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Abstract  

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at 

the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here 

we identify genetic loci associated with phenotypic variability in key brain structures: amygdala, 

pallidum, and intracranial volumes. Variance-controlling loci included genes with a documented 

role in brain and mental health and were not associated with the mean anatomical volumes.  
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Main  

Phenotypic variability is key in evolution, and partly reflects inter-individual differences in 

sensitivity to the environment1. Genetic studies of human neuroanatomy have identified shifts in 

mean phenotype distributions (e.g., mean brain volumes) between groups of individuals with 

different genotypes2, and have documented genetic overlaps with common brain and mental 

disorders3. Despite the evolutionary relevance of phenotypic dispersion evidenced in multiple 

species and traits1,4, the genetic architecture of variability in human brain morphology is elusive.  

 Phenotypic variance across genotypes can be interpreted in relation to robustness, i.e., the 

persistence of a system under perturbations1,4 and evolvability, the capacity for adaptive 

evolution5. High phenotypic robustness is indicated by low variation in face of perturbations, i.e. 

phenotypes are strongly determined by a given genotype. In contrast, lack of robustness 

corresponds to high sensitivity, yielding phenotypes with overall larger deviations from the 

population mean in response to environmental, genetic or stochastic developmental factors. 

Neither increased or decreased robustness confers evolutionary advantages per se1, and their 

consequences for adaptation need to be understood in view of the genotype-environment 

congruence. Reduced robustness (and thus increased variability of trait expression) can be a 

conducive to adaptive change5, and increased variability of phenotypic expression can in itself 

also be favored by natural selection in fluctuating environments6. Thus, recognizing genetic 

markers of sensitivity can aid in identifying individuals who are more susceptible to show 

negative outcomes when exposed to adverse factors –either genetic or environmental– and 

otherwise optimal outcomes in the presence of favorable factors. Such variance-controlling 

genotypes may be conceived as genomic hotspots for gene-environment and/or gene-gene 

interactions, with high relevance for future genetic epidemiology studies7.  
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 To provide a proof-of-principle of the hypothesis of a genetic regulation of brain volume 

variability, we conducted a genome-wide association study of intragenotypic variability in seven 

key subcortical regions and intracranial volume (ICV) using a harmonized genotype and imaging 

data analysis protocol in a lifespan sample (n=19,093 individuals; 3 to 91 years, mean age 47.8 

years; 48% male, Methods and Supplementary Information). Genome-wide association statistics 

were computed for genetic effects on the variance and mean of the volumetric feature 

distributions. Consistent with previous large-scale analyses on genetics of neuroimaging 

volumetric measures2,8, features included bilateral (sum of left and right) amygdala, caudate 

nucleus, hippocampus, nucleus accumbens, pallidum, putamen and thalamus, as well as ICV. 

Over 92% of the included participants were healthy controls (n=17,590); the remaining 8% were 

diagnosed with a brain disorder (n=1,503; including psychosis, depression, and 

neurodegenerative disorders, Supplementary Information). The analyses were conducted in a 

two-stage protocol. For each genotype, we conducted a standard association test for the inverse-

normal transformed (INT) brain volumes9, adjusting for scanning site, sex, age, age squared, 

diagnosis, and ICV (for the subcortical volumes only). The residuals from that model were then 

INT-transformed and submitted to genome-wide Levene’s tests to investigate if specific alleles 

associate with elevated or reduced levels of phenotypic variability. For relevant markers, 

variances explained by mean and variance models were estimated from the INT-transformed 

volumes before fitting regression models using a previously reported approach7.  

A mega-analysis of 19,093 unrelated subjects of European ancestry identified two loci 

associated with differential levels of phenotypic variability at genome-wide significance 

(p<5×10-8), and one with marginal significance (p=5.7 x 10-8) overall on three out of the eight 

volumetric features (pallidum, ICV, and amygdala). Genomic inflation factors (lambda) ranged 
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between 1.005 and 1.102 for the different variance-GWAS (Supplementary Information) and 

were adjusted using genomic control (based on the observation that here the F-statistic of the 

Brown-Forsythe test can be approximated by a chi-squared statistic7). A conventional mean 

phenotype GWAS with additive model on INT-transformed phenotypes showed 14 significant 

loci influencing four volumetric traits (amygdala [2], caudate [2], hippocampus [4], pallidum [2], 

putamen [3] and ICV [1]), and two loci (from amygdala and ICV analyses) were close to 

significant (p<10-7). Manhattan plots for both mean- and variance-GWAS are displayed as 

Supplementary Information.  

 

[Insert Figure 1] 

 

Genome-wide significant loci included an intergenic locus around rs741078 associated 

with pallidum volume variance (chr4:10215987:A:G; minor allele frequency (MAF)=0.113; 

13691 bp from AC006499.6; p=2.1×10-8; variance explained variance model: 0.67%; variance 

explained mean model: 0.01%), and a locus in a TMPRSS15 intron associated with ICV variance 

(rs4482570; chr21:19762408:C:T; MAF=0.325; p=5.1×10-9; variance explained variance model: 

0.19%; variance explained mean model: 0.01%). In addition, a variance-controlling locus for 

amygdala volume in an intron of SATB2 showed borderline significance (rs10497831; 

chr2:200142649:A:G; MAF=0.152; p=5.7×10-8; variance explained mean model: 0.001%; 

variance explained variance model: 0.09%). Results were consistent when re-analyzing the data 

from healthy controls only (excluding participants with neuropsychiatric diagnoses): p=8.6×10-9 

(rs741078-pallidum), p=6.5×10-9 (rs4482570-ICV) and p=2.5×10-7 (rs10497831-amygdala). 

Figure 2 shows the relevant phenotype distributions for the top hits for the two models grouped 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 15, 2018. ; https://doi.org/10.1101/443549doi: bioRxiv preprint 

https://doi.org/10.1101/443549


 

8

by genotypes generated via the shift function10. In short, the adopted shift function procedure 

was implemented in three stages: deciles of two phenotype distributions were estimated using the 

Harrell-Davis quantile estimator, followed by the computation of 95% confidence intervals of 

decile differences with bootstrap estimation of deciles’ standard error, and multiple comparison 

control so that the type I error rate remained close to 5% across the nine confidence intervals. 

Decile-by-decile shift function analysis confirmed higher amygdala volume variance among 

homozygotes for the minor rs10497831 allele (GG) in relation to the other two genotypes (AA, 

AG). Similarly, minor allele homozygous subjects for rs741078 (CC genotype) showed higher 

pallidum volume variance than carriers of the major allele A. The rs4482570 heterozygotes and 

minor allele homozygotes (CT, TT) had higher ICV variance than the participants with CC 

genotypes. Pathway analysis on pallidum, ICV and amygdala variance-controlling summary 

statistics using MAGMA Gene-Set Analysis on the summary statistics (via FUMA11) revealed 

significant enrichment for the term “neuron projection regeneration” (pallidum GWAS: 28 

genes, β=0.6, standard error: 0.135, p=4×10-6, Bonferroni p=0.046) (more detailed results 

provided as Supplementary Information). No significant enrichment was found for ICV or 

amygdala.  

 

[Insert Figure 2] 

 

 To our knowledge, this is the first evidence of genetic loci influencing variability of brain 

volumes beyond their mean value. A conceptually and methodologically similar approach 

revealed genetic control of the variance in body height and body mass index12. Adding to the 

notion that phenotypic spread in a population is related to genetic variability, our current findings 
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show that the population variance of subcortical and intracranial volumes is partly under genetic 

control. Importantly, our findings on brain structure and the previous work on body mass index12 

provide converging evidence supporting the notion that common genetic variants affecting the 

mean and the variance of a trait need not be correlated and may influence phenotypes through 

complementary mechanisms.  

 Variants associated with volumetric dispersion mapped to genes that have previously 

been linked to cognitive and mental health traits. Amygdala variability was related to a genotype 

in SATB2, which has been associated with intelligence13, and is expressed in adult and fetal 

brain, and related to syndromic neurodevelopmental deficits14. Similarly, the significant variance 

locus (21q21.1) for ICV spanned TMPRSS15, a gene reportedly linked to neurodevelopmental 

disruptions15 and to brain changes in post-traumatic stress disorder16. Moreover, pathway 

analysis with MAGMA Gene-Set Analysis using the full set of variance-controlling GWAS 

results from the pallidum analysis revealed significant enrichment for the “neuron projection 

regeneration” term, providing a plausible mechanism modulating neuroanatomical adaptation in 

response to distinct genetic and environmental factors.  

 Variance-controlling alleles can be interpreted as underlying distinct degrees of 

organismic robustness1. Relevance to medical genetics also comes from the observation that 

several disease phenotypes emerge beyond a phenotypic threshold, which could be reached by 

the influence of high variability phenotypes17. It is thus important to understand how the 

identified markers relate to brain variability under changing environments (robustness), how they 

interact with other genetic loci (epistasis) and how they relate to the clinical manifestation of 

disease. Similarly, variance-controlling loci can underlie variability from other genetic factors, 

potentially affecting evolutionary dynamics4. Identifying the mechanisms by which variance-
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controlling genotypes influence gene expression variance in relevant brain structures may 

provide a proof of principle for the functional relevance of the identified genotypes. This type of 

effect on expression has been shown in model organisms18, and the genomic loci identified here 

represent suitable candidates for targeted gene expression analysis in the human brain. The 

identification of specific genes involved in neural evolution and mental disorders suggests that 

brain variability in human populations is mediated by genetic factors. In so doing it also 

underscores the validity of gene-gene and gene-environment interactions in explaining 

heritability of complex human traits.  

 In summary, the results indicate that beyond associations with mean volumetric values, 

genotypic architecture modulates the variance of subcortical and intracranial dimensions across 

individuals. The lack of overlap between genetic associations detected by the standard additive 

genetic model and variance-controlling loci indicate independent mechanisms. These findings 

contribute to establish the genetic basis of phenotypic variance (i.e., heritability), allow 

identifying different degrees of brain robustness across individuals, and open new research 

avenues in the search for mechanisms controlling brain and mental health.  
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Methods  

Participants  

Data from 19,093 unrelated European-ancestry individuals were included (mean age 47.8 years, 

ranging from 3.2 to 91.4 years old; 48% male), recruited through 16 independent cohorts with 

available genome-wide genotyping and T1-weighted structural MRI. Extended information on 

each cohort reported in Supplementary Information includes recruitment center, genotyping and 

brain imaging data collection, sample-specific demographics, distribution of brain volumes and, 

when relevant, diagnoses (1,464 individuals had a diagnosis). Written informed consent was 

provided by the participants at each recruitment center, and the protocols were approved by the 

corresponding Institutional Review Boards.  

 

Genotypes  

Only participants with European ancestry (as determined by multidimensional scaling) were 

included in the final set of analyses, in recognition that the inclusion of subjects from other 

ethnicities can potentially add genetic and phenotypic confounding. Except for the UK Biobank 

cohort, all directly genotyped data were imputed in-house using standard methods with the 1000 

Genomes European reference panel. After imputation, each genotyping batch underwent a 

quality control stage (MAF < 0.01; Hardy-Weinberg equilibrium p < 10-6; INFO score < 0.8). 

When all samples were combined, over 5 million distinct markers passed quality control 

genome-wide. Additional filters on genotyping frequencies were applied to the final merged 

dataset based on statistical considerations for genotype frequency in variance-controlling 

detection, as described below.  
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Brain features  

Three-dimensional T1-weighted brain scans were processed using FreeSurfer19 (v5.3.0; 

http://surfer.nmr.mgh.harvard.edu/). Eight well-studied volumetric features were selected for 

analysis moving forward, as literature findings on large datasets show that their mean population 

value is influenced by common genetic variation2: accumbens, amygdala, caudate, hippocampus, 

pallidum, putamen, thalamus and ICV. Cohort-wise distribution of values is summarized in 

Supplementary Information. Before the ensuing statistical analyses, outliers (+-3 standard 

deviations from the mean) were removed, and generalized additive models (GAM) were 

implemented in R (https://www.r-project.org) to regress out the effects of scanning site, sex, age, 

diagnosis and ICV (for subcortical volumes only). Hereafter, brain volumes correspond to 

residuals from those GAM fits unless otherwise specified.  

 

Statistical analyses  

Genome-wide association statistics were computed for genetic effects on the mean and variance 

of the volumetric feature distributions. For each marker, the distribution of each outcome 

phenotype was normalized via rank-based inverse normal transformation (INT) to prevent 

statistical artifacts. Scale transformations like INT have been shown to aid genetic discovery by 

constraining mean-effects and reducing the effect of phenotypic outliers, which reduces Type I 

error rates without sacrificing power9,12. In short, INT was applied to transform each subject’s 

phenotype (��) as  

INT���� � ��� 	rank���� � 0.5
� � 

where rank���� is the rank within the distribution, � stands for sample size (without missing 

values) and ��� denotes the standard normal quantile function. Intuitively, all phenotype values 
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are ranked and the ranks are mapped to percentiles of a normal distribution. Then, an additive 

genetic model was computed with  

INT��� � β� � β�sample � β��� � β��� � β��� � β��� � β	SNP � � 

where INT��� is the normalized phenotype variable; SNP is the relevant marker coded additively 

and � stands for regression residuals. Four genomic principal components (��-��) were included, 

to control for population stratification and cryptic relatedness, and to make the results 

consistent/comparable with a previous large-scale analysis of genetic variation and brain 

volumes2. Results from that analysis (mean-model) were contrasted with the statistics from the 

variance-model. The previous residuals � were again inverse normal transformed, and used as 

input for the variance-model using the Brown–Forsythe test. Briefly, INT-transformed residuals 

were used to compute ��
 �  ��
 � �
̃ , with �
̃  as the median of group " (here, genotype) and 

these, in turn, to compute the # statistic:  

# � $���
���

% ∑ �����·����··�
��

���

∑ ∑ ��������·��
���

���

�

���

, 

where �
  is the number of observations in group ", & is the number of groups (2 or 3 different 

genotypes), and �'·
 denotes the mean in group ". To prevent increases in false positive rates 

arising from small groups20, only markers with at minimum (non-zero) genotype count of at least 

100 were included. This value was chosen based on literature about power and statistical 

considerations of genome-wide association studies for phenotypic variability20. The data were 

analyzed and visualized in R with the aid of appropriate packages. When relevant, significant 

markers were annotated and additionally inspected using FUMA11.  
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Figure 1. Common genetic variants regulate the distribution variance of human subcortical and intracranial volumes  

Genomic inflation correction was performed for each trait/GWAS before submitting the p-values for locus zoom plot.  

Pallidum (rs741078) ICV (rs4482570) Amygdala (rs10497831) 
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Figure 2. Shift function plots for the top genome-wide significant associations in variance and mean model GWAS results  

The results corresponding to the top 3 variance models associations are shown on top (“A”, “B”), those corresponding to the top three mean model 

associations (conventional GWAS) are displayed on the lower section (“C”, “D”). A: Jittered marginal distribution scatterplots for the top three 

variance model associations, with overlaid shift function plots using deciles. 95% confidence intervals were computed using a percentile bootstrap 

estimation of the standard error of the difference between quantiles on 1000 bootstrap samples. B: Linked deciles from shift functions on row “A”. C: 

Jittered marginal distribution scatterplots for the top three mean model associations, grouped by reference allele homozygotes and effect allele 

carriers. Genotypes with the minor (effect) allele are shown as a single group. 95% confidence intervals were computed as in “A”. D: Linked deciles 

from shift functions on row “C”. For the last three associations (“C” and “D”), variances explained by mean and variance parts of the model were 

0.44% and 0.0002% (putamen, rs1953350), 0.6% and 0.009% (hippocampus, rs113205216), and 0.29% and 0.002% (caudate, rs1014646).  
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