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ABSTRACT 
 

Since the initial description of the genomic patterns expected under models of 
positive selection acting on standing genetic variation and on multiple beneficial 
mutations—so-called soft selective sweeps—researchers have sought to identify these 
patterns in natural population data. Indeed, over the past two years, large-scale data 
analyses have argued that soft sweeps are pervasive across organisms of very 
different effective population size and mutation rate—humans, Drosophila, and HIV. 
Yet, others have evaluated the relevance of these models to natural populations, as 
well as the identifiability of the models relative to other known population-level 
processes, arguing that soft sweeps are likely to be rare. Here, we look to reconcile 
these opposing results by carefully evaluating three recent studies and their 
underlying methodologies. Using population genetic theory, as well as extensive 
simulation, we find that all three examples are prone to extremely high false-positive 
rates, incorrectly identifying soft sweeps under both hard sweep and neutral models. 
Furthermore, we demonstrate that well-fit demographic histories combined with rare 
hard sweeps serve as the more parsimonious explanation. These findings represent a 
necessary response to the growing tendency of invoking parameter-heavy, 
assumption-laden models of pervasive positive selection, and neglecting best 
practices regarding the construction of proper demographic null models. 
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INTRODUCTION 

For decades, identifying beneficial mutations based on genomic patterns of 

linked polymorphism has remained a topic of keen interest theoretically, 

methodologically, and empirically in the field of population genetics. Initial efforts 

were largely focused around a hard selective sweep model—that is, one in which 

positive selection acts upon a newly arising beneficial mutation and brings it to 

fixation in the population (see Maynard Smith & Haigh [1]). Under this model, 

multiple reasonably well-performing methods have been developed for detecting hard 

sweeps, though they all commonly struggle with low power and/or high false-positive 

rates under certain neutral non-equilibrium models (e.g., severe population 

bottlenecks; see review of [2]). 

Owing both to theoretical developments (e.g., [3,4]), as well as a lack of 

evidence for widespread hard sweeps in the genomes of commonly studied organisms 

(e.g., [5]), alternative models have gained attention over the past decade. For 

example, the notion of soft selective sweeps encompasses at least two very different 

models: a) selection on standing variation—in which positive selection begins acting 

upon a mutation only once it is already at appreciable frequency in the population, 

and b) multiple de novo beneficial mutations—in which positive selection acts upon 

independently-arising and simultaneously-segregating copies of (a) beneficial 

mutation(s). Despite being relevant in two very different parameter spaces, the 

commonality between these two models and the reason for their common grouping as 

soft sweeps is that both models may result in multiple high frequency haplotypes at 

the time of fixation. This reflects the fact that equivalent copies of beneficial 

mutations are carried on different haplotypes at the onset of selection, and therefore 

these haplotype backgrounds may hitchhike to intermediate frequencies. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 
	

A number of objections have been raised, not against the models themselves 

per se, but against their relative applicability to empirical population data. With 

regards to the above prediction of multiple high frequency haplotypes, Schrider et al. 

[6] noted that the presence of high frequency haplotypes is also a widely-utilized 

prediction of a hard sweep model with recombination. Namely, because mutations 

may recombine on/off the selected haplotype during the course of a selective sweep, 

and do so with increasing recombination distance, mutations that are partially linked 

to the beneficial mutation will only be brought to intermediate frequency. As such, the 

authors described a so-called ‘soft-shoulder effect’ in which regions flanking a hard 

sweep may be mis-characterized as being the target of a soft sweep. 

With regards to selection on standing variation, Orr and Betancourt [7] 

demonstrated that the likelihood of a hard sweep reaching fixation is not simply 

determined by whether positive selection begins acting when the beneficial mutation 

is present in a single vs. multiple copies in the population. Instead, they showed that 

there is a wide parameter space under which selection on standing variation will still 

result in a hard sweep (that is, a single haplotype fixed at the target of selection). This 

likelihood is dependent upon the strength of selection acting on the mutation prior to 

becoming beneficial (i.e., whether it is neutral or weakly deleterious), the strength of 

selection acting on the mutation after becoming beneficial, and the population 

mutation rate (though see the argument of Hermisson and Pennings [8] on 

deterministic vs. stochastic sweep approximations). Regardless, the argument that a 

mutation which significantly impacts the phenotype (to such an extent that it may be 

strongly beneficial) is segregating as a relatively high frequency neutral, nearly-

neutral, or deleterious mutation prior to the shift in selective pressure remains largely 

lacking in terms of empirical examples. 
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With regards to the model of multiple competing beneficial mutations, Jensen 

[9] examined the conditions under which a soft rather than a hard sweep may result. 

In this case, the likelihood of a soft sweep inherently relies on: 1) a high beneficial 

mutation rate or large population size (with some arguing that the relevant population 

size consideration in this case may be much larger than the effective population size; 

Garud et al. [10]), as a second identical de novo beneficial mutation must arise during 

the sojourn time of the first mutation; 2) a large mutational target size, as the 

competing de novo beneficial mutations must have identical selective effects (lest one 

out-compete the other and result in fixation of the most beneficial (i.e. a hard sweep)); 

and 3) all sites must be essentially independent of one another (i.e., freely 

recombining). With regards to the latter, if we condition on the unlikely event that 

two identical beneficial mutations appear in the population in quick succession, if 

they sit on different linked haplotypes (as is required for a soft sweep), those 

haplotype backgrounds are highly unlikely to also be of identical selective effect size. 

Thus, these conditions are likely nearest to being met in certain high 

mutation/recombination rate viruses.  

Despite these difficulties, the enthusiasm for invoking soft sweeps to explain 

observed patterns of genomic variation has not waned. Garud et al. [10] evaluated 

populations of Drosophila melanogaster, proposing a statistic based on a comparison 

of haplotype frequencies (termed H12, and H2/H1). With this, they argued for 

genome-wide selective sweep patterns, characterizing all of the top 50 putatively 

swept regions as likely to be soft rather than hard sweeps. Similarly, Schrider and 

Kern [11] argued that soft sweeps are the dominant mode of adaptation in humans. 

Looking across six human populations, they identified 1,927 distinct selective sweeps 

patterns, 1,776 of which were classified as being a soft sweep using a supervised 
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machine learning approach for categorizing such patterns termed S/HIC, developed 

by the same authors [12]. Finally, evaluating 6,717 HIV-1 consensus sequences from 

patients sampled between 1989-2013, Feder et al. [13] demonstrated that viral 

population diversity is strongly reduced in patients on effective drug treatments, 

whereas population diversity was not strongly reduced in the viral populations of 

patients on less effective treatments. In order to justify that this is not simply a 

description of the strong viral population bottleneck associated with effective (relative 

to ineffective) drug treatment, the authors further argued that this pattern is correlated 

with the number of putative drug resistance mutations. Verbally making the case that 

there is no evidence of a correlation between the strength of selection acting on these 

drug resistance mutations, and the actual degree of drug resistance conferred, the 

authors instead argue that ineffective drug treatments are associated with soft sweeps, 

whereas effective drug treatments are associated with hard sweeps. 

Given this confusing literature, we closely investigated the basis of these three 

recent claims and carefully evaluated the newly proposed methodologies underlying 

them. In particular, we examined the impact of the population's demographic history 

on the inferred mode of selection. We demonstrate that, owing to the wide-range of 

expected patterns of variation produced under models of soft sweeps, these new 

methods frequently classify both neutral demographic histories, as well as hard 

sweeps, as soft sweeps. In short, soft selective sweeps appear as the default 

conclusion under any model that results in intermediate frequency haplotypes. As 

such, recent claims for widespread soft sweeps are highly tenuous, and simulation 

results demonstrate that well-fit demographic models combined with rare hard sweeps 

stand as a strong alternative explanation for observed data. Given the highly non-

equilibrium history characterizing all three examples, a recurrently well-supported 
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distribution of fitness effects characterized by rare beneficial mutations, as well as the 

model specifics outlined by Jensen [9], we argue that pervasive soft sweeps are a 

highly unlikely explanation in all three instances. Thus, while these examples were 

chosen to span organisms of very different underlying population parameters (e.g., 

effective population size, mutation rate, and demographic history), the results and 

considerations described below are applicable to the much broader soft selective 

sweep literature. 

 

RESULTS & DISCUSSION 

 We here give treatment in turn to the analyses of Garud et al. [10], Schrider 

and Kern [11], and Feder et al. [13], evaluating their underlying methodologies, 

recapitulating their results, and examining alternative models. 

 

A detailed look at the methodology and claims of Garud et al. 2015 

 It is first necessary to examine the performance of the H12 and H2/H1 

statistics on which subsequent claims about the mode of selective sweeps in 

Drosophila are based. Both hard and soft sweeps result in reduced genetic variation 

and haplotype structure compared to a locus evolving under equilibrium neutrality. 

Hard sweeps result in the rise of a single high frequency haplotype at the target of 

selection, whereas soft sweeps result in multiple high frequency haplotypes. To 

distinguish between neutral and selected regions, Garud et al. [10] proposed the H12 

statistic, which captures the degree of haplotype homozygosity. By combining the 

frequencies of all haplotypes into a single statistic, values close to 1 are indicative of 

both hard and soft sweeps, whereas smaller values are found with many low 

frequency haplotypes, which they take as indicative of neutrality. Conditional on the 
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initial ascertainment of regions based on H12, they further parse between hard and 

soft sweeps from amongst these outliers using an H2/H1 statistic, which represents 

the frequencies of all but the most common haplotype divided by the frequencies of 

all haplotypes. The expectation is that soft sweeps will have large values of H2, but 

small values of H1, leading to a H2/H1 statistic close to 1. The reverse is expected to 

be true for hard sweeps.  

While Garud et al. [10] demonstrated that the means of these statistics vary 

across different selection regimes, they neglected to provide the information 

necessary to determine Type I and Type II error under more realistic demography. 

Indeed, as outlined in their Methods section, all performance analyses of their 

haplotype statistics were conducted under equilibrium neutrality. More specifically, 

they did not explore the ability of the statistics to detect positive selection, or to 

differentiate hard and soft sweeps, within the context of more realistic non-

equilibrium demographic histories. Furthermore, these limited equilibrium power 

results were presented only for incomplete sweeps (i.e., when the beneficial mutation 

is at 50% frequency in the population - also shown as 10% and 90% in their 

Supplementary Materials) - further confounding the ability to interpret hard vs. soft 

sweep performance. Given the rapid sojourn time of a beneficial mutation, the 

assumption that all sweeps are on-going is peculiar indeed.  

Furthermore, and as discussed in Vy et al. [14], H-statistics were calculated 

using a fixed window size. This is problematic given that the size of the region 

affected by a sweep is proportional to both the strength of selection as well as the 

recombination rate. Under a scenario of weak positive selection or high 

recombination rate, the fully swept genomic region may be smaller than the window 

size. In this example, recombination would be expected to lead to multiple haplotypes 
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within a window centered on a hard sweep, resulting in the incorrect inference of a 

soft sweep (a notion related to the 'soft-shoulder' effect described by Schrider et al. 

[6]). Indeed, Vy et al. demonstrated that using a flexible window-size approach 

results in hard-sweep classifications for loci identified as soft sweeps by Garud et al.   

Finally, it is important to note that the ultimate application of these statistics 

was the Drosophila Genetic Reference Panel (DGRP) dataset, a population of inbred 

lines from North Carolina, USA. Given extensive evidence in Drosophila 

melanogaster of a complex demographic history, including admixture as well as 

extensive population size change (e.g., [15]), both the demographic models and 

parameter space explored by Garud et al. [10] are of great importance. Indeed, 

Duchen et al. [15] themselves noted the uncertainty of their North American 

population size inference and, as is typical of any demographic analysis, provided a 

95% credibility interval for each of their demographic parameter estimates (see Table 

4 & 5 of [15]). Rather than exploring this relevant parameter space, Garud et al. [10] 

generated H-statistics for the mode of each parameter. In so doing, they found that the 

DGRP dataset has uniformly elevated H12 values genome-wide relative to their 

simulated data (see Fig 7 of [10])—which consisted of two equilibrium models (Ne = 

106 and Ne = 108), two relatively old bottleneck models of varying severity, and the 

point estimates of Duchen et al. [15]. They then proceeded to select the top 50 peaks 

to explicitly test for congruence with a hard vs. soft sweep model, and ultimately 

claimed that all of these top candidate regions are the product of soft sweeps. 

Following this logic, however, leads to the fanciful conclusion that the entire 

Drosophila genome is shaped by positive selection, given that all of the regions tested 

by Garud et al. appear to be H12 outliers (see Fig 7 of [10]). In order to evaluate this 

conclusion and assess the more general applicability of these H-statistics, we explored 
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performance under a range of non-equilibrium demographic models, considered the 

impacts of this ascertainment scheme, and evaluated the more realistic scenario of 

complete hard and soft sweeps.  

In order to address the narrow focus on modal demographic parameter values, 

we firstly accounted for the statistically-described uncertainty in these estimates by 

rather sampling directly from the 95% credibility intervals of the posterior density for 

each demographic parameter (S1 Table). For each randomly drawn set of parameters 

from these posteriors, we generated neutral, hard, and soft sweep simulations. As their 

methodology relies on initially detecting H12 outliers, we first used simulated data to 

test the power of the H12 statistic to distinguish neutrality from positive selection 

under the DGRP demographic model. Similarly, we used simulated data to test 

whether H2/H1 can discern between hard and soft sweeps under this model. Second, 

we explored whether the empirical DGRP H12 peaks are indeed outliers compared to 

the distribution expected under the inferred neutral demographic history.  

In so doing, we demonstrate that the H-statistics are inadequate to detect or 

differentiate sweeps under the DGRP demographic model. Matched for identical 

demographic parameters, neutral simulations produce H12 values greater than or 

equal to soft sweeps > 53% of the time. In addition, the H2/H1 statistic utilized to 

discern the mode of selection has poor discriminatory power: hard sweeps have 

H2/H1 values greater than or equal to soft sweeps > 64% of the time (and see Fig S1 

for a corresponding Bayes Factor plot).  

Turning to the empirical DGRP data, Fig 1 demonstrates that the empirically 

observed H12 outlier values fall within the tail of the distribution expected under the 

inferred demographic model (p = 0.001 - 0.004; corresponding to 16-59 neutral 

simulations with more extreme H12 values), and are not more extreme than expected 
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under neutrality. In other words, these observations are fully consistent with scanning 

whole-genome data and ascertaining the most extreme regions (as indeed was done), 

and as such there is no need to invoke anything other than population history in order 

to explain empirical observations. Separately, it is clear that the H2/H1 statistic 

utilized to discern the mode of selection has poor discriminatory power. The empirical 

p-values demonstrate that the top 50 peaks claimed to be the result of soft sweeps all 

have H2/H1 values that fall well within the distribution of hard sweeps (p = 0.1-0.33). 

Together, and contrary to the author's claims, these results demonstrate an inability to 

differentiate neutrality from positive selection under this demographic model, and, 

even if that were not the case, further demonstrate an inability to distinguish hard 

from soft sweeps.  

 In sum, the H12 statistic utilized to ascertain genomic regions becomes 

elevated under a wide-range of neutral demographic histories, and the H2/H1 statistic 

utilized to discern the mode of selection from amongst these H12 outliers has poor 

discriminatory power characterized by largely overlapping distributions between 

models. Furthermore, and given the above results, when considering a demographic 

model fit to the DGRP data, it is apparent that the top 50 outlier regions ascertained 

by Garud et al. are fully consistent with neutrality.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 
	

 

Fig 1. The performance of the H-statistics. Distribution of H12 and H2/H1 values 
estimated under the 95% credibility interval of the DGRP admixture model of Duchen 
et al. [15] for (a) neutrality, (b) soft sweeps, and (c) hard sweeps. Additionally, all 
panels show the top 50 H12 outliers (black x's) from the empirical Drosophila data set 
that Garud et al. [10] concluded were soft sweeps. (d) Following their proposed 
practice, simulations generating the top 2.5% H12 values were ascertained from each 
set, and the scaled density of the corresponding H2/H1 values are plotted for these 
H12 outliers. All top 50 empirical outliers fall within the tail of the neutral 
demographic distribution, as well as within the soft and hard H2/H1 distributions.  
 

 

A detailed look at the methodology and claims of Schrider and Kern 2017 

It is again necessary to first evaluate the performance of the method itself, 

S/HIC, a classifier that relies upon a variety of summary statistics (including the 

above-examined H12 and H2/H1 statistics of Garud et al. [10]), before considering 

the results of their application to human polymorphism data.  

S/HIC is a supervised machine learning method which classifies genomic 

regions into discrete categories (hard, hard-linked, soft, soft-linked, or neutral) by 

comparing test (empirical or simulated) data to simulated training data. Because 

demographic perturbations may mask the genomic signals of selection, a user must 
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first choose an appropriate demographic model under which to simulate training data.  

The initial publication [16] demonstrated that S/HIC has a high true positive rate  

when the true demographic model is known a priori. However, as this is never the 

case in practice, we examined a range of model mis-specifications. Some of the 

difficulty in correctly identifying selection under mis-specified demographic models 

can be found in Fig S10 of Schrider and Kern [12] (and plotted here in Fig 2A). Here, 

the classifier was trained using an equilibrium demographic model, and the true/test 

data were simulated under the non-equilibrium model estimated for African human 

populations by Tennessen et al. [17]. Though this Supplementary Figure is cited in 

the main text as illustrating the ability of S/HIC to robustly deal with unknown non-

equilibrium scenarios, when examining the results one finds that even for a hard 

sweep with extremely strong selection (5000 < 2Ns < 50000), the correct model is 

identified in fewer than 5% of simulated replicates, while hard sweeps are incorrectly 

classified as soft sweeps in nearly 50% of replicates, as linked soft sweeps in 16% of 

replicates, and neutrality in 31% of replicates. In other words, under this demographic 

history estimated for human populations, the original authors demonstrated not only 

an inability to detect hard sweeps but also an extreme false-positive rate in the 

direction of mis-classifying them as soft sweeps, if the demographic model is mis-

specified.  

In presenting results in the main text, the authors depicted the diagnostic 

ability of binary classifiers (which S/HIC is not), thereby combining classifications 

(i.e., they reported the performance of accurately classifying hard combined with soft 

sweeps as a single value, and of accurately classifying neutrality combined with 

linked selection as a single value). Thus, their ROC plots (e.g., Fig S9 of [12]) give 

the appearance that S/HIC performs reasonably well, as they grouped any 
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identification of a soft or hard sweep as a true positive (i.e., this grouping neglects the 

fact that these 'true-positives' consist of hard sweeps that have been incorrectly 

identified as soft; or, said another way, that their true positives consist nearly entirely 

of false positives). Therefore, we differentiate these results in Fig 2, clearly 

demonstrating widespread mis-classification when the true model is unknown; 

moreover, this mis-classification is almost universally in the direction of falsely 

identifying soft selective sweeps. 

Even when relatively high probabilities of correct classification are obtained 

(> 90%), it is critical to examine false positive rates. We note that for a genome the 

size of humans (~3 billion bp) and scanned using 100 kbp windows (as was done), 

one would expect thousands of genomic regions to be falsely classified. Therefore, it 

is of critical importance to compare expected mis-classification rates to observed 

proportions. In Schrider and Kern [11], S/HIC was used to classify the 1000 Genomes 

data using the inferred demographic models of Auton et al. [18]. Given the null 

hypothesis that the genome is evolving neutrally, one may multiply the neutral mis-

classification rates (reported in their Fig S1) by the total number of windows analyzed 

(13,968) to determine how often one should expect a truly neutral region to be mis-

classified. In Table 1, we demonstrate that the majority of soft sweeps predicted by 

Schrider and Kern [11] can be explained as mis-classified neutral regions, given their 

reported false positive rates. 
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Table 1. The expected number of neutral regions mis-classified as sweeps (soft or 
hard) compared to the number of sweeps reported by Schrider & Kern [11]. Using the 
mis-classification proportions reported in their Table S1 and the total number of 
genomic windows analyzed (n  = 13,968), one may calculate the number of mis-
classified windows expected under neutrality. This represents something of a best 
case scenario in which the true demographic model is assumed to be known (i.e., that 
inferred by Auton et al. [18]). Comparing these results with those reported by 
Schrider and Kern [11], it is clear that nearly all of the observed sweep regions can be 
accounted for by the number of expected false-positives. Populations presented are 
from individuals sampled in North America of Northern and Western European 
ancestry (CEU), Gambia (GWD), Japan (JPT), Kenya (LWK), Peru (PEL), and 
Nigeria (YRI). 
 

 

Proportion of neutral 
regions expected to be 

mis-classified as sweeps 

Number of neutral regions 
expected to be mis-
classified as sweeps 

genome-wide 

Number of genome-wide 
sweeps reported by 

Schrider & Kern 2017 

Population Soft Hard Soft Hard Soft Hard 

CEU 0.066 0.001 922 14 947 66 

GWD 0.041 0 573 0 795 5 

JPT 0.058 0.002 810 28 998 61 

YRI 0.044 0 615 0 797 13 

PEL 0.062 0.002 866 278 655 32 

LWK 0.045 0.001 629 14 805 3 

 

It is notable that additional information is available to potentially improve 

these classification predictions. The S/HIC pipeline includes a step to estimate the 

probability that a genomic region belongs to each of the five classes (i.e., hard, hard-

linked, soft, soft-linked, and neutral), but then only uses this information to rank class 

labels. As a result, the class label with the highest probability is chosen as the correct 

model. However, these class probabilities confer critical information pertaining to 

statistical confidence [19]. In other words, in a scenario where neutral, soft, soft-

linked, hard, and hard-linked are classified with 0.19, 0.22, 0.20, 0.19, and 0.19 

probabilities, respectively, S/HIC would conclude that the region in question 

experienced a soft sweep, despite having little support for this classification in reality. 
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Indeed, the number of sweep predictions plummets with the imposition of a 

probability threshold (Fig S2). Across all six populations evaluated by Schrider and 

Kern [11], an average of ~18 soft sweeps were retained with a 0.90 probability 

threshold. Thus, the inclusion of this uncertainty has the potential to drastically 

reduced false positive rates. 

Similar to the demographic models described above, if the distribution of 

fitness effects could be known a priori (that is, the biologically true underlying 

selection coefficients are accurately simulated for the training set), S/HIC performs 

well in classifying models (see Fig 4 of [12]). However, when the training set is 

simulated with stronger selection than the (true) test set, S/HIC overwhelmingly 

classifies hard sweep windows as soft (Fig 2B). This result owes to the larger number 

of recombination events (producing greater haplotypic diversity) and the reduced size 

of the sweep region in the test set (i.e., intermediate strengths of selection) relative to 

the training set (i.e., strong selection). This finding is notable given Schrider and 

Kern's assumption that selection coefficients are bounded between 0.005 and 0.1 

when analyzing human data [11]. Indeed, when testing a weaker range of selection 

(2Nes ~ U[10, 1000]) against that used by Schrider and Kern (2Nes ~ U[166, 3333]), 

47% of hard sweeps are mis-classified as soft, and 46% of hard-linked sweeps are 

mis-classified as soft-linked (Fig 2C).  

Finally, we explored a range of demographic model mis-specifications in 

order to quantify downstream effects on selection inference. Beginning with 

population bottlenecks, we considered a scenario in which the applicability of a 

bottleneck model is known, but the severity of that bottleneck is mis-inferred. If the 

training set is simulated from a single incorrect bottleneck value, neutral simulations 

are increasingly inferred to be soft as the true bottleneck size becomes more severe 
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(Fig S3). However, as demonstrated in the previous section, best-practice would 

necessitate sampling from across the parameter’s posterior distribution. In order to 

mimic such a scenario, we constructed training sets of varying widths, and found that 

this may indeed ameliorate the situation to some extent, though false positive rates in 

the direction of soft sweeps remain unacceptably high (Fig S3). In addition, severe 

population bottlenecks, even when accurately known a priori, remain extremely 

difficult to distinguish from selection.   

Next considering hidden population structure, the signatures of genome-wide 

haplotype distributions associated with such sampling resulted primarily in the 

detection of soft sweeps regardless of the underlying model (Fig S3), a pattern that is 

only exacerbated under models of rare migration (shown for a divergence time of 4N 

generations; Fig S3 and S2 Table). Given that both structure and migration are highly 

relevant in the demographic history of humans, we further considered two divergent 

populations experiencing recent, punctuated gene flow - varying the depth of 

divergence, the rate of migration, and the number of admixture events. As shown in 

Fig S3 and S2 Table, these population dynamics also lead to widespread mis-

classification of neutral loci as soft sweeps. These findings are particularly relevant as 

recent studies have demonstrated that PSMC-based human demographic inference—

which neglects a consideration of population structure—generates artificial signals of 

population size change [20]. Thus, the PSMC patterns interpreted as fluctuations in 

population size can be replicated by simulations of structured populations 

experiencing shifts in rates of migration [20,21].  

In sum, as with the Drosophila analysis, the claim of soft sweeps in human 

populations is based on the observation of an excess of intermediate frequency 

haplotypes across the genome relative to neutral equilibrium expectations. The 
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accurate performance of the statistic relies on a prior knowledge of both the 

distribution of fitness effects as well as the demographic history of the population in 

question. As neither is ever accurately known in practice, it is troubling that the mis-

specification of either results in pervasive mis-classification. Namely, hard sweeps of 

weakly beneficial mutations will be classified as soft sweeps; and neutral 

demographic models which result in haplotype structures similar to soft sweeps 

(including mild bottlenecks, structured populations, and migration) will be classified 

as 'soft', while severe population bottlenecks may result in genomic patterns of 

variation which appear 'hard'. Furthermore, if the true demographic model is 

unknown, and considering the Tennessen et al. [17] estimates as an example, one 

finds no power to detect hard sweeps, and an extreme false-positive rate in the 

direction of mis-classifying them as soft sweeps.  

Thus, the repeated claim that S/HIC is robust to demography [11,12,22] is 

unwarranted. Further, the finding of genome-wide soft sweeps appears entirely 

consistent with mis-inference owing to both the highly non-equilibrium history of 

these human populations as well as the underlying assumption of large selection 

coefficients. Indeed, Schrider and Kern's average inferred fractions for the genome-

wide empirical human data of 0.004 hard sweep windows, 0.045 linked hard sweep 

windows, 0.084 soft sweep windows, 0.516 linked soft sweep windows, and 0.352 

neutral windows matches well the expected mis-classification under a variety of the 

models illustrated in Fig 2. In addition, simply considering reported false positive 

rates under neutrality, along with the number of genomic windows evaluated across 

the human genome, is largely sufficient to replicate their reported results. 
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Fig 2. The performance of S/HIC. Stacked bar plots depict the probabilities of 
model classification by S/HIC. Each vertical bar represents 1000 simulated datasets of 
each category (where the true models are given on the x-axis in panels a-c (i.e., hard, 
hard-linked, neutral, soft, and soft-linked)). Within each bar, colors represent the 
proportion that were assigned to each category by S/HIC, and the red outline indicates 
the correct classifications (i.e., true positives). (a) The plotted results of Fig S10 of 
Schrider and Kern [12], examining classification performance under the Tennessen et 
al. [17] African human demographic model, when the training data assumes an 
equilibrium model. (b) Results when the strength of selection is mis-specified—both 
test and training data were simulated under an equilibrium demographic model, where 
the true dataset is drawn from a moderate selection model (2Ns ~ U(25, 250)) and the 
training dataset from a strong selection model (2Ns ~ U(250, 2500)). (c) Performance 
when the simulated LWK population experiences weaker selection (2Ns ~ U(10, 
1000)) than the training set (2Ns ~ U(166, 3333)). (d) The classification ratios of the 
empirical 1000 Genomes project data presented by Schrider and Kern [11] (also 
depicted in their Fig 2), which they trained upon a history of population size change 
as interpreted from PSMC by Auton et al. [18]. From left to right on the X-axis, the 
populations presented are from individuals sampled in North America of Northern 
and Western European ancestry (CEU), Gambia (GWD), Japan (JPT), Kenya (LWK), 
Peru (PEL), and Nigeria (YRI). 
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A detailed look at the methodology and claims of Feder et al. 2016 

In contrast to the above studies, Feder et al. [13] do not propose a novel 

method, but instead rely on the expectation that hard sweeps will reduce variation 

much more strongly than soft sweeps. It is thus necessary here to examine the specific 

support for soft and hard sweep models in these HIV-1 patient samples. The authors 

utilized an analysis of sequence variability to compare the change in diversity 

following between zero and four sweeps of drug-resistant mutations (DRMs) in a 

variety of HIV drug treatments of varying degrees of effectiveness. Specifically, they 

analyzed the consensus HIV-1 population sequence data from the reverse-

transcriptase and protease genes for 6,717 patients sequenced over a 24-year span and 

treated with exactly one drug regimen, with sampling being taken after initiation of 

treatment (but not necessarily after treatment failure). In Feder et al. [13], ambiguous 

base calls present in the consensus sequence were summed across each sequence and 

used as a proxy measure of genetic diversity within the population. The authors 

demonstrated that on average the number of ambiguous base calls per sequence 

decreased with the addition of each of the first four DRMs, as matched against the 

2009 World Health Organization list of DRMs used for surveillance of transmitted 

HIV-1 drug resistance [23]. Additionally, they successfully demonstrated that the 

change in diversity accompanying each DRM present in a sequence was significantly 

correlated with treatment effectiveness, measured as the percentage of patients 

exhibiting virologic failure after 48 weeks of treatment. The authors relied on this 

result to argue that less effective treatments exhibit patterns consistent with soft 

sweeps, whereas more effective treatments exhibit decreases in diversity consistent 

with hard sweeps. We evaluate here whether soft sweep models actually need be 

invoked to explain this data. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 
	

We implemented a model wherein a sequence of length 1980 nt (equivalent to 

the combined lengths of the reverse-transcriptase and protease genes) was allowed to 

evolve in a manner approximating a period of initial infection and exponential 

population growth, followed by a treatment-induced bottleneck, sequential fixation of 

beneficial DRMs, and gradual recovery to the pre-treatment population size (see 

Methods). First, we considered the neutral demographic history characterizing these 

viral population samples, given the differences in effectiveness of the administered 

drug treatments across temporally-sampled patients. Though not considered/modeled 

in Feder et al. [13], it is evident that effective treatment strategies translate to a strong 

reduction in viral population sizes, whereas ineffective treatments do not. Variation in 

the severity of bottlenecks during treatment must therefore result in differing levels of 

neutral genetic variability within populations exposed to treatments of differing 

efficacy. Additionally, populations exposed to more effective treatments that exhibit 

longer periods of virologic suppression will on average spend longer periods of time 

at reduced population size.  

We first applied our model of HIV infection in 1,000 replicate simulations of 

populations experiencing sequential fixation of DRMs of identical selection 

coefficients under three different demographic scenarios: bottlenecks to 10, 102, or 

103 genomes at the time of treatment, from an original population size of 104 

genomes. These scenarios represent treatments of high, intermediate, and low 

efficacy, resulting in a range of bottlenecks from more to less severe, respectively. As 

expected, there is a large and highly significant (p < 1e-10) difference in the overall 

level of diversity, measured as the number of ambiguous base calls, between 

populations experiencing these differing bottleneck severities (Fig 3A). Namely, each 

ten-fold decrease in population size during the treatment period resulted in at least a 
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ten-fold decrease in the remaining variation after resistance was acquired and 

populations rebounded. Thus, the assumption of Feder et al. [13] that treatments of 

variable efficacy do not induce population bottlenecks of varying severity could lead 

to the erroneous conclusion that resistance to weaker treatments must have evolved 

via soft sweeps, as this is the only model that they considered which would allow for 

this preservation of variation.  

 Secondly, pertaining to their claim that the drug resistant phenotype is 

unrelated to the selection coefficient of the drug resistant genotype, one may examine 

whether this pattern may simply owe to a model in which the level of resistance is 

associated with the underlying strength of selection. To begin, given that the effect 

size of a selective sweep is a function of s/r (where s is the selection coefficient, and r 

is the recombination rate [1, 22]), it is well appreciated that selective sweeps 

involving mutations with large selection coefficients will reduce variation more 

strongly than those involving small selection coefficients. Particularly given the high 

recombination and mutation rates of HIV, even a small difference in the selection 

coefficient of a sweeping mutation may have a large effect on the number and 

distribution of high-frequency haplotypes that remain after the sweep is completed. 

 Specifically, as populations are located further from a phenotypic optimum, 

mutations of larger effect become possible and the variance in the effect size of fixed 

beneficial mutations increases (e.g., [24–26]). It has been demonstrated in microbial 

populations that extreme environmental conditions, such as those imposed by drug 

treatments, can alter the underlying distribution of beneficial fitness effects (DBFE) in 

this manner (e.g., [27–29]). Multi-drug regimens impose very strong selection on HIV 

populations, moving wild-type populations far from the optimum. We therefore 

expect a high variance in the selection coefficients of the resistance mutations that fix 
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under different drug treatments. Further, we can reasonably expect that alternative 

treatment strategies impose DBFEs of variable shape and scale and have different 

pathways to resistance, and that DRMs of more effective treatments will be on 

average of larger beneficial effect. 

 Furthermore, a substantial body of evidence indicates that non-nucleoside 

reverse-transcriptase inhibitor (NNRTI) resistance mutations—one of the groups of 

treatments categorized by Feder et al. as being more effective and associated with 

hard sweeps—may avoid pleiotropic tradeoffs in fitness, largely because the target 

site of NNRTIs is located far from the active site of the reverse-transcriptase enzyme 

[30–33]. Regardless of the differences in the selective environments of different 

treatments, an NNRTI resistance mutation conferring the same level of resistance as a 

mutation conferring resistance to another class of drug would therefore be expected to 

have a larger selection coefficient than resistance mutations that have tradeoffs for 

enzymatic function and replication rate. Additionally, NNRTI resistance requires only 

a single point mutation, which is expected to be associated with a larger selection 

coefficient compared to cases where resistance requires sequential or simultaneous 

fixation of several resistance mutations [31]. 

 We compared the percent reduction in ambiguous sites (their proxy for level 

of variation) with zero, one, two, three, and four DRMs (the same range as analyzed 

by Feder et al. [13]) for weak and strong beneficial selection coefficients. The average 

percentage reductions in ambiguous calls for each additional DRM were 10.1 and 

23.3, respectively, with a significantly greater reduction in diversity for the strongest 

selection coefficient (p << 0.001; Fig 3B), not surprising given that the mean sojourn 

time for a beneficial mutation is inversely proportional to its selection coefficient 

[34], giving mutations of smaller benefit a longer period of time to recombine onto 
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additional haplotypes during a sweep. Overlaying the data of Feder et al. [13] onto 

these plots (Fig 3B), one can readily see that the expected differences in selection 

coefficients under hard sweep models alone (i.e., smaller selection coefficients under 

less effective treatments, larger selection coefficients under more effective treatments) 

re-capitulate their observation, well spanning the range in levels of diversity that they 

associate with hard and soft sweeps. 

 In sum, Feder et al. [13] assume identical selection coefficients and 

demographic histories between treatments and interpret varying levels of reduced 

variation as a pattern of hard and soft sweeps. However, the reasonable and well-

supported expectation that the selection coefficients of drug resistant mutations will 

vary by drug treatment nicely accounts for the systematic differences observed, as 

does simply accounting for the differing bottleneck severities associated with 

effective vs. ineffective treatment strategies. Thus, a logical alternative appears to be 

that stronger treatments induce stronger bottlenecks, leading to a general reduction in 

variation, and impose stronger selection, leading to beneficial mutations with larger 

selection coefficients and a greater reduction in variation with each (hard) sweep. 
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Fig 3. Interpreting differing levels of sequence variation in patients. Following 
Fig 3 of Feder et al. [13], the number of ambiguous sites under different models (their 
proxy for diversity) are plotted. In panel (a), the y-axis gives the number of 
ambiguous sites, and the x-axis the number of drug-resistant mutations (DRMs) of 
s=0.05. A model is shown in which the severity of the treatment induced bottleneck 
varies, with each colored line giving the census size to which the population was 
reduced prior to recovery. In panel (b), the y-axis gives the percent of ambiguous sites 
remaining, and the x-axis the number of DRMs. A non-equilibrium model is shown (a 
bottleneck size of 103) in which the strength of selection on each DRM is varied, with 
the colored lines giving the corresponding selection coefficients. Overlaid in black 
lines are the HIV data presented in Feder et al. [13], with the long dashed line 
corresponding to two categories of less effective treatments, and the two short dashed 
lines corresponding to two categories of more effective treatments. As shown, both a 
simple bottleneck model in which the severity of size reduction is related to the 
efficacy of the treatment (i.e., less effective treatments have less severe bottlenecks), 
along with a hard sweep model in which the selection coefficient is related to the 
efficacy of treatment (i.e., more effective treatments are associated with larger 
selection coefficients), well span the observed levels of variation without invoking 
soft selective sweeps. 
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CONCLUSIONS 

 The above described analyses and critiques suggest a few defining features 

underlying recent claims of soft selective sweeps in the literature. First and foremost, 

classifying genomic patterns of variation in the genome of any organism into three 

categories under the assumption that an equilibrium neutral model will be 

characterized by ample variation and many rare haplotypes, that a soft sweep model 

will be characterized by multiple common haplotypes, and that a hard sweep model 

will be characterized by greatly reduced variation and a single haplotype, is inherently 

prone to incorrect inference when applied to real data. As has been long established, 

neutral population histories may well replicate these selection model expectations - a 

point of particular note here given that all three of the analyses investigated based 

their inference on genome-wide patterns of variation. For example, one can readily 

envision that if only given the above three model choices, a weak population 

bottleneck would be expected to most closely resemble pervasive soft sweeps while a 

strong population bottleneck would be expected to most closely resemble pervasive 

hard sweeps. Indeed, these expectations are met when examining the performance of 

these newly proposed approaches under realistic alternative models, as we have here 

demonstrated.  

 Hence, the lack of sufficient model testing and statistical performance 

analyses underlying these claims of recurrent soft sweeps appears to have led to 

inaccurate views of the evolutionary processes and trajectories governing these 

organisms under study. Furthermore, the generalization of these results has resulted in 

misleading answers to decades old questions in population genetics, with some 

suggesting a dominant role for positive selection in shaping patterns of genomic 

variation (e.g., [22]). However, we suggest that studies which seek to characterize the 
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frequency and impact of selective sweeps using population genomic data, but begin 

with the assumption that positive selection is the pervasive and dominant force 

shaping genome-wide patterns of variability, are circular to the point of being futile. 

In response, our work highlights the importance of first considering the demographic 

history of the population under study when performing genomic analyses - a history 

which will be non-equilibrium in any natural population. Secondly, it is crucial to 

evaluate Type I and Type II error pertaining to the identifiability of selection models 

within the context of that population history. Finally, if identifiable at all, one may 

consider the role of selective effects. Thus, in sum, we fundamentally argue that the 

characterization of positively selected genomic regions is a third step at minimum, 

and methodologies or analyses which rather place it as the exclusive single step are 

inherently prone to serious error. 

 

METHODS 

Implementation of the proposed methodologies 

H-statistics -- To test the robustness of the H-statistics (H12 and H2/H1) to 

demographic model misspecification, we simulated genomic data using the backward-

in-time simulator msms [35]. To match the simulations of Garud et al. [10], we 

sampled 145 individuals belonging to a population sample simulated under a neutral 

mutation rate of 1x10-9 events/bp/gen, and a recombination rate of 5x10-7 cM/bp. 

Simulated loci were 104 bp in length, concordant with Garud et al.’s Fig S11, which 

shows that the 400 SNP windows used to calculate empirical DGRP H-statistics were, 

on average, consistent with 104 bp genome segments. Furthermore, using the 

aforementioned mutation and recombination rates, combined with the demographic 
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parameters described below, the mean number of segregating sites (~16,000 

replicates) was 406 for neutral simulations and ~380 for sweep simulations.  

Using these parameters, we simulated neutrality, soft sweeps, and hard 

sweeps. For sweep simulations, the positively selected site (selection coefficient 

~U[0, 1]) was positioned in the middle of each locus, as this is an assumption of both 

H-statistics (albeit an unreasonable and best-case scenario, inasmuch as it assumes 

that the target of selection is known a priori). Similar to Garud et al. [10], we 

considered sweeps generated from a beneficial mutation rate, where hard sweeps had 

a low recurrent beneficial mutation rate of Smu = 0.01 and soft sweeps had a higher 

rate of Smu = 10. In all cases, and in order to be consistent between models, we 

conditioned on the start time of a sweep. 

 To fully explore the 95% credible interval of the DGRP admixture model, we 

generated 16,000 neutral simulations drawing parameters randomly from the 

posteriors given in Duchen et al.’s Fig S10 (and pers. comm., reported here in Table 

S1) [15]. For comparison to Garud et al’s [10] findings, we also generated hard and 

soft sweep simulations (16,000 each) from the posterior parameter values and 

sampled sweep starting times from the time of admixture until the present. All msms 

commands are documented in S1 Text.  

To quantify the fit of each of the top 50 empirical H12 peaks to a simulated 

distribution, we calculated empirical p-values. The neutral H12 p-value represents the 

proportion of neutral simulations that are more extreme than the empirical H12 

values. Garud et al.’s test is designed to be a two-step approach, where first H12 

outliers are identified and then H2/H1 values are used to determine the type of sweep. 

Therefore, we determined the range of the 2.5% largest neutral H12 values. We then 
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removed all simulations with H12 values smaller than the lower neutral bound to 

calculate empirical H2/H1 p-values.     

 

S/HIC -- S/HIC classifies genomic regions into discrete categories (hard, hard-

linked, soft, soft-linked, or neutral) by comparing test (empirical or simulated) data to 

simulated training data. Because demographic perturbations may mask the genomic 

signals of selection, a user must first choose an appropriate demographic model under 

which to simulate training data. Using this training set, the S/HIC pipeline then 

estimates a range of population genetic summary statistics and implements a type of 

supervised machine learning called the Extremely Randomized Trees (ERT) classifier 

[36]. Like the more well-known Random Forests (RF), ERT aggregates the results of 

an ensemble of simple estimators, or decision trees. Whereas single decision trees 

have a tendency to over-fit to the training data, ensemble methods work by combining 

multiple weak classifiers to build a stronger one. For these methods to work, a forest 

of random, unique trees needs to be generated. RF and ERT generate randomness in 

different ways: while RF modifies the training set for the construction of each tree 

(bagging), ERT instead introduces randomness into the node splitting process and 

uses the entire training data set [37]. For our purposes, we made no attempt to modify 

or critique the S/HIC pipeline per se. Indeed, recent studies have shown ERT methods 

to generally perform as well as other RF methods [38]. Instead, our goal was to 

explore the robustness of S/HIC to demographic and selection model mis-

specification (as is the case in all natural population analysis), and explore a wider 

range of demographic models, in order to understand the behavior of the statistic. 

Unless stated otherwise, we replicated the simulations used in the original 

methods paper (see [12], S1 Table) and the proceeding paper focused upon the 
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analysis of human data (see [11]). Briefly, training and testing sets were compiled by 

simulating chromosomes in discoal [39]. To emulate the patterns seen in regions 

linked to selective sweeps, thousands of replicate simulations were conducted where 

each chromosome was divided into 11 sub-windows with the beneficial mutation 

occurring in the center of a single sub-window (see [12], Fig 1). A focal hard or soft 

sweep was defined as occurring in the central (6th) window. From these simulated 

datasets, we used the S/HIC pipeline to calculate summary statistics, train classifiers, 

and classify test simulations.  

Of critical importance is our correct implementation of the S/HIC method. To 

assess this, we first generated two equilibrium training and testing sets identical to 

that used to generate Schrider and Kern’s Fig 4 [16] and compared the resulting 

classification probabilities. In two independent trials, we correctly classified neutrality 

74% and 81% of the time (compared to their 82%), and soft sweeps 80% and 75% of 

the time (compared to their 79%). It should be noted that this considerable variance in 

classification probabilities is inherent to the underlying randomness of this machine 

learning approach. 

Next, we evaluated the robustness of S/HIC to demographic mis-inference. To 

understand the effects of changing the DFE in humans, we chose to reanalyze the 

demographic model of the East African LWK population because of its high true 

positive rate (see Schrider and Kern Fig S1), likely owing to a history of 

comparatively small population fluctuations. We first constructed a model from the 

same feature vectors used to train Schrider and Kern’s LWK model. We then 

simulated a test set and compared our classification probabilities to ensure an ability 

to replicated their results. Finally, we generated another test set and lowered the 
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strength of selection (original: 2Nes ~ U[166, 3333] (SK Table S5); new: 2Nes ~ U[10, 

1000]). 

We further evaluated Schrider and Kern’s less severe bottleneck model 

(population size reduced to 29% at 0.044 4N generations, recovering at 0.0084 4N 

generations) as the true model, and quantified the ability to correctly classify neutral 

loci simulated under more severe bottlenecks. To address models of population 

structure, we simulated data sets with two populations diverging at 0.25, 0.5, or 1.0 in 

4N generations, followed by isolation. We then sampled 90 individuals from one 

population and 10 from the other, in order to investigate the effects of undetected 

population structure. Finally, we considered migration models consisting of pulses (5, 

10, 50, or 100) of migration (0.00001, 0.0001, 0.001, 0.01, or 0.1% of the population) 

occurring every 10 generations until the present, following the initial split. These 

datasets were then classified using the equilibrium dataset.  

All discoal commands are given in S1 Text. 

 

Simulation of HIV populations 

Simulated populations of HIV were generated via forward-in-time population 

genetic simulation in the SLiM version 2 software package [40]. We simulated 

sequences of 1980 nt (equivalent to the combined lengths of the reverse-transcriptase 

and protease genes) with demography and positive selection approximating the stages 

of 1) initial infection, 2) population growth, 3) a treatment-induced population 

bottleneck, and 4) sequential fixation of drug resistant mutations (DRMs). 

Specifically, populations were initiated from a single infecting virion [41,42] and then 

grew exponentially for 100 generations until reaching a population size of 104. After 

1,000 generations of neutral evolution, a population bottleneck to either 103, 102, or 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 
	

10 individuals was imposed. The population mutation rate was set to 3.4x10-5 per site 

per replication [43], and the recombination rate was 1.4x10-5 per site per replication 

[44]. 

Beneficial mutations of effect size s = 0.03, s = 0.015, or s = 0.0075 

(corresponding to weak, moderate, or strong selection) fixed sequentially until a 

specified number of DRMs were present in the population (zero, one, two, three, or 

four) with the population size recovering in a stepwise manner as each DRM fixed to 

reflect sequential fitness gains. When the desired number of DRMs was achieved, the 

population size was fully restored to its pre-treatment value of 104 (i.e., the population 

size recovered once resistance was achieved) and the population was allowed to 

evolve neutrally for 100 generations before analysis. Mutations were introduced to the 

population in the following manner: every 1 or 5 generation/s (for the weak and 

strong selection regimes, respectively), a new copy of a beneficial mutation was 

introduced if no beneficial mutation was presently segregating in the population. For 

the purposes of the simulations, beneficial mutations were considered to be fixed once 

they reached a frequency of 0.95 or greater. Our populations therefore experienced 

selective sweep dynamics, wherein each DRM only fixed in the population after the 

previous sweep was at or near completion. The rarity of new beneficial mutations was 

scaled with the strength of selection and population bottleneck size, with the 

assumption being that the rate of beneficial mutations is a product of the population 

size and the beneficial mutation rate appropriate for a given specific effect size. 

 At the end of the recovery period following sequential DRM fixation, and 

following Feder et al. [13], the number of ambiguous base calls for the population 

was approximated as the number of sites with a minor allele frequency greater than or 

equal to 0.15, assuming this as a reasonable threshold at which population-level 
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Sanger sequencing would result in an ambiguous base call at the site. The number of 

ambiguous base calls was estimated for populations experiencing different strengths 

of selection and variable strengths of treatment-induced bottleneck. 

 Finally it is noteworthy that variation in the ΔDRM measurement of Feder et 

al. [13] within treatment categories does not always correlate strongly with their 

measurement of treatment effectiveness. In fact, the unboosted PI treatments of the 

greatest and second-least effective treatment have the least and greatest DRM-

associated decreases in diversity, respectively, counter to their central argument. 
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Supporting Information 
 
 

 
S1 Fig. Range of H12 and H2/H1 values expected under hard and soft sweeps. 
We depict our results in the same fashion as Garud et al. (their Fig 11) to demonstrate 
how plotting of Bayes factors (BFs) can lead to erroneous conclusions about the 
ability of the H-statistics to differentiate between hard and soft sweeps. BFs were 
calculated by taking the ratio of the number of soft sweep versus hard sweep 
simulations that were within a Euclidean distance of 10% of a given pair of H12 and 
H2/H1 values. Red portions of the grid represent H12 and H2/H1 values that are more 
easily generated by hard sweeps (generated with θA = 0.01), while grey portions 
represent regions of space more easily generated under soft sweeps (generated with θA 
= 10). These results are based on 16,000 hard and soft sweep simulations. 
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S2 Fig. Impact of using a posterior probability threshold in the classification of 
sweeps using S/HIC. Drop-off in the number of genomic regions classified as hard 
(top) and soft (bottom) sweeps as a posterior probability threshold is imposed. Data 
plotted from Schrider and Kern’s S2 Table. 
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S3 Fig. S/HIC classification performance under mis-specified demography. (a) 
Both test and training data were simulated under a constant size demographic model; 
however, the test data set consists of 100 individuals sampled from two populations 
(9:1 sampling ratio) which diverged 0.50 x 2N generations in the past. (b) The 
classification performance when neutrality is simulated under a structured, constant 
size population with migration, varying the number of pulses of gene flow. Here, the 
populations diverged 4N generations ago, with 10 migrants per pulse. (c) The 
classification performance of neutrality simulated under a bottleneck model with 
varying bottleneck severity (e.g., a 'size of bottleneck' of 0.1 corresponds to a 
temporary reduction to 10% of the ancestral size), when the true model is a bottleneck 
decreasing the population to 29% of the ancestral size. Bottleneck timing and duration 
are consistent across all test and training sets, with the bottleneck beginning at 
0.044*4N generations ago and returning to the initial population size 0.0084*4N 
generations ago. (d) Similar to (c), however the training set was constructed from a 
range of bottleneck simulations which decrease the population to 5-40% of the 
ancestral size. 
 
S1 Table. Posterior distribution of parameter estimates from the DGRP 
admixture model of Duchen et al.  
 
S2 Table. Neutral migration models investigated, and the resulting S/HIC 
classifications.       
 
S1 Text. Simulation code. msms commands used to simulate datasets for calculating 
H-statistics and discoal commands used to simulate data sets for S/HIC.	  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 
	

REFERENCES 

1.  Maynard Smith J, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 
1974;23: 23. 

2.  Crisci JL, Poh Y-P, Mahajan S, Jensen JD. The impact of equilibrium assumptions on 
tests of selection. Front Genet. 2013;4. 

3.  Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation 
from standing genetic variation. Genetics. 2005;169: 2335–2352. 

4.  Pennings PS, Hermisson J. Soft sweeps III: the signature of positive selection from 
recurrent mutation. PLoS Genet. 2006;2: e186. 

5.  Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, et al. Classic 
selective sweeps were rare in recent human evolution. Science. 2011;331: 920–924. 

6.  Schrider DR, Mendes FK, Hahn MW, Kern AD. Soft shoulders ahead: spurious 
signatures of soft and partial selective sweeps result from linked hard sweeps. Genetics. 
2015;200: 267–284. 

7.  Orr HA, Betancourt AJ. Haldane’s sieve and adaptation from the standing genetic 
variation. Genetics. 2001;157: 875–884. 

8.  Hermisson J, Pennings PS. Soft sweeps and beyond: Understanding the patterns and 
probabilities of selection footprints under rapid adaptation. Methods in Eco Evo. 2017;8: 
700–716. 

9.  Jensen JD. On the unfounded enthusiasm for soft selective sweeps. Nat Commun. 
2014;5: 5281. 

10.  Garud NR, Messer PW, Buzbas EO, Petrov DA. Recent selective sweeps in North 
American Drosophila melanogaster show signatures of soft sweeps. PLoS Genet. 
2015;11: e1005004. 

11.  Schrider DR, Kern AD. Soft sweeps are the dominant mode of adaptation in the human 
genome. Mol Biol Evol. 2017;34: 1863–1877. 

12.  Schrider DR, Kern AD. S/HIC: Robust identification of soft and hard sweeps using 
machine learning. PLOS Genetics. 2016;12: 1–31. 

13.  Feder AF, Rhee S-Y, Holmes SP, Shafer RW, Petrov DA, Pennings PS. More effective 
drugs lead to harder selective sweeps in the evolution of drug resistance in HIV-1. Elife. 
2016;5. Available: https://www.ncbi.nlm.nih.gov/pubmed/26882502 

14.  Vy HMT, Won Y-J, Kim Y. Multiple Modes of Positive Selection Shaping the Patterns 
of Incomplete Selective Sweeps over African Populations of Drosophila melanogaster. 
Mol Biol Evol. 2017;34: 2792–2807. 

15.  Duchen P, Zivkovic D, Hutter S, Stephan W, Laurent S. Demographic inference reveals 
African and European admixture in the North American Drosophila melanogaster 
population. Genetics. 2013;193: 291–301. 

16.  Schrider DR, Kern AD. S/HIC: Robust Identification of Soft and Hard Sweeps Using 
Machine Learning. PLoS Genet. 2016;12: e1005928. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 
	

17.  Tennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution 
and functional impact of rare coding variation from deep sequencing of human exomes. 
Science. 2012;337: 64–69. 

18.  The 1000 Genomes Project Consortium. A global reference for human genetic variation. 
Nature. 2015;7571: 68–74. 

19.  Niculescu-Mizil A, Caruana R. Predicting good probabilities with supervised learning. 
Proceedings of the 22nd international conference on Machine learning - ICML ’05. 
2005. doi:10.1145/1102351.1102430 

20.  Mazet O, Rodríguez W, Grusea S, Boitard S, Chikhi L. On the importance of being 
structured: instantaneous coalescence rates and a re-evaluation of human evolution. 
Heredity. 2015;116: 362–371. 

21.  Chikhi L, Rodríguez W, Grusea S, Santos P, Boitard S, Mazet O. The IICR (inverse 
instantaneous coalescence rate) as a summary of genomic diversity: insights into 
demographic inference and model choice. Heredity. 2018;120: 13–24. 

22.  Kern AD, Hahn MW. The neutral theory in light of natural selection. Mol Biol Evol. 
2018;35: 1366–1371. 

23.  Bennett DE, Camacho RJ, Otelea D, Kuritzkes DR, Fleury H, Kiuchi M, et al. Drug 
resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. 
PLoS One. 2009;4: e4724. 

24.  Tenaillon O. The Utility of Fisher’s Geometric Model in Evolutionary Genetics. Annu 
Rev Ecol Evol Syst. 2014;45: 179–201. 

25.  Martin G, Lenormand T. The fitness effect of mutations across environments: a survey 
in light of fitness landscape models. Evolution. 2006;60: 2413–2427. 

26.  Fisher RA. The Genetical Theory of Natural Selection: A Complete Variorum Edition. 
Oxford University Press; 1930. 

27.  Foll M, Poh Y-P, Renzette N, Ferrer-Admetlla A, Bank C, Shim H, et al. Influenza virus 
drug resistance: a time-sampled population genetics perspective. PLoS Genet. 2014;10: 
e1004185. 

28.  Bank C, Hietpas RT, Wong A, Bolon DN, Jensen JD. A Bayesian MCMC approach to 
assess the complete distribution of fitness effects of new mutations: uncovering the 
potential for adaptive walks in challenging environments. Genetics. 2014;196: 841–852. 

29.  Joyce P, Rokyta DR, Beisel CJ, Orr HA. A general extreme value theory model for the 
adaptation of DNA sequences under strong selection and weak mutation. Genetics. 
2008;180: 1627–1643. 

30.  Deeks SG. Durable HIV treatment benefit despite low-level viremia: reassessing 
definitions of success or failure. JAMA. 2001;286: 224–226. 

31.  Machtinger EL, Bangsberg DR. Adherence to HIV antiretroviral therapy. In: HIV InSite 
Knowledge Base Chapter. May 2005. 

32.  Bangsberg DR, Acosta EP, Gupta R, Guzman D, Riley ED, Richard Harrigan P, et al. 
Adherence–resistance relationships for protease and non-nucleoside reverse transcriptase 
inhibitors explained by virological fitness. AIDS. 2006;20: 223–231. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 
	

33.  Halvas EK, Wiegand A, Boltz VF, Kearney M, Nissley D, Wantman M, et al. Low 
frequency nonnucleoside reverse-transcriptase inhibitor-resistant variants contribute to 
failure of efavirenz-containing regimens in treatment- experienced patients. J Infect Dis. 
2010;201: 672–680. 

34.  Stephan W, Wiehe THE, Lenz MW. The effect of strongly selected substitutions on 
neutral polymorphism: Analytical results based on diffusion theory. Theor Popul Biol. 
1992;41: 237–254. 

35.  Ewing G, Hermisson J. MSMS: a coalescent simulation program including 
recombination, demographic structure and selection at a single locus. Bioinformatics. 
2010;26: 2064–2065. 

36.  Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63: 3–
42. 

37.  Brabec J. Decision forests in the task of semi-supervised learning. Machlica L, editor. 
Czech Technical University in Prague. 2017. 

38.  Lakshminarayanan B, Roy DM, Teh YW. Mondrian forests: efficient online random 
forests. Adv Neural Inf Process Syst. 2014;27: 3140–3148. 

39.  Kern AD, Schrider DR. Discoal: flexible coalescent simulations with selection. 
Bioinformatics. 2016;32: 3839–3841. 

40.  Haller BC, Messer PW. SLiM 2: Flexible, Interactive Forward Genetic Simulations. Mol 
Biol Evol. 2017;34: 230–240. 

41.  Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, et al. 
Identification and characterization of transmitted and early founder virus envelopes in 
primary HIV-1 infection. Proc Natl Acad Sci U S A. 2008;105: 7552–7557. 

42.  Fischer W, Ganusov VV, Giorgi EE, Hraber PT, Keele BF, Leitner T, et al. 
Transmission of single HIV-1 genomes and dynamics of early immune escape revealed 
by ultra-deep sequencing. PLoS One. 2010;5: e12303. 

43.  Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus 
type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol. 
1995;69: 5087–5094. 

44.  Neher RA, Leitner T. Recombination rate and selection strength in HIV intra-patient 
evolution. PLoS Comput Biol. 2010;6: e1000660. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/443051doi: bioRxiv preprint 

https://doi.org/10.1101/443051
http://creativecommons.org/licenses/by-nc-nd/4.0/

