
 
 

  

 1 

 

A novel signature derived from immunoregulatory and hypoxia genes predicts 

prognosis in liver and five other cancers 

 

Wai Hoong Chang, Donall Forde and Alvina G. Lai 

 

Nuffield Department of Medicine, University of Oxford, Old Road Campus, OX3 7FZ, United Kingdom 

 

For correspondence: Alvina.Lai@ndm.ox.ac.uk; alvinagracelai@gmail.com 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/442921doi: bioRxiv preprint 

https://doi.org/10.1101/442921
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

  

 2 

Abstract 

Background: 

Despite much progress in cancer research, it’s incidence and mortality continue to rise. A robust 

biomarker that would predict tumor behavior is highly desirable and could improve patient treatment 

and prognosis.   

 

Methods: 

In a retrospective bioinformatics analysis involving patients with liver cancer (n=839), we developed a 

prognostic signature consisting of 45 genes associated with tumor-infiltrating lymphocytes and cellular 

responses to hypoxia. From this gene set, we were able to identify a second prognostic signature 

comprised of 8 genes. Its performance was further validated in five other cancers: head and neck 

(n=520), renal papillary cell (n=290), lung (n=515), pancreas (n=178) and endometrial (n=370).  

 

Findings: 

The 45-gene signature predicted overall survival in three liver cancer cohorts: hazard ratio (HR)=1.82, 

P=0.006; HR=1.84, P=0.008 and HR=2.67, P=0.003. Additionally, the reduced 8-gene signature was 

sufficient and effective in predicting survival in liver and five other cancers: liver (HR=2.36, P=0.0003; 

HR=2.43, P=0.0002 and HR=3.45, P=0.0007), head and neck (HR=1.64, P=0.004), renal papillary cell 

(HR=2.31, P=0.04), lung (HR=1.45, P=0.03), pancreas (HR=1.96, P=0.006) and endometrial (HR=2.33, 

P=0.003). Receiver operating characteristic analyses demonstrated both signature’s superior 

performance over current tumor staging parameters. Multivariate Cox regression analyses revealed 

that both 45-gene and 8-gene signatures were independent of other clinicopathological features in 

these cancers. Combining the gene signatures with somatic mutation profiles increased their 

prognostic ability.   

 

Conclusions: 

This study, to our knowledge, is the first to identify a gene signature uniting both tumor hypoxia and 

lymphocytic infiltration as a prognostic determinant in six cancer types (n=2,712). The 8-gene signature 

can be used for patient risk stratification by incorporating hypoxia information to aid clinical decision 

making.  

Keywords: hypoxia, T cells, tumor-infiltrating lymphocytes, hepatocellular carcinoma, pan-cancer, 

gene signature  
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Background 

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the second leading cause of 

cancer-related mortality worldwide[1]. Due to an initially asymptomatic disease course, this aggressive 

cancer once diagnosed has especially poor outcomes. The etiological risk factors  for HCC varies across 

geographical locations[2]. This pattern mirrors the burden of viral hepatitis in Asia and Africa. Whereas 

in the Western world, the risk can be attributed more to alcoholic and non-alcoholic steatohepatitis. 

Therapy for HCC, involving either surgery or radiological ablation, is most effective when the cancer is 

detected early. Prompt diagnosis, however, requires regular liver imaging, usually six-monthly 

ultrasound scans, which is both resource intensive and dependent upon identification of otherwise 

silent risk factors. Once diagnosed, curative liver transplantation is based on tumor size and restricted 

to patients where the primary cancer is thought unlikely to recur in the new liver. The use of size as 

the only prognostic criterion precludes therapy in patients with large, indolent cancers that have a low 

probability of recurrence and many centers are questioning whether additional data on tumor biology 

would add value to the diagnostic pathway.  

 

Gene signatures obtained from tumor that are derived from common oncogenic pathways can be used 

to risk-stratify patients to provide individualized care. Despite genomic instability driving intertumoral 

heterogeneity, solid malignancies do share two common characteristics. Solid tumors are often 

hypoxic due to aberrant vasculature resulting in metabolic shifts towards aerobic glycolysis known as 

the Warburg effect[3,4]. Tumor hypoxia is associated with metastases and aggressive phenotypes that 

influence clinical outcomes[5,6]. Additionally, within tumor cells one can find lymphocytes termed 

tumor-infiltrating lymphocytes. These can affect patient prognosis in multiple cancers[7,8]. A subset of 

lymphocytic infiltrates known as the FoxP3+ regulatory T cells (Tregs) function to suppress cytotoxic T 

cells activity to maintain tumor tolerance. Increases in Tregs contributes to unfavorable prognosis in 

multiple solid tumors[9]. Importantly, infiltrating Tregs within the tumor milieu can be affected by 

hypoxia where the latter facilitates Tregs recruitment to promote angiogenesis and maintain 

growth[10]. Another category of T cells known as the cytotoxic CD8+ T cells are required to kill cancer 

cells. But they can be made ineffective by Tregs or be rendered dysfunctional when exhausted[8]. 

Together, accumulation of Tregs and exhausted CD8+ T cells further exacerbate the 

immunosuppressive functions in solid tumors.  

 

By taking advantage of the intricate link between hypoxia and Treg infiltration in solid malignancies, 

we systematically developed two prognostic gene signatures for risk stratification. Both signatures can 
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accurately predict high-risk patients as confirmed by multi-cohort validations in six cancer types to 

support their validity and immediate clinical application.   
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Results 

 

Hypoxia is associated with immunosuppression through enhanced expression of Tregs and CD8+ T 

cells genes.  

Since both hypoxia and high density of infiltrating Tregs are linked to poor clinical outcomes, we 

hypothesized that these features could be employed to predict prognosis in patients with 

hepatocellular carcinoma (HCC). Hypoxia inducible factors (HIFs) are transcription factors (TFs) that 

play key roles in regulating cellular responses to hypoxia[11]. The alpha subunits (HIF-1α and -2α) 

heterodimerize with the beta subunit (HIF-1β) to orchestrate physiological responses in hypoxia[12]. 

To develop our gene signature uniting hypoxia and tumor-infiltrating T-cells, we utilized three gene 

sets:  1) pan-cancer hypoxia genes (52 genes)[6]; 2) HCC-infiltrating Tregs (401 genes) and 3) HCC-

infiltrating exhausted CD8+ T cells (82 genes)[8](Fig.1). To determine which of these genes were bound 

by HIFs, we used a HepG2 hepatoma HIF-1α/2α chromatin immunoprecipitation sequencing (ChIP-seq) 

dataset (GSE120885) (Fig.1) 

 

To determine the extent of hypoxia in cancers, we interrogated in vivo mRNA expression patterns of 

the 52 hypoxia genes[6] in 25 cancer types including HCC (n=20,662) retrieved from The Cancer 

Genome Atlas (TCGA)[13](Table S1). Hypoxia scores for each tumor and non-tumor samples were 

determined by obtaining the mean expression values (log2) of the 52 hypoxia genes[6]. We observed 

that tumor samples were significantly more hypoxic than non-tumor samples in 20 out of 25 cancers, 

which included HCC (Fig.S1A). Multidimensional scaling analyses revealed that the 52 genes can 

distinguish tumor from non-tumor samples in these cancers, hence hypoxic transcriptional states can 

be used as a proxy for identifying cancerous cells (Fig.S1B).  

 

We predict that patients with more hypoxic tumors would have higher expression of tumor-infiltrating 

T cell genes since hypoxia could promote the maintenance of immunological escape via the suppressive 

function of Tregs[10]. The HCC-infiltrating T-cell gene set uniting both Tregs and exhausted CD8+ T cells 

consisted of 438 genes collectively, with 45 genes found to be in common between the two cell types 

(Fig.1). Infiltrating T cell expression scores for each patient were calculated as mean expression values 

(log2) of the 438 genes (Fig.1). Patient hypoxia scores significantly correlated with tumor-infiltrating T 

cell scores in three independent HCC cohorts (n = 839; Table S2): GSE14520 (ρ=0.564, P<0.0001); TCGA-

LIHC (ρ=0.390, P<0.0001) and LIRI-JP (ρ=0.633, P<0.0001) (Fig.S1C), suggesting that highly hypoxic 

tumors have transcriptional profiles associated with immunosuppressive functions.  
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Since HIFs are the key TFs that regulate numerous important aspects of oncogenesis[14], we 

hypothesize that identifying genes that are directly bound by HIFs may have more profound 

implications on prognosis. Using the HIF ChIP-seq dataset, we observed that 79 of the 438 tumor-

infiltrating T cell genes were direct HIF targets (Fig.1). Notably, Spearman’s correlation coefficients 

between the 79 genes and hypoxia score were significantly higher: GSE14520 (ρ=0.669, P<0.0001), 

TCGA-LIHC (ρ=0.469, P<0.0001) and LIRI-JP (ρ=0.694, P<0.0001) (Fig.S1D), suggesting a role for HIFs in 

regulating tumor lymphocytic infiltration in HCC.  

 

Levels of T cell infiltration were corrected by dividing the expression of each of the 79 genes with CD3D 

expression. Of the 79 genes, 26 were upregulated more than 1.5-fold in the training cohort, GSE14520 

(Fig.S1E). On the other hand, ChIP-seq analysis revealed that 23 of the 52 hypoxia genes mentioned 

earlier were direct HIF targets (Fig.1). The final gene set was comprised of 45 genes that encompass 26 

tumor-infiltrating lymphocyte genes and 23 hypoxia genes, with 4 genes being in common (Fig.1; Table 

S3). 

 

 

The 45-gene signature is strongly associated with poor overall survival in HCC. 

We next assessed the ability of the 45-gene signature (HCC45) to predict overall survival (OS) in three 

independent HCC cohorts (n=839). The signature can successfully discriminate between tumor and 

non-tumor samples in these cohorts (Fig.S2A). Tumor samples were notably less tightly clustered 

implying significant intertumoral heterogeneity (Fig.S2A). We next determined HCC45 scores, 

calculated for each patient as the mean expression of the 45 genes. Patients were ranked according to 

their HCC45 scores and divided into high- or low-risk groups using the median cutoff. The OS rates were 

significantly reduced in high-risk patient groups with log-rank P values of 0.012, 0.0042 and 0.0043 in 

the GSE14520, TCGA-LIHC and LIRI-JP cohorts respectively (Fig.2A). Disease-free survival rates were 

also significantly lower in high-risk patients (P=0.026) (Fig.S2B).   

 

To test the independence of HCC45 over current staging systems, we performed subgroup analysis by 

applying the signature to patients within each tumor, node metastasis (TNM) stages. The signature 

successfully identified high-risk patients, particularly among early-stage (1 and/or 2) patients (Fig.2B). 

To evaluate the predictive performance of HCC45 on 5-year OS, we performed the receiver operating 

characteristic (ROC) analysis in comparison with tumor staging parameters. The area under the curves 
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(AUC) for HCC45 were 0.759 (GSE14520), 0.804 (TCGA-LIHC) and 0.883 (LIRI-JP) (Fig.2C). All HCC45 

AUCs were higher than that of TNM staging (Fig.2C). Moreover, combining HCC45 with TNM staging 

considerably improved its predictive ability: AUC = 0.800 (GSE14520), 0.830 (TCGA-LIHC) and 0.890 

(LIRI-JP) (Fig.2C).  

 

We assessed two common mutations in HCC, TP53 and CTNNB1. Mutation in the tumor suppressor 

TP53 is associated with poor prognosis[15,16]. Results on β-catenin CTNNB1 mutations have been 

mixed; some demonstrating poor outcomes[17,18], while others favorable prognosis[19]. Both TP53 

(P<0.001) and CTNNB1 (P=0.025) mutations were associated with poor prognosis (Table 1). Mortality 

in patients with high HCC45 scores and TP53 mutation were ~45% higher than in patients with low 

HCC45 scores harboring wild-type TP53 at 2 years (Fig.2D). Likewise, joint relation of HCC45 and 

CTNNB1 predicted a ~35% increase in mortality at 4 years between the lowest and highest risk groups 

(Fig.2D).  

 

We next examined the relation of HCC45 to other clinical parameters and observed that it remained 

highly prognostic after adjustment for tumor size, cirrhosis, fibrosis, TNM stages, Barcelona Clinic Liver 

Cancer stages, vascular invasion, TP53/CTNNB1 mutation status and/or alpha-fetoprotein levels in a 

multivariate Cox regression analysis: GSE14520 hazard ratio [HR] (HR=1.89, P=0.0052), TCGA-LIHC 

(HR=1.61, P=0.033) and LIRI-JP (HR=2.20, P=0.024)  (Table 1). Both cirrhosis and HCC45 harbor 

complementary prognostic information contributing to elevated HR to 4.59 (95% CI 1.11-19.03, 

P=0.036) (Table 1).  

 

Gene ontology analysis of HCC45 revealed enrichment of biological pathways linked to hypoxia, 

metabolism, inflammation and cancer (Fig.S3). Moreover, HCC45 was enriched for targets of several 

well-known cancer-related transcription factors such as MYC and RUNX1 (Fig.S3) and were functionally 

connected as a group (protein-protein interaction network enrichment: P<1e-16) (Fig.S4).  

 

 

The minimal prognostic 8-gene signature is sufficient and effective in predicting overall survival in 

HCC.  

Having identified that HCC45 predicts outcome in HCC, we evaluated the performance of each gene as 

a prognostic factor (Fig.1). Of the 45 genes, univariate Cox regression analysis revealed that 14, 19 and 

28 genes were significantly associated with unfavorable prognosis in GSE14520, TCGA-LIHC and LIRI-JP 
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respectively (Fig.1; Fig.3A). Eight genes (HCC8) were found to confer prognostic information in all HCC 

cohorts: CA9, CCL20, CORO1C, CTSC, LDHA, NDRG1, PTP4A3 and TUBA1B (Fig.3A; Table S4). Expression 

of HCC8 not only distinguished tumor from non-tumor sample (Fig.S5) but also increased according to 

tumor progression (Fig.S6). As expected, the signature successfully identified high-risk patients in full 

HCC cohorts, GSE14520 (P=0.0001), TCGA-LIHC (P=0.00016) and LIRI-JP (P=0.0003) cohorts, and in 

patients stratified by tumor stage (Fig.3B). The 5-year disease-free survival rates were also lower in 

high-risk patients as determined by the 8-gene signature (Fig.S7). Furthermore, as measured by Wald 

chi-square statistics and log-rank tests, HCC8 is superior in predicting death than HCC45 (Fig.2A; Fig.3B; 

Table 1).  

 

Multivariate models of HCC8 revealed that this reduced gene set sufficiently served as an independent 

prognostic risk factor: GSE14520 (HR=1.72, P=0.02), TCGA-LIHC (HR=2.23, P=0.0009) and LIRI-JP 

(HR=2.58, P=0.012) (Table 1). Predictive value for 5-year OS increased when the HCC8 signature was 

used in combination with TNM staging: GSE14520 AUC=0.67 versus 0.73 and TCGA-LIHC AUC=0.73 

versus 0.76 (Fig.3C). When TP53 or CTNNB1 mutation status and HCC8 were jointly used, patients with 

high HCC8 levels and mutant TP53 (P<0.0001) or CTNNB1 (P<0.0001) had the lowest chances of survival 

(Fig.3D).   

 

We calculated risk scores for each patient by taking the sum of Cox regression coefficient for each of 

the 8 genes multiplied with its corresponding expression value[20]. Risk scores significantly correlated 

with hypoxia scores in all 3 cohorts, indicating that patients with more hypoxic tumors have higher risk 

for death as predicted by HCC8 (Fig.S8), overall suggesting that it was sufficient and effective in 

predicting death.  

 

 

Prognosis of the 8-gene signature in 5 other cancers. 

Hypoxic tumors recruit CD4+ Tregs to suppress effector T cell function and promote tumor 

tolerance[10]. We hypothesized that HCC8 could predict outcome in other solid malignancies in 

addition to HCC. HCC8 could indeed discriminate between tumor and non-tumor samples in five other 

cancer types (Fig.S9). Remarkably, our prognostic 8-gene signature derived from HCC was a significant 

adverse prognostic factor for OS in these five cancer types: head and neck (HR=1.64, P=0.004), renal 

papillary cell (HR=2.31, P=0.047), lung (HR=1.45, P=0.03), pancreas (HR=1.96, P=0.006) and 

endometrium (HR=2.33, P=0.003) (Fig.4A; Table S5). Multivariate analysis adjusting for tumor stage 
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revealed that the HCC8 signature retained independent prognostic relevance in these cancers: head 

and neck (HR=1.66, P=0.003), lung (HR=1.45, P=0.029), pancreas (HR=1.91, P=0.009) and endometrium 

(HR=1.99, P=0.016) (Table S5). Importantly, while TNM staging was not a reliable predictor of OS in 

pancreatic cancer on its own, our 8-gene signature successfully predicted high-risk patients when 

accounting for tumor stage (P=0.009) (Table S5).   

 

The predictive value of the 8-gene signature outperformed the TNM staging system: head and neck 

(AUC=0.610 versus 0.606), renal papillary cell (AUC=0.701 versus 0.640) and pancreas (AUC=0.694 

versus 0.593) (Fig.4B). When used in conjunction with staging information, additive effects on the 

predictive performance of HCC8 were observed: head and neck (AUC=0.661), renal papillary cell 

(AUC=0.768), lung (AUC=0.671) and pancreas (AUC=0.701) (Fig.4B). Importantly, risk scores derived 

from HCC8 showed strong positive trends with tumor hypoxia, suggesting that high risk patients had 

more aggressive tumors: head and neck (ρ=0.729, P<0.0001), renal papillary cell (ρ=0.766, P<0.0001), 

lung (ρ=0.856, P<0.0001), pancreas (ρ=0.844, P<0.0001) and endometrium (ρ=0.374, P<0.0001) 

(Fig.S10).  

 

TP53, KRAS and CDKN2A mutations are commonly observed in lung cancer[21]. CDKN2A (P=0.03), but 

not TP53 (P=0.2) or KRAS (P=0.4), was significantly associated with poor prognosis (Table S5). When 

used in combination with our HCC8 signature, patients with high HCC8 score and mutant CDKN2A had 

~30% higher chances for death at 2 years than patients with low HCC8 and wild-type CDKN2A (Fig.S11).  
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Discussion 

 

We developed a novel gene signature that predicts overall survival in six cancers. This represents a 

significant step forward in the prognostic pathway since pan-cancer genetic signatures are limited at 

best. Capitalizing two biological phenomena of solid tumors, hypoxia and immune cells infiltration, our 

signature can be applied across multiple cancers, suggesting that a high degree of commonality exists 

in host immune response within a hypoxic tumor microenvironment. Signature genes may provide 

insights into biological features of individual tumors as they are implicated in oncogenic processes, i.e. 

pH regulation, invasion, cell proliferation, adhesion and migration, glycolysis and inflammation[22–26]. 

Combining the RNA gene signature with DNA somatic mutations simultaneously improved its 

prognostic capabilities, indicating that signature analysis at two macromolecular levels offers the 

opportunity for multiple levels of drug targeting. High-risk patients, as predicted by our signature, that 

concurrently have TP53 mutations suggests a role for hypoxia in promoting genomic instability and 

aberrant DNA damage repair.  

 

Canonical tumor staging parameters are useful, but they do not offer additional resolution for 

discriminating patients with similarly-staged malignant grades. Especially for patients with stage 1 

cancer, the signature allows the incorporation of hypoxia information to identify patients that are more 

at risk of progressing to advanced stages and developing lethal metastasis. Additionally, we were able 

to differentiate tumor from non-tumor samples using the signature, suggesting that it offers additional 

information on how transformed cells differ from normal cells. It is interesting to speculate that the 

signature could be used in diagnostics since non-transformed cells would have a distinct expression 

profile and a deviation from this profile could indicate the onset of oncogenesis.  

 

Tumor hypoxia has wide-ranging effects causing metabolic alteration, angiogenesis, metastasis and 

immune suppression[27]. Significant crosstalk exists between hypoxia and antitumor immune 

functions where tumor hypoxia contributes to attenuated antitumor responses[10]. We observed a 

significant positive correlation between Treg and hypoxia gene expressions, supporting the notion that 

immunosuppression is higher in patients with more hypoxic tumors (Fig.S1C,D). Cancerous cells are 

protected through immunosuppressive functions enhanced by tumor hypoxia and together, they 

contribute to chemotherapy resistance[28]. Hence, to improve patient response to treatment, there is 

an urgent need to incorporate hypoxic tumor assessments in clinic for an effective patient-centric 

strategy. Through personalized therapy, patients with more hypoxic tumors would benefit from 
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neoadjuvant treatment using hypoxia-modifying drugs to improve response to immunotherapy and 

chemotherapy[14].  

 

Elevation of Tregs and exhausted CD8+ T cells in tumors offers another opportunity for therapeutic 

intervention. Exhausted CD8+ T cells are overrepresented among tumor-infiltrating CD8+ T cells[8]. 

These cells have reduced levels of cytotoxic markers and high expression of the PDCD1 exhaustion 

marker[8]. Hence, patients with high signature scores may likely have increased Treg and exhausted 

CD8+ T cell densities. These patients could benefit from therapy with the PD1 antibody as anti-PD1 

treatment can rejuvenate exhausted CD8+ T cells[29]. When used in combination with first-line 

treatments, this may dramatically improve patient prognosis.   

 

Although prospective validation is warranted, we consider our results as supporting the implications 

of tumor’s hypoxic and immunologic microenvironment in influencing patients’ prognosis and 

potentially their response to treatment. Multi-cohort validations incorporating large sample size 

(n=2,712) confirmed that the 8-gene signature is robust, clinically actionable and has potential to 

radically change how we determine prognosis and guide therapy.  

 

Methods 

Detailed methods are available in supplementary information.  
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Supplementary methods 

 

Study cohorts 

HCC data sets (n=839) used in this study were GSE14520 (n=242) from the Liver Cancer Institute, LIRI-

JP (n=226) from the International Cancer Genome Consortium (ICGC) database and TCGA-LIHC (n=371) 

from the Cancer Genome Atlas (TCGA) Research Network[13]. Full clinical characteristics of HCC 

patients were listed in Table S2. Among these patients, underlying etiology differed between the 

cohorts with GSE14520 comprising of patients with HBV, while LIRI-JP and TCGA-LIHC consisting of 

patients with HBV, HCV and/or non-alcoholic steatohepatitis.  

 

Gene expression data for 24 other cancer types (n=20,241) generated by TCGA Research Network[13] 

were downloaded from Broad Institute GDAC Firehose. Illumina HiSeq rnaseqv2 Level 3 RSEM 

normalized gene expression profiles were converted to log2(x + 1) scale. Expression values of genes 

associated with tumor-infiltrating T cells were corrected for levels of infiltration by dividing expression 

values of each gene with CD3D values.  

 

Differential expression analysis 

To determine differentially expressed genes between tumor and adjacent normal liver tissues in the 

GSE14520 cohort, the Bayes method and linear model were employed using the R package limma. P-

values were adjusted using the false discovery rate controlling procedure of Benjamini-Hochberg. 

Genes with log2 fold change of > 1 and adjusted P-values < 0.05 were considered significant.  

 

Gene signature and risk scores 

Expression scores for hypoxia, tumor-infiltrating T cells, 45-gene signature and 8-gene signature were 

calculated for each patient in all the cohorts by taking the average log2 expression values. 

Nonparametric Mann-Whitney-Wilcoxon test was used to compare the distribution of hypoxia scores 

in tumor and adjacent non-tumor samples. Risk scores for each patient were determined by taking the 

sum of Cox regression coefficient for each of the signature genes multiplied with its corresponding 

expression value. Nonparametric Spearman’s rank correlation was employed to assess the relationship 

of gene scores and risk scores with tumor hypoxia (hypoxia score).  
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Survival analyses 

We employed the Cox proportional hazards model to investigate the association between patient 

survival duration and one or more risk factors, e.g. 45-gene or 8-gene score, tumor stage and other 

clinical variables. Univariate analysis was performed to determine the influence of individual risk 

factors on overall survival. As multiple covariates can potentially influence patient prognosis, 

multivariate analyses were performed by including risk factors that were significantly associated with 

overall survival identified in univariate analysis (P < 0.05). Hazard ratios (HR) were determined from 

Cox models with HR greater than one indicating that a covariate was positively associated with event 

probability (increased hazard) and negatively associated with survival length. Cox regression analyses 

were performed using the R survival and survminer packages. Proportional hazards assumption was 

supported by a non-significant relationship between scaled Schoenfeld residuals and time using the R 

survival package. In addition, Kaplan-Meier and log-rank tests were used in univariate analyses of the 

gene signatures in relation to patient survival and were performed using the survival and survminer 

packages. Patients were median-dichotomized into low and high-risk groups based on mean expression 

scores of signature genes and Kaplan-Meier estimates of survival probability over time were generated. 

Difference between high and low-risk groups were tested using the log-rank test.  

 

Time-dependent receiver operating characteristic (ROC) curve analysis was used to assess the 

predictive performance of both 45-gene and 8-gene signatures in comparison with standard tumor 

staging parameters. The R survcomp package was employed to compute time-dependent ROC curves. 

ROC curves depicted true positive rates (sensitivity) versus false positive rates (1-specificity). The area 

under the curve (AUC) is a measure of how well the gene signatures can predict patient survival where 

AUC ranges from 0.5 (for an uninformative marker) to 1 (for a perfect predictive marker). 

 

Visualization of sample distance in the reduced 2-dimensional space 

To determine whether the gene signatures (45-gene or 8-gene signature) can distinguish tumor and 

non-tumor samples, multidimensional scaling (MDS) analyses were performed using the R vegan 

package to visualize samples’ distance in the reduced 2-dimensional space. Euclidean genetic distances 

between each sample were investigated by MDS ordination. Permutational multivariate analysis of 

variance (PERMANOVA) was employed to test for differences between tumor and non-tumor samples.  
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Biological enrichment and protein interaction network analyses 

Analysis of biological pathway enrichment on the 45-gene set was conducted using GeneCodis against 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases. The Enrichr 

tool was used to identify transcription factors from the ChEA database that are potential regulators of 

the 45 genes. Functional protein association network of the 45 genes was determined using the STRING 

database.  

 

Somatic mutation identification 

Level 3 mutation datasets were downloaded from GDAC. Kaplan-Meier analysis and log-rank tests were 

employed to determine the association of somatic mutations in combination with the 45-gene or 8-

gene signatures, on overall survival.  

 

All graphs were generated using the ggplot2 package in R. Heatmap was generated using the R 

pheatmap package.  
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Table 1. Univariate and multivariate Cox proportional hazard regression analysis of risk factors 

associated with overall survival. 

 
    

  Hazard Ratio (95% CI) P-value 

GSE14520 Univariate 

45-gene signature (high vs. low risk) 1.823 (1.18 - 2.816)             0.00683 

8-gene signature (high vs. low risk) 2.36 (1.49 - 3.74)     0.00026 

Tumour size (> 5cm vs. < 5cm) 2.159 (1.406 - 3.316) 0.00044 

Cirrhosis (yes vs. no) 4.665 (1.147 - 18.97) 0.0314 

TNM staging (II & III vs. I) 2.26 (1.706 - 2.994) 1.30E-08 

BCLC staging (B & C vs. A & 0) 2.181 (1.722 - 2.762) 9.86E-11 

AFP (> 300ng/mL vs. < 300ng/mL) 1.606 (1.049 - 2.46) 0.0293 

 
Multivariate (45-gene signature) 

45-gene signature (high vs. low risk) 1.8864 (1.2088 - 2.944) 0.00519 

 

Tumour size (> 5cm vs. < 5cm) 
 

0.9487 (0.5605 - 1.606) 0.8445 

Cirrhosis (yes vs. no) 4.5927 (1.1084 - 19.031) 0.03557 

TNM staging (II & III vs. I) 1.4359 (1.2752 - 2.114) 0.04684 

BCLC staging (B & C vs. A & 0) 1.7808 (1.2521 - 2.533) 0.00132 

AFP (> 300ng/mL vs. < 300ng/mL) 1.4159 (0.9102 - 2.203) 0.12295 

 
Multivariate (8-gene signature) 

8-gene signature (high vs. low risk) 1.715 (1.054 - 2.791) 0.0198 

Tumour size (> 5cm vs. < 5cm) 1.1834 (0.4822 - 1.481) 0.556 

Cirrhosis 2.820 (0.6811 - 11.673) 0.1527 

TNM staging (II & III vs. I) 1.540 (1.178 - 2.383) 0.0422 

BCLC staging (B & C vs. A & 0) 1.675 (1.178 - 2.383) 0.00408 

AFP (> 300ng/mL vs. < 300ng/mL) 1.164 (0.7304 - 1.855) 0.52297 

   
      

TCGA-LIHC Univariate 

45-gene signature (high vs. low risk) 1.839 (1.164 - 2.904)        0.008 

8-gene signature (high vs. low risk) 2.423 (1.51 - 3.89) 0.00025 
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TNM staging (II & III vs. I) 2.000 (1.533 - 2.608) 3.14E-07 

TP53 mutation (Yes vs. No) 2.484 (1.485 - 4.155) 5.30E-04 

CTNNB1 mutation (Yes vs. No) 1.894 (1.084 - 3.311) 0.025 

 
    

 
Multivariate (45-gene signature) 

45-gene signature (high vs. low risk) 1.606 (1.014 - 2.542) 0.03329 

TNM staging (II & III vs. I) 1.879 (1.434 - 2.461) 4.65E-06 

TP53 mutation (Yes vs. No) 2.150 (1.271 - 3.635) 0.0043 

CTNNB1 mutation (Yes vs. No) 1.553 (0.884 - 2.726) 0.13 

 
Multivariate (8-gene signature) 

8-gene signature (high vs. low risk) 2.229 (1.388 - 3.580) 0.000914 

TNM staging (II & III vs. I) 1.865 (1.428 - 2.434) 4.63E-06 

TP53 mutation (Yes vs. No) 1.939 (1.158 - 3.246) 0.012 

CTNNB1 mutation (Yes vs. No) 1.917 (1.085 - 3.385) 0.025 

   
      

LIRI-JP Univariate 

45-gene signature (high vs. low risk) 2.671 (1.361 - 5.240)          0.00328 

8-gene signature (high vs. low risk) 3.45 (1.69 - 7.04)    0.00067 

Fibrosis (yes vs. no) 1.024 (0.8155 - 1.286) 0.838 

Tumour size (> 3cm vs. <  3cm) 2.415 (1.263 - 4.615) 0.00764 

Portal vein invasion (yes vs. no) 2.281 (1.712 - 3.039) 2.00E-08 

Hepatic vein invasion (yes vs. no) 1.822 (1.112 - 2.985) 0.0173 

Bile duct invasion (yes vs. no) 1.392 (0.987 - 1.963) 0.059 

TNM staging (II & III vs. I) 2.267 (1.556 - 3.304) 2.03E-05 

 
Multivariate (45-gene signature) 

45-gene signature (high vs. low risk) 2.201 (1.112 - 4.357) 0.0236 

Tumour size (> 3cm vs. <  3cm) 1.471 (0.746 - 2.898) 0.265 

TNM staging (II & III vs. I) 2.009 (1.348 - 2.995) 0.000617 

 
Multivariate (45-gene signature) 

45-gene signature (high vs. low risk) 2.286 (1.139 - 4.587) 0.02 

Portal vein invasion (yes vs. no) 2.314 (1.635 - 3.275) 2.19E-06 
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Hepatic vein invasion (yes vs. no) 0.843 (0.462 - 1.539) 0.579 

 
Multivariate (8-gene signature) 

8-gene signature (high vs. low risk) 2.578 (1.228 - 5.412) 0.0123 

Tumour size (> 3cm vs. <  3cm) 1.386 (0.698 - 2.752) 0.3513 

TNM staging (II & III vs. I) 1.878 (1.268 - 2.781) 0.00167 

 
Multivariate (8-gene signature) 

8-gene signature (high vs. low risk) 2.419 (1.141 - 5.129) 0.0213 

Portal vein invasion (yes vs. no) 2.057 (1.449 - 2.920) 5.40E-05 

Hepatic vein invasion (yes vs. no) 0.914 (0.508 - 1.646) 0.765 
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Figure 1. Schematic diagram of the study design and development of gene signa-
tures. A liver cancer cohort (GSE14520) was used to define the first 45-gene signature. 
Briefly, 79 tumor-infiltrating T-cell genes were identified as HIF targets using a HIF-1α/2α 
ChIP-seq dataset. Of these 79 genes, 26 genes were > 1.5-fold upregulated in GSE14520. 
Independently, 23 hypoxia genes were identified as HIF targets. Uniting the 23 hypoxia-HIF 
genes and 26 T-cell-HIF genes resulted in 45 unique genes representing the first gene 
signature. Cox regression analyses of individual 45 genes in each of the three liver cancer 
cohorts (GSE14520, TCGA-LIHC and LIRI-JP) revealed a common prognostic set consist-
ing of 8 genes that represent the second signature. This 8-gene signature is further validat-
ed in liver and five other cancers using Kaplan-Meier, Cox regression and receiver operat-
ing characteristic analyses. 
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Figure 2. Patient stratification using the 45-gene signa-
ture in HCC cohorts. (A) Kaplan-Meier plots of overall 
survival in HCC patients across three cohorts stratified into 
low- and high-risk groups using the 45-gene signature. 
P-values were calculated from the log-rank test. (B) 
Kaplan-Meier plots show independence of the signature 
over current staging systems in HCC cohorts. Patients were 
sub-grouped according to TNM stages and further stratified 
using the 45-gene signature. The signature successfully 
identified high-risk patients in different TNM stages. P-val-
ues were calculated from the log-rank test. (C) Analysis of 
specificity and sensitivity of the signature in HCC cohorts 
with receiver operating characteristic (ROC). Plots depict 
comparison of ROC curves of signature and clinical tumor 
staging parameters. The signature demonstrates an incre-
mental value over current staging systems. AUC: area 
under the curve. TNM: tumor, node, metastasis staging. (D) 
Kaplan-Meier plots depicting combined relation of TP53 or 
CTNNB1 mutation status with the signature on overall 
survival in HCC. 
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Figure 3. Minimal prognostic 8-gene signature in HCC. (A) Forest plots depict Cox proportional hazards analysis on 45 
signature genes in three HCC cohorts. Hazard ratios (HR) were denoted as dark blue circles and light blue bars represent 95% 
confidence interval. Eight genes are consistently prognostic across all three cohorts, thereby constituting the minimal prognostic 
signature. Significant Wald test P values were indicated in red. Signature genes were highlighted in red. (B) The 8-gene signature 
successfully identified high-risk patients in different TNM stages. Kaplan-Meier plots of overall survival in HCC patients across 
three cohorts stratified by 8-gene signature into low and high-risk groups.  Patients were stratified by the signature as a full 
cohort, or sub-grouped according to TNM stages. P-values were calculated from the log-rank test. Plots show independence of 
signature over current staging systems. (C) Analysis of specificity and sensitivity of the signature in HCC cohorts with ROC. Plots 
depict comparison of ROC curves of signature and clinical tumor staging parameters. AUC: area under the curve. TNM: tumor, 
node, metastasis staging. (D) Kaplan-Meier plots depicting combined relation of TP53 or CTNNB1 mutation status with the 
8-gene signature on overall survival in HCC. 
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Figure 4. Prognosis of the 8-gene signature in 5 other non-HCC cancers. (A) Kaplan-Meier plots of 
overall survival in patients across multiple cancers stratified into low and high-risk groups using the 
prognostic 8-gene signature. P-values were obtained from the log-rank test. (B) Analysis of specificity and 
sensitivity of the 8-gene signature in multiple cancers. Plots depict comparison of ROC curves of the 
8-gene signature  and clinical tumor staging parameters. AUC: area under the curve. TNM: tumor, node, 
metastasis staging. 
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Figure S1. Genes associated with tumor hypoxia and T-cell infiltration.�(A)�%R[�SORW�GHSLFWV�
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Figure S2. Multidimensional scaling analysis of the 45-gene signature and disease-free survival 
analysis. (A) Ordination plots of multidimensional scaling analysis the signature in HCC cohorts using 
Euclidean distances revealed significant separation of tumor (T) and non-tumor (NT) samples represented 
in a 2-dimensional space. Axes represent the first and second dimension. The distinction of T and NT was 
confirmed by PERMANOVA tests. (B) Kaplan-Meier plot of disease-free survival in HCC patients from the 
GSE14520 cohort stratified into low- and high-risk groups using the 45-gene signature. Disease-free 
survival is defined as the time from surgery to recurrence, death from any cause or distant metastasis. 
P-values are calculated from the log-rank test. 
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Figure S3. Biological functions associated with the 45-gene signature revealed enrichments of 
pathways associated with hypoxia, metabolism and cancer. (A) Transcription factors and histone 
modifiers that are potential regulators of the 45 genes. (B) Enrichment of GO biological processes. (C) 
Enrichment of KEGG ontologies. 
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Figure S4. Protein-protein interaction (PPI) networks associated with the 45-gene signature. As 
determined by STRING (version 10.5), PPI enrichment was significant (P < 1e-16) indicating that the 
proteins are biologically connected as a group. 
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Figure S5. Ordination plots of multidimensional scaling analysis of the 8-gene signature in HCC cohorts 
using Euclidean distances revealed significant separation of tumor (T) and non-tumor (NT) samples 
represented in a 2-dimensional space. Axes represent the first and second dimension. The distinction of 
T and NT was confirmed by PERMANOVA tests.
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Figure S6. Expression distribution of genes from the 8-gene signature according to tumor staging in 
three HCC cohorts. Expression of genes increased with tumor staging in HCC patients. 
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Figure S7. Kaplan-Meier plot of disease-free survival in HCC patients from the GSE14520 cohort 
stratified into low- and high-risk groups using the 8-gene signature. Disease-free survival is defined as 
the time from surgery to recurrence, death from any cause or distant metastasis. P-values are calculated 
from the log-rank test. 
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Figure S8. Correlation of risk scores, as determined using the 8-gene signature, and hypoxia 
scores in HCC patients. Significant positive correlation between patient survival risk scores (refer to 
methods) derived from the 8-gene signature and tumor hypoxia in HCC cohorts. 
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Figure S9. Ordination plots of multidimensional scaling analysis of the 8-gene signature in cancers 
using Euclidean distances revealed significant separation of tumor (T) and non-tumor (NT) samples 
represented in a 2-dimensional space. Axes represent the first and second dimension. The distinction of 
T and NT was confirmed by PERMANOVA tests.
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Figure S10. Correlation of risk scores, as determined using the 8-gene signature, and hypoxia 
scores in other cancers. Significant positive correlation between patient survival risk scores (refer 
to methods) derived from the 8-gene signature and tumor hypoxia in cancers. 
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Figure S11. Kaplan-Meier plot depicting combined relation of CDKN2A mutation status with the 8-gene 
signature on overall survival in lung cancer.
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Table S1. Abbreviations and number of tumour and non-tumour samples in TCGA cancers.

Cohort (TCGA 
abbreviations) Non-tumour # Tumour # Description
BLCA 19 408 Bladder Urothelial Carcinoma
BRCA 112 10939 Breast invasive carcinoma
CESC 3 304 Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL 9 36 Cholangiocarcinoma
COAD 41 285 Colon adenocarcinoma
ESCA 11 184 Esophageal carcinoma
GBM 5 153 Glioblastoma multiforme
GBMLGG 5 669 Glioma
HNSC 44 520 Head and Neck squamous cell carcinoma
KICH 25 66 Kidney Chromophobe
KIPAN 129 889 Pan-kidney cohort
KIRC 72 533 Kidney renal clear cell carcinoma
KIRP 32 290 Kidney renal papillary cell carcinoma
LIHC 50 371 Liver hepatocellular carcinoma
LUAD 59 515 Lung adenocarcinoma
LUSC 51 501 Lung squamous cell carcinoma
PAAD 4 178 Pancreatic adenocarcinoma
PCPG 3 179 Pheochromocytoma and Paraganglioma
PRAD 52 497 Prostate adenocarcinoma
SARC 2 259 Sarcoma
STAD 35 415 Stomach adenocarcinoma
STES 46 599 Stomach and Esophageal carcinoma
THCA 59 501 Thyroid carcinoma
THYM 2 120 Thymoma
UCEC 11 370 Uterine Corpus Endometrial Carcinoma
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Table S2. Clinical characteritics of HCC patients (n = 839)

Characteristic GSE14520 TCGA-LIHC LIRI-JP
Patient number Total 242 371 226

Male 211 (87%) 252 (68%) 166 (73%)
Female 31 (13%) 119 (32%) 60 (27%)

Age (years) Range 21 - 77 16 - 90 31 - 89
Median 50 61 68

Viral etiology Hepatitis B 242 (100%) 143 (39%) 59 (26%)
Hepatitis C 44 (12%) 120 (53%)

Hepatitis B & C 87 (24%) 4 (2%)
Negative 7 (2%) 43 (19%)

Not available 90 (23%)
Edmondson grade I 28 (12%)

II 156 (69%)
III 21 (9%)
IV 1 (0.4%)

Not available 242 (100%) 371 (100%) 20 (9%)
Tumour size Small (< 5cm) 153 (63%) 174 (77%)

Large (> 5cm) 89 (37%) 52 (23%)
Not available 371 (100%)

Fibrosis Negative 19 (8%) 76 (20%) 21 (9%)
Portal fibrosis (stages 1 -2) 31 (8%) 73 (32%)
Fibrous septa (stages 3 - 4) 30 (8%) 132 (58%)
Nodular formation (stage 5) 9 (2%)

Cirrhosis (stage 6) 223 (92%) 72 (19%)
Not available 153 (41%)

Alcohol consumption Yes 118 (32%) 86 (38%)
No 128 (57%)

Not available 242 (100%) 253 (68%) 12 (5%)
Smoker Yes 13 (4%) 122 (54%)

No 94 (42%)
Not availabe 242 (100%) 358 (96%) 10 (4%)

AFP Low (< 300ng/mL) 128 (53%) 218 (59%)
High (> 300ng/mL) 110 (45%) 66 (18%)

Not availabe 4 (2%) 87 (23%) 226 (100%)
BCLC stage 0 20 (8%)

A 152 (63%)
B 24 (10%)
C 29 (12%)

Not availabe 17 (7%) 371 (100%) 226 (100%)
TNM stage I 96 (40%) 144 (39%) 35 (15%)

II 78 (32%) 67 (18%) 101 (45%)
III 51 (21%) 71 (19%) 68 (30%)
IV 18 (8%)

Not availabe 17 (7%) 89 (24%) 4 (2%)
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Table S3. The 45-gene classifier associated with tumour hypoxia and T-cell infiltration.

Gene Symbol Description
AK4 adenylate kinase 4 
ANKRD37 ankyrin repeat domain 37 
ANLN anillin actin binding protein 
BIRC3 baculoviral IAP repeat containing 3 
BNIP3 BCL2 interacting protein 3 
CA9 carbonic anhydrase 9 
CCL20 C-C motif chemokine ligand 20 
CORO1C coronin 1C 
CREB3L2 cAMP responsive element binding protein 3 like 2 
CTSC cathepsin C 
DDIT4 DNA damage inducible transcript 4 
DYNLL1 dynein light chain LC8-type 1 
ENO1 enolase 1 
GAPDH glyceraldehyde-3-phosphate dehydrogenase 
GPI glucose-6-phosphate isomerase 
HILPDA hypoxia inducible lipid droplet associated 
HK2 hexokinase 2 
ITGAE integrin subunit alpha E 
LDHA lactate dehydrogenase A 
LGALS3 galectin 3 
MIF macrophage migration inhibitory factor 
NDRG1 N-myc downstream regulated 1 
NEDD9 neural precursor cell expressed, developmentally down-regulated 9 
P4HA1 prolyl 4-hydroxylase subunit alpha 1 
PDIA6 protein disulfide isomerase family A member 6 
PFKP phosphofructokinase, platelet 
PPP1CB protein phosphatase 1 catalytic subunit beta 
PRDX1 peroxiredoxin 1 
PSMA6 proteasome subunit alpha 6 
PTP4A3 protein tyrosine phosphatase type IVA, member 3 
PTTG1 pituitary tumor-transforming 1 
RAB11FIP1 RAB11 family interacting protein 1 
SEC61G Sec61 translocon gamma subunit 
SERPINE2 serpin family E member 2 
SLC2A1 solute carrier family 2 member 1 
SMS spermine synthase 
TFRC transferrin receptor 
TNFAIP3 TNF alpha induced protein 3 
TPI1 triosephosphate isomerase 1 
TUBA1B tubulin alpha 1b 
TUBB6 tubulin beta 6 class V 
TULP4 tubby like protein 4 
UXS1 UDP-glucuronate decarboxylase 1 
VAPA VAMP associated protein A 
VEGFA vascular endothelial growth factor A 
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Table S4. The minimal prognostic 8-gene classifier.

Gene Symbol Description
CA9 carbonic anhydrase 9 
CCL20 C-C motif chemokine ligand 20 
CORO1C coronin 1C 
CTSC cathepsin C 
LDHA lactate dehydrogenase A 
NDRG1 N-myc downstream regulated 1 
PTP4A3 protein tyrosine phosphatase type IVA, member 3 
TUBA1B tubulin alpha 1b 
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Table S5. Univariate and multivariate Cox proportional hazards analysis of risk factors associated with overall survival in multiple cancers.

Hazard Ratio (95% CI) P-value Hazard Ratio (95% CI) P-value
Head and neck
8-gene signature (high vs. low risk) 1.64 (1.166 - 2.308) 4.70E-03 1.658 (1.178 - 2.322) 3.74E-03
TNM staging (II & III vs. I) 1.466 (1.188 - 1.808) 3.53E-04 1.475 (1.194 - 1.820) 3.05E-04
TP63  mutation (Yes vs. No) 1.046 (0.658 - 1.663) 0.85
CDKN2A mutation (Yes vs. No) 1.318 (0.892 - 1.947) 0.17
PIK3CA mutation (Yes vs. No) 1.261 (0.785 - 2.026) 0.34

Renal papillary cell
8-gene signature (high vs. low risk) 2.311 (1.097 - 5.484) 0.0475 1.190 (0.4771 - 2.970) 0.709
TNM staging (II & III vs. I) 2.71 (1.893 - 3.878) 5.30E-08 2.647 (1.815 - 3.861) 4.35E-07

Lung
8-gene signature (high vs. low risk) 1.453 (1.036 - 2.038) 0.0304 1.458 (1.041 - 2.043) 0.0281
TNM staging (II & III vs. I) 1.597 (1.364 - 1.87) 6.11E-09 1.598 (1.362 - 1.873) 8.04E-09
TP53  mutation (Yes vs. No) 1.316 (0.863 - 2.006) 0.203
KRAS mutation (Yes vs. No) 0.764 (0.401 - 1.455) 0.412
CDKN2A mutation (Yes vs. No) 1.759 (1.057 - 2.927) 0.030 1.533 (0.920 - 2.554) 0.101

Pancreas
8-gene signature (high vs. low risk) 1.961 (1.212 - 3.174) 0.00609 1.906 (1.177 - 3.089) 0.00878
TNM staging (II & III vs. I) 1.339 (0.897 - 1.998) 0.153 1.282 (0.835 - 1.967) 0.255

Endometrium
8-gene signature (high vs. low risk) 2.33 (1.341 - 4.05) 0.0027 1.986 (1.136 - 3.472) 0.016
TNM staging (II & III vs. I) 1.802 (1.431 - 2.269) 5.60E-07 1.722 (1.365 - 2.172) 4.56E-06

Univariate Multivariate
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