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Single-cell genomics is an alluring area that holds the potential to change the way we
understand cell populations. Due to the small amount of DNA within a single cell, whole-genome
amplification becomes a mandatory step in many single-cell applications. Unfortunately,
single-cell whole-genome amplification (scWGA) strategies suffer from several technical biases
that complicate the posterior interpretation of the data. Here we compared the performance of
six different scWGA methods (GenomiPhi, REPLIg, TruePrime, Amplil, MALBAC, and
PicoPLEX) after amplifying and low-pass sequencing the complete genome of 230
healthy/tumoral human cells. Overall, REPLIg outperformed competing methods regarding
DNA yield, amplicon size, amplification breadth, amplification uniformity —being the only
method with a random amplification bias—, and false single-nucleotide variant calls. On the
other hand, non-MDA methods, and in particular Amplil, showed less allelic imbalance and
ADO, more reliable copy-number profiles and less chimeric amplicons. While no single scWGA
method showed optimal performance for every aspect, they clearly have distinct advantages.
Our results provide a convenient guide for selecting a scWGA method depending on the
question of interest while revealing relevant weaknesses that should be considered during the

analysis and interpretation of single-cell sequencing data.
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Advances in single-cell genomics have made possible the study of genomic variation at the most basic
level, rapidly generating many new insights into complex biological systems, from microbial diversity
to immune response, development or tumor progression'. While single-cell RNA sequencing is now
mature and almost standard, single-cell DNA sequencing is still quite challenging®, mainly due to an
amplification step needed before the characterization of the genome, as it is not possible to directly
sequence the 6-7 pg of DNA present, for example, in a human cell. While whole-genome single-cell
library preparation without preamplification is possible’, these types of techniques still include several
PCR cycles, usually rely on custom-made microfluidic devices, and their implementation in a standard
laboratory is far from trivial. Therefore, single-cell whole-genome amplification (scWGA) is still a
prerequisite in many applications of single-cell genomics.

Multiple scWGA methods have been proposed, typically based on pure PCR*’, multiple
displacement amplification (MDA)*’ or a combination of both'®" but always relying on the use of
DNA polymerases. Unfortunately, the latter have a limited strand extension rate and processivity, and
during scWGA lots of priming and extension reactions are required'”. This large amount of reactions
entails significant technical errors such as (1) allelic imbalance (Al) or allelic dropout (ADO) —when a
particular allele is preferentially amplified or not amplified at all, respectively—, (2) non-uniform
coverage usually attributed to GC content affecting denaturation and primer binding efficiency'* ™",
(3) generation of chimeric DNA molecules due to the polymerase strand displacement activity'®'® and
(4) false single-nucleotide variants (SNVs) owing to the infidelity of the DNA polymerase'* (Fig. 1).

While several studies comparing the relative performance of different scWGA strategies have
already been published, their scope is usually limited in terms of the sequencing target, number of
scWGA methods evaluated and/or number and type of amplified cells'®'""*=° (Supplementary Table
1). To date, we are not aware of any study comparing a large number of scWGA strategies on whole
genomes obtained from a large number of individual cells. Here we report a comprehensive
benchmark of six popular scWGA kits, including five next-generation sequencing (NGS) library
preparation kits and two NGS technologies, using three human cell lines. In total, we obtained 230
single-cell whole-genome sequences under 54 different scenarios (Fig. 2). We show that MDA and
non-MDA methods perform differently for distinct purposes, and identify important differences within
these categories. Our results should help single-cell genomics researchers choose the best

amplification method for their question of interest.

Results

We assessed the performance of six scWGA commercial kits, three MDA (GenomiPhi, REPLIg and
TruePrime) and three non-MDA (Amplil, MALBAC and PicoPLEX) (Supplementary Table 2), and
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five library preparation kits (Supplementary Table 3) in terms of amplification yield, amplicon size,
coverage breadth, coverage uniformity, chimera formation, copy-number detection, allelic imbalance,
ADO and false SNV detection. To do this, we obtained low-pass (0.07-1.8X) whole-genome
sequencing (WGS) data from 230 individual human cells from a healthy fibroblast cell line (HDF), a

colorectal cancer cell line (Caco-2), and a mantle lymphoma cell line (Z-138).

DNA yield, amplicon size, and integrity. The amount of DNA obtained with the different sScWGA
kits, plus the size and quality of the amplicons, could be a limitation for downstream experiments.
Here, we observed statistically significant differences among the scWGA methods for DNA yield and
amplicon integrity and size, independently of the cell line (Fig. 3 and Supplementary Tables 4-6).
REPLIg resulted in the highest DNA yield by far with a mean value across cell lines close to 35 pg,
while the other scWGA kits produced average yields below 8 pg (Fig. 3a and Supplementary Tables
4-6). MDA approaches (GenomiPhi, REPLIg, TruePrime) produced amplicon sizes much larger than
non-MDA methods (Amplil, MALBAC, PicoPLEX) (around 10 and 1.2 kb on average, respectively),
with REPLIg producing the largest amplicons (>30 kb) (Fig. 3c and Supplementary Tables 4-6). The
size of the amplicons produced by the MDA kits allowed us to estimate amplicon integrity using the
DNA Integrity Number (DIN) value, with REPLIg showing significantly higher values than
GenomiPhi or TruePrime (Fig. 3b and Supplementary Tables 5,6). For all these three parameters,
MDA methods were much more variable than non-MDA approaches, in particular in the case of

REPLIg, which displayed the largest standard deviations (Supplementary Tables 4-6).

Amplification breadth and uniformity. An ideal scWGA method should provide a set of DNA
molecules that represent the target genome as completely as possible. If the amplification is not
uniform, different genomic regions may be missed. Here, we observed statistically significant
differences among scWGA methods for amplification breadth and uniformity for the different cell
lines (Fig. 4a,b). Overall, REPLIg yielded the highest amplification breadth (~50%) and TruePrime
the lowest (~15%) (Fig. 4a and Supplementary Tables 4-6). In general, REPLIg also resulted in a
more uniform amplification —measured by the Gini index of the Lorenz curves— than the other
scWGA methods, with TruePrime performing the worst (Fig. 4b; Supplementary Fig. 1 and
Supplementary Tables 4-6). Again, MDA methods were much more variable than non-MDA
approaches.

Albeit less dramatic, the library protocol also had a significant effect on amplification breadth
and uniformity. Our modified KAPA protocol provided more breadth than the other library protocols,
with Ton Plus being the worst in this aspect (Fig. 4c). Also, Ion Plus and Nextera yielded overall the

most and least uniform amplifications, respectively (Fig. 4d). As expected, the two sequencing
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96  technologies used, Illumina and Ion Torrent, did not have a significant effect on the uniformity of the
97  amplification. In order to better understand the joint effect of the different parameters (cell line,
98 scWGA kit, amplification location, library kit, yield DNA, amplicon size, sequencing depth and
99 sequencing technology) on amplification uniformity we fitted a multivariable regression model upon
100 the Gini index values, finding that differences in amplification uniformity could be explained by the

101 amplification kit alone.

102  Amplification recurrence. The coverage distribution along the genome observed for the single-cells
103 was significantly correlated with that of the unamplified bulk (Fig. 5). Importantly, we also found that
104 two cells amplified with the same scWGA kit showed significantly more regions in common than two
105 cells amplified with a different scWGA kit, except for REPLIg (Fig. 5 and Supplementary Figs. 2-4).
106 In addition, we observed that non-MDA showed a significantly higher coverage in regions with high
107 GC content, as previously reported’’. Interestingly, REPLIg showed a negative correlation of coverage
108  with GC content whereas the other MDA methods did not show any preference based on sequence

109 content.

110 Chimera rates, allelic imbalance, ADO and false SNVs. During scWGA, several artifacts can be
111 produced, such as the formation of chimeric molecules, biased amplification of alleles, and
112 amplification errors. These errors can easily result in incorrect genotype calls. Here we measured
113 chimera rates, allelic imbalance, allelic dropout (ADO) and false positive variant calls (Fig. 6 and
114 Supplementary Table 7). In this case, only the HDF cell line (4 cells per scWGA method) was used as
115 it lacks somatic variation, which otherwise could have easily confounded these estimates. Chimera
116 rates were much higher (>10%) for GenomiPhi and TruePrime, with Amplil and MALBAC showing
117 the lowest values (Fig. 6a). When these rates were estimated upon paired-end discordant reads instead
118 of split reads, the trends were the same but the rates were twice as high (Fig. 6b).

119 In terms of allelic imbalance and ADO rates, non-MDA methods outperformed MDA
120 methods (Fig. 6c-e). Still, ADO rates were very high in all cases, ranging from the 38% rate of
121 Amplil to the 60-90% values observed for TruePrime. REPLIg, Amplil, and TruePrime resulted in
122 more accurate SNV calls than the other methods (Fig. 6f,g), although the false positive rates obtained
123 were halved depending on the variant calling approach (marginal vs joint; see methods). False SNVs
124 were usually biased towards transitions, but different sScsWGA approaches showed somehow different
125 error signatures (Supplementary Fig. 5). In the case of Amplil, these errors showed a pattern most
126 similar to the human germline mutational profile, in which transitions occur more than twice as often

127  as transversions. Besides, we also found an increase in G:C>A:T errors in REPLIg and GenomiPhi.
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128 Copy-number detection. Copy number aberrations are a fundamental type of structural variation of
129 interest to assess genomic heterogeneity among cells. The copy-number profiles estimated from the
130 diploid HDF cell line were generally accurate (i.e., we expect a copy number of 2 for all genomic
131 regions) for all sScsWGA methods, except for TruePrime (Supplementary Fig. 6d-i). The coverage
132 dispersion measure (MAD)** was significantly smaller for non-MDA methods, although for Caco-2

133 REPLIg showed also very low MAD values (Supplementary Fig. 6a-c).

134  Mapping rates and duplicated reads. Finally, we explored the mapping rates and percentage of
135  duplicated reads obtained. For all scWGA methods, we observed a high percentage of mapped reads
136 (Supplementary Tables 4-6), with marginally significant differences among them (p-value = 0.04). In
137 particular, TruePrime showed more reads mapped to the mitochondrial genome than the other scsWGA
138 kits (close to 9% in Caco-2, up to 6% in Z-138, and as high as 84.71% in HDF). Also, we detected
139 clear mapping differences among the sequencing library kits (p-value < 2.2e-16). Within these, the
140 library protocols that include an enrichment PCR step (SureSelect and Nextera) showed a significantly
141 higher percentage of mapped reads (p-value = 3.8e-15). Additionally, we found a clear effect of the
142 sequencing technology on the percentage of duplicates estimated, with Ion Torrent producing

143 significantly more duplicates than Illumina (24% and 6%, respectively; p-value <2.2e-16).

144 Benchmark of the breadth and uniformity measures. As an estimate of amplification breadth, we
145  used low-pass sequencing data to predict the fraction of the genome covered at higher sequencing
146 depths with the package Preseq™. To evaluate amplification uniformity, we used the Gini index or area
147  below the coverage Lorenz curve. To validate both measurements we leveraged an in-house dataset of
148 30 single cells from a Chronic Lymphocytic Leukemia (CLL) patient. The analysis of these data
149 demonstrated that the amplification breadth prediction was very accurate (Supplementary Fig. 7). In
150 addition, both the breadth prediction and the 1 — Gini index showed a significant positive correlation

151 with the percentage of chromosomes amplified (Supplementary Fig. 8).

152 Discussion

153 Overall, our results show that MDA approaches (GenomiPhi, REPLIg, TruePrime) produced higher
154 yields than non-MDA methods (Amplil, MALBAC, PicoPLEX), which could be related to a more
155 stable polymerase activity under isothermal conditions™. At the same time, MDA approaches
156 generated larger amplicon sizes than non-MDA methods, likely due to a higher processing capability
157 and template affinity of the Phi29 polymerase®. In particular, REPLIg clearly outperformed the other

158 scWGA strategies in this aspect, possibly resulting from a higher DNA polymerase concentration®®.


https://doi.org/10.1101/443754
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/443754; this version posted October 16, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

159 TruePrime resulted in a significantly lower coverage breadth, as previously reported®, with
160 REPLIg outperforming the remaining methods in general, but with higher variance, as the other MDA
161 methods. This might be explained, at least partially, by the random annealing of primers and/or more
162  variable amplicon sizes of the MDA methods. In agreement with the coverage breadth predictions,
163 REPLIg and TruePrime resulted in the most and least uniform amplifications, respectively, measured
164 by the variation of the coverage along the genome. The lysis and denaturalization steps in TruePrime
165  are made on ice, which might prevent the availability of single-stranded DNA for the primase. On the
166 other hand, REPLIg has already been suggested to provide a more uniform coverage than non-MDA
167  methods for few-cell amplification®.

168 The observed coverage correlation along the genome between single cells and the unamplified
169 bulk was expected, mainly due to mappability limitations for repetitive sequences®’. However, unless
170  there is a recurrent amplification bias, we would not expect to see higher correlations among cells
171 amplified with the same scWGA kit compared to cells amplified with a different scWGA Kkit, or
172 compared with the bulk. Therefore, our results suggest that the amplification bias along the genome is
173 not random for the different scsWGA kits studied, except for REPLIg, which in most cases resulted in
174 apparently random amplification. For non-MDA methods, spatial recurrence in the amplification is
175  expected because they use their own set of non-random primers. For MDA methods, the results are
176 more difficult to interpret. TruePrime uses a primase that generates its own primers’, while for both
177 GenomiPhi and REPLIg random primers are added. However, only REPLIg showed a random
178  amplification bias. Zhang et al.'”* obtained a better fit with a statistical model with random
179 amplification bias for MDA, but they do not clarify which exact MDA method they used.

180 For the HDF cell line, non-MDA methods showed a distribution more similar to the bulk for
181 the alternative allele frequency in heterozygous germline sites, clearly outperforming the MDA
182  methods in terms of allelic imbalance. In particular, Amplil seemed to produce very low allelic
183 imbalance. This good behavior of Amplil might be the result of a synthesis procedure that converts
184  residual single-strand DNA (ssDNA) molecules into double-strand DNA (dsDNA) molecules. Also, in
185 PicoPLEX and MALBAC the amplification is quasi-linear, therefore limiting the propagation of any
186 allelic bias. We would like to remark that, in general, alternative allele frequency distributions are
187  wider for our single cells than for the bulk not only because of allelic imbalance but also because they
188  have lower coverage at the sites considered.

189 In agreement with these results —ADO is an extreme case of allelic imbalance—, non-MDA
190 methods showed much lower ADO rates than MDA methods, in particular Amplil, who showed the
191 lowest ADO rate (< 40%). On the other extreme, TruePrime showed a large ADO rate (> 80%). Still,
192 a 40% ADO rate is much higher than previously reported for Ampli1****. Although values over 40%

193 have been already observed in other experiments for MDA methods®, here the ADO rates for


https://doi.org/10.1101/443754
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/443754; this version posted October 16, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

194  GenomiPhi and REPLIg were closer to 60%. Admittedly, it is possible that the absolute ADO values
195  estimated here are somehow inflated due to the small coverage. It is well-known that at sites with low
196 coverage there is a higher probability of missing one of the alleles by chance*'. Although we have
197 carried out this analysis on sites with at least 6X, we are aware that at this depth it is possible to
198 incorrectly call as homozygous a truly heterozygous site. Indeed, genotyping of heterozygous sites
199 only approximates a correct call rate of 1.0 for coverages higher than 15X**, although a threshold
200 value of 6X has been used before to estimate ADO and false SNV rate®. In any case, the relative
201 ADO performance should still correspond with the trend observed.

202 We used false SNVs as proxies for amplification errors. Indeed, the former also include
203 sequencing errors, wrong SNV calls and potentially some true somatic variants, so the absolute value
204 might be more or less inflated. However, the comparison of the false SN'Vs observed for each scWGA
205  method should inform us about their relative amplification error rates. We used a PCR-free library
206  protocol, and sequencing errors should be similar for all 24 HDF single-cell libraries, as they were
207  included in the same sequencing run. Also, most of the true somatic variants should have been filtered
208 out with the help of Monovar. Finally, whatever it is, the number of calling errors should be more or
209 less constant across cells. REPLIg and TruePrime resulted in the lowest false SNV rates (< 8%
210 depending on the genotyping approach). This might be related to the polymerase used for
211 amplification, Phi29, which has a much lower error rate than the ones used by the other scWGA
212 kits®'%!" 1484 REPLIg was already reported as having low error rates'”*. Amplil also performed
213 quite well in this regard, perhaps due to the use of a combination of Taq with a proofreading
214 polymerase Pwo’ with low error rates®. Importantly, when we used joint variant calling
215  —incorporating population-level information—, the inferred false positive rates were halved. With
216 regard to the type of errors observed, we found that both REPLIg and GenomiPhi resulted in an
217  excess of C:G>T:A transitions, which has been previously attributed to high-temperature denaturation
218  protocols, whereas the signature for Amplil better reflects the one expected for unamplified bulk
219 samples*’. Being aware of the existence of a different error signature for the different sScWGA Kits is a
220 fact to consider if one is interested in detecting mutational signatures in single cells.

221 Our results suggest that MALBAC and Amplil form fewer chimeras than the other methods.
222 Indeed, chimeras can bias the inference of structural variants. It was expected for MDA methods to
223 perform worse than non-MDA methods in this regard, due to the Phi29 DNA polymerase strand
224 displacement activity resulting in chimeric molecules'®. However, despite the fact that REPLIg is
225 based on MDA, it showed very low chimera rates, even lower than microfluidic protocols*. Perhaps,
226 this might be related to larger amounts of DNA polymerase which could limit the time that ssDNA

227 strands are naked and available for chimera formation.
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228 For the HDF cell line, copy-number profiles were in general accurate for all scsWGA methods
229 except for TruePrime. In the other cell lines, the copy-number profiles were much more segmented.
230  Nevertheless, read counts were much more dispersed for MDA methods (except for REPLIg in the
231 HDF cell line), which could be partially explained by uneven amplification (Supplementary Fig.
232 6a-c). Consequently, non-MDA methods would be the recommended choice for CNV analysis, as
233 suggested before''**.

234 Not surprisingly, the amplification protocols did not significantly affect the mapping rates.
235  While the scWGA kit employed had a much smaller effect on the percentage of mapped reads than the
236 library construction method —strategies with an enrichment PCR step like SureSelect and Nextera
237 were better—, in all cases these percentages were quite high. As expected, probably due to the
238 emulsion PCR step® included in the Ion Torrent sequencing protocol, the latter showed significantly
239  more duplicates than [llumina.

240 In conclusion, none of the scWGA methods outperformed the others in all scenarios assessed,
241 but clearly, some are better than others in different aspects. Here we have exposed distinct advantages

242  and weaknesses of different scWGA methods that will be important for the interpretation and analysis

243 of single-cell genomes.

244 Methods

245 Cell-lines. We used three different cell lines for the different experiments, HDF, Caco-2, and Z-138.
246 HDF is a healthy neonatal, diploid fibroblast cell line (HDF) purchased from Sigma-Aldrich
247 (https://www.sigmaaldrich.com). Caco-2 is a polyploid colorectal cancer cell line with a modal
248 chromosome number of 96 purchased from the American Type Culture Collection (ATCC;

249 https://www.atcc.org). The Z-138 is a hyperdiploid mantle cell lymphoma cell line with a modal

250 chromosomal number of 49, also purchased from ATCC. We cultured all cell lines under an
251 atmosphere containing 5% CO, at 37°C. We grew HDF in an all-in-one ready-to-use fibroblast growth
252 media (Sigma-Aldrich), Caco-2 in a media consisting of Dulbecco’s Modified Eagle’s Medium/F12
253  with 3.151 g/l glucose and L-glutamine (Lonza) and Z-138 with Iscove’s Modified Dulbecco’s
254 Medium (ATCC). For Caco-2 and Z-138, we completed the media with 10% fetal bovine serum EU
255 standard (Biochrom) and 1% penicillin/streptomycin (Lonza) at a working concentration of 100 units

256 of potassium penicillin and 100 pg of streptomycin sulfate per 1 ml of culture media.

257 Single-cell isolation. We cultured HDF and Caco-2 cells until 80% confluence before staining with
258  Hoechst 33342 (BD Biosciences) following the fabricant’s recommendations. Thereafter, we

259  harvested, resuspended at a concentration of 10° cells per ml in phosphate buffered saline (PBS) and
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260  marked cells with propidium iodide (PI; BD Pharmingen). Then, we sorted live single cells in G0/G1
261 with a BD Biosciences FACSAria III flow cytometer (BD Biosciences, Madrid, Spain) and collected
262  them into 96 well plates with 1-3 pl of PBS (Supplementary Fig. 9). For sorting, we used the BD
263 FACSDiva v8.0.1 (BD Biosciences, Madrid, Spain) and FlowJo v7.6.2 (FlowJo, LLC, Ashland, OR,
264 USA) for further analyses. For Z-138 we followed the same strategy but without Hoechst staining and
265  using a FACS Aria 2.0 (BD Biosciences, Madrid, Spain) for sorting. Single cells were stored at -80 °C

266  until amplification.

267  Single-cell whole-genome amplification. We used six different kits for single-cell whole-genome
268 amplification (scWGA): Amplil (Silicon Biosystems), Multiple Annealing and Looping Based
269 Amplification Cycles (MALBAC; Yukon Genomics), PicoPLEX (Rubicon Genomics), Illustra Single
270 Cell GenomiPhi (GE Healthcare), REPLIg Single-Cell (Qiagen) and TruePrime (SYGNIS) following
271 the manufacturer's protocols (Supplementary Table 2). In order to reduce contamination, we carried
272 out scWGA in a laminar-flow hood using a dedicated set of pipettes and UV irradiated plastic
273 materials. We also included positive (10 ng/ul REPLIg human control kit, QTAGEN) and negative
274 (DNase/RNase free water) controls. For Amplil we carried a few extra steps after amplification. We
275  used the Amplil QC kit to select those amplification products that were positive for four PCR
276 markers. In order to increase the total dSDNA content, we used the Amplil ReAmp/ds kit. Afterwards,
277  we removed the adaptors adding 5 pl of NEBuffer 4 10X (New England Biolabs), 1 ul of Msel
278 50U/ul (New England Biolabs) and 19 pl of nuclease-free water to 25 pl of dsDNA, using a thermal
279 cycler at 37 °C for 3 h, followed by enzyme inactivation at 65 °C for 20 min.

280 Attending to the fabricant's recommendations, we purified PicoPLEX and MALBAC products
281 with the QIAquick PCR Purification protocol (Qiagen) and Amplil products with 1.8X AMPure XP
282  beads (Agencourt, Beckman Coulter). MDA methods do not include a purification step. We measured
283 DNA yield with a Qubit 3.0 (ThermoFisher Scientific) fluorometer and amplicon fragment size with a
284 2200 TapeStation platform (Agilent Technologies). We measured amplicons from non-MDA based
285 scWGA methods using the D5000 ScreenTape System and amplicons from MDA-based kits using the
286 Genomic DNA ScreenTape System. The latter also allowed us to measure the integrity of the
287  amplicons (DNA Integrity Number or DIN).

288 In total, we amplified 230 single-cells: 34 with Amplil (4 HDF, 12 Caco-2 and 18 Z-138), 40
289  with MALBAC (4 HDF, 18 Caco-2 and 18 Z-138), 40 with PicoPLEX (4 HDF, 18 Caco-2 and 18
290 Z-138), 37 with GenomiPhi (4 HDF, 18 Caco-2 and 15 Z-138), 35 with REPLIg (4 HDF, 16 Caco-2
291 and 15 Z-138) and 44 with TruePrime (4 HDF, 22 Caco-2 and 18 Z-138) (Fig. 2 and Supplementary
292 Table 2).
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293 Bulk DNA extraction. We extracted bulk genomic DNA (gDNA) from the HDF cell line with the
294  QIAamp DNA Mini kit (QIAGEN) according to the fabricant’s recommendations. We estimated

295  concentration and gDNA integrity as previously described for single cells.

296 Next-generation sequencing libraries. We built 230 single-cell whole-genome libraries employing
297 five different library preparation kits: SureSelect®*" (Agilent Technologies), NxSeq AmpFREE Low
298 DNA (Lucigen), Ion Plus Fragment library (ThermoFisher Scientific), Nextera DNA (Illumina) and
299  KAPA (Kapa Biosystems). We built SureSelect and NxSeq libraries following the commercial
300 indications while we slightly modified Ion Plus and Nextera. The sequencing facility of the National
301 Center for Genomic Analysis (CNAG; http://www.cnag.crg.eu) modified the KAPA protocol to a

302 larger extent (Supplementary Table 3). We mechanically sheared the DNA in an S2 or a LE220
303 Focused-ultrasonicator (Covaris) for the NxSeq, lon Plus and KAPA protocols (Supplementary Table
304 8), while for SureSelect and Nextera we fragmented the DNA enzymatically. For Ion Plus, we
305  included an extra purification step with AMPure XP beads (1.2X beads/sample ratio) (Agencourt,
306 Beckman Coulter) for a better removal of NGS adaptors. For Nextera, we used 200 pul of washing
307 buffer instead of the 300 ul recommended by the provider, the centrifugation speed was 10,000 g at
308  room temperature (RT) for 30 s instead of 1,300 g at 20 °C for 2 min, and we used AMPure XP beads
309 in a 0.8X ratio instead of 0.6X. In addition, we eluted the Nextera libraries in 20 pl of resuspension
310  buffer instead of 32.5 after a 5 min air-dried step instead of 15. For the modified KAPA protocol, we
311 carried out the end-repaired of 500 ng of sheared DNA, adenylation and ligation to Illumina specific
312 indexed paired-end adaptors (NEXTflex-96™ DNA Barcodes, Bio Scientific). We performed the
313 DNA size selection in two steps (0.65X and 0.85X beads/sample ratio) with AMPure XP beads in
314 order to reach the desired fragment size (450 bp). Finally, we measured library insert sizes with a 2100
315  Bioanalyzer High Sensitivity DNA Kit (Illumina) or a 2200 TapeStation High Sensitivity D1000 (Ion
316 Torrent). We quantified library concentration with the Kapa Library Quantification Kit (Kapa
317 Biosystems) for Illumina and the Ion Library Quantitation Kit (Life Technologies) for lon Torrent.

318 In addition, we constructed a whole-genome HDF bulk library using NxSeq AmpFREE Low
319 DNA (Lucigen) (Supplementary Table 3). We performed size selection using AMPure XP beads and
320  we checked fragments size with the 2100 Bioanalyzer High Sensitivity DNA Kit. Finally, we
321 quantified library concentration using the KAPA Library Quantification Kit.

322 Whole-genome sequencing. We sequenced single-cell libraries at shallow depths (0.07-1.76X). We
323 sequenced 24 HDF and 166 Caco-2/Z-138 libraries on an Illumina HiSeq 4000 (PE150) or HiSeq
324 2000 (PE125), respectively, at CNAG. We sequenced the remaining 40 libraries with an Ion Proton
325  platform (Ion PI chip v3) at the Galician Public Foundation of Genomic Medicine (FPGMX;
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326 http://www.xenomica.eu). We sequenced the bulk library of HDF at 30X on an Illumina HiSeq 4000
327  (PE150) at CNAG.

328 Preprocessing of NGS data. We clipped library adapters and also those included in the Amplil,
329 PicoPLEX and MALBAC amplifications using CutAdapt (v.1.11,v.1.14)*°. We mapped the sequencing
330 reads with at least 70 bp to the human reference genome (hs37d5) with BWA-MEM
331 (v.0.7.15-r1140)"". We sorted reads and flagged duplicates with Picard SortSam (v.2.2.1;
332 http://broadinstitute.github.io/picard) and Picard MarkDuplicates, respectively. We independently
333 mapped reads from different lanes and then merged during the duplicate marking process taking into
334 account their read group. Regarding Ion Plus libraries, the sequencer software already removed the
335 adapters. In order to map the reads with the Torrent Mapping Alignment Program (TMAP; v.3.4.1;
336 https://github.com/iontorrent/ TMAP) to the hs37d5 genome, we had to transform first of all the
337  original BAM files to FASTQ format using Picard SamToFastq. We also sorted the BAM files and
338  marked duplicates as explained above.

339  For the 24 HDF single-cells and bulk, which were subsequently used for variant calling, the base
340 quality scores were recalibrated for each sample using GATK (v.3.7)*%. Afterward, we realigned reads
341 from the single-cells and bulk together around known indels to avoid potential false SNV calls not

342 related to the amplification process itself but due to misalignments.

343  Amplification breadth. In order to approximate the amplification breadth, we calculated the
344 percentage of the genome that would be covered by one or more reads (coverage breadth). However,
345  we did not calculate this value directly because at very low depths this estimate is not reliable due to
346 sampling error'”. Instead, we used a method developed for single-cell libraries, implemented in the
347  gc_extrap function of the package Preseq™. For this calculation, we downsampled the BAM files to
348  the lowest depth observed (0.07X) with Picard DownsampleSam. To check the quality of the Preseq
349 prediction, we took advantage of two in-house datasets consisting of 30 single-cells from a patient
350 with Chronic Lymphocytic Leukemia (CLL), that were amplified with REPLIg and sequenced twice
351 at 0.3X-0.6X and 5X. We downsampled the former to exactly 0.1X and predicted with Preseq the
352 percentage of the genome covered by one or more reads at 5X. Then, we compared this prediction
353  with the values observed for the 5X dataset. In addition, we compared the Preseq prediction and the
354  Gini index (see below) with the percentage of chromosomes amplified in the same 30 CLL single

355 cells, according to a panel of 20 PCR markers representing all human chromosomes except 6 and 11.

356  Amplification uniformity. We used coverage uniformity as a surrogate for amplification uniformity.

357  For this, we used the downsampled BAM files at 0.07X. We calculated the sequencing depth per site
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358  with Bedtools™ and parsed its output with an in-house script to create the Lorenz curves* with the Lc
359  function of the /neq R package. In order to quantitatively compare the Lorenz curves, we calculated
360  the Gini index for each cell®. The Gini index measures the area below the Lorenz curve, spanning
361 between 0 and 1, being 0 perfect uniformity and 1 perfect disuniformity, so we defined amplification
362 uniformity as 1 minus the Gini index (see also Supplementary Fig. 1). We estimated the Gini indexes
363  using the Gini function from the /neq package. In order to understand which variables of the study
364 (cell line, scWGA kit, amplification location, library kit, DNA yield, amplicon size, sequencing depth

365  and sequencing technology) affect most the Gini index, we fitted a regression model.

366 Amplification recurrence. In order to understand whether a given scWGA method tends to
367  preferentially amplify the same genomic regions in different cells compared to other scWGA methods,
368  we counted the number of reads within non-overlapping windows of 1 Mb with Pysamstats
369 (https:/github.com/alimanfoo/pysamstats). For this, we used downsampled BAM files at 0.1X —after
370  removing duplicates, secondary alignments and unmapped reads with Samtools view’*— as input. We
371 only used the HDF cell line for this calculation in order to avoid potential correlations among read
372 counts due to a heterogeneous copy number in the cancer cell lines. Subsequently, we computed the
373 Pearson correlation coefficient of the read counts between pairs of single-cells (amplified with the
374 same scWGA kit or not) and between single-cell and bulk. We further explored the correlations
375  between read counts and GC content in sliding windows. GC content was assessed with Bedtools nuc.
376 However, since having for instance 2 reads of 150 bp mapped to the same 1 Mb window in two
377  different single-cells does not necessarily mean that they amplify exactly the same region (in one cell
378 reads could be mapped to the first 500 bp of the window and in the other cell to the last 500), we
379 further explored presence/absence amplification recurrences computing Jaccard similarity
380 coefficients. For this, we created bedGraph files for each of the single cells using Bedtools
381 genomecov, simplified integer coverage values simply to 1 (presence) or 0 (absence) and then merged
382  the resulting files using Bedtools unionbedg to get a matrix. We removed consecutive matrix rows
383 which showed exactly the same presence/absence profile for the 24 HDF cells, as we wanted to be
384 stringent and do not count several events from a single read recurrence. Then, we computed the
385  Jaccard similarity coefficient for each pair of single-cells using the R package jaccard

386 (https://cran.r-project.org/web/packages/jaccard/index.html). Basically, the Jaccard coefficient is

387  computed by dividing the number of intersections (presence of coverage in both cells) between the
388 number of total unions (presence of coverage in just one cell), this way ignoring positions without
389 coverage for the two cells (avoiding increasing the similarity due to random absence of coverage
390 originated by low pass sequencing). To assess its statistical significance, we implemented a

391 permutation test using a homemade R script.
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392 Chimera formation rate. We considered the paired-end reads mapping at a distance higher than 1 kb
393  to result from chimeric amplicons, as well as reads with supplementary alignments (split reads). We
394 calculated paired-end distances using Picard CollectAlignmentSummaryMetric and identified split
395 reads through detection of SA:Z tags in the BAM files. For this calculation, we only used the HDF

396 cell line in order to avoid false positives due to the high genetic instability in Caco-2 and Z-138.

397  Allelic imbalance and ADO. During scWGA, the two alleles of a diploid single-cell can be amplified
398 in an unequal manner. Deviations of allele frequencies at heterozygous germline sites evince such
399 events. If these frequencies are different from the theoretical 50%, we consider that an allelic
400 imbalance event, and if the deviation is so high that one of the alleles is completely lost and it cannot
401 be detected, we designate it as ADO (Fig. 1). Again, for these calculations, we only used the HDF
402  cells, as Caco-2 and Z-138 cells present variable ploidy.

403  Allelic imbalance. We ran GATK HaplotypeCaller for the HDF bulk with the parameter
404 --pcr_indel model set to NONE. We used GATK SelectVariants to keep the heterozygous sites and
405  ran GATK VariantRecalibration (v. 4.0.0.0) to select a high confidence set. In parallel, we created
406  pileup files from all the HDF single-cells and bulk with Samtools mpileup and extracted the
407  alternative allele fraction at the high confidence heterozygous positions using a Python script
408  (Supplementary Information). We only considered the allele frequencies derived from sites covered by
409 at least six reads. In order to obtain a smooth distribution from the discrete counts, we estimated the
410  probability density function of the alternative allele fractions with the core R stats package, with the

411 bandwidth adjust parameter set to three.

412 Allelic dropout (ADO). In order to measure ADO, we first had to obtain genotypes both for the bulk
413 and the single cells. For this, we ran GATK HaplotypeCaller in ERC mode for all HDF single-cells
414 and bulk independently (for the latter again setting --pcr indel model to NONE) and merged the
415  results using two different approaches with GATK GenotypeGVCF. On one hand, we aggregated the
416 bulk and the 24 single-cells (“joint calling”) and on the other hand, we simply combined one
417 single-cell and the bulk one at a time (“marginal calling”’). We counted an ADO event when the bulk
418  was genotyped as heterozygous (AB) and the single-cell as homozygous for either the reference or the
419 alternative allele (AA or BB) (Supplementary Fig. 10). For this calculation, we only considered

420  positions covered by six or more reads in single cells and 15 or more reads in the bulk.

421 Amplification polymerase errors. We used false SNV calls (“false positives” or FP) as proxies for
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422 amplification errors of the polymerase. Using the same genotypes estimated above for the ADO
423 calculation, we counted an FP event when the bulk genotype was homozygous (AA or BB) and the
424 single cell heterozygous (AB) (Supplementary Fig. 10). However, given the high number of somatic
425  mutations expected to accumulate during cell growth on a plate and with the intention of mitigating
426 their effect on the calculation of the FP rate, we did not consider for this calculation SNVs detected by
427  the single-cell variant caller MonoVar™, nor sites with two or more reads containing the “potentially
428 erroneous allele” in the bulk. That is, we preferred not to be very stringent and allowed one error in
429  the bulk potentially arising by a sequencing or mapping error. Again, we only considered positions
430  with six or more reads for single cells and 15 or more reads for the bulk. We also explored the
431 mutational profile (signature) of the FPs directly extracting alternative and reference alleles from the

432 marginal calling VCFs and grouped them into different categories.

433  Copy-number detection. The uneven distribution of the coverage, added to the existence of ADO,
434 can make copy number detection from single-cell problematic. We compared how different scWGA
435  Kkits behave in this regard using the coverage dispersion measure (MAD) explained in Garvin et al.*.
436 For this calculation, we used the downsampled BAM files at the lowest depth for each cell line
437 (0.25X, 0.07X, and 0.08X for HDF, Caco-2 and Z-138, respectively). We filtered out reads with a
438  mapping quality lower than 20 from the downsampled BAMs using Samtools and created with
439 Bedtools the BED files required to run Ginkgo™>. We ran Ginkgo under default settings except for the
440 Binning Simulation Options that were set to 150 bp reads and BWA mapping. The segmentation was

441 inferred independently for each sample to allow a fair comparison.

442 Statistical tests. We calculated descriptive statistics using the kruskal.test, wilcox.test, and cor.test
443 functions available in the core R stats package™. For the regression models, we used the R package

444 FWhDselect.

445  Code availability

446 The R and bash scripts used for this study are available as Supplementary Information.

447 Data availability

448 Bulk and single-cell FASTQ files generated for this study have been deposited at the Sequence Read
449  Archive (SRA) under STUDY accession SRP162960.
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Fig. 1 | scWGA technical errors. On top, there is a representation of reads from a sequencing library
constructed from perfectly amplified single-cell DNA material or, commonly, unamplified bulk. Reads coming
from a sequencing library built from the product of a biased amplification are shown at the bottom. Single-cell
amplification starts from a single pair of homologous chromosomes (Chr 1 and 2) while the unamplified bulk
library is directly constructed from lots of chromosome pairs. During the amplification, which originated the
second sequencing library, several biases occurred. On the one hand, some templates were not amplified at all
(A: allelic dropout), or they were not copied as many times as their homologous sequences leading to a
disproportion of maternal and paternal alleles (B: allelic imbalance). The latter contributes (although is not
strictly required) to the coverage non-uniformity across the genome (C: Non-uniform coverage). The uneven
coverage results in a decrease of the coverage breadth (proportion of genome covered by at least 1 read). On the
other hand, during the amplification the DNA polymerase introduced a single-nucleotide variant not present in
the original template (D: false SNV) as well as one chimeric amplicon (E: chimera), due to a replication error
and a strand displacement, respectively. Discordant paired-end reads (grey stars) and split reads (green stars)
reveal the presence of such chimeric amplicons. Little squares represent alternate alleles at original true
germline sites (A,B) and one false SNV (D). Although amplicons are usually longer than reads, here they have
been shortened to facilitate the representation.
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Fig. 2 | Experimental design. 24 HDF single-cells, 104 Caco-2 single-cells and 102 Z-138 single-cells sorted
by FACS were amplified using six scWGA methods (three MDA and three non-MDA). Sequencing libraries
were constructed following four different protocols for Caco-2 and Z-138 and one for HDF. A bulk sample from
the HDF cell line was also extracted and sequenced as unamplified control.
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Fig. 3 | Amplification yield. a, DNA yield. b, DIN values (only MDA methods were measured). ¢, Amplicon
size. Results are also shown combining the three cell lines (All). a-¢, Boxplots: the central line indicates the
median, while the box limits correspond to the Q1 and Q3 quartiles; upper and lower whiskers extend from Q3
to Q3 + 1.5 x (Q3 - QI) and from Q1 to Q1 - 1.5 x (Q3-Q1), respectively. Kruskal-Wallis test p-values are
shown for each dataset.
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Fig. 4 | Amplification breadth and uniformity. a,b, Effect of the scWGA method on (a) predicted
amplification breadth, measured by the percentage of the genome predicted to be covered at 5X, and (b)
amplification uniformity, measured as 1 minus the Gini index of the resulting Lorenz curves, for the different
scWGA kits. ¢,d, Effect of the sequencing library on (¢) predicted amplification breadth and (d) amplification
uniformity. a-d, Boxplots: the central line indicates the median, while the box limits correspond to the Q1 and
Q3 quartiles; upper and lower whiskers extend from Q3 to Q3 + 1.5 x (Q3 - Q1) and from Q1 to Q1 - 1.5 x (Q3-
Q1), respectively. Kruskal-Wallis test p-values are shown.
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Fig. 6 | Chimera rates, allelic imbalance, ADO and false SNV calls. a-g, all these values were measured from
the healthy cell line HDF. a, paired-end discordant reads. b, split reads. ¢, Kernel density estimation of the
alternative allele fraction at heterozygous germline sites. Each line within a panel tab represents a different
single-cell. For the density estimation we used all the positions called as heterozygous in the bulk with
HaplotypeCaller and with at least 6 reads of coverage in the single-cells. The density of one of the REPLIg
single-cell is not shown as it only had 7 positions with more than 5 reads, too few to obtain a smooth
distribution of the allele fraction. d, ADO calculated after marginal genotype calling. e, ADO calculated after
joint genotype calling. f, False SNVs calculated after marginal genotype calling. g, False SNVs calculated after
joint genotype calling. d-g, Boxplots: the central line indicates the median, while the box limits correspond to
the Q1 and Q3 quartiles; upper and lower whiskers extend from Q3 to Q3 + 1.5 x (Q3 - Q1) and from Q1 to Q1

- 1.5 x (Q3-Q1), respectively.
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