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ABSTRACT 18 

 Recent reports tend to predict the increase of harmful cyanobacteria in water systems 19 

worldwide due to the climatic and environmental changes, which would compromise water 20 

quality and public health. Among abiotic changes, the higher salinities are expected to 21 

promote the growth of some harmful species such as Planktothrix agardhii, which is known 22 

to build up blooms in brackish areas. Since P. agardhii is a common cyanotoxin producer 23 

(microcystin -producing), we investigated here the growth and tolerance of this species when 24 

exposed in vitro to a range of salinity levels, while assessing its microcystins variation and 25 

production in batch cultures during a time-frame experiment of 18 days.  The study revealed 26 

a salt acclimation of the brackish P. agardhii that still produced microcystins in salty 27 

cultures while maintaining its growth ability in low to medium salinities (ranged from 0 to 28 

7.5 g L-1). For higher salinity concentrations (10 to 12.5 g L-1), microcystins were still 29 

detected, while significantly lower growth rates were obtained during the exponential growth 30 

phase. This suggests that moderate to high salt ranges do not inhibit the microcystins 31 

production of P. agardhii at least for several weeks. Finally, the predicted remediation 32 

perspectives in a context of environment salinization assumed by environmental policies 33 

may be insufficient to eradicate this potential toxic cyanobacteria, especially when this 34 

species is already dominant in the waterbodies. 35 
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INTRODUCTION 40 

The massive occurrence and proliferation of cyanobacteria worldwide are serious issues 41 

as their bloom-forming abilities impair water quality (Twoney et al. 2002) in many ways (i.e. 42 

increasing turbidity, reducing biodiversity, leading to anoxia of the water column) and 43 

because some of common species are able to produce various toxic metabolites such as 44 

hepatotoxins and/or neurotoxins (Chorus and Bartram 1999). The most frequently found in 45 

waterbodies, including brackish areas (Sivonen and Jones 1999) are hepatotoxic microcystins 46 

(MCs) that can affect all living organisms from ciliates to fish (Combes et al. 2013; Ressom et 47 

al. 1994) and threaten human health (Chorus and Bartram 1999; Pouria et al. 1998).  48 

MCs are cyclic heptapeptides that strongly (and irreversibly) inhibit serine-threonine 49 

protein phosphatases type 1 and 2A (Pearson et al. 2010) leading to cell disruption and death 50 

(Djediat et al. 2011). MCs have many structural variations (i.e. depending on the L-amino 51 

acid at the position 2 and 4 respectively from the whole MC architecture), and to date, over 52 

200 MCs variants have been identified (Spoof and Catherine 2017) with different cytotoxic 53 

potentials; depending on the tested MCs variants (Shimizu et al. 2014).  While reports on the 54 

biosynthesis and chemical processes of the MCs are constantly in progress, the forces 55 

underlying toxin production, i.e. the ecological and biological functions of MCs for the 56 

producing-cells still remain elusive and mostly contradictory (Babica et al. 2006). Various 57 

hypotheses for the possible role of MCs have been proposed, including: allelopathic effects 58 

(Leao et al. 2009) grazer defenses, light harvesting adaptation (Kaebernick and Neilan 2001).  59 

Recent findings suggest a possible involvement in intracellular processes and in primary 60 

metabolism (Zilliges et al. 2011), while excluding an essential role for growth (Hesse and 61 

Kohl 2001). Moreover, one of the most challenging questions is how environment influences 62 

the changes in MC concentration during cyanobacterial blooms. Indeed, a better 63 

understanding of the environmental factors triggering and/or involving the variations of the 64 

MC production and changes in the composition of toxic vs non-toxic cells, is highly required 65 

to help to predict the potential health hazards.  66 

Numerous studies have shown that some environmental parameters may influence the 67 

MC production in toxic cells, including (i) the prevalence of toxic clones vs non toxic ones 68 

(Briand et al. 2005) during unfavourable conditions (Kurmayer et al. 2004), (ii) the increase 69 

of MC amount in toxic cells (Sivonen and Jones 1999) and (iii) changes in the MC variants 70 

composition (Tonk et al. 2005; Pearson et al. 2010). Among the possible causal factors are: 71 

the nutrient concentration (Downing et al. 2005), temperature and light (Wiedner et al. 2003), 72 
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the iron concentration level (Sevilla et al. 2008) and pH (Song et al. 1998). Much less is 73 

known on many other abiotic parameters such as hydrologic variability, water bioavailability 74 

and salinity oscillations (N’Dong et al. 2014). Besides, the results are largely inconsistent as 75 

many factors (i.e. abiotic and biotic) may act in synergy and affect at different levels, the 76 

physiological state of the producing-cells (Davis et al. 2009).  77 

All recent reports tend to predict that climatic change will exacerbate the dominance of 78 

harmful cyanobacteria in aquatic ecosystems worldwide (Paerl and Paul 2012; Carey et al. 79 

2012). Indeed, the eutrophication heightened by human activities, coupled with environmental 80 

changes (such as rising temperatures, enhanced stratification of the water column) should 81 

trigger and increase the frequency, the biomass and the duration of the harmful cyanobacterial 82 

proliferations of specific species in waterbodies (Paerl and Otten 2013;  Hagemann 2011; 83 

Fastner et al. 1999). With regards to global warming change, the oscillations in precipitation 84 

including episodic periods of intensive rainfalls (i.e. floods) vs droughts, could be effective 85 

events in expanding the bloom-forming species distribution along the freshwaters to the 86 

coastal areas (Lehman et al. 2005), especially if they are able to tolerate some moderate to 87 

high salt ranges. Thus, the rapid runoff including toxic cyanobacterial transport, may 88 

contaminate and thus impair the aquaculture and fisheries plants located in downstream 89 

waters (Robson et al. 2003; Preece et al. 2017).  90 

Planktothrix agardhii (Gomont) Anagnostidis & Komàrek is one of the most common 91 

freshwater MCs producer in temperate areas (Chomerat et al. 2007) and has also been 92 

reported to produce some blooms in several brackish waters (i.e. from 3 to 11 g L-1 of NaCl) 93 

(Rojo et al. 1994; Villena et al. 2003). However, there are very few data on the influence of 94 

salinity on the MC production, because these widespread MC-producing species are mainly 95 

encountered in freshwaters. While P. agardhii is known to persist in brackish areas, it is 96 

important to investigate whether a rise of salinity may affect or not the ability of P. agardhii 97 

to produce MCs, as the actual remediation policy is performed by increasing the salinity of 98 

damaged and polluted waters to eradicate harmful organisms (Moisander et al. 2002; Von 99 

Alvensleben et al. 2013) (i.e. including potential toxic cyanobacteria) but for which evidence-100 

based reports are still lacking. Therefore, we investigated the response of a dominant 101 

cyanobacterium P. agardhii strain originating from an oligohaline pond, to a gradient of 102 

salinity, and aimed to determine: i) the influence of the salinity range on the P. agardhii 103 

bloom development (growth and morphological changes), in batch cultures during a period of 104 

18-20 days; ii) the influence of salinity on the effective MC production.  105 

 106 
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MATERIALS AND METHODS 107 

Experimental section 108 

Strain isolation and culture conditions 109 

The P. agardhii strain (‘Brack’ strain) used in this study, was collected from the Olivier 110 

pond, in the vicinity of Istres, near the city of Marseille (in the south of France), located at 43° 111 

30′ 46″ N latitude and 4° 59′ 17″ E longitude. The Olivier pond is a eutrophic and oligohaline 112 

waterbody (average salinity of 3 g L-1), covering an area of approximately 225 ha, with a 113 

maximum depth of 10 m. P. agardhii is the dominant cyanobacterium throughout the year 114 

(Vergalli 2013). Water samples were collected at the pond surface during a P. agardhii bloom 115 

in order to isolate filaments. After isolating a single filament (Rippka 1988), the strain was 116 

maintained for several years, under non-axenic conditions in Z8 liquid medium (Kotai 1972), 117 

at 22°C, using a light:dark cycle of 14:10h and a constant bubbling air to ensure homogeneous 118 

mixing and to provide sufficient quantities of inorganic carbon. The ‘Brack’ strain was 119 

assigned to the species P. agardhii, according to the morphological criteria provided by 120 

(Komárek and Anagnostidis 2005) and maintained in the Paris Museum Collection (PMC-121 

MNHN) under the reference PMC1014.18   122 

Experimental setup 123 

For the experiments, NaCl was added to reach the final salinity concentrations of: 3, 5, 124 

7.5, 10, 12 and 15 g L-1 and transferred with Z8 medium, into 250 mL Erlenmeyer flasks. The 125 

control corresponded to the culture maintained in Z8 medium (NaCl = 0 g L-1). Five 126 

replicates of each salinity concentration were checked with a conductivity meter (WTW 127 

LF330 Weilheim, Germany). The flasks were then inoculated with ‘Brack’ pre-culture in 128 

exponential growth phase and adjusted to obtain an initial OD750 = 0.1. Batch cultures were 129 

maintained in growth chambers under the same experimental conditions as described above. 130 

The flasks were regularly replaced in order to homogenize the light exposition provided in the 131 

growth chambers.  132 

Growth measurement 133 

Biomass and growth rate 134 
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The growth kinetics of ‘Brack’ strain cultures were monitored by measuring optical 135 

density at 750 nm using a Shimadzu UV-1700 spectrophotometer. The growth rate (µ) was 136 

calculated using the following equation: 137 

 

where t1 and t2 correspond to the measurement times (i.e. t1: the beginning of the 138 

exponential phase and t2 (Day): the end of the experiment) x2 and x1 correspond to the 139 

biomass (expressed in OD values) at time t (with t2>t1). 140 

Biovolumes and filaments’ length  141 

The biovolumes (µm3) were assessed on the basis of the cylinder shape of filaments, 142 

according to  (Sun and Liu 2003):   143 

BV = 0,5Π lw  

where l is the filament length (µm) and w the filament width (µm). A mean of 20 144 

filaments was randomly measured in a counting chamber, using a micro-scale with a Nikon 145 

Labphoto2 microscope.  146 

Fluorescence microscopy was performed with a Zeiss Primo Star microscope equipped 147 

with an AxioCam IcC1 cam. Epifluorescence images were recorded with specific filter (CY3) 148 

presets for chlorophyll a and acquired with the same time exposure set (AxioVision LE 149 

software). 150 

Characterization of MC-variants 151 

Template preparation 152 

Three ml of mature culture of the ‘Brack’ strain were centrifuged (4000g for 10 minutes). 153 

The supernatant was discarded and the cell pellet was resuspended with 1 mL of 154 

methanol/water (90/10, v/v), followed by for 4 pulses of sonication on ice for 30 seconds. The 155 

mixture was centrifuged at 8000 g for 15 minutes at 4°C. The supernatant was collected, 156 

filtered (GF/C 1.2 μm) and evaporated (with a speed-vac concentrator at 40°C). The extract 157 

was dissolved in 100 µL water with 0.1% formic acid and centrifuged (4000 g X 5 minutes, 158 

4°C). The supernatant was directly injected into the LC/ESI-MS system. 159 

LC/MS analysis 160 
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LC/ESI MS and LC/ESI-MS/MS experiments were performed on a liquid chromatograph 161 

(LC) (UltiMate 3000®, Dionex) coupled to a Quadrupole-Time of flight (Q-TOF) hybrid 162 

mass spectrometer (Pulsar, Applied Biosystems) equipped with an electrospray ionization 163 

source (ESI). The chromatographic separation was conducted on a ACE3-C18 reverse-phase 164 

column (100 mm x 1 mm x 3 µm). Mobile phases were MilliQ water containing 0.1% (v/v) 165 

formic acid (A), acetonitrile  containing 0.07% of formic acid (v/v) (B). The LC separation 166 

was achieved at a flow rate of 40 µl.min-1 using a gradient elution from 10 to 30% of solvent 167 

B in 5 minutes, then, from 30 to 70% B in 17 minutes, hold at 70% B for 5 minutes, return 168 

from 70 to 10% B in 3 minutes and hold at 10% B for 15 minutes. The mass spectrometer was 169 

operated with an electrospray ionization source in positive ion mode. For mass spectra, the 170 

capillary voltage was set to 2500 V with a declustering potential of 20 V. Full scan mass 171 

spectra were performed from 100 to 1500 m/z at 1s/scan in continuum mode. Fragmentation 172 

spectra were obtained in automatic mode using nitrogen as a collision gas, with collision 173 

energy automatically determined by the software according to the mass-to-charge ratio (m/z) 174 

values. 175 

LC/ESI-MS et LC/ESI MS/MS data analyses 176 

MS/MS spectra were analysed manually for highlighted spectra which contained the 177 

fragment ion (m/z= 135.1) characteristic of MCs fragmentation. All others ions fragments 178 

present on the fragmentation spectra were used to elucidate the structure of the MCs. The 179 

LC/ESI-MS data were processed using BioAnalyst 1.1 software. The molecular weight 180 

distribution of species (ranging from 100 Da to 1500 Da) observed in each sample were 181 

generated using the LC-MS reconstruct option. As the signal observed for both MC standards 182 

were close, the proportion of each variant was calculated by comparing the peak area 183 

corresponding to a given MC-variant to the total peak area of all MCs variants in a given 184 

sample. 185 

MC concentration  186 

Microcystins concentrations were determined by Enzyme Linked Immuno-Sorbent Assay 187 

(ELISA) using the MC-ADDA ELISA kit, (Abraxis LLC). ELISA tests were applied on 188 

supernatants from the cultures (i.e. cells pellets and supernatants), previously disrupted by a 189 

sonication on ice (2 pulses of 1 min, max. speed) according to the previous protocol Comes et 190 

al. 2013). The mixture was then centrifuged at 8000 x g for 15 min at 4°C. The supernatant 191 

was collected and diluted in water v:v= 1:100 to 1:1000 (according  to the biomass between 192 
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T0 and T18) to avoid some matrix effects and potential salt interferences, as mentioned in the 193 

“Technical bulletin for microcystins in brackish and seawaters samples”(Abraxis).  The 194 

measurements were performed in duplicate, on different samples exposed to each salinity 195 

treatment at Days 0, 2, 6, 8, 10 and 18. The limit of detection was approximately 0.10 ppb (µg 196 

L-1). The MC contents were expressed in µg L-1equivalent of MC-LR. Due to the positive 197 

correlation between the biovolumes (i.e. quantitative unit) and the biomass (i.e. OD750 values), 198 

(r2= 0.80; n=40, Fig. S2) the MC contents were converted and normalized per biomass 199 

(OD750) as a proxy of MC quota in order to compare the different MC patterns overtime by 200 

minimizing the growth factor.  201 

Statistical analyses 202 

‘Brack’ growth curves were fitted with the best trend approximation from absorbance 203 

measurements overtime, following the equation (Kahm et al. 2010): 204 

  
 

where ‘A’ is the asymptote in the curve and an estimation of the maximal density of the 205 

population reached during the life cycle;  206 

‘µ’ is the maximal slope of the growth curve and characterizes the exponential growth 207 

phase (day 6 to 18); ‘λ’ is the lag-phase period of the growth (i.e. Day 2). 208 

Two parameters (growth rate and maximal density) obtained from the logistic curves 209 

implemented with the ‘grofit’ package (Kahm et al. 2010) were used to compare the ‘Brack’ 210 

growth under various salinity treatments. Normality and homoscedasticity were 211 

systematically checked, using the Shapiro-Wilk and the Fligner-Killeen tests respectively.  212 

Consequently, the significant differences of growth (growth rate, biomass and filaments’ 213 

length) between the salinity treatments were performed by the One-Way Analysis of Variance 214 

(ANOVA) (n=5) and Tukey’s post-hoc test. The differences in MC concentrations were tested 215 

by Kruskal-Wallis test (between salinity treatments) and by Mann-Whitney test, when the MC 216 

patterns were compared to the control. The Pearson correlation coefficients were calculated 217 

between the growth variables and the MC concentrations. All statistical tests were carried out 218 

in R-2.14.0 environment and Statview (Roth et al. 1995).  219 

 220 

RESULTS 221 
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Cell growth and morphological changes induced by exposition to various NaCl 222 

concentrations 223 

Optical density (OD750) was recorded every day (from T0 to T18) to monitor the cultures 224 

growth and calculate the growth rate (µmax). While the highest salinity treatment (15g L-1) 225 

had a drastic effect on the strain growth (Fig. 1), the Brack strain was able to survive and 226 

grow from low to high salinity concentrations (from 3 to 12 g L-1) along the timeline of the 227 

experiment (18 days).  228 

 229 

Figure 1. Growth dynamics of P. agardhii ‘Brack’ strain at different salinity 230 

concentrations, obtained using OD750 values (n= 5, ± SD) from T0 to T18 (A) and fitted 231 

with the ‘grofit’ package. 232 

 233 

 234 

 235 

Two growth profiles can be distinguished: one that includes the control and the low salt 236 

concentrations that corresponds to a progressive increase of growth and a similar growth rate 237 

(ANOVA, P> 0.05); and a second profile corresponding to the high salt concentrations (7.5 to 238 

12.5 g L-1) which revealed a significant decrease in terms of biomass, growth rate and density 239 

(Table 1) especially at Day 8. 240 
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 242 

 243 

Table 1. Descriptive parameters including the growth rate and cell density were determined 244 

from growth curves fitted by the ‘grofit’ model. The different letters mentioned above (a,b,c) 245 

indicate significant differences between the salinity treatments (Tukey test, p<0,01). 246 

 247 

Additionally microscopic observations were performed every two days to estimate the size of 248 

filaments and detect some morphological changes in the whole cells and filaments. The 249 

physiological state of the filaments was assessed by the light and epifluorescence microscope 250 

taking intact morphology and chlorophyll autofluorescence intensity as indicators of survival. 251 

The decrease of chlorophyll content (i.e. OD values) with increasing salinity treatments, was 252 

correlated to a decrease of the total biovolumes i.e. consecutive to morphological changes and 253 

to a reduction of filament size (Fig. 2A). While the filaments had an approximate length of 254 

240 µm at the beginning of the experiment (T=0), a first morphological variation was noted as 255 

early as Day 2 to Day 8 for moderate treatments (5 to 7.5 g L-1), consisting in a significant 256 

increase in the filament lengths up to a maximum (521µm as compared with the control 257 

(ANOVA p<0.05). 258 

The elongation process was observed for cultures at 5 to 7.5 g L-1 of salinity, between 259 

Day 2 and Day 8 (ANOVA p<0,01), followed by a reduction of length beyond Day 10 (which 260 

were not significantly different from those measured for the control experiment-NS) (Fig. 261 

2A). For the high salinity treatments (12.5 to 15g L-1), a significant reduction in the length of 262 

filaments was detected after 14 days, with a mean length not exceeding 60 µm as compared to 263 

the usual 350 µm of control experiment (Fig. 2 A). A remarkably high number of short 264 

fragments constituted by only 5-10 cells were observed at 15 g L-1 of salinity, at the end of 265 

experiment (Figs. 2D). Typical morphologies are shown in Figs. 2B, C, D. High intensity of 266 

the chlorophyll autofluorescence was still detected in short filaments, even after 20 days of 267 

incubation (Figs. 2C, D). Single cells located along the short filaments (at 12. 5 to 15 g L-1 of 268 

salinity) were sometimes completely dark (Fig. 2E- no fluorescent), corresponding to necridia 269 

or “suicidal-cell” referred to in [38] which split the filament in two fragments. 270 

Salinity (g.L-1)                Growth rate µ (day-1)           Max. Density ( 10.3 cell/ml)

0 0,25 ±0,05 a 2,4 ±0,1 a

3 0,19 ±0,02 a 2,3 ±0,4 b

5 0,20 ±0,01 a 2,6 ±0,2 a

7.5 0,15 ±0,02 ab 2,3 ±0,5 b

10 0,12 ±0,02 ab 2,2 ±0,6 bc

12.5 0,05 ±0,01 b 0,9 ±0,6 c

15 0 0,01

Salinity (g.L-1)                Growth rate µ (day-1)           Max. Density ( 10.3 cell/ml)

0 0,25 ±0,05 a 2,4 ±0,1 a

3 0,19 ±0,02 a 2,3 ±0,4 b

5 0,20 ±0,01 a 2,6 ±0,2 a

7.5 0,15 ±0,02 ab 2,3 ±0,5 b

10 0,12 ±0,02 ab 2,2 ±0,6 bc

12.5 0,05 ±0,01 b 0,9 ±0,6 c

0 0,25 ±0,05 a 2,4 ±0,1 a

3 0,19 ±0,02 a 2,3 ±0,4 b

5 0,20 ±0,01 a 2,6 ±0,2 a

7.5 0,15 ±0,02 ab 2,3 ±0,5 b

10 0,12 ±0,02 ab 2,2 ±0,6 bc

12.5 0,05 ±0,01 b 0,9 ±0,6 c

15 0 0,01
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 271 

Figure 2. Variations of the filament length in µm, for cultures grown at different salt 272 

concentrations. A) Means with different letters (a, b, c) show significant differences between 273 

salinities concentrations (p < 0.05, ANOVA, Tukey post-hoc test). Error bars indicate standard 274 

deviation (n = 60). The asterisks indicate significant differences compared to the control (day =0) 275 

size. (NS= not significant difference; *= p<0.05; **= p<0.01; ***= p<0.001). B, C, D, E) 276 

Micrographs of size-type filaments observed in epifluorescence microscopy based on the 277 

chlorophyll autofluorescence (CY3 filter) in control (B), at 12,5 g L-1 (C) and 15 g L-1 of salinity 278 

(D, E) after 18 days of incubation. The yellow arrow (E) showed a necridia (non-fluorescent cell). 279 

Scale bars= 100µm (B); = 20µm (C, D) and = 10µm (E) respectively.   280 

 281 

 282 

 283 

Characterization of the MC-profile in the Brack strain 284 

The characterization of the MC-variant composition was performed by liquid chromatography 285 

coupled to electrospray ionisation mass spectrometry (LC/ESI-MS/MS) in order to identify 286 

the chemo-type profile of the ‘Brack’ strain under optimal conditions (Fig. S1), as a various 287 

MC-diversity may exist within a same species Shimizu et al. 2014; Tonk et al. 2005).  Five 288 
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MC variants, (two major and three minor variants) were determined from cultured ‘Brack’ 289 

strain (Table 2). 290 

 291 

Peak m/z MH+ 
rTmin – rTmax 

(in min) 
Variants of MCs 

Proportion (% ) of MC 
variants* 

1 512,8 1024,6 16,7 – 17,1 [Asp3]MC-RR 83 

2 523,3 1045,6 18.6 – 18,9 [Asp3]MC-HtyR 2 

3 491,3 981,6 18,9-19,4 [Asp3]MC-LR 10 

3 502,2 1003,4 19 – 19,4 Undetermined MC 1 

4 516,2 1031,4 20,8 – 21,2 

DeMC-YR ou  

[Asp3, Dha7]MC-
HtyR 

4 

  292 

Table 2. LC-ESI-MS determination of the individual MC-variants detected in the ‘Brack’ strain. The 293 

Identification of the MC-variant corresponds to ions detected on the mass spectra (m/z), and retention 294 

time (RT) compared to the standards. The proportion for each MC-variant was also included in the 295 

table. The m/z = 512.8 ; 491.3 and 523.3 with the respective retention time (RT) of 16.8 min; 19.2 min 296 

and 18.7 min were identified and confirmed by the corresponding MC standard. * Variants obtained 297 

under optimal conditions. Microcystins were quantified using [Asp3] MC-RR and [Asp3] MC-LR 298 

(Alexis Corporation) standards. 299 

 300 

Based on the Adda fragment signal (m/z 135.1) and on the MS/MS spectra and the 301 

retention times of other ions (identical to MS standards and their MS/MS spectra), two major 302 

ions doubly charged [M+2H] 2+, (Table 2) were identified respectively as [Asp3]MC-RR and 303 

[Asp3]MC-LR which altogether represent 93% of MCs present in this strain. Among the three 304 

minor ions, only one was clearly characterized as the demethylated [Asp3]MC-HtyR (Table 305 

2), while the doubly charged [M+2H] 2+, (m/z = 516.2 with a RT of 21 min) was assigned to 306 

be either [Asp3]MC-YR or [Asp3,dha7]MC-HtyR. The ion m/z = 502.2 was undetermined 307 

and could not be assigned to [Asp3]MC-LR, referred to in (Yuan et al. 1999).   308 

Impact of the salinity treatments on the MC contents 309 

In order to simplify the analysis and especially to get a better idea of the whole MCs present 310 

in the cell culture, the quantification of the total MCs, including both extra- and intracellular 311 

MC fractions, was assessed by using the microtiter plate MC-Adda ELISA test in all salinity 312 
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treatments. The total MC contents (µg L-1) were positively correlated to the biomass (i.e. OD 313 

values) as suggested by the high r2 values for all the salinity treatments except 15 g L-1 (r2= 314 

0,037), (Fig. 3). All the salts conditions, led to similar MC concentration profile including a 315 

progressive increase in MC content from 0 to Day 12, followed by a maximal concentration at 316 

Day 18 for 0 to 12,5 g L-1 of salinity (Kruskal Wallis, p>0.05). At 15 g L-1, a maximal peak 317 

was also present at Day 18, contrasting with a concomitant arrest in cell growth (µ=0). 318 

Figure 3. Variations of the MC contents (µg.eq. MC-LR/ L-1) of P. agardhii ‘Brack’ strain 319 

(means ± standard deviation, n=3) compared to the biomass (OD750 values) over time (18 days).  320 
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 338 

Since a positive correlation was obtained between the biovolumes (µm3) and the biomass 339 

(OD values- Fig. 2S) for all samples taken into consideration (r2= 0.85, n= 70), we could 340 

normalize the MC contents (µg equivalent) per biomass, as a proxy of MC quota to 341 

discriminate the MC profiles in various salinities and over time, so as to minimize the 342 

biomass factor. In more detail, the MC concentration showed four different profiles 343 

depending on the time frame and the salinity concentrations (two-way ANOVA, p<0.05). A 344 

first group was observed between 3 and 7.5 g L-1 and the control (Kruskal-Wallis, p>0.05) 345 

where the MC quota reached its highest value at Day 2 followed by a progressive decline 346 

from Day 8 to Day 18. Some slight differences were detected for the 5 g L-1 treatment (group 347 

2) at Days 6 and 8 (p<0.05- Fig. 4), for which a still high MC value was noted at Day 2 but 348 

without the constant decline of MC previously observed in the group 1 and the  control. For 349 

these groups, the MC quota was negatively correlated to the logarithm of biomass (r= -0.82, 350 

p= 5.8e-11, n= 42) and biovolumes (r= -0.76, p= 5.2e-09, n= 42) throughout the experiment 351 

(Days 2 to 18). A third MC profile was characterized for the 10 and 12,5 g L-1 treatments, 352 

including a rather stable MC concentration throughout the experiment with a moderate 353 

increase at Days 6 and 8 (Fig.4), that differed significantly from the control (p<0.01). The last 354 

group referred to the highest salinity (15 g L-1) and showed an increase of the MC 355 

concentration from Day 2 to Day 10, with a maximal value (7 times higher than control- 356 

p<0,001) at the end of experiment (Fig. 4). 357 

 358 

As the ELISA test was applied to the whole culture (i.e. extracellular and intracellular 359 

fractions) it was not possible to confirm that the MC content came from the vivid cells or the 360 

media (suggesting a release of MCs after the cell death). Finally, the relative constant 361 

proportion of MC content from Day 2 to Day 10 for the 15 g L-1 treatment revealed no 362 

minute-lethal effect of the ‘Brack’ strain, suggesting a rather high tolerance of this strain to 363 

the salt stressor. 364 

 365 

 366 

 367 

 368 
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 369 

Figure 4. Evolution of MC contents (expressed as eq MC-LR µg/ biomass) in the ‘Brack’ strain, 370 

for each salinity treatment, overtime (0 to Day 18). The asterisks indicate significant differences 371 

compared to the control (Mann-Whitney test). NS= Not significant; *= p<0,05; **= p<0,01; 372 

***=p<0,001).  373 

 374 

 375 

 376 

DISCUSSION 377 

Effects of salinity on the growth and morphology of P. agardhii ‘Brack strain’ 378 

Our results have highlighted differences in the growth phases according to salt 379 

concentration, including a general decrease of the growth rate as the salinity increased (up to 380 

7,5 g L-1), but at the same time, a persistence and a survival at 15g/L-1 1for several weeks. 381 

These findings reveal a higher tolerance of salinity for one P. agardhii strain when compared 382 

with the few available studies in literature (Chomerat et al. 2007; Komarek and Anagnostidis 383 

2005; Orr et al. 2004).  Nevertheless, morphological changes were observed throughout the 384 
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experiment, suggesting an effective salt stress, which was still not sufficient enough to 385 

produce drastic effects on the survival of the population. While no significant difference was 386 

detected for the different salinities during the lag phase (p>0,05 between 0 to 2 days), a rapid 387 

increase in filament length occurred between 4 to 8 days for the cultures exposed to 10 and 388 

12,5 g L-1 of salinity (Fig. 2). The elongation process could be the premise of cellular growth 389 

dysfunction or disruption in morphological processes (Singh and Montgomery 2013 a,b), 390 

which cannot divide properly under this stressor. This temporary step was followed by a 391 

contrasting significant reduction of the filament length (Fig. 2A after 12 days) and the 392 

appearance of an increasing amount of short filaments (6-times less in size than control) from 393 

Day 10 to Day 18 (Fig. 2) for 10-15 g L-1 treatments. The presence of broken filaments 394 

suggests some cellular damages (Montgomery 2015) and has already been reported as a stress 395 

response of the cyanobacteria to environmental pressure (Singh and Montgomery 2013 a; 396 

Poulickova et al. 2004). In these conditions, the shortened filaments could be a mechanism of 397 

defense used by the cells to preserve energy (Romo and Miracle 1993) and maintain the 398 

integrity of the few cells standing. Indeed, the “in vivo” chlorophyll autofluorescence 399 

revealed a high intensity of fluorescence signal in the short fragments at 15 g L-1 (Figs.2 C-D) 400 

which, combined with light microscopy, indicate that the integrity of the cells is still 401 

maintained as well as the active photosynthetic pigments within the cells. Although the best 402 

way to assess cell viability is the use of staining methods with fluorescent dyes (Pouneva 403 

1997), autofluorescence of pigments may constitute a convenient method to evaluate the 404 

physiological state of the cell (Corrobé  et al. 2017). At 12.5 to 15 g L-1 of salinity, intense 405 

fluorescence in most short fragments was recorded, while a few cells exhibit non 406 

photosynthetic fluorescent signals (dark cells- Fig. 2D) which correspond to necridia involved 407 

in the fragmentation of filaments (Komarek and Anagnostidis 2005; Castenholtz and 408 

Waterbury 1989). Interestingly, these suicidal cells can be seen as a relevant strategy for cell 409 

dissemination, consequently increasing the chance to find a more suitable habitat to restart a 410 

growing population (Komarek and Anagnostidis 2005).   411 

Effects of salinity on the total MC-content 412 

 In our investigation, the total MC content is positively correlated with the P. agardhii  413 

biomass for all salinity treatments (except the 15g L-1), which corroborates some previous  414 

studies (Paerl and Otten 2013; Mazur-Marzec et al. 2008; Dolman et al. 2012;  Lyck  2004).  415 

No drastic effect was recorded immediately after exposure to high salinity, as expected for  416 
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concentration (e.g 15 g L-1) which might release a massive MC amount within the first 24  417 

hours due to the osmotic shock and the cell death, as was mentioned for other cyanobacterial 418 

species when exposed to pulse salt treatment (Tolar 2012).  In this study, the MC-quota values 419 

were not significantly different between the 10-15 g L-1 suggesting that the cells are still able 420 

to cope with this stressor for a relative long period (from 2 to 15 days). Some studies have 421 

also shown that salinities up to 10 g L-1 do not affect the MC cell quota for Microcystis, 422 

Anabaena and Anabaenopsis genera (Black et al. 2011; Martin-Luna et al. 2015). 423 

Surprisingly, at the end of the experiment for the 15g/L treatment, a maximal peak of MC was 424 

detected (7- times higher than the control and 5 times higher than the previous MC amount at 425 

Day 15). Considering the cell density decline and the increased amount of short fragments, 426 

this suggests that massive cell disruption may have resulted in accumulation of stable MC in 427 

the medium. Indeed, some MC variants can be detectable and intact for up to several months 428 

(Zaspeta et al. 2014; Miller et al. 2010). The identification of the MC-profiles of the ‘Brack’ 429 

strain (performed by ESI-LC MS/MS) revealed that MC-LR is one of the two major variants, 430 

which is, with the dominance of Asp3 MC-RR, characteristic of the Planktothrix agardhii 431 

species (Fastner et al. 1999; Kurmayer et al. 2005). Because the ELISA tests were performed 432 

on both the extra- and intracellular MC fractions, it cannot be excluded that a possible high 433 

increase of MC production by living cells may contribute to the total amount of MC content.  434 

 Ecological and management implications 435 

Most of the investigations focusing on cyanobacterial responses to salt tolerance have 436 

reported controversial results (Tolar 2012; Tonk et al. 2007; De Pace et al. 2014) even at the 437 

intraspecific level (Otsuka et al. 1999). Some reports have shown discrepancies in the salinity 438 

thresholds for survival of Microcystis spp. (Orr et al. 2004; Tonk et al. 2007) for which some 439 

strains could resist to 10 g L-1 of NaCl, while other reached their limit at 2 g L-1, leading the 440 

authors to consider a strain-specific halotolerance rather than a species-specific trait (Orr et al. 441 

2004). The salt-tolerance variability seems highly dependent on the life-history of each strain, 442 

implying direct and/or repetitive exposure to the stressor, which may induce acclimation and 443 

drive some intraspecific differences between strains. In our study, the unexpected survival of 444 

our P. agardhii strain to 15 g L-1 for several weeks may be a strain-specific response, as it was 445 

acclimated to the low salinity occurring in its brackish pond of origin (3 g L-1of salinity – 446 

Vergalli 2013). During the last decade, several episodes of increasing salinities (3 to 8 g L-1) 447 

were recorded in this pond, which may have selected some ecotypes adapted to the changing 448 

environment, as it suggested by Kirkwood et al. (2008). Common freshwater cyanobacterial 449 
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species are able to tolerate salinity at low concentrations  (Orr et al. 2004; Laamanen et al. 450 

2001) and acclimate to salinity with time (Barron et al. 2002) and locations (brackish areas- 451 

Bergmann et al. 2008), unlike other phytoplankton groups (i.e. eukaryotes- Moisander et al. 452 

2002). The potential shift of their halotolerance threshold and ability to tolerate salt variations 453 

arise the question of their potential persistence in the downstream waters including estuarine 454 

and coastal areas after meteorological-drifting events (caused by strong rainfalls or floods) 455 

(De Pace  et al. 2014). It would be a serious issue since these cyanobacterial species are also 456 

toxin-producing cells and hence could contaminate the aquaculture and fisheries farms located 457 

along the freshwater-marine continuum (Bergmann et al. 2008). Finally, it may be a crucial 458 

issue for water management strategies based on the increase and/or oscillations of salinity 459 

concentration in freshwater systems, as already implemented in several countries such as the 460 

Netherlands (Verspagen et al. 2006). Our results clearly show that increasing the salt 461 

concentration of a brackish Mediterranean pond by water input or by a pseudo-natural 462 

salinization (Cf. Vergalli 2013) will not eradicate Planktothrix agardhii populations if the 463 

salinity is not up to 15 g L-1. Besides salt stress often increase lysis of MC-producing cells 464 

which may affect directly or indirectly all the living organisms in aquatic systems. Thus, care 465 

must be taken when considering increasing of salinity as a potential water management or 466 

remediation strategy. It may render a regular checking and security procedure necessary, 467 

especially in the recreational areas.  468 

CONCLUSION 469 

Elevated salinities (up to 12.5 g L-1) affected the cellular growth and morphology of the Brack 470 

strain, as suggested by a lower growth rate and an increase of short broken filaments. 471 

However, P. agardhii was able to tolerate moderate to high amount of salinities. The 472 

threshold for normal growth seemed to be set at 15 g L-1 of salinity, but this concentration 473 

allowed survival of the strain, without a minute lethal salt-shock at least during the time frame 474 

(18 days). The constant amount of MC products overtime may lead to a real harmful effect on 475 

the environment and aquatic organisms. Our findings may be important to take into account 476 

when considering the water management policies based on salinity increase, planned by 477 

several countries to eradicate toxic and bloom-forming species. This study emphasizes the 478 

crucial need to further investigate the gradual and repetitive increasing of salinity as an 479 

indirect consequence of the global warming change, on the acclimation and/or adaptive 480 

response of these filamentous toxic cyanobacteria worldwide. 481 
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