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Abstract  20	

Microtubules are cylindrical polymers of αβ-tubulin that play critical roles in fundamental 21	
processes like chromosome segregation and vesicular transport. Microtubules display 22	
dynamic instability, switching stochastically between growing and rapid shrinking as a 23	
consequence of GTPase activity in the lattice. The molecular mechanisms behind 24	
microtubule catastrophe, the switch from growing to rapid shrinking, remain poorly 25	
defined. Indeed, two-state stochastic models that seek to describe microtubule 26	
dynamics purely in terms of the biochemical properties of GTP- and GDP-bound αβ-27	
tubulin incorrectly predict the concentration-dependence of microtubule catastrophe. 28	
Recent studies provided evidence for three distinct conformations of αβ-tubulin in the 29	
lattice that likely correspond to GTP, GDP.Pi, and GDP. The incommensurate lattices 30	
observed for these different conformations raises the possibility that in a mixed 31	
nucleotide state lattice, neighboring tubulin dimers might modulate each other’s 32	
conformations and hence their biochemistry. We explored whether incorporating a 33	
GDP.Pi state or the likely effects of conformational accommodation can improve 34	
predictions of catastrophe. Adding a GDP.Pi intermediate did not improve the model. In 35	
contrast, adding neighbor-dependent modulation of tubulin biochemistry improved 36	
predictions of catastrophe. Conformational accommodation should propagate beyond 37	
nearest-neighbor contacts, and consequently our modeling demonstrates that long-38	
range, through-lattice effects are important determinants of microtubule catastrophe.   39	

  40	
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Introduction 41	

Microtubules (MTs) are hollow cylindrical polymers of αβ-tubulin that have essential 42	

roles segregating chromosomes during cell division, organizing the cytoplasm, 43	

establishing cellular polarity, and more (Desai and Mitchison, 1997). These 44	

fundamental activities depend critically on dynamic instability, the stochastic 45	

switching of MTs between phases of growing and rapid shrinking (Mitchison and 46	

Kirschner, 1984). Dynamic instability is itself a consequence of αβ-tubulin GTPase 47	

activity and how it affects interactions between αβ-tubulin in the lattice and at the 48	

microtubule end. Although a predictive molecular understanding of catastrophe 49	

remains elusive, the broad outlines of an understanding have been established 50	

(Mitchison and Kirschner, 1984; VanBuren et al., 2002; Gardner et al., 2011b; 51	

Bowne-Anderson et al., 2013; Brouhard, 2015; Duellberg et al., 2016; Brouhard and 52	

Rice, 2018). Unpolymerized, GTP-bound αβ-tubulin subunits readily associate at the 53	

growing tip of the MTs. Once incorporated into the lattice, αβ-tubulin GTPase activity 54	

is accelerated. The assembly-dependence of GTPase activity results in a “stabilizing 55	

cap” of GTP- or GDP.Pi-bound αβ-tubulin near the end of the growing microtubules. 56	

Loss of this stabilizing cap triggers catastrophe, the switch from growing to rapid 57	

shrinking, because it exposes the more labile GDP-bound microtubule lattice. 58	

Two broad classes of computational models have been developed as part of 59	

longstanding efforts to understand in quantitative terms the connections between the 60	

properties of individual αβ-tubulins and the polymerization dynamics they collectively 61	

generate. ‘Biochemical’ models attempt to recapitulate microtubule dynamics purely 62	

in terms of discrete ‘elementary’ molecular reactions like association, dissociation, 63	

and GTPase activity (Chen and Hill, 1983; 1985; Bayley et al., 1989; 1990; Martin et 64	

al., 1993; VanBuren et al., 2002; Gardner et al., 2011b; Margolin et al., 2012; Piedra 65	

et al., 2016) ‘Mechanochemical’ models (Molodtsov et al., 2005; VanBuren et al., 66	

2005; Coombes et al., 2013; Zakharov et al., 2015; McIntosh et al., 2018) use 67	

additional spring-like energies to account for conformational strain inside individual 68	

αβ-tubulins and for how the resulting mechanical stress affects interactions with 69	
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other αβ-tubulins in the lattice. A third class of ‘phenomenological’ models (Flyvbjerg 70	

et al., 1994; Brun et al., 2009; Bowne-Anderson et al., 2013; Duellberg et al., 2016) 71	

uses simplifying assumptions that obscure the relationship between tubulin 72	

biochemistry and observable MT behaviors, so we do not consider them further 73	

here. Biochemical and mechanical models can each recapitulate microtubule 74	

growing and shrinking, and in both kinds of model, catastrophe emerges naturally as 75	

a consequence of GTPase activity.  76	

Biochemical models are computationally inexpensive and relatively simple to 77	

interpret because they only contain a small number of adjustable parameters. In 78	

principle, all these parameters represent measurable quantities that could be 79	

accessible to testing/perturbation using site-directed mutagenesis. A limitation of 80	

these biochemical models is that they fail to capture the correct concentration 81	

dependence and other aspects of catastrophe (e.g. (VanBuren et al., 2002; Bowne-82	

Anderson et al., 2013; Piedra et al., 2016)). The mechanochemical models are 83	

computationally expensive and more complicated to interpret because they are more 84	

parameter intensive. Some of the parameters describing the spring-like properties of 85	

αβ-tubulin might also be hard to validate experimentally. However, the 86	

mechanochemical models better recapitulate the concentration-dependence and 87	

other aspects of catastrophe where biochemical models fail (Coombes et al., 2013; 88	

Zakharov et al., 2015). Why mechanochemical models better capture the 89	

concentration-dependence of MT catastrophe remains unclear.  90	

In both biochemical and mechanochemical models, only two nucleotide states are 91	

used: GTP and GDP. However, recent structural studies (Alushin et al., 2014; Zhang 92	

et al., 2015; Manka and Moores, 2018) have revealed three mutually 93	

incommensurate conformations of αβ-tubulin in the body of MT: an ‘expanded’ form 94	

that corresponds to an all-GTP lattice, a ‘compacted’ form that correspond to an all-95	

GDP lattice, and an intermediate ‘compact-twisted’ form that correspond to an all-96	

GDP.Pi lattice. Because each conformation prefers a different lattice geometry, they 97	

must presumably accommodate each other in mixed nucleotide regions of the 98	
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microtubule lattice. Reconstitution and structural studies of plus-end tracking EB 99	

proteins (Maurer et al., 2011; 2012; 2014; Zhang et al., 2015) support a role for 100	

these conformations in MT dynamics and regulation. Experiments with a slow 101	

shrinking ‘conformation cycle’ mutant of yeast αβ-tubulin (Geyer et al., 2015) that in 102	

the GDP state apparently does not relax all the way to the compacted conformation 103	

provided evidence that the αβ-tubulin conformation cycle contributes directly to 104	

dictate microtubule shrinking rate and catastrophe frequency. It seemed plausible to 105	

us that not accounting for a GDP.Pi intermediate, or for the likely modulating 106	

influence of conformational accommodation in a mixed nucleotide state lattice 107	

(Brouhard and Rice, 2018), might explain why biochemical models fail to capture the 108	

concentration-dependence of catastrophe. 109	

In the present study, we sought to investigate the consequences of incorporating 110	

various candidates for “missing state/biochemistry” into a computational model, with 111	

the aim of better predicting the concentration-dependence of catastrophe. We 112	

elaborated a Monte Carlo-based algorithm developed in the lab (Ayaz et al., 2014; 113	

Piedra et al., 2016; Mickolajczyk et al., 2018) to test if incorporating a GDP.Pi state 114	

or long-range coupling (reflecting conformational accommodation) improved 115	

predictions of microtubule catastrophe. We incorporated the GDP.Pi state and 116	

conformational coupling separately for simplicity and to be able to assess the effect 117	

of each change in isolation. We did not explicitly incorporate ‘mechanochemistry’ into 118	

the model because our goal was to identify minimal additions to biochemical models 119	

that improve their performance with respect to predicting catastrophe. 120	

Our simulations revealed that incorporating a GDP.Pi intermediate state does very 121	

little to improve the predicted concentration dependence of catastrophe frequency. 122	

Long-range through-lattice conformational accommodation, acting to modulate 123	

GTPase rate or dissociation rates, did improve the predictions of catastrophe and its 124	

concentration-dependence. Artificially restricting this modulation to short range 125	

abrogated the previously observed improvement. Thus, it seems that long-range, 126	

through-lattice interactions are important for recapitulating the concentration-127	
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dependence of catastrophe in biochemical models. Because mechanochemical 128	

models effectively distribute strain throughout the lattice, long-range coupling may 129	

represent the specific feature that explains why mechanochemical models have 130	

been more successful at predicting catastrophe.  By highlighting the importance of 131	

long-range, through-lattice effects, our computational experiments provide a new 132	

way to think about how catastrophe occurs. 133	

Results 134	

A two-state model for microtubule dynamics fails to capture the weak concentration-135	

dependence of catastrophe frequency  136	

We refined our prior algorithm (Ayaz et al., 2014; Piedra et al., 2016; Mickolajczyk et 137	

al., 2018) that used kinetic Monte Carlo (Gillespie, 1976; Gibson and Bruck, 2000) to 138	

simulate microtubule dynamics. The algorithm simulates one biochemical event 139	

(dimer association, dissociation, and GTP hydrolysis) at a time and therefore 140	

provides a ‘movie’ of microtubule dynamics. As is commonly done (Chen and Hill, 141	

1985; VanBuren et al., 2002; Molodtsov et al., 2005; Gardner et al., 2011a; Margolin 142	

et al., 2012; Zakharov et al., 2015), our model uses a two-dimensional 143	

representation of the microtubule lattice to track different kinds of binding 144	

environments or neighbor states (Fig. 1A). To minimize the number of adjustable 145	

parameters in the model, we initially adopted a very simple parameterization that 146	

does not explicitly account for different conformations of αβ-tubulin (reviewed in 147	

(Brouhard and Rice, 2014)) and that also does not attempt to describe “mechanical” 148	

properties of αβ-tubulin and microtubules such as spring-like conformational strain 149	

(reviewed in (Brouhard and Rice, 2018)) (Fig. 1A). The assumptions of this 150	

minimalist parameterization are: (i) there are only two nucleotide states (GTP and 151	

GDP), (ii) nucleotide is ‘trans-acting’ (Fig. 1A), meaning the strength of the 152	

longitudinal interface between dimers (thus the dimer binding affinity at the MT tip) is 153	

determined by the nucleotide located at the interface (Rice et al., 2008; Piedra et al., 154	

2016), (iii) the αβ-tubulin dissociation rate for a given subunit determined by the total 155	

sum of free energies of all longitudinal and lateral inter-dimer interactions with other 156	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

subunits, (iv) the association rate into a given site does not depend on the tip 157	

configuration, and (v) GTP hydrolysis occurs at the inter-dimer interface, meaning 158	

that GTP cannot be hydrolyzed on the most terminal subunit of any protofilament 159	

(Fig 1B). In these kinds of models, catastrophe and rescue occur ‘naturally’ (Fig. 1C) 160	

in a way that depends on the specific parameters used. Our algorithm is constructed 161	

in a highly modular way that makes it easy to implement different biochemical 162	

assumptions (Piedra et al., 2016; Mickolajczyk et al., 2018). Later in the paper, we 163	

relax the minimalistic assumptions of the two state model to test if more complicated 164	

models that incorporate other states or kinds of biochemistry better predict the 165	

concentration dependence of catastrophe. 166	

To obtain model parameters that could recapitulate MT elongation and shrinking 167	

rates and approximate the frequency of catastrophe, we followed the divide-and-168	

conquer approach outlined previously (VanBuren et al., 2002; Piedra et al., 2016). 169	

We trained our model on recent data that reported growth rates, shrinking rates, and 170	

catastrophe frequencies at multiple tubulin concentrations under consistent 171	

conditions (Gardner et al., 2011b; Coombes et al., 2013). First, we used “GTP-only” 172	

simulations to search for parameters that recapitulated MT growth rates over a range 173	

of αβ-tubulin concentrations (Fig. 1D). With those parameters fixed, we optimized the 174	

weakening effect of GDP on the longitudinal interface by tuning it to make “all-GDP” 175	

microtubules depolymerize at the observed average rate of post-catastrophe 176	

shrinking (Fig. 1E). With that new parameter also fixed, we refined the GTPase rate 177	

to produce the correct frequency of catastrophe (Fig. 1F). These parameters are not 178	

perfectly independent from each other, so we applied this approach iteratively (see 179	

Methods). For generality, we also trained our model against ‘classic’ measurements 180	

of MT dynamic instability (Walker et al., 1988), where relative to (Gardner et al., 181	

2011b; Coombes et al., 2013) faster shrinking rates and slightly steeper 182	

concentration dependence of catastrophe frequency were observed (Supp. Fig. 1). 183	

As observed in earlier studies, the predicted catastrophe frequency varies much 184	

more strongly with tubulin concentration than observed in experiments (VanBuren et 185	
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al., 2002; Bowne-Anderson et al., 2013; Piedra et al., 2016). Because the model 186	

could not recapitulate the concentration-dependence of catastrophe, we chose 10 187	

µM (the median concentration) as the reference concentration for determining 188	

GTPase rate. 189	

Incorporating a GDP-Pi intermediate state into the model does not improve 190	

prediction of the concentration dependence of catastrophe  191	

The overly steep concentration dependence of catastrophe predicted by the two-192	

state model may occur because the model does not account for a state or kind of 193	

interaction that is important for catastrophe. We added a GDP.Pi intermediate 194	

between GTP and GDP to test if a three-state model would better predict the 195	

concentration dependence of catastrophe. We made the following additional 196	

assumptions when implementing the GDP.Pi state (Fig. 2A): (i) Pi (phosphate) 197	

release from the body of the lattice is a first order process, like GTPase, and (ii) the 198	

phosphate dissociates instantaneously when exposed at the tip. These new 199	

assumptions in the GDP-Pi model require two additional parameters: one that 200	

describes the strength of a longitudinal contact when GDP.Pi is at the interface, and 201	

the other that describes the rate of Pi release (Fig. 2A). 202	

We first examined how varying the strength of longitudinal contacts at the GDP-Pi 203	

interface affects the predicted frequency of catastrophe as a function of αβ-tubulin 204	

concentration. We varied the strength of the GDP-Pi interface from strong 205	

(equivalent to GTP interface), to intermediate (halfway between GTP and GDP 206	

interface), to weak (equivalent to GDP interface), keeping the ratio of the hydrolysis 207	

and the release rate constant. Note that setting the strength of the GDP-Pi interface 208	

to be identical to the GDP interface yields a model that is functionally identical to the 209	

two-state model. Whether GTP-like, GDP-like, or in between, the strength of the 210	

GDP-Pi interface has little effect on predicted growth rates (Fig. 2B). However, and 211	

as expected, increasing the strength of GDP.Pi interface reduces the catastrophe 212	

frequency because it effectively reduces the rate of subunit dissociation from the 213	

microtubule end. For a consistent comparison of the concentration dependence of 214	
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the catastrophe frequency, we retrained the GTPase rate to match the catastrophe 215	

frequency at the reference concentration (10 µM) for the strong and intermediate 216	

strength GDP.Pi interface (while keeping the Pi release rates identical to the new 217	

GTPase rates, as stated above). The GTPase rate must be increased to 218	

compensate for decreased catastrophe frequency (Supp. Table 1A). The newly 219	

trained GTPase rates and the strength of the GDP-Pi interface, whether GTP-like, 220	

GDP-like, or in between, had little effect on the predicted growth rates (Fig. 2B). 221	

Keeping the ratio of hydrolysis rate and the release rate same, the predicted 222	

concentration dependence of catastrophe frequency does not substantially improve 223	

(Fig. 2C).    224	

We then used a grid search approach to explore how changing the ratio between the 225	

GTPase rate and the phosphate release rates affects the concentration dependence 226	

of catastrophe. We fixed the rate of phosphate release to be 10 times faster or 227	

slower than the rate of GTPase and varied the strength of the GDP.Pi interface (with 228	

re-training of the GTPase rate as described above) as before. In both cases, these 229	

changes exacerbated the problems with the model: the predicted concentration-230	

dependence of catastrophe frequency actually increased (Fig. 2D). We observed 231	

similar trends in fits to the other dataset that we trained our model against (Walker et 232	

al., 1988) (Supp. Fig. 1A). The predicted concentration-dependence of catastrophe 233	

was at its lowest when the GTPase rate and the phosphate release rate were the 234	

same and when the strength of the GDP.Pi interface was as strong as the interface 235	

with GTP. However, adding a GDP.Pi state did not substantially improve prediction 236	

of the concentration-dependence catastrophe. 237	

Nearest-neighbor conformational accommodation improves predictions of the 238	

concentration dependence of catastrophe when modulating GTPase, but not αβ-239	

tubulin dissociation  240	

The expanded conformation (seen in the all GTP lattice) and the compacted 241	

conformation (seen in the all GDP lattice) make lattices with different spacing of the 242	

lateral interfaces and other changes (Alushin et al., 2014; Zhang et al., 2015; Manka 243	
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and Moores, 2018). How αβ-tubulins accommodate incommensurate GTP- and 244	

GDP-bound conformations in a mixed nucleotide state lattice, as must occur near 245	

the tip of the growing MT, is not understood (reviewed in (Brouhard and Rice, 246	

2018)). We speculated that the conformational mismatch might modulate the 247	

strength of lateral interactions between αβ-tubulins in different nucleotide states, or 248	

that it might modulate the rate of GTPase activity. We implemented these two ideas 249	

separately in to the model to test if nearest-neighbor conformational accommodation 250	

operating between neighboring αβ-tubulins could improve the predicted 251	

concentration-dependence of catastrophe. 252	

To implement neighbor-based modulation of lateral interactions, we assumed that 253	

the conformational mismatch/accommodation increases the dissociation rate. In 254	

other words, αβ-tubulin with a lateral neighbor that is in a different nucleotide state 255	

(and hence conformation) dissociates more quickly than it would otherwise (Fig. 3A). 256	

Due to these changes, the ‘nearest-neighbor affinity modulation’ model has only one 257	

additional parameter: the fold-faster dissociation rate for αβ-tubulin with a lateral 258	

nearest-neighbor with differing nucleotide state. To examine how varying this 259	

parameter affects the concentration dependence of catastrophe frequency in 260	

simulations, we set the αβ-tubulin with lateral neighbor with different nucleotide to 261	

dissociate faster by factors of 1, 1.6 2.7, and 7.8 (these values correspond to free-262	

energy changes of 0, 0.5, 1, and 2 kBT, respectively). When the fold increase in 263	

dissociation rate is 1, this model behaves identically to the 2-state model. The 264	

maximum parameter value of 7.8 is smaller than the GDP weakening factor of 34 for 265	

this data set. Further increases in the modulation factor did not lead to substantial 266	

reduction in concentration dependence of the predicted catastrophe frequency. We 267	

observed similar trends in fits to the other dataset we trained out model against 268	

(Walker et al., 1988) (Supp. Fig. 2A). The new parameter only modestly affected the 269	

predicted growth rates (Fig. 3B), but at higher values it substantially increased 270	

catastrophe frequency. This makes sense, because the exposure of a small number 271	

of terminal GDP-bound tubulin can lead to a catastrophe. The GTPase was 272	
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determined by training the models to the catastrophe frequency at the reference 273	

concentration (10 µM), as described above (see also Supp. Table 1B). Compared to 274	

the 2-state model, the range of predicted catastrophe frequency over the 275	

concentration range decreased from 185-fold to 45-fold (Fig. 3C). Thus, this simple 276	

attempt at allowing inter-dimer interaction to be modulated by neighboring nucleotide 277	

state somewhat improves the predicted concentration dependence of catastrophe 278	

frequency. 279	

To implement neighbor-based modulation of GTPase activity, we assumed that αβ-280	

tubulin with GTP next to αβ-tubulin bound to GDP hydrolyzes GTP more quickly (Fig. 281	

4A). In essence, this assumption is equivalent to saying that the ‘accommodating’, 282	

intermediate conformation is actually the most active GTPase. This ‘nearest-283	

neighbor GTPase modulation model’ has one additional parameter: the fold increase 284	

in hydrolysis rate. We set this neighbor dependent GTPase modulation to increase 285	

the rate by factors of 1, 10, 100, and 1000. When the fold increase in hydrolysis rate 286	

is 1, the GTPase hydrolysis model is functionally identical to the two-state model. 287	

The new parameter did not substantially affect predicted growth rates (Fig. 4B). As 288	

before, we adjusted the basal GTPase rate to maintain the correct catastrophe 289	

frequency at the reference concentration (Supp. Table 1B). Compared to the two-290	

state model, the range of predicted catastrophe frequency over the concentration 291	

range decreased from 185-fold to 7.5-fold. This represents a substantial 292	

improvement in the predicted concentration dependence of catastrophe (Fig. 4C). 293	

We observed similar trends in fits to the other dataset we trained our model against 294	

(Walker et al., 1988) (Supp. Fig. 3A). 295	

Why did this nearest-neighbor GTPase modulation model improve predictions of the 296	

concentration dependence of catastrophe so much more dramatically? Looking at 297	

the biochemical “movies” generated by the simulation, and even though we 298	

implemented this as a nearest-neighbor modulation, we observed that the GTP 299	

hydrolysis propagated through the lattice, like a wave (not shown). The wave of GTP 300	

hydrolysis starts from a random GTP hydrolysis in locally all-GTP lattice, where 301	
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hydrolysis is relatively slow in this model. Hydrolysis of one GTP to GDP effectively 302	

starts a chain reaction because the nearest neighbor αβ-tubulins have increased 303	

GTPase activity. GTP hydrolysis at this second site then primes its neighbor for 304	

increased GTPase activity, and so on. Thus, although we constructed the model to 305	

have only nearest neighbor effects, the resulting behavior showed longer-range 306	

propagation. 307	

Was it the local change in GTPase rate or the longer-range propagation of GTP 308	

hydrolysis that was most important for improving the predicted concentration-309	

dependence of catastrophe? To examine this question, we modified the nearest-310	

neighbor GTPase modulation model so that the wave of GTP hydrolysis would be 311	

artificially prevented from propagating too far. To accomplish this, we disallowed 312	

“across-seam” interactions from modulating GTPase activity. As before, we set the 313	

neighbor dependent GTPase modulation to increase by factors of 1, 10, 100, and 314	

1000, and retrained the basal GTPase rate to match the catastrophe frequency at 315	

the reference concentration. Limiting the propagation of (‘truncating’) the nearest-316	

neighbor stimulation of GTPase degraded the model’s ability to predict the 317	

concentration-dependence of catastrophe. Indeed, whereas at low GTPase 318	

modulation factors we observed a modest improvement in the predicted 319	

concentration-dependence of catastrophe, at higher modulation factors this trend 320	

reversed (Fig. 4E). Whereas the untruncated model showed only a 7.5-fold change 321	

in catastrophe frequency over the measured concentration range, the truncated 322	

version showed a 110-fold change, nearly reverting back to 185-fold change 323	

observed in the two-state model. We observed similar trends in fits to the other 324	

dataset we trained our model against (Walker et al., 1988), but the magnitude of the 325	

difference was much smaller than in the models trained to the data from (Gardner et 326	

al., 2011b; Coombes et al., 2013) (Supp. Fig. 3B). In summary, nearest-neighbor 327	

modulation of αβ-tubulin dissociation rate had limited effect on the predicted 328	

concentration dependence of catastrophe. By contrast, nearest-neighbor modulation 329	

of GTPase activity yielded a substantial improvement. The activation of GTPase 330	
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propagated through the lattice, and we showed that this long-range propagation was 331	

required for improved predictions of catastrophe. 332	

Incorporating long-range through lattice modulation of the strength of tubulin-tubulin 333	

interactions can also improve predictions of catastrophe  334	

In the nearest-neighbor GTPase modulation model, the wave-like propagation of 335	

GTP hydrolysis effectively allowed the nucleotide state at one site to indirectly affect 336	

the biochemistry of distant (beyond nearest-neighbor) αβ-tubulins. We wondered if 337	

incorporating long-range through-lattice modulation of αβ-tubulin:αβ-tubulin binding 338	

affinity could also improve the predicted concentration dependence of catastrophe. 339	

Previously, in the nearest-neighbor affinity modulation model, for simplicity we 340	

assumed that the destabilizing inter-dimer interaction was limited to nearest 341	

neighbors. However, it stands to reason that if one subunit influences the 342	

conformation of its neighbor, then that neighbor should influence the conformation of 343	

its neighbor, and so on. In other words, the conformational accommodation should 344	

propagate beyond nearest neighbor contacts. We implemented a version of this 345	

model wherein the accommodation modulates the strength of lattice contacts over 346	

some specified distance (number of αβ-tubulin subunits), by modifying the affinity 347	

model so that the nucleotide state of the tubulins affects the dissociation rate of other 348	

tubulins further away. This time, we kept the modulated dissociation rate to 7.4, the 349	

highest value tried for the original nearest-neighbor affinity modulation model. Then 350	

we varied the maximum range of modulation (Fig. 5A). When the range is set to 0, 351	

the model is identical to the two-state model, while if the range is set to 1, the model 352	

is identical to the original nearest-neighbor affinity model. When the range is an 353	

integer greater than one, it means a given subunit affects that many of its neighbors 354	

to the left and to the right. Then, we retrained the GTPase rate to match the 355	

catastrophe frequency at the reference concentration. As we increased the 356	

maximum range of through-lattice modulation of inter-dimer interaction, the predicted 357	

catastrophe frequency became substantially less sensitive to αβ-tubulin 358	

concentration (Fig. 5C). Compared to the nearest neighbor model, allowing long-359	
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range effects yielded an additional ~4.5-fold decrease in the range of catastrophe 360	

frequencies over the concentration range. We observed similar trends in fits to the 361	

other dataset we trained our model against (Walker et al., 1988) (Supp. Fig. 2B). 362	

In summary, incorporating long-range, through-lattice modulation of tubulin-tubulin 363	

interactions improved predictions of the concentration-dependence of catastrophe. 364	

Short-range modulation was much less effective. Incorporating a ‘third state’ in the 365	

form of GDP.Pi also did not improve predictions of the concentration-dependence of 366	

catastrophe. Thus, it appears that long-range through-lattice effects, whether 367	

modulating GTPase or αβ-tubulin dissociation, represent a missing ingredient 368	

required for biochemical models to recapitulate the concentration-dependence of 369	

catastrophe. 370	

An empirical decomposition of catastrophe frequency reveals differences in 371	

frequency of pausing and commitment to catastrophe between the models 372	

To better understand why incorporating through-lattice long-range modulation 373	

improved predictions of the concentration dependence of catastrophe, we took a 374	

closer look at the sequence of events that led to catastrophe in our different models. 375	

In all models, MT growth always paused (defined as a transient growth rate less 376	

than 25% of the average MT elongation rate) for a short time before undergoing a 377	

catastrophe (Fig. 6A). Similar pausing/slowdown has been observed in experiments 378	

(Maurer et al., 2014).  As we showed previously (Piedra et al., 2016), terminal GDP 379	

exposure can cause this slowing of elongation by transiently poisoning individual 380	

protofilaments. This transient pausing in turn accelerates erosion of the stabilizing 381	

cap, and the consequent complete loss of the cap leads to catastrophe. However, 382	

not all pausing episodes led to a catastrophe in our simulations. If the GDP exposure 383	

can be overcome before the stabilizing cap completely erodes, the MT can resume 384	

growing at a normal rate. If the transient pausing is truly an obligate intermediate 385	

step between growth and catastrophe, then the product of “growth-to-pause” 386	

frequency and “pause-to-catastrophe” probability (not frequency because this is just 387	

a score of how catastrophe occurs as a result of transient pausing) should yield the 388	
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catastrophe frequency (see Methods) (Fig. 6B). We quantified the “growth-to-pause” 389	

frequency and the “pause-to-catastrophe” probability from simulation outputs of the 390	

2-state model; their product faithfully reproduced the frequency of catastrophe (Fig. 391	

6C). Thus, transient pausing is necessary but not sufficient for catastrophe, and we 392	

can decompose catastrophe into two separate steps. 393	

If the catastrophe frequency is the product of the growth-to-pause frequency and the 394	

pause-to-catastrophe probability, then the concentration dependence of the 395	

catastrophe frequency must also stem from the concentration dependence of its 396	

components. To determine if the concentration dependence can be attributed to the 397	

growth-to-pause frequency, the pause-to-catastrophe probability, or both, we first 398	

measured the growth-to-pause frequency and the pause-to-catastrophe probability 399	

as functions of tubulin concentration in the two-state model. Both the growth-to-400	

pause frequency and the pause-to-catastrophe probability depended strongly on αβ-401	

tubulin concentration (Fig. 6C). 402	

We then examined how different models affected the concentration dependencies of 403	

growth-to-pause frequencies and pause-to-catastrophe probabilities relative to the 404	

baseline provided by the two-state model (Fig. 6D). Compared to the two-state 405	

model, all models showed substantial changes to the concentration dependence of 406	

growth-to-pause frequency and pause-to-catastrophe probability. In the models that 407	

did not allow long-range effects, the concentration-dependence of the two 408	

components of catastrophe moved in opposite directions, effectively cancelling each 409	

other so that there was little improvement in the concentration-dependence of the 410	

catastrophe. By contrast, in the models that allowed long-range effects, the 411	

concentration-dependence of the two components of catastrophe moved in concert 412	

with each other, explaining why these long-range models better predicted 413	

catastrophe.   414	

Discussion 415	
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Simple two-state biochemical models fail to predict the weak concentration-416	

dependence of the catastrophe frequency. The studies described here were 417	

motivated by the hypothesis that this failure occurs because two-state models 418	

oversimplify the biochemistry, and that we might be able to gain insight into what 419	

was missing using modeling. We sought to test whether adding different candidates 420	

for missing states or kinds of interactions to a biochemical model for microtubule 421	

dynamics could improve predictions about catastrophe. The new kinds of 422	

biochemistry we tested were inspired by recent structural experiments (Alushin et al., 423	

2014; Zhang et al., 2015; Manka and Moores, 2018) that revealed three distinct and 424	

apparently mutually incommensurate conformations of αβ-tubulin in the GTP, 425	

GDP.Pi, and GDP-bound microtubule lattice. These structural findings, along with 426	

results from reconstitution studies of EB proteins (Maurer et al., 2011; 2014), imply 427	

that the models might need to contain a third state (GDP.Pi), or they might need to 428	

account for the likely effects of incommensurate conformations αβ-tubulin by 429	

modulating the properties of GTP- or GDP-tubulin in a context-dependent way 430	

(conformational coupling). A third state and conformational coupling might 431	

simultaneously be required, but for simplicity in this work we chose to examine the 432	

third state and conformational coupling models separately.  433	

Adding a third state did little if anything to improve predictions of catastrophe. By 434	

contrast, allowing conformational coupling to modulate either the GTPase rate or the 435	

lattice-binding affinity of terminal subunits noticeably improved predictions of the 436	

concentration-dependence of catastrophe. Because this conformational coupling 437	

should propagate beyond nearest-neighbor interactions, our computational findings 438	

suggest that through-lattice cooperative effects are important determinants of 439	

microtubule catastrophe. None of the models we examined fully capture the 440	

concentration-dependence of microtubule catastrophe measured in experiments. 441	

This should not be surprising, because we intentionally chose the simplest (least 442	

parameter intensive) ways to examine the possible consequences of candidate 443	
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‘missing biochemistries’ like a GDP.Pi state or the coupling that arises from 444	

conformational accommodation.  445	

Mechanochemical models have outperformed biochemical models where 446	

catastrophe is concerned: mechanochemical models better recapitulate both the 447	

concentration- and age-dependence of microtubule catastrophe (Coombes et al., 448	

2013; Zakharov et al., 2015). The mechanochemical models are more parameter 449	

intensive, however, and they account for multiple features that the biochemical 450	

models do not: curved-straight conformational changes on the microtubule end, 451	

long-range energetic coupling in the lattice, longitudinal inter-dimer twist, and more. 452	

Consequently, precisely why these mechanochemical models better predict the 453	

concentration dependence of catastrophe compared to biochemical models has so 454	

far not been clear. The work described here may provide insight into why 455	

mechanochemical models have been more successful at predicting catastrophe. 456	

Indeed, our simulations indicate that long-range, through-lattice coupling is required 457	

for improved predictions of catastrophe in biochemical models. Because of the way 458	

that they allow mechanical strain to be distributed through the lattice, a kind of long-459	

range coupling is included in mechanochemical models. In light of our results, it 460	

seems likely that the success of mechanochemical models can be attributed to the 461	

fact that they incorporate long-range coupling in the lattice.  462	

What we have described based on our modeling is a kind of cooperativity that 463	

operates within the microtubule. This resonates with a view of microtubule dynamics 464	

(Kueh and Mitchison, 2009)	(Brouhard and Rice, 2018) in which different 465	

conformations of αβ-tubulin can modulate or even override nucleotide state in 466	

dictating biochemical interactions and rates in the lattice. Detecting such 467	

cooperativity experimentally and determining whether it operates on GTPase or the 468	

strength of lattice contacts are important challenges for future work. The recently 469	

introduced ability to work with tubulins from different species (Widlund et al., 2012; 470	

Chaaban et al., 2018)	(Drummond et al., 2011), to purify single isotypes and site-471	

directed mutants (Johnson et al., 2011; Minoura et al., 2013; Geyer et al., 2015; 472	
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Pamula et al., 2016; Ti et al., 2016; Vemu et al., 2016; 2017; Geyer et al., 2018)	473	

(Drummond et al., 2011), and to measure αβ-tubulin : microtubule interactions at the 474	

single molecule level (Mickolajczyk et al., 2018) have the potential to accomplish 475	

this, and promise to provide new kinds of data that will drive a deeper understanding 476	

of microtubule catastrophe.  477	

In summary, our computational experiments demonstrate that beyond-nearest-478	

neighbor, through-lattice effects can make important contributions to microtubule 479	

catastrophe. The combination of this allosteric conformational coupling with the 480	

extended microtubule lattice has the potential to generate abrupt, switch-like 481	

changes (reviewed in (Bray, 2013) for other systems) that could give rise to 482	

threshold-type behaviors wherein the switch only happens upon reaching some 483	

critical percentage of GTP-hydrolysis (or some other property). Interestingly, the 484	

onset of rapid shrinking has been observed to occur after exceeding a threshold loss 485	

of the stabilizing cap (Maurer et al., 2014). A number of microtubule-associated 486	

proteins have recently been shown to alter the microtubule lattice upon binding 487	

(Zhang et al., 2015; Shima et al., 2018)	(Zhang et al., 2017)	(Howes et al., 2017)	488	

(Loeffelholz et al., 2017; Peet et al., 2018; Zhang et al., 2018), and these binding-489	

induced conformational changes might also modulate properties of the lattice at 490	

greater distance. At least one study has proposed that EB proteins might influence 491	

the activity of XMAP215-family microtubule polymerases via long-range, through-492	

lattice effects (Zanic et al., 2013), but the underlying mechanism was not specified. 493	

The apparent importance of long-range cooperative/allosteric effects suggests that 494	

material-like properties of the microtubule are important for catastrophe and may be 495	

targeted by regulatory factors.   496	
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 503	

Methods 504	

Computational simulation of the models 505	

We created a computer program (coded in fortran) to perform kinetic Monte Carlo 506	

simulations of MT plus ends. The model is similar to one we used previously (Ayaz 507	

et al., 2014; Piedra et al., 2016; Mickolajczyk et al., 2018), and was inspired by an 508	

earlier implementation from others (VanBuren et al., 2002). Briefly, the microtubule 509	

lattice is represented by a two dimensional array with a periodic boundary condition 510	

to mimic the cylindrical wall of the microtubule. MT dynamics is simulated one 511	

biochemical reaction (αβ-tubulin subunit association or dissociation, and GTP 512	

hydrolysis) at a time. In a prior study we reported that the rate of GDP to GTP 513	

exchange on the microtubule end could modulate the frequency of catastrophe 514	

(Piedra et al., 2016). That reaction did not improve the predicted concentration-515	

dependence of catastrophe (Piedra et al., 2016), so for simplicity we did not include 516	

it in the models described here. For the two-state model, the association can happen 517	

at the tip of each protofilament, and association rate is given by kon × [αβ-tubulin], 518	

where kon denotes the on rate constant. The terminal subunits can dissociate from 519	

the MT lattice at a rate given by kon × KD, where KD is the affinity determined by the 520	

sum of all inter-dimer interactions. As described previously (Piedra et al., 2016), our 521	

parameterization assumes that the nucleotide (GTP or GDP) acts in-trans to affect 522	

the strength of longitudinal contacts such that GTP contacts are stronger than GDP 523	

ones. GTP hydrolysis is modeled for all nonterminal subunits with rate constant khyd. 524	

Automated analysis of simulations 525	

We created custom MATLAB routines to analyze the output from the simulations. 526	

These routines determine the instantaneous growth / shrinking rates by looking at 527	

the change in the total number of subunits over a 5 second time period. If the 528	
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instantaneous growth rate falls below 25% of the average growth rate during the 529	

growth phase, the simulated MTs are considered to have paused for the duration of 530	

the slower growth. The pause episodes are left out of the growth / shrinking rate 531	

calculations and are used to determine how frequently the simulation pauses. The 532	

MATLAB routine automatically detects MT catastrophe using the following definition: 533	

the simulated MT persistently must be shrinking at a rapid rate (shrinking rate 534	

greater than 75% of the mode of shrinking rate distribution) for an extended period of 535	

time (at least 15 seconds). In the two-step decomposition of catastrophe, the 536	

frequency of pausing is tabulated to obtain the ‘growth to pause’ frequency, and the 537	

likelihood of catastrophe following transient pausing gives the “pause-to-catastrophe” 538	

probability. We used the ratios between values at 12 µM and 9 µM as a 539	

measurement of the concentration dependencies of the “growth-to-pause” frequency 540	

and the “pause-to-catastrophe” probability. These ratios (the concentration 541	

dependencies) were normalized to the concentration decencies of the two-state 542	

models for model to model comparisons. 543	

The parametrization of two-state computational model 544	

To parametrize the two-state model, we first assumed a value for kon (1.5 tubulin·s-545	
1·µM-1 per protofilament for the data that we fit in the main text (Gardner et al., 546	

2011b; Coombes et al., 2013) and 2 tubulin·s-1·µM-1 per protofilament for the 547	

alternative data that we fit in the supplemental material (Walker et al., 1988)). Then, 548	

the strengths of the longitudinal (at the GTP-interface) and lateral interaction were 549	

determined by fitting the model predictions on growth rates (during the growing 550	

phase) to the experimental values. The strength of the longitudinal interaction at the 551	

GDP-interface was determined by fitting the model predictions on shrinking rates 552	

(during the shrinking phase) to the experimental values. Then the GTPase rate is 553	

determined by fitting the model predictions on the catastrophe frequency at a single 554	

reference concentration (10 µM for the data (Gardner et al., 2011b; Coombes et al., 555	

2013) in the main text and 12 µM for the alternative set (Walker et al., 1988) in 556	
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supplemental material ). This process is repeated until all adjustable parameters 557	

stabilize. 558	

The GDP.Pi model 559	

We incorporated a third intermediate state into our model, by including GDP.Pi. This 560	

‘GDP.Pi model’ inherits the two-state model’s properties described above with some 561	

modifications. In this model, GTP is first hydrolyzed to GDP.Pi then the Pi released at 562	

a set rate to form GDP. We assumed that the Pi is released immediately when 563	

exposed at the tip of the MT, and that the strength of the longitudinal interface with 564	

GDP.Pi is different from the ones with GTP or GDP. This model has two additional 565	

parameters: the rate of Pi release and the strength of the longitudinal interface with 566	

GDP.Pi. We explored the parameter space of the additional adjustable parameters in 567	

a 3-by-3 grid pattern: setting the rate of Pi release 0.1, 1, 10-fold of the GTPase rate, 568	

and setting the strength of the longitudinal interface with GDP.Pi to strong (GTP-like), 569	

intermediate, and weak (GDP-like). Then, in order to maintain the correct frequency 570	

of catastrophe at the reference concentration, we retrained the GTPase rate. We 571	

kept the kept the αβ-tubulin binding affinities the same as in the two-state model 572	

because we did not want to introduce confounding variation. Changes in growth and 573	

shrinking rates due to the modification were negligible. 574	

The affinity modulation models 575	

As before, the affinity modulation models inherit the two-state model’s properties 576	

described above with some modifications. In the nearest-neighbor affinity modulation 577	

model, we assumed that the rate of αβ-tubulin dissociation is faster if the nucleotide 578	

state of the longitudinal interface of the nearest neighbor is different. This model has 579	

one new adjustable parameter: the energy cost of being next to a tubulin with 580	

different nucleotide. We explored the parameter space by setting the energy cost to 581	

different values and retraining the GTPase. As described above, we maintained the 582	

αβ-tubulin binding affinities the same as in the two-state model. In the long-range 583	

affinity modulation model, the range of influence for the affinity modulation is an 584	
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additional adjustable parameter. When the range is set to 0, the model behaves 585	

identically as the two-state model, and when the range is set to 1, the model 586	

behaves identically as the nearest-neighbor affinity modulation model; for values 587	

larger than 1 it gives beyond-nearest-neighbor effects. For this model, we set the 588	

energy cost to the maximum value we used for the nearest-neighbor affinity 589	

modulation model and varied the range from 0 to 4.  590	

The GTPase modulation models 591	

In the nearest-neighbor GTPase modulation model the αβ-tubulin with GTP laterally 592	

next to αβ-tubulin bound to GDP hydrolyzes GTP faster. This model has one 593	

additional parameter: the context-dependent fold-increase in GTPase rate. We set 594	

the fold increase to 1, 10, 100, and 1000, and retrained the basal GTPase rate, as 595	

before. This context-dependent increase in GTPase rate leads to a wave-like 596	

propagation of GTP hydrolysis. In the propagation-limited GTPase modulation 597	

model, we limited the wave-like propagation of the GTP hydrolysis by preventing 598	

GTPase modulation across the MT seam. 599	
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References 601	

Alushin, G. M., Lander, G. C., Kellogg, E. H., Zhang, R., Baker, D., and Nogales, E. 602	
(2014). High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-603	
Tubulin upon GTP Hydrolysis. Cell 157, 1117–1129. 604	

Ayaz, P., Munyoki, S., Geyer, E. A., Piedra, F.-A., Vu, E. S., Bromberg, R., Otwinowski, 605	
Z., Grishin, N. V., Brautigam, C. A., and Rice, L. M. (2014). A tethered delivery 606	
mechanism explains the catalytic action of a microtubule polymerase. Elife 3, e03069. 607	

Bayley, P. M., Schilstra, M. J., and Martin, S. R. (1989). A simple formulation of 608	
microtubule dynamics: quantitative implications of the dynamic instability of microtubule 609	
populations in vivo and in vitro. J. Cell. Sci. 93 ( Pt 2), 241–254. 610	

Bayley, P. M., Schilstra, M. J., and Martin, S. R. (1990). Microtubule dynamic instability: 611	
numerical simulation of microtubule transition properties using a Lateral Cap model. J. 612	
Cell. Sci. 95 ( Pt 1), 33–48. 613	

Bowne-Anderson, H., Zanic, M., Kauer, M., and Howard, J. (2013). Microtubule dynamic 614	
instability: a new model with coupled GTP hydrolysis and multistep catastrophe. 615	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22	

Bioessays 35, 452–461. 616	

Bray, D. (2013). The propagation of allosteric states in large multiprotein complexes. J. 617	
Mol. Biol. 425, 1410–1414. 618	

Brouhard, G. J. (2015). Dynamic instability 30 years later: complexities in microtubule 619	
growth and catastrophe. Mol. Biol. Cell 26, 1207–1210. 620	

Brouhard, G. J., and Rice, L. M. (2014). The contribution of αβ-tubulin curvature to 621	
microtubule dynamics. J. Cell Biol. 207, 323–334. 622	

Brouhard, G. J., and Rice, L. M. (2018). Microtubule dynamics: an interplay of 623	
biochemistry and mechanics. Nat. Rev. Mol. Cell Biol. 19, 451–463. 624	

Brun, L., Rupp, B., Ward, J. J., and Nédélec, F. (2009). A theory of microtubule 625	
catastrophes and their regulation. Proc. Natl. Acad. Sci. U.S.a. 106, 21173–21178. 626	

Chaaban, S., Jariwala, S., Hsu, C.-T., Redemann, S., Kollman, J. M., Müller-Reichert, 627	
T., Sept, D., Bui, K. H., and Brouhard, G. J. (2018). The Structure and Dynamics of 628	
C. elegans Tubulin Reveals the Mechanistic Basis of Microtubule Growth. Dev. Cell. 629	

Chen, Y. D., and Hill, T. L. (1985). Monte Carlo study of the GTP cap in a five-start helix 630	
model of a microtubule. Proc. Natl. Acad. Sci. U.S.a. 82, 1131–1135. 631	

Chen, Y., and Hill, T. L. (1983). Use of Monte Carlo calculations in the study of 632	
microtubule subunit kinetics. Proc. Natl. Acad. Sci. U.S.a. 80, 7520–7523. 633	

Coombes, C. E., Yamamoto, A., Kenzie, M. R., Odde, D. J., and Gardner, M. K. (2013). 634	
Evolving tip structures can explain age-dependent microtubule catastrophe. Curr. Biol. 635	
23, 1342–1348. 636	

Desai, A., and Mitchison, T. J. (1997). Microtubule polymerization dynamics. Annu. Rev. 637	
Cell Dev. Biol. 13, 83–117. 638	

Drummond, D. R., Kain, S., Newcombe, A., Hoey, C., Katsuki, M., and Cross, R. A. 639	
(2011). Purification of tubulin from the fission yeast Schizosaccharomyces pombe. 640	
Methods Mol. Biol. 777, 29–55. 641	

Duellberg, C., Cade, N. I., and Surrey, T. (2016). Microtubule aging probed by 642	
microfluidics-assisted tubulin washout. Mol. Biol. Cell 27, 3563–3573. 643	

Flyvbjerg, H., Holy, T., and Leibler, S. (1994). Stochastic dynamics of microtubules: A 644	
model for caps and catastrophes. Phys. Rev. Lett. 73, 2372–2375. 645	

Gardner, M. K., Charlebois, B. D., Jánosi, I. M., Howard, J., Hunt, A. J., and Odde, D. J. 646	
(2011a). Rapid microtubule self-assembly kinetics. Cell 146, 582–592. 647	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 23	

Gardner, M. K., Zanic, M., Gell, C., Bormuth, V., and Howard, J. (2011b). 648	
Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by 649	
differential control of catastrophe. Cell 147, 1092–1103. 650	

Geyer, E. A., Burns, A., Lalonde, B. A., Ye, X., Piedra, F.-A., Huffaker, T. C., and Rice, 651	
L. M. (2015). A mutation uncouples the tubulin conformational and GTPase cycles, 652	
revealing allosteric control of microtubule dynamics. Elife 4, 3389. 653	

Geyer, E. A., Miller, M. P., Brautigam, C. A., Biggins, S., and Rice, L. M. (2018). Design 654	
principles of a microtubule polymerase. Elife 7, 604. 655	

Gibson, M. A., and Bruck, J. (2000). Efficient Exact Stochastic Simulation of Chemical 656	
Systems with Many Species and Many Channels,  American Chemical Society. 657	

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time 658	
evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434. 659	

Howes, S. C., Geyer, E. A., LaFrance, B., Zhang, R., Kellogg, E. H., Westermann, S., 660	
Rice, L. M., and Nogales, E. (2017). Structural differences between yeast and 661	
mammalian microtubules revealed by cryo-EM. J. Cell Biol. 216, 2669–2677. 662	

Johnson, V., Ayaz, P., Huddleston, P., and Rice, L. M. (2011). Design, overexpression, 663	
and purification of polymerization-blocked yeast αβ-tubulin mutants. Biochemistry 50, 664	
8636–8644. 665	

Kueh, H. Y., and Mitchison, T. J. (2009). Structural plasticity in actin and tubulin polymer 666	
dynamics. Science 325, 960–963. 667	

Loeffelholz, von, O., Venables, N. A., Drummond, D. R., Katsuki, M., Cross, R., and 668	
Moores, C. A. (2017). Nucleotide- and Mal3-dependent changes in fission yeast 669	
microtubules suggest a structural plasticity view of dynamics. Nat Commun 8, 2110. 670	

Manka, S. W., and Moores, C. A. (2018). The role of tubulin-tubulin lattice contacts in 671	
the mechanism of microtubule dynamic instability. Nat. Struct. Mol. Biol. 25, 607–615. 672	

Margolin, G., Gregoretti, I. V., Cickovski, T. M., Li, C., Shi, W., Alber, M. S., and 673	
Goodson, H. V. (2012). The mechanisms of microtubule catastrophe and rescue: 674	
implications from analysis of a dimer-scale computational model. Mol. Biol. Cell 23, 675	
642–656. 676	

Martin, S. R., Schilstra, M. J., and Bayley, P. M. (1993). Dynamic instability of 677	
microtubules: Monte Carlo simulation and application to different types of microtubule 678	
lattice. Biophys. J. 65, 578–596. 679	

Maurer, S. P., Bieling, P., Cope, J., Hoenger, A., and Surrey, T. (2011). GTPgammaS 680	
microtubules mimic the growing microtubule end structure recognized by end-binding 681	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

proteins (EBs). Proc. Natl. Acad. Sci. U.S.a. 108, 3988–3993. 682	

Maurer, S. P., Cade, N. I., Bohner, G., Gustafsson, N., Boutant, E., and Surrey, T. 683	
(2014). EB1 Accelerates Two Conformational Transitions Important for Microtubule 684	
Maturation and Dynamics. Curr. Biol. 24, 372–384. 685	

Maurer, S. P., Fourniol, F. J., Bohner, G., Moores, C. A., and Surrey, T. (2012). EBs 686	
recognize a nucleotide-dependent structural cap at growing microtubule ends. Cell 149, 687	
371–382. 688	

McIntosh, J. R., O'Toole, E., Morgan, G., Austin, J., Ulyanov, E., Ataullakhanov, F., and 689	
Gudimchuk, N. (2018). Microtubules grow by the addition of bent guanosine 690	
triphosphate tubulin to the tips of curved protofilaments. J. Cell Biol. 265, 691	
jcb.201802138. 692	

Mickolajczyk, K. J., Geyer, E. A., Kim, T., Rice, L. M., and Hancock, W. O. (2018). 693	
Direct observation of individual tubulin dimers binding to growing microtubules. bioRxiv 694	
https:--doi.org-10.1101-418053. 695	

Minoura, I., Hachikubo, Y., Yamakita, Y., Takazaki, H., Ayukawa, R., Uchimura, S., and 696	
Muto, E. (2013). Overexpression, purification, and functional analysis of recombinant 697	
human tubulin dimer. FEBS Lett. 587, 3450–3455. 698	

Mitchison, T., and Kirschner, M. (1984). Dynamic instability of microtubule growth. 699	
Nature 312, 237–242. 700	

Molodtsov, M. I., Ermakova, E. A., Shnol, E. E., Grishchuk, E. L., McIntosh, J. R., and 701	
Ataullakhanov, F. I. (2005). A molecular-mechanical model of the microtubule. Biophys. 702	
J. 88, 3167–3179. 703	

Pamula, M. C., Ti, S.-C., and Kapoor, T. M. (2016). The structured core of human β 704	
tubulin confers isotype-specific polymerization properties. J. Cell Biol. 213, 425–433. 705	

Peet, D. R., Burroughs, N. J., and Cross, R. A. (2018). Kinesin expands and stabilizes 706	
the GDP-microtubule lattice. Nat Nanotechnol 13, 386–391. 707	

Piedra, F.-A., Kim, T., Garza, E. S., Geyer, E. A., Burns, A., Ye, X., and Rice, L. M. 708	
(2016). GDP-to-GTP exchange on the microtubule end can contribute to the frequency 709	
of catastrophe. Mol. Biol. Cell 27, 3515–3525. 710	

Rice, L. M., Montabana, E. A., and Agard, D. A. (2008). The lattice as allosteric effector: 711	
structural studies of alphabeta- and gamma-tubulin clarify the role of GTP in microtubule 712	
assembly. Proc. Natl. Acad. Sci. U.S.a. 105, 5378–5383. 713	

Shima, T. et al. (2018). Kinesin-binding-triggered conformation switching of 714	
microtubules contributes to polarized transport. J. Cell Biol. 68, jcb.201711178. 715	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25	

Ti, S.-C., Pamula, M. C., Howes, S. C., Duellberg, C., Cade, N. I., Kleiner, R. E., Forth, 716	
S., Surrey, T., Nogales, E., and Kapoor, T. M. (2016). Mutations in Human Tubulin 717	
Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and 718	
Minus-Ends. Dev. Cell 37, 72–84. 719	

VanBuren, V., Cassimeris, L., and Odde, D. J. (2005). Mechanochemical model of 720	
microtubule structure and self-assembly kinetics. Biophys. J. 89, 2911–2926. 721	

VanBuren, V., Odde, D. J., and Cassimeris, L. (2002). Estimates of lateral and 722	
longitudinal bond energies within the microtubule lattice. Proc. Natl. Acad. Sci. U.S.a. 723	
99, 6035–6040. 724	

Vemu, A., Atherton, J., Spector, J. O., Moores, C. A., and Roll-Mecak, A. (2017). 725	
Tubulin isoform composition tunes microtubule dynamics. Mol. Biol. Cell 28, 3564–3572. 726	

Vemu, A., Atherton, J., Spector, J. O., Szyk, A., Moores, C. A., and Roll-Mecak, A. 727	
(2016). Structure and Dynamics of Single-isoform Recombinant Neuronal Human 728	
Tubulin. J. Biol. Chem. 291, 12907–12915. 729	

Walker, R. A., O'Brien, E. T., Pryer, N. K., Soboeiro, M. F., Voter, W. A., Erickson, H. P., 730	
and Salmon, E. D. (1988). Dynamic instability of individual microtubules analyzed by 731	
video light microscopy: rate constants and transition frequencies. J. Cell Biol. 107, 732	
1437–1448. 733	

Widlund, P. O., Podolski, M., Reber, S., Alper, J., Storch, M., Hyman, A. A., Howard, J., 734	
and Drechsel, D. N. (2012). One-step purification of assembly-competent tubulin from 735	
diverse eukaryotic sources. Mol. Biol. Cell 23, 4393–4401. 736	

Zakharov, P., Gudimchuk, N., Voevodin, V., Tikhonravov, A., Ataullakhanov, F. I., and 737	
Grishchuk, E. L. (2015). Molecular and Mechanical Causes of Microtubule Catastrophe 738	
and Aging. Biophys. J. 109, 2574–2591. 739	

Zanic, M., Widlund, P. O., Hyman, A. A., and Howard, J. (2013). Synergy between 740	
XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nature 741	
Cell Biology 15, 688–693. 742	

Zhang, R., Alushin, G. M., Brown, A., and Nogales, E. (2015). Mechanistic Origin of 743	
Microtubule Dynamic Instability and Its Modulation by EB Proteins. Cell 162, 849–859. 744	

Zhang, R., LaFrance, B., and Nogales, E. (2018). Separating the effects of nucleotide 745	
and EB binding on microtubule structure. Proc. Natl. Acad. Sci. U.S.a. 115, E6191–746	
E6200. 747	

Zhang, R., Roostalu, J., Surrey, T., and Nogales, E. (2017). Structural insight into TPX2-748	
stimulated microtubule assembly. Elife 6, 1518. 749	

 750	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 26	

 751	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 1 0 0 0 2 0 0 0 3 0 0 0
0

2

4

6

T im e  (s e c )

M
T

 L
e

n
g

th
 (
µ

m
)

Figure 1

A
B

1 : 0 lat, GTP long
2 : 1 lat, GTP long
3 : 2 lat, GDP long

C

D E F

kdissoc(GTP)

kdissoc(GDP)

GTP
Hydrolysis

6 8 1 0 1 2 1 4
0

2 0

4 0

6 0

[T u b u lin ]  (µ M )

G
ro

w
th

 R
a

te
 (

µ
m

 /
 h

o
u

r)

kassoc = 1.5 µM-1s-1

KD(corner, GTP) = 1.5 µM
KD(long,    GTP) = 0.34 mM

Experiment
Model

6 8 1 0 1 2 1 4
0 .1

1

1 0

1 0 0

1 0 0 0

[T u b u lin ]  (µ M )

C
a

ta
s

tr
o

p
h

e
 F

re
q

u
e

n
c

y
 (

h
o

u
r-1

)

khydrolysis = 0.22 s-1

E x p e r im
e n ta

l

S im
u la

t io
n

0

1

2

3

A
v

e
ra

g
e

 S
h

ri
n

k
in

g
 R

a
te

(µ
m

 /
 m

in
)

GDP interfaces are
34-fold weaker

Experiment
Model

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/443283doi: bioRxiv preprint 

https://doi.org/10.1101/443283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 

Simulations of a 2-state biochemical model for microtubule dynamics. (A) Cartoon 
representation of a typical growing MT tip during a simulation. αβ-tubulin dimers are 
represented as pink and green circles; solid black and dashed grey outlines indicate 
GTP and GDP states, respectively. Dissociation rates depend on the number of lateral 
neighbors and the identity of the nucleotide at the longitudinal interface (white arrows 
indicate trans-acting nucleotide, see B). (B) Illustration of trans-acting nucleotide. αβ-
tubulins with GTP at the longitudinal interface dissociate slower than αβ-tubulins with 
GDP at the longitudinal interface. (C) Representative plot showing simulated MT length 
vs time at 10 µM αβ-tubulin. The simulation parameters are given in panels D – F. 
Catastrophes occur naturally as a consequence of the biochemical rules. (D) 
Comparison between measured (black circles) and predicted (line) growth rates. 
Experimental data are taken from (Gardner et al., 2011b; Coombes et al., 2013). (E) 
Comparison between measured and predicted shrinking rates.  (F) Comparison 
between measured (black circles) and predicted (line) catastrophe frequency at different 
αβ-tubulin concentrations. The 2-state model cannot recapitulate the measured 
concentration-dependence of the catastrophe frequency.  
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Figure 2 

A three state model that contains a GDP.Pi intermediate. (A) Cartoons illustrating the 
differences between models without (top) and with (bottom) a GDP.Pi intermediate. The 
GDP.Pi intermediate requires two additional parameters: a rate constant for Pi release, 
and another for the strength of the longitudinal interaction when GDP-Pi is at the 
interface. (B) Comparison between measured (black circles) and predicted (lines; red, 
black correspond to GDP.Pi interfaces having identical strength as GTP and GDP, 
interfaces respectively; brown corresponds to GDP.Pi interfaces having intermediate 
strength) growth rates. All three scenarios can recapitulate observed growth rates. In 
this plot the ratio between the hydrolysis rate and the phosphate release rates have 
been set to 1:1. (C) Predicted catastrophe frequency as a function of concentration for 
different values for the strength of the GDP.Pi longitudinal interface. Varying the strength 
of the GDP-Pi interface has a limited effect on the concentration dependence of the 
catastrophe frequency. The ratio between the hydrolysis rate and the phosphate release 
rates have been set to 1:1. (D) Contour plot of the predicted concentration dependence 
of catastrophe. The concentration-dependence is defined as the ratio of catastrophe 
frequencies at 9 µM and 12 µM. The concentration dependence of the catastrophe 
frequency is at its lowest when the ratio between the hydrolysis and release is 1:1 and 
the strength of the longitudinal interface with GDP-Pi is as strong as the interface with 
GTP. 
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Figure 3 

A model that incorporates nearest-neighbor modulation of the strength of lattice 
contacts. (A) Cartoons illustrating the differences between models without (top) and with 
(bottom) the nearest-neighbor αβ-tubulin affinity modulation. Allowing the αβ-tubulin 
affinity modulation requires one additional parameter: a fold-increase in αβ-tubulin 
dissociation rate due to the nearest-neighbor influence. (B) Comparison between 
measured (black circles) and predicted (blackest line corresponds to 1-fold increase in 
dissociation rates and the greenest corresponds to the 7.8-fold increase) growth rates. 
All four scenarios can recapitulate observed growth rates. (C) Predicted catastrophe 
frequency as a function of concentration for different fold-increases in αβ-tubulin 
dissociation rate. Varying the magnitude of αβ-tubulin dissociation modulation has a 
limited effect on the concentration dependence of the catastrophe frequency. 
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Figure 4 

A model that incorporates nearest-neighbor modulation of GTPase activity. (A) 
Cartoons illustrating the differences between models without (top) and with (bottom) the 
nearest-neighbor GTPase modulation. Allowing the GTPase rate modulation requires 
one additional parameter: the fold-increase in GTPase rate due to the nearest-neighbor 
influence. (B) Comparison between measured (black circles) and predicted (blackest 
line corresponds to 1-fold increase in GTPase rates and the bluest corresponds to the 
1000-fold increase) growth rates. All four scenarios can recapitulate observed growth 
rates. (C) Predicted catastrophe frequency as a function of concentration for different 
fold-increases in GTPase rate. Varying the magnitude of GTPase rate modulation has a 
significant effect on the concentration dependence of the catastrophe frequency. (D) 
Comparison between measured (black circles) and predicted (blackest line corresponds 
to 1-fold increase in GTPase rates and the bluest corresponds to the 1000-fold 
increase) growth rates, in the propagation-limited GTPase model. All four scenarios can 
recapitulate observed growth rates. (E) Predicted catastrophe frequency as a function of 
concentration for different fold-increases in GTPase rate, in the propagation-limited 
GTPase model. Artificially limiting the propagation of wave-like GTPase activity reverts 
the changes in predicted concentration dependence of catastrophe frequency observed 
in the original nearest-neighbor GTPase modulation model. 
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Figure 5 

A model that incorporates long-range modulation of the strength of lattice contacts. (A) 
Cartoons illustrating the differences between models without (top) and with (bottom) the 
long-range αβ-tubulin affinity modulation. Allowing the αβ-tubulin affinity modulation 
requires two additional parameter: a fold-increase in αβ-tubulin dissociation rate due to 
the nearest-neighbor influence and the maximum range of modulation. (B) Comparison 
between measured (black circles) and predicted (blackest line corresponds to the 
modulation range of 0 and the greenest corresponds to the modulation range of 4) 
growth rates. All five scenarios can recapitulate observed growth rates. In this plot the 
dissociation rate of the modulated αβ-tubulin is increased by 7.8-fold. (C) Predicted 
catastrophe frequency as a function of concentration for different maximum range of 
modulation. Varying the maximum range of modulation has significant effect on the 
concentration dependence of the predicted catastrophe frequency. The dissociation rate 
of the modulated αβ-tubulin is increased by 7.8-fold.  
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Figure 6 

Microtubule catastrophe can be decomposed into two separate steps. (A) The plot of 
the MT length vs time (top panel) and the corresponding plot of terminal GDP-tubulin vs 
time (bottom panel). The exposure of GDP- tubulins at the end of some protofilaments 
(blue arrow) leads to a transient pausing. The exposure at the end of all protofilaments 
can follow partial loss of the GTP stabilizing cap (orange arrow) leading to a transient 
pausing followed by a catastrophe. (B) A diagram of transient pausing and catastrophe 
as elementary processes (top). “Growth-to-pause” frequencies and “pause-to-
catastrophe” probability defined in terms of the reaction rates to the elementary 
processes (bottom). (C) The plot of “growth-to-pause” frequencies (top left), “pause-to-
catastrophe” probabilities (top right), and the catastrophe frequencies (bottom) as 
functions of αβ-tubulin concentrations in two-state model. The multiplicative product 
(black line, bottom plot) of the “growth-to-pause” frequencies and the “pause-to-
catastrophe” probabilities match the value of the predicted catastrophe frequency (gray 
dashed line, bottom plot). (D) The concentration dependencies of the “growth-to-pause” 
frequencies and the “pause-to-catastrophe” probabilities of different models normalized 
to two-state model. Here, we defined the concentration dependence as the ratio of the 
“growth-to-pause” frequencies or the “pause-to-catastrophe” probabilities at 9 µM over 
12 µM. 
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