

508 YL50 are with W303 (ho::LYS2 ura3 leu2::hisG trp1::hisG his3::hisG) except at the loci 

509 indicated.
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612 Supporting information 

613 S1 Movie. Cycling cells imaged with 40X objective. Cells growing in SCD are imaged every 3 

614 min for 5 hours. 

615 S2 Movie. Cycling cells imaged with 63X objective. Cells growing in SCD are imaged every 3 

616 min for 5 hours.

617 S3 Movie. cln1cln2cln3 cells. Cells growing in SCD are imaged every 1.5 min for 6.5 hours.

618 S4 Movie. cln1cln2cln3 cells exposed to 3 nm α-factor. The mutant cln1cln2cln3 cells were 

619 grown in SCD for 1 h, and then exposed to 3nM of mating pheromone for 5.5h. The images are 

620 taken every 1.5 min.

621 S5 Movie. cln1cln2cln3 cells exposed to 6 nm α-factor. The mutant cln1cln2cln3 cells were 

622 grown in SCD for 1 h, and then exposed to 6nM of mating pheromone for 5.5h. The images are 

623 taken every 1.5 min.

624 S6 Movie. cln1cln2cln3 cells exposed to 9 nm α-factor. The mutant cln1cln2cln3 cells were 

625 grown in SCD for 1 h, and then exposed to 9nM of mating pheromone for 5.5h. The images are 

626 taken every 1.5 min.

627 S7 Movie. cln1cln2cln3 cells exposed to 12 nm α-factor. The mutant cln1cln2cln3 cells were 

628 grown in SCD for 1 h, and then exposed to 12nM of mating pheromone for 5.5h. The images are 

629 taken every 1.5 min.

630 S8 Movie. Sporulating cells. Sporulating cells in YNA are imaged every 12 min for 20 h.

631 S9 Movie. Comparison of using composite images vs phase images. Left is the segmentation 

632 of cells using composite images and right are the segmentation of cells using phase images.

633 S10 Movie. Bright Field Images. Cells growing in SCD are imaged every 3 min for 5 hours.

634 S11 Text. Tutorial and Algorithm Outline 
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635 S12 Code and Example Images.
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