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Abstract

Movements are preceded by certain brain states that can be captured through

various neuroimaging techniques. Brain-Computer Interfaces can be designed to de-

tect the movement intention brain state during driving, which could be beneficial in

improving the interaction between a smart car and its driver, by providing assistance

in-line with the driver’s intention. In this paper, we present an Electroencephalogram

based decoder of such brain states preceding movements performed in response to

traffic lights in two experiments: in a car simulator and a real car. The results of

both experiments (N=10: car simulator, N=8: real car) confirm the presence of an-

ticipatory Slow Cortical Potentials in response to traffic lights for accelerating and

braking actions. Single-trial classification performance exhibits an Area Under the

Curve (AUC) of 0.71±0.14 for accelerating and 0.75±0.13 for braking. The AUC for

the real car experiment are 0.63±0.07 and 0.64±0.13 for accelerating and braking

respectively. Moreover, we evaluated the performance of real-time decoding of the

intention to brake during online experiments only in the car simulator, yielding an av-

erage accuracy of 0.64±0.1. This paper confirm the existence of the anticipatory slow

cortical potentials and the feasibility of single-trial detection these potentials in driving

scenarios.

keywords: Brain-Computer Interface, Real Car Driving, Car Simulator, Electroen-

cephalogram, Slow Cortical Potentials.
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1 Introduction

Non-medical applications for Brain-Computer Interfaces (BCI) are increasingly being ex-

plored, in particular for real-time monitoring of mental states, such as attention, perfor-

mance capability, emotion, etc.3,4. Along this line, the possibility of decoding brain activ-

ity, measured with electroencephalography (EEG), to improve driving assistance systems

has recently attracted considerable interest11,13,14,29. In this approach, the objective is not

to ‘control a car with a BCI’ but rather to predict the driver’s intentions11,13,14,29. ‘in order

to help the driving assistance system of a smart car’.

Nowadays vehicles are increasingly being equipped with technologies that provide

environmental information, which may warn about critical situations during driving and

eventually help to reduce the driver’s physical and cognitive workload12,26. By including

the BCI, the assistance will not only be in-line with the situations on the road (using in-

formation from in-car sensors) but also, and more importantly, aligned with the driver’s

intentions (mediated by the BCI).

During driving, we are constantly engaged in responding to external events. At a

traffic light, the driver anticipates the appearance of the next color and actively prepares

to perform the right action (i.e., accelerate or brake) at the proper moment. In case of

an inattentive driver, unaware of the need to brake, the BCI could detect the absence of

neural correlates of the anticipatory process. The driving assistance could thus provide

feedback to the driver and eventually initiate the braking action gently, so that the driver

becomes aware of the situation and has the chance of braking by themselves. This kind

of assistance would prevent an automatic emergency braking at the last moment, which

may result in a negative surprise and an unpleasant experience for the driver who could

feel under the control of the smart car, rather than being in control of it. If the driver

is aware of the color change of the traffic light and has the intention to brake, the BCI

detects the presence of an anticipatory brain potential and an unnecessary automatic

braking is avoided. Still, further driving assistance could be provided by facilitating the
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Figure 1: 64 EEG Electrodes layout (extended 10-20 international).

driver’s intended action.

At a traffic light the yellow light is a warning stimulus that predicts the appearance of

the upcoming ‘Red’ stimulus, upon which the driver needs to perform an action (braking).

Classical psychophysical paradigms to study anticipation have shown a slow negative

deflection within the interval between the warning and the imperative stimuli called Con-

tingent Negative Variation (CNV)27, which is a type of Slow Cortical Potential (SCP). The

SCPs are defined as slow negative deflections observed in EEG lasting from 300 ms to

several seconds with magnitudes up to 40µV during specific cognitive tasks2.

The main goal of this paper is to investigate the neural signatures of the driver’s antic-

ipatory behavior in response to traffic lights. In previous work13, we have investigated the

neural correlates of anticipatory behavior with a count-down paradigm in a driving simula-

tor. The results demonstrated the possibility of predicting the driver’s movement intention

through anticipatory behavior in offline analysis. Here, we extended our approach to in-

clude (i) a more realistic driving scenario (traffic lights) in simulated and real car driving,
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(ii) assessment of the real-time detection of anticipatory brain potentials during online ex-

periments in the car simulator, and (iii) preliminary assessment of the effect of providing

feedback on the anticipatory behavior.

2 Materials and Methods

We have conducted two experiments in order to investigate the neural signature of the

driver’s anticipatory brain state while driving in the car simulator and in the real car (both

provided by Nissan Motor Co). The protocol for both experiments was approved by the

institutional ethical committee and all subjects provided written informed consent.

For both experiments, EEG was acquired at a sampling rate of 2048 Hz using 64

electrodes according to the extended 10/20 international system (Figure 1) along with two

EMG electrodes (Biosemi ActiveTwo, The Netherlands). Electrodes were placed using

an elastic cap fitted with electrode holders. Conductive electrolytic gel had to be applied

prior to the beginning of the experiment but no re-application was needed afterwards.

The EMG signal was recorded using one set of bipolar electrodes placed on the tibialis

anterior muscle of the subjects’ right leg13.

For Experiment-1, which was held in the car simulator, comprised both offline and on-

line experimental sessions, as follows. Offline sessions refer to the recordings where the

analysis has been performed after the experiment (the signal processing and classifica-

tion pipeline was implemented over recorded data). In the online sessions, the signal

processing and classification pipeline was implemented in real-time. The online experi-

ments entail the ‘real-time’ decoding of anticipatory brain potentials and allows to provide

some feedback of the real-time detection to the user (i.e., closed loop).

The chain processing steps for the offline and online session are exactly the same for

the feature extraction and classification steps. However, those processing chains differ

slightly in the pre-processing steps, as explained in detail in Section 2.1.2 (Offline analy-

sis and online analysis, respectively). For experiment-2, which was held in the real car,
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we have only conducted offline sessions. The processing chain of this experiment is ex-

plained in detail in Section 2.2.2. Both experiments comprised several recording sessions

over different days. We firstly demonstrate the results of the post-hoc analysis of the data

recorded in Day-1 of each experiment (offline sessions): i. Grand averages to confirm the

presence of the anticipatory SCPs during the color changes of the traffic lights. ii. The

single-trial analysis represented in ROCs. The results of online experiment-1 is shown in

Table 3, which reports the accuracy of real-time classification in the subsequent recording

days.

For both experiments, we performed a post-hoc analysis to confirm the presence of the

anticipatory SCPs during the color changes of the traffic lights and report grand average

Event-Related Potentials (ERPs) on the offline sessions. We also assessed the single-

trial analysis decoding performance and report it using the Area Under the Curve (AUC) in

the Receiver Operating Characteristics (ROC) space. For Experiment-1, the performance

of the online sessions is reported in terms of the accuracy of real-time classification.

2.1 Experiment-1: Car simulator

2.1.1 Setup and protocol

Ten healthy subjects (1 female, average age 23.5±1.4 yrs) participated in the experiments

with a custom-made driving simulator (see Figure 2.a) over 3 days. All subjects possessed

a valid driving license and had normal or corrected-to-normal vision. None of the subjects

were color blind. They sat in the driver’s chair of the simulator in front of three 3D monitors

(27 inches, 50 cm distance to the subject’s eyes, no need for wearing 3D glasses). We

used the open source VDrift driving game15 and we designed a 3D virtual environment

using the Blender software1 simulating a city with two main streets and five smaller streets

perpendicular to them, yielding 10 intersections. Traffic lights were placed besides the

road at each junction (see Figure 2.b).

Subjects had to drive the virtual automatic car through the city, using the steering
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Figure 2: Experiment-1: (a) Experimental setup in the car simulator with three 3D moni-

tors, (b) Illustration of a sample junction in which the car is approaching the junction with a

traffic light in ‘Red’. (c) The time-line of the protocol: the traffic lights turning from ‘Green’,

to ‘Yellow’, to ‘Red’ followed by braking after the ‘Red’ light, named Brake trials; this is fol-

lowed by a waiting period for approximately 12 s; then, the next sequence of traffic lights

with ‘Red’, to ‘Yellow’, to ‘Green’ corresponds to the Drive trials. Each type of trial contains

one Go and one No-go epoch.

wheel, accelerator and brake pedals. To reduce signal contamination, subjects were

instructed to fixate their gaze on a cross point at the center of the screen and minimize

facial or head movements during the appearance of the stimuli (traffic light changes).

They were asked to maintain a fixed speed of 80 Km/h. The simulated environment was
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programmed so that when the car approached a junction, the traffic light changed from

‘Green’, to ‘Yellow’, to ‘Red’. Subjects were instructed to press the brake pedal only at the

onset of the ‘Red’. After the virtual car stopped, the driver had to wait for approximately

12 s for the next round of color changes of the traffic light (‘Red’ to ‘Yellow’ to ‘Green’). The

duration of each color was set to 2 s. To make the subjects more involved, in 20% of the

cases (randomly distributed) the traffic light remained ‘Green’ when the car approached

the intersection (the driver was not required to stop).

. .

Table 1. Details of the type of feedback in the different recording sessions for Drive

and Brake trials. NF: No Feedback, RT: Reaction Time; behavioral feedback; BCI: the

output of the real-time EEG classification.

Day-1 Day-2 Day-3

Drive NF NF NF

Brake RT RT+BCI RT+BCI

. .

This design allowed us to investigate the anticipatory brain potentials during driving,

and more specifically, to test the difference between predictable future events in which

the subject is not required to immediately perform an action (onset of ‘Yellow’ light), and

imperative ones (light changes to ‘Red’ or ‘Green’), in which the subject is supposed to

perform an immediate action. We defined two types of trials (see Figure 2.c): Drive (com-

prised the time interval from the ‘Red’ to ‘Green’ light) and Brake trials (the time interval

between the onset of the ‘Green’ to ‘Yellow’ to ‘Red’ light). Each type of trial contained

one No-go epoch and one Go epoch. The former corresponds to the interval between

the change of ‘Green’ or ‘Red’ to ‘Yellow’, in which subjects were not supposed to perform

any action after the cue, while the latter corresponds to the interval between ‘Yellow’ and

‘Red’ or ‘Green’, in which subjects were supposed to perform a specific action.

The experiment comprised between 2 and 3 recording sessions, as explained below.
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Each day of recording consisted of 4 sessions, and each session consisted of 4 runs.

Each run lasted around 15-20 minutes and contained an average of 77±8 and 78±10

Drive and Brake trials, respectively, across all recording 3 days. In all sessions, no feed-

back (NF) was provided for the Drive trials. In contrast the subject Reaction Time (RT) for

Brake trials was provided on the screen to the subject as a behavioral feedback 2 s after

the onset of the ‘Red’ light. RT was calculated as the difference between the timing of the

onset of the ‘Red’ light and the pressing the brake pedal (see Table 1 for the details of

feedback over the different sessions).

Only for Brake trials, using the data of Day-1, a classifier was trained and used for on-

line experiments. Those subjects for whom the classifier yield classification performances

above random performed online sessions in the next recording day (Day-2). Five of them

(S1, S2, S3, S4, and S5) also performed an additional online (Day-3). The training classi-

fication performance on Day-1 was not satisfactory for 3 of the subjects (S7, S9, and S10).

For S7 and S9, the training classification performance was very close to the chance level.

This was presumably due to artifact contamination. Therefore, we repeated the offline

recording session for these subjects to be able to retrain a classifier that achieved a per-

formance significantly above random. S10 reported not being focused on Day-1. S7 and

S9 were not available for the 3rd day of recording, therefore, they did not performed any

online session. Table 2 summarizes the details of the recording sessions for each subject.

Table 2. Details of the recording sessions of Experiment-1.

Subjects # of offline sessions # of online sessions

S1, S2, S3, S4, & S5 1 2

S6, S8 1 1

S10 2 1

S7, S9 2 0

. .

During the online sessions, in addition to RT values (behavioral feedback), the output
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of real-time EEG classification was also provided to the subject (BCI feedback), which

informed the subject whether or not the BCI could detect his/her intention to brake (i.e.,

presence of anticipatory SCPs before the onset of the ‘Red’). This was shown 2 s after

braking as a text appearing at the center of the screen which was ‘Yes’, if the BCI de-

tected the movement intention, and ‘No’ otherwise. We hypothesized that providing the

RT values as behavioral feedback to the subjects could help them better synchronize their

actions (pressing the brake pedal) with the onset of the imperative cue (‘Red’).

To investigate the effect of providing behavioral and BCI feedback on the subject’s

anticipatory behavior and its corresponding neural correlates, the evolution of EMG onset

and the peak negativity at the Cz electrode were evaluated across different days. To

estimate the peak negativity, we computed the minimum value within a 50 ms window from

[-250, -200] ms with respect to the onset of the ‘Red’ light. These negativity values are

obtained over each session for Drive and Brake trials separately. The temporal evolution

of this negativity over a session was approximated with a linear polynomial. The slope of

these lines is compared across days. The EMG onset distribution is defined as the time

when the EMG activity exceeds a threshold equal to µ + 6σ 13,17, where µ and σ are the

mean and standard deviation of the EMG in the window [-2.5, -2] s, during the timing of

the No-go epoch (i.e., during the ‘Yellow’ light).

2.1.2 Pre-processing

Offline sessions: The EEG data processing is similar to that of our previous study13.

We first down-sampled the raw signals to 256 Hz, and discarded trials whose maximum

potential exceeded 100 µV , then spatially filtered using a Common Average Reference

(CAR)19. Next, the signal was smoothened using a Weighted Average filter (WAVG) ap-

plied to the CAR referenced data. WAVG can be seen as the opposite of the Laplacian

filter19, where a channel’s average neighboring activity is added to it, rather than sub-

tracted. Given the value of the ith electrode, ei(t) after CAR (eCAR
i (t)), WAVG returns

eWAVG
i (t) = eCAR

i (t) + 1
K

∑K
j e

CAR
j (t), where K represents the number of nearest neigh-
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bor electrodes considered (K=4 in this case, which all are equally weighted). It has been

previously shown that such filtering improves the classification performance of CNV po-

tentials9. The reason is that SCPs are widely spread over the central scalp areas. This

means that similar patterns of SCPs are observed in the central electrodes, which can be

taken into account in order to improve the Signal to Noise Ratio (SNR) using a weighted

technique. Afterwards, the signals were spectrally filtered by means of a narrow band-

pass Infinite Impulse Response (IIR) filter (4th order Butterworth in [0.1–1] Hz).

The EMG signals (down-sampled to 256 Hz) were filtered with a bandpass Butterworth

filter in [20–50] Hz, then rectified and smoothened with a moving average filter (time win-

dow = 25 samples)17. Finally, the EEG and EMG signals were segmented into Go, and

No-go epochs (2 s, starting at the onset of the warning stimulus). For each epoch the data

were baseline-corrected by removing the value of the sample at the cue onset.

Online sessions: The processing steps for the real-time analysis of the online ex-

periment were similar to the offline analysis, with the exception of the spectral filtering.

The prerequisite for online experiments is to use causal filters (that can lead to significant

changes on the signal morphology18), which may affect the classification performance.

Thus, we compared the post-hoc analysis (offline classification performance) on the data

of Day-1, for two different cases: with bandpass filters of [0.1–1] Hz applied causally and

without the spectral filtering. An initial evaluation using the data recorded during the offline

sessions yielded better training performance for the case with no spectral filter, and thus

this setting was used in the online experiment.

2.1.3 Feature extraction and classification

For the single-trial analysis, based on previous works9,13, features from the Cz electrode

were extracted (see Figure 4.a). For each epoch, the Cz potentials at 4 equally spaced

time points (-1.6 s, -1.2 s, -0.8 s, and -0.4 s) were used as a feature vector. This choice

of the time points allowed online detection of the intention to act before subjects pressed

the pedals. For classification, we used the Quadratic Discriminant Analysis (QDA)8 to
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discriminate between the Go and No-go epochs. Offline performances were assessed

using a 4-fold cross-validation method that kept the chronological order of the data; i.e.,

each fold corresponds to a separate run. The performance of the single trial classification

was evaluated using AUC in the ROC space8. ROC curves show the trade-off between

the False Positive Rates (FPR) and True Positive Rates (TPR) of the classifier for different

decision thresholds. In our case, TPR is the portion of Go epochs that are classified as

Go and FPR is portion of No-go epochs erroneously detected as Go epochs. Online

performance is reported in terms of the classifier accuracy.

2.2 Experiment-2: Real car

2.2.1 Setup and protocol

Eight healthy subjects participated in the recordings comprising two sessions on took

place within a period of 10 days (one subject could not join for Day-2). None of the

subjects in this experiment took part in Experiment-1 in the car simulator. Experiment-2

was performed with a real automobile with automatic gear (Infinity FX30, see Figure 3.a).

For safety reasons, the experiments were performed in a closed road with no other vehicle

or pedestrians present (Figure 3.b). All experiments were done in daylight, spanning 10

consecutive days and under similar weather conditions (cloudy/sunny). In this road, we

placed 6 traffic lights at specific locations (see Figure 3.c). During the experiments all

driving assistance systems such as intelligent cruise control were disabled. Moreover,

the drivers were instructed to use the automatic gearshift and to keep their hand on the

steering wheel to limit arm movements.

These traffic lights were programmed with fixed timings (‘Green’: 10 s ‘Yellow’: 3 s,‘Red’:

27 s). Subjects were asked to drive normally at about 60 Km/h so that the car would arrive

at each traffic light location at specific times that yielded Go and No-go epochs of 3 s. As

in the previous experiment, we defined two types of trials: Drive and Brake (see Figure

3.c). The experimental design allowed us to have 4 Brake and 6 Drive trials per lap. Each
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Figure 3: Experiment-2 setup and timeline of the trials, (a) The vehicle Infiniti FX30, and

the subject in the car, the real traffic lights used in the experiment. (b) Aerial view of the

road and location of the traffic lights. (c) Time-line of the protocol. The traffic lights turning

from ‘Green’ to ‘Yellow’ to ‘Red’ followed by braking after the ‘Red’ light are called Brake

trials. ‘Red’ to ‘Yellow’ to ‘Green’ correspond to Drive trials. Each trial contains one Go

and one No-go epoch.

recording session consisted of five laps driving along the circuit, which lasted around 15

to 20 minutes, depending on the driving style of each subject.

An average (across all the subjects and all the sessions) of 64±15 trials for Drive and
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43±11 for Brake trials were obtained. The data were labeled manually by the experi-

menter, sitting in the same car. Limited availability to the closed road did not allow to

perform enough recording sessions to perform an online test for this experiment.

2.2.2 Pre-processing, Feature extraction, and classification

Similar signal processing steps used for experiment-1 have been explored for Experiment-

2. The few differences are described below: For the analysis, we selected the central

electrodes (C1, C2, Cz, FC1, FCz, FC2, CP1, CPz, and CP2), as the outer electrodes

were more prone to contamination by driving related artifacts (eye and neck movements

and EEG cap touching the headrest of the driver seat). Given the reduced montage,

for the spatial filtering we avoided using CAR as it would reduce anticipatory SCP neg-

ativity in electrodes of interest (central electrodes). Thus, we directly applied the WAVG

smoothing filter introduced in the section 2.1.2. Due to the timing of the traffic lights, the

Inter-Stimulus-Interval in this experiment is 3 s (see Figure 3.c). However, we used the

same features as for Experiment-1; i.e., 4 equally spaced time-points extracted from the

last 2 s before each cue. This choice was based on the analysis of EEG grand aver-

ages from the data recorded on Day-1, showing that the negative slope starts around 1 s

after the ‘Yellow’ light. The classifiers and the methods for evaluating the classification

performance were the same as for offline sessions of Experiment-1.

3 Results

3.1 Experiment-1: EEG correlates of anticipation in the car simula-

tor

3.1.1 Grand averages

Figure 4 illustrates the EEG grand averages for the Drive and Brake trials, computed

across all subjects on the recordings of Day-1. As shown on the scalp maps at different
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Figure 4: Grand averages of Cz potentials for the Experiment-1 in the car simulator on

Day-1. (top) Topographic representation of average EEG scalp distribution at different

time points. (bottom) Grand averages of Cz potentials and EMG envelopes shown for

Drive (in green) and for Brake trials (in red). The mean is shown with solid line and the

standard error shown in shadow (for Cz potentials it is < 1.5µV and for EMG it is <1.5 mV).

At time t=0 s is the onset of the appearance of ‘Green’/‘Red’ light (imperative stimulus).

EEG and EMG data were baseline corrected to the value of the sample at the onset of

‘Red’/‘Green’ light at t=-4 s.

time points (top panel of Figure 4), the negative potential is evident in the central area

and is maximal at centro-medial electrodes. This observation is consistent with results

reported in existing literature on anticipation-related SCPs27 as well as in our previous

work13.

A negative amplitude deflection at the Cz electrode starting at the onset of the ‘Yellow’
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light can be observed for both Drive and Brake trials, reaching its maximum negativity

slightly after t=0 s. The time point t=0 s, corresponds to the onset of ‘Green’/‘Red’. As

shown in Figure 4, a higher average peak negativity appears for Brake than for Drive

trials (Wilcoxon test, p-value <0.01). The bottom panel of Figure 4 show the grand aver-

ages of the EMG envelopes, demonstrating that there is no muscular activity during the

preparation phase.

3.1.2 Single-trial classification

Figure 5 shows the ROC curves of individual offline classification performance (4-fold

cross-validation) in the car simulator for Drive and Brake trials, separately. AUC above

0.80 were obtained for five subjects, in at least one of the sessions for Brake (S2, S4,

S5, S6, and S8) and for Drive trials (S3, S4, S5, S8, and S9). The mean AUC across

10 subjects for Day-1 was 0.73±0.15 for Drive trials and 0.73±0.14 for Brake trials. On

Day-2, the mean AUC was 0.67±0.14 for Drive trials and 0.73±0.14 for Brake trials.

For Day-3, the mean AUC across the 6 subjects that participated in the third day were

0.73±0.09 and 0.80±0.08 for Drive and Brake trials, respectively. Thus, we observe that

the average classification performance for Brake trials is superior to that of Drive trials

throughout the 3 days of experiment in the car simulator and the 2 days with the real car,

but their differences are not statistically significant (Wilcoxon test).

.

The performance of the online experiment for Brake trials was evaluated as the ac-

curacy of the real-time classification results of the Go and No-go epochs (see Table 3).

Noteworthy, the accuracy exceeded 0.60 for 5 subjects, which corresponds to the 95%

confidence interval of chance level for a two-class problem when about 80 trials per class

are available21. Moreover, two out of the 3 subjects who did not reach this threshold in

Day-2, did in Day-3.

. .
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Figure 5: Experiment-1. Individual classification performance (AUC) in the car simulator

for Drive (in green) and Brake trials (in red). ROC curves and mean AUC values for

all subjects on different days of recording. The gray diagonal line represents random

performance.

.

Table 3. Online classification accuracies in the Experiment-1.
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S1 S2 S3 S4 S5 S6 S8 S10 Mean±SD

Day-2 0.58 0.51 0.52 0.76 0.75 0.50 0.83 — 0.63±0.13

Day-3 0.55 0.66 0.72 0.66 0.69 — — 0.61 0.65±0.05

3.1.3 Effect of feedback

We report changes in the response time and the SCPs measured from 5 subjects (S1 to

S5) for whom we had measurements over all three days; Day-1 (offline): RT feedback for

Brake trials; Day-2 (online) and Day-3 (online): RT+BCI feedback for Brake trials (Table

1 and 2). To investigate the effect of feedback we first computed the EMG onset timing,

which representing the subject’s response time. We then computed the median of the

EMG onset time of Day-1 as a reference. Following this, we computed the percentage of

trials that have EMG onset time above this value for Day-2 and Day-3 (shown in Figure

6.A).

Generally, the median of the EMG onset timing is higher for Brake trials (246 ms,

152 ms and 160 ms) than for Drive trials (156 ms, 98 ms, 121 ms) for Day-1, Day-2, and

Day-3, respectively. This likely due to the need for a more complex movement for braking.

Here the subjects need to switch their foot from the gas pedal to the brake, whereas during

the Drive the subject’s foot was already on the gas pedal.

We compare the evolution of the EMG onset timing across different days for Drive and

Brake trials, as the former receive no feedback in all the 3 days and the latter receive

the RT feedback on Day-1 (plus BCI feedback on Day-2 and Day-3). Indeed, we ob-

serve that subjects become more predictive of the imperative stimulus (i.e., appearance

of ‘Green’ or ‘Red’) rather than reactive from Day-1 to Day-2 and Day-3. The results show

that, for Drive, the percentage of trials above the median of the EMG onset distribution of

Day-1 (=156 ms), was 50.6% and reduced to 27.9% and 35.3% during Day-2 and Day-3,

respectively. Similarly, for Brake, the percentage of trials above the median EMG distri-

bution of Day-1 (=246 ms) was 50.1% and reduced to 22.2% and 19.1% for Day-2 and

Day-3, respectively.
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A

B

C

Figure 6: A)The evolution of EMG onset time for the 5 subjects (S1, S2, S3, S4, S5)

for Drive (in green) and Brake for the 3 recording days. The dotted line corresponds to

median value of Day-1. The number in the distribution plot describes the percentage of

trials with EMG onset time above the median value of Day-1. B) The peak negativity value

of Cz potentials for Drive (in green) and Brake (in red). The slope of a line fitted to the

peak negativity across trials is also displayed. C) Summary for the 3 days: (Left) The

slope of the fitting line. (Right) The percentage of trials above the median EMG onset.
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Reduction in the EMG onset time for Brake trials is likely to be a signature of an

improvement in anticipatory behavior, which could be due to the feedback (RT+BCI) pro-

vided on Day-2 and Day-3. We observe a consistent reduction of this value across days

for Brake trials as compared to Drive trials. However, from the current data it is not pos-

sible to dissociate the contribution of each of these feedback components to the learning

effect (note that the sessions of RT alone and RT+BCI feedback are not randomized).

Since BCI feedback is the result of the real-time classification of the centromedial EEG

negativity, we investigated the evolution of this negativity throughout each experimental

session across the different recording days. The change in the negativity of the SCP po-

tentials within a session was expressed as the slope (= change in peak negativity across

different trials) of a line fitting the peak negativity values within a session, as shown in

Figure 6.B. The slopes of the Drive trials were 0.021, 0.022 and -0.035µVs per trial over

Day-1, Day-2 and Day-3, respectively. For the Brake trials, the slopes were 0.0049, -0.052

and -0.062µVs per trial over Day-1, Day-2 and Day-3, respectively. We observe that the

negativity mainly increased in Brake (Day-2 and Day-3) trials as compared to Drive tri-

als (only Day-3). The slope is close to zero for Brake of Day-1, when only RT feedback

was provided, indicating no change in negativity across trials. A nonzero negative slope

is observed for trials of Day-2 and Day-3, when BCI feedback was also delivered, that

could suggest a decrease of the Cz peak value. Hence, further investigation is needed to

assess this tendency.

3.2 Experiment-2: EEG correlates of anticipation in real car

3.2.1 Grand averages

Figure 7 illustrates the grand averages of Drive and Brake trials in the real car. The

neural signatures are very similar to those observed in the car simulator experiment. The

negativity for Brake trials starts around 2 s before the appearance of the ‘Red’; (around

1 s after the onset of ‘Yellow’). This negativity starts around the same timing for the
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Brake
Drive

Figure 7: Grand averages of Cz potentials for the real car experiment on Day-1. (top)

Topographic representation of average EEG scalp distribution at different time points.

(bottom) Grand averages of Cz potentials and EMG envelopes shown for Drive (in green)

and for Brake (in red). The mean is shown with solid line and the standard error shown in

shadow. t=0 s is the onset of ‘Green’/‘Red’ and, t=-3 s is the onset of ‘Yellow’. Data were

baseline corrected to the value of the sample at the onset of ‘Yellow’.

Drive, initially with a smaller slope then with a bigger slope around 1 s before the onset of

‘Green’ light. The topographic plots of the real car experiment reveal an average negativity

localized in the central area, similar to what was observed previously. Regarding EMG,

their envelop shows that the onset of increasing EMG activity occurs before 0 s. The

time point t=0 s, corresponds to the onset of ‘Green’/‘Red’, as manually marked by the

experimenter.
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3.2.2 Single-trial classification

Figure 8 illustrates the individual single-trial classification of Cz potential for Drive and

Brake trials. The mean AUC of the Drive trials were 0.63±0.08 and 0.62±0.07 for Day-

1 and Day-2, respectively. The mean AUC of the Brake trials were 0.66±0.13 and

0.63±0.12 for Day-1 and Day-2, respectively. Notably, 4 subjects for Drive trials and 4

subjects for Brake trials reached an AUC of 0.70. The reason for the odd behavior of the

ROC curves for S17 on Day-2 could be the very limited number of trials for these subjects

in order to estimating the parameters of the classifier.

4 Discussion

This paper extends our previous work13 on investigating the neural correlates of antici-

patory behavior to more realistic driving scenarios analyzing this type of behavior in re-

sponse to traffic light changes. These scenarios include simulated and real-world driving.

Firstly, we proposed a realistic simulated scenario, recording 10 subjects, to investigate

the anticipatory brain potentials in a virtual city with several junctions and traffic lights. We

demonstrated the presence of anticipatory SCPs in response to traffic lights with similar

patterns as those observed in our previous work where a count-down stimuli was used13

as well as the classical CNV signals reported in the literature27,9.

The single-trial classification analysis revealed satisfactory performances (in BCI de-

coding). Moreover, we tested the possibility of online decoding of the intention to brake

in the car simulator, which yielded accuracy levels significantly above chance (average:

0.64±0.1). All subjects who did two online sessions had better performance in the last

day. It has been suggested that closing the loop enhances BCI performances by exploit-

ing the learnability potentials of the human brain. 28,23 Our preliminary findings suggest

that providing the result of the real-time classification of EEG together with the behavioral

feedback can lead to subjects learning of anticipatory behavior.

. .
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Figure 8: ROC curves showing the classification performance of different subjects for

Drive (in green) and Brake (in red) of the data recorded from Experiment-2 (with real car).

The AUC values on different recording days are displayed.

We further extended the experimental protocols to a real car while driving on a closed

road, recording 8 subjects. Remarkably, anticipatory SCPs were also observed for the

first time in this scenario and resembled those of the car simulator study. However a

significant decrease is observed in the classification performance of the real car data in

comparison to the car simulator study (Wilcoxon test, p-value=0.01). This is probably due
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to the noisier signals (due to artifacts and the complexity of the task) during the real-world

driving.

Arguably, the anticipatory behavior may be affected by visual distractions and multi-

tasking nature of motor control in driving. Thus, these artifacts and noise are likely to

degrade the quality of the measured brain signals in real-world driving settings. It is worth

noting that the experimenter manually tagged events in the real car experiment (the ex-

perimenter was seatted in the backseat of the car and manually entered the events using

a button sampled together with EEG and EMG ), which has inevitably introduced consid-

erable jitters. Despite this jitter, it is indeed encouraging that SCPs seem to be sufficiently

robust to appear in grand averages and be detectable at the single-trial level. Future

experiments can be implemented with an automatic labeling system, where in-car em-

bedded sensors would be used for detecting the traffic light changes6,7,22, which could

be transferred to the proposed BCI system. This approach may minimize the jitters and

hence increase SNR.

The main goal of this work was to assess the feasibility of reliable detection of an-

ticipatory SCPs in real-time during real world driving, in spite of enriched visual distrac-

tions, and numerous sources of artifacts is the main contribution of this work. For that,

one needs to identify the common sources of the noise and artifacts during driving and

accordingly apply pre-processing methods for their removal. Additionally driving related

movement artifacts could be reduced through Independent Component Analysis (ICA) or

linear regression models5,24.

We have performed the experiments in both car simulator and real car on the normal

allocated road. In the future, it is also necessary to perform similar assessments in real

traffic conditions, ranging from the inclusion of other distracting elements such as multiple

automobiles and pedestrians to the driver could drive the car at a variable speed that suits

the traffic conditions.

Finally, another current limitation of the proposed BCI for smart cars regards the need

for large number of electrodes (mainly for the spatial filtering) what leads to an expensive,
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obtrusive, and not easy to setup system. Developing an in-car BCI system requires a

reduced number of electrodes. Alternatively, methods for choosing only the relevant and

discriminant channels from a large number of channels (in our case 64) have been already

proposed in other EEG studies16,20,25 and recently also for the recognition of anticipation

related potentials9. Furthermore, ’dry’ electrodes have been developed to increase ease

of use10. Preliminary tests with a dry electrodes systems (not reported in this paper) sug-

gest that montages as small as 16 channels yield similar performances as those reported

here using the 64 channels.

In conclusion, the main contribution of this paper is the exploration of anticipatory

behavior in simulated and real car driving, where in both cases, we report the presence of

anticipatory SCPs, similar to the well known CNV potentials. Furthermore, we report an

online detection system that provided BCI feedback. These findings can be beneficial in

detecting the planned action before its execution during driving.
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