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ABSTRACT 25 

Tissue-specific genes are believed to be good drug targets due to improved safety. 26 

Here we show that this intuitive notion is not reflected in phase 1 and 2 clinical trials, 27 

despite the historic success of tissue-specific targets and their 2.3-fold 28 

overrepresentation among targets of marketed non-oncology drugs. We compare 29 

properties of tissue-specific genes and drug targets. We show that tissue-specificity of 30 

the target may also be related to efficacy of the drug. The relationship may be indirect 31 

(enrichment in Mendelian disease genes) or direct (elevated ability to spread 32 

perturbations in human protein-protein interactome for tissue-specifically produced 33 

enzymes and secreted proteins). Reduced evolutionary conservation of tissue-specific 34 

genes may represent a bottleneck for drug projects, prompting development of novel 35 

models with smaller evolutionary gap to humans. We highlight numerous open 36 

opportunities to use tissue-specific genes in drug research and hope that the current 37 

study will facilitate discovery efforts. 38 
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Narrow expression in one or a few tissues is considered desirable for drug targets due 50 

to reduced risk of side effects1,2. Genes with narrow expression are often called ‘tissue-51 

specific’ or ‘tissue-enriched’. Studies on microarray3-5 and a combination of RNA-52 

sequencing and proteomics data6,7 confirm that targets of marketed drugs are biased 53 

towards tissue-specific genes. To the best of our knowledge, the first quantitative 54 

estimate was published in 2008. Dezso et al. demonstrated that tissue-specific genes 55 

are twice more likely to become drug targets than broadly expressed house-keeping 56 

genes8. Yang et al. confirmed a 1.7-fold higher likelihood in 20169. Dezso et al. 57 

observed that tissue-specific genes may represent attractive drug targets due to their 58 

role in tissue biology and disease (e.g., brain-specific GABRB2, a receptor for the 59 

inhibitory neuromediator gamma-aminobutyric acid, is a target of sedative agents)8. 60 

These studies assessed tissue-specificity in healthy tissues. Their findings also 61 

extrapolate to diseased tissues because targets of marketed and phase 3 drugs are 62 

expressed in disease-relevant tissues even in the healthy state in 87% of the cases10. 63 

Also, substantial efforts are dedicated to cataloguing tissue-specific genes such as 64 

databases TiGER (2008)11, TiSGeD (2010)12, VeryGene (2011)13 and TissGDB 65 

(2018)14. Thus, systematic studies showing a significant overrepresentation of tissue-66 

specific genes among drug targets and comprehensive resources have been available 67 

since 2008. The average time from a lead compound to entering phase 1 clinical trial 68 

is 31.2 months15. Let’s assume that validation of the biological hypothesis and 69 

identification of a lead compound take an equally long time. Then, ten years are 70 

sufficient for the findings of basic research to find reflection in early phase clinical trials. 71 

Now is good time to test if the industry took advantage of omics studies and pursued 72 

tissue-specific targets or not. 73 
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In this study, we examine the prevalence of tissue-specific genes among targets of 74 

marketed drugs and drugs in clinical trials. We also investigate properties of tissue-75 

specific genes compared to drug targets. Why are these questions important to 76 

address? If tissue-specific targets are not actively pursued in early clinical trials, such 77 

study would raise awareness of open opportunities. Opportunities to discover new 78 

targets are not exhausted. A recent study by Oprea et al. indicates that only 3% of 79 

human proteins are targeted by marketed or clinical trial drugs (“Tclin”) whereas 35% 80 

have an unknown biological function and are not actively studied (“Tdark”)16. Also, an 81 

important parallel exists between tissue-specific genes and targets of marketed drugs. 82 

As first demonstrated in 2004, tissue-specific genes are enriched in Mendelian 83 

disorder genes17. The enrichment was confirmed by Yang et al. in 20169. 53% targets 84 

of marketed drugs are implicated in Mendelian disorders18. Drugs targeting genes with 85 

a genetic link to human disease are less likely to fail in clinical trials due to lack of 86 

efficacy19. Thus, there may be a relationship between tissue-specificity of the target 87 

and efficacy of the drug. In fact, a recent study by Rouillard, Hurle and Agarwal 88 

concentrated on identification of omics features distinguishing targets that succeeded 89 

and failed in phase 3 trials for non-oncology diseases20. Phase 3 trial failures were 90 

enriched in failures due to lack of efficacy. Rouillard and colleagues limited their 91 

analysis to drugs with a single mechanism-of-action target and demonstrated that 92 

narrow expression profile of a drug target is a robust predictor of success in phase 320. 93 

If we understand the relationship between tissue-specificity and efficacy and apply this 94 

knowledge to identify new, and not only tissue-specific, targets, we may reduce 95 

attrition rates in the clinic. 96 

Here we confirm a 1.8-fold overrepresentation of tissue-specific genes among targets 97 

of marketed drugs compared to all protein-coding genes. The enrichment is 2.3-fold 98 
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when non-oncology drug targets are considered separately. We observe that this 99 

historic success of tissue-specific targets is not reflected in early clinical trials neither 100 

for oncology nor for non-oncology diseases. We find two factors, that could be related 101 

to efficacy of drugs targeting tissue-specific genes. First, we confirm enrichment in 102 

disease genes among tissue-specific genes. Second, we find that tissue-specific 103 

enzymes and secreted proteins have higher ability to spread perturbations in 104 

topological analysis of human protein-protein interactome. The limiting factor for 105 

development of tissue-specific targets may be the reduced conservation of tissue-106 

specific genes between humans and murine models and the associated challenges in 107 

preclinical research. We conclude that tissue-specific genes are a promising source 108 

for target discovery and that the translational challenges may be circumvented through 109 

creation of humanized models. 110 

RESULTS 111 

Our results section is structured as follows. We investigate the prevalence of tissue-112 

specific genes among targets of candidate and marketed drugs. Next, we explore 113 

properties that may explain depletion of tissue-specific genes among targets of drugs 114 

in early clinical trials and their overrepresentation among targets of marketed drugs. 115 

Finally, we highlight open opportunities to develop tissue-specific genes as drug 116 

targets. 117 

We talk about genes as drug targets because the previous studies demonstrated 118 

enrichment in tissue-specific genes among drug targets based on mRNA 119 

expression8,9. We also define tissue-specificity based on RNA-sequencing data. We 120 

assume that the messenger RNAs are translated to their protein products, which, in 121 

turn, interact with the drugs. The concordance between gene expression and protein 122 
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abundance is debated21,22, but a recent Ribo-seq study in rat suggests that 70 (heart) 123 

to 85% (liver) of transcribed mRNA are forwarded to translation23. 124 

Prevalence of tissue-specific drug targets 125 

We applied peak-based definitions of tissue-specificity. We computed per-tissue Z-126 

scores for each gene and defined tissue-specificity at nine increasingly stringent 127 

constraints: Z second largest < 1/x * Z max, where Zmax denoted the Z-score in the tissue with 128 

the highest expression, Z second largest  denoted the Z-score in tissue with the second 129 

highest expression and x was an integer from 2 to 10 (Fig. 1). Such definitions allowed 130 

genes to be expressed in multiple tissues, as long as there was a clear “peak” in the 131 

tissue with the highest expression compared to all other tissues. 132 

Tissue-specific genes constituted a small fraction of all human protein-coding genes 133 

(Supplementary Data 1). The most liberal definition x = 2 resulted in 4,573 of 18,377, 134 

24.9% tissue-specific genes, while only 557 of 18,377, 3.0% genes satisfied the most 135 

stringent definition x = 10. If tissue-specificity was irrelevant for drug target discovery, 136 

the proportions of tissue-specific genes among drug targets would follow the 137 

‘background’ distribution among all protein-coding genes. By contrast, we observed 138 

increasingly stronger deviations from the ‘background’ distribution with increasingly 139 

stringent definitions of tissue-specificity (Fig. 2). Targets of phase 1 drugs were 140 

significantly depleted of tissue-specific genes even at the liberal x = 2 (54 of 331, 141 

16.3% < 4,573 of 18,377, 24.9%, Fisher test, p-value 1*10-4). Proportions of tissue-142 

specific genes among targets of phase 2 drugs followed the ‘background’ distribution 143 

among all protein-coding genes. By contrast, targets of phase 3 drugs and marketed 144 

drugs were significantly enriched in tissue-specific genes starting from x = 6 (phase 3: 145 

39 of 410, 9.5% > 1,018 of 18,377, 5.5%, 1.7-fold enrichment, p-value 0.001; 146 

marketed: 70 of 691, 10.1% > 1,018 of 18,377, 5.5%, 1.8-fold enrichment, p-value 147 
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2*10-6). Targets of withdrawn drugs were also enriched in tissue-specific genes at x = 148 

8 to 10. The reason for withdrawal from the market was toxicity with few exceptions 149 

like unintended use for self-poisoning (barbiturates) and lack of efficacy (drotrecogin 150 

alpha). Targets of withdrawn drugs had 95% overlap (57 of 60) with targets of 151 

marketed drugs. Hence, withdrawal of these drugs from the market could not be 152 

uniquely attributed to their mechanism-of-action targets. For example, cholinergic 153 

nicotinic receptors CHRNA1, CHRND and CHRNG are targets of curare-like 154 

neuromuscular blocking agents. Rapacuronium bromide was withdrawn from the 155 

market due to adverse events while other drugs like vecuronium continue to be used.  156 

We used x = 6 to define tissue-specificity in all subsequent analyses, because the 157 

enrichment in tissue-specific genes among targets of marketed drugs became 158 

significant at this constraint. 159 

The overlap between targets of withdrawn and marketed drugs motivated us to 160 

examine ‘recycling’ of drug targets. Target genes can re-enter clinical trials when new 161 

drugs are developed for the same (e.g., generations of H2 histamine receptor HRH2 162 

blockers as anti-ulcer drugs) or a novel indication. For example, IGF1R is targeted by 163 

recombinant insulin growth factor 1 Mecasermin for growth failure in children 164 

(marketed agonist drug) and is evaluated as target for treatment of solid tumours 165 

(antagonist drug PL-225B in phase 1 trial NCT01779336). 431 of all 691 targets, 166 

62.4% (Fig. 3a) and only 24 of 70 tissue-specific targets, 34.3% (Fig. 3b) were reused 167 

in clinical trials. Thus, tissue-specific genes were ‘recycled’ 1.8 times less frequently 168 

than drug targets overall (Fisher test p-value 5.6*10-6). Furthermore, tissue-specific 169 

genes represented an older subset of drug targets (Fig. 3c), although the difference 170 

was not statistically significant. 171 
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In summary, tissue-specific genes, satisfying x = 6, were 1.8 times more likely to 172 

become targets of marketed drug than all protein-coding genes. However, they were 173 

not actively explored in phase 1 and 2 clinical trials. We investigated possible 174 

explanations for these trends. 175 

Disease indication as a confounding factor 176 

Targets for oncology drugs are selected following different paradigms than targets for 177 

non-oncology drugs. For example, traditional cytotoxic agents aim to induce cell death 178 

or inhibit growths through core cell processes, that are carried out by ubiquitously 179 

expressed targets like DNA topoisomerase II (etoposide). Oncology drugs have 180 

different safety profiles from non-oncology drugs, with more side effects being 181 

tolerated. Also, some drugs target cancer-specific mutant proteins, which are not 182 

captured by gene expression analysis on healthy tissue. For example, vemurafenib 183 

targets mutated BRAF in melanoma according to the FDA label 184 

(www.accessdata.fda.gov/drugsatfda_docs/label/2017/202429s012lbl.pdf). 185 

Targets of phase 1 drugs were predominantly investigated for oncology indications: 186 

253 of 331, 76,4%. Targets of phase 2 drugs displayed an almost balanced 187 

representation of targets for oncology - 239 of 553, 43.2% - and non-oncology 188 

indications - 314 of 553, 56.8%. By contrast, most targets of phase 3 drugs - 265 of 189 

410, 64.6% - and of marketed drugs – 479 of 691, 69.3% - were developed for non-190 

oncology indications. Prevalence of tissue-specific genes among targets of clinical trial 191 

and marketed drugs was confounded by disease indications.  192 

Hence, we examined oncology and non-oncology targets separately (Supplementary 193 

Fig. 1). Targets of phase 1 drugs were depleted of tissue-specific genes irrespective 194 

of disease indication. The discrepancies between oncology and non-oncology targets 195 

started to emerge in phase 2. Targets of marketed non-oncology drugs displayed a 196 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/442780doi: bioRxiv preprint 

http://www.accessdata.fda.gov/drugsatfda_docs/label/2017/202429s012lbl.pdf
https://doi.org/10.1101/442780
http://creativecommons.org/licenses/by/4.0/


9 
 

2.3-fold overrepresentation in tissue-specific genes (at x = 6:  61 of 479, 12.7% > 1,018 197 

of 18,377, 5.5%, Fisher test, p-value 3.6*10-9), which was stronger compared to pooled 198 

analysis for all disease indications. By contrast, tissue-specific genes were 199 

underrepresented among targets of oncology drugs. 200 

Insights from evolutionary biology and population genetics 201 

Evolutionary properties may explain the underrepresentation of tissue-specific targets 202 

in early clinical trials. Wenhua Lv et al. demonstrated that targets of FDA-approved 203 

drugs are more evolutionary conserved than non-target genes24. By contrast, in 2004, 204 

Winter, Goodstasdt and Ponting investigated expression of 4,960 human genes in 27 205 

tissues and demonstrated that tissue-specific genes are less evolutionary conserved 206 

than broadly expressed genes using Ka/Ks ratios17. To clarify, Ka/Ks is the rate of 207 

nonsynonymous Ka to synonymous Ks amino acid changes in a pair of orthologs. Low 208 

Ka/Ks implies that nonsynonymous changes are selected out, while Ka/Ks exceeding 1 209 

may indicate that changes are favored and retained as in immune genes adapting to 210 

new pathogens25. 211 

We revisited the analysis with the current larger data set. We examined Ka/Ks ratios 212 

for human protein-coding genes and their mouse counterparts because mice are the 213 

most common species in preclinical research. We confirmed opposite patterns for 214 

Ka/Ks ratios of tissue-specific genes and drug targets (Fig. 4a). Tissue-specific genes 215 

had significantly higher Ka/Ks than all protein-coding genes (Mann-Whitney U test, 216 

Bonferroni adjusted p-value 1*10-40). By contrast, targets of marketed and clinical trial 217 

drugs were significantly more conserved (the highest Bonferroni adjusted p-value was 218 

1*10-5 for oncology drug targets in phase 3). The trend held for targets for oncology 219 

and non-oncology indications. Ka/Ks ratios were inversely correlated with sequence 220 

identity (Spearman rho -0.86) and similarity (-0.82) between human proteins and their 221 
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mouse orthologs. Conservation of protein sequence is considered a proxy for 222 

conservation of biological function26. Also, 283 of 1,018 tissue-specific genes (27.8%) 223 

compared to 2,719 of all 18,377 protein-coding genes (14.8%) did not have a unique 224 

ortholog in mouse. Therefore, absence of a convenient animal model and gaps in 225 

translation from animal research to clinical trials in humans may complicate 226 

development of tissue-specific genes as drug targets.  227 

We next examined selection pressure within the human species using a new metric, 228 

that was recently developed by the ExAC consortium - probability of being loss-of-229 

function intolerant (pLI)27. Genes with high pLI have significantly lower observed than 230 

expected frequencies of loss-of-function variants, indicating that deleterious variants 231 

in these genes are selected out of the human population. Genes with pLI >= 0.9 are 232 

considered loss-of-function intolerant and their “knockout” in humans implies “some 233 

non-trivial survival or reproductive disadvantage”27. By contrast, genes with pLI <= 0.1 234 

are considered loss-of-function tolerant27. In our analysis, tissue-specific genes were 235 

enriched in loss-of-function tolerant and depleted of intolerant genes compared to all 236 

protein-coding genes (Fig. 4b). By contrast, targets of oncology drugs were enriched 237 

in loss-of-function intolerant (highest Bonferroni adjusted p-value 8*10-13 in phase 3) 238 

and depleted of tolerant genes (highest Bonferroni adjusted p-value 3*10-9 for 239 

marketed drugs). Targets of marketed non-oncology drugs had comparable 240 

prevalence of loss-of-function tolerant and intolerant genes compared to all protein-241 

coding genes. The distributions of pLI confirmed that tissue-specific genes were more 242 

likely to become targets for non-oncology drugs.  243 

Genes with pLI >= 0.9 are more likely to be detected in genome-wide association 244 

studies (GWAS)27, and to attract attention as candidate drug targets through GWAS. 245 

We investigated whether less conserved tissue-specific genes were less frequently 246 
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found in GWAS. GWAS variants are often located in intergenic regions and can be 247 

mapped to candidate genes by proximity on the chromosome or through an 248 

association between genotype of the GWAS variant and expression of a gene (eQTL). 249 

Mapping through eQTL can highlight regulatory relationships in disease-relevant 250 

tissues28, and, consequently, is frequently used. The two types of mapping can 251 

highlight different candidate genes29,30, and require follow-up experiments to 252 

determine causal genes. Tissue-specific genes were equally likely to be detected as 253 

a nearest gene to a GWAS variant but 1.3 times less likely to be mapped from GWAS 254 

to single-tissue cis-eQTLs than all protein-coding genes (Fisher test, Bonferroni 255 

adjusted p-value 2*10-9). Interestingly, only mapping by proximity on chromosome 256 

distinguished drug targets from all protein-coding genes (Supplementary Fig. 2). 111 257 

of 392 (28.3%) of GWAS to eQTL relationships for tissue-specific genes were detected 258 

in the corresponding tissues with highest expression. These results were not 259 

surprising. Our definition of tissue-specificity allowed lower expression in other tissues. 260 

Some tissues, including kidney cortex with 48 tissue-specific genes, had no eQTL data 261 

due to insufficiently high number of samples and did not contribute to this analysis. 262 

Also, approximately a third of GWAS to eQTL relationships can only be captured using 263 

multiple tissues, while single-tissue analyses lack power to detect the associations30. 264 

Thus, tissue-specific genes were less likely to be highlighted as candidate targets if 265 

investigators relied on the GWAS to eQTL approach. 266 

In summary, underrepresentation of tissue-specific targets in early clinical trials could 267 

be attributed to their primary relevance for non-oncology diseases and translational 268 

challenges. Despite these challenges, tissue-specific genes were enriched among 269 

targets of marketed drugs. We hypothesized that tissue-specificity was related to 270 

efficacy and not only to safety.  271 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2018. ; https://doi.org/10.1101/442780doi: bioRxiv preprint 

https://doi.org/10.1101/442780
http://creativecommons.org/licenses/by/4.0/


12 
 

Tissue-specificity vs efficacy 272 

Efficacy of a drug can be viewed as a combination of properties of the drug (e.g., 273 

potency, bioavailability, selectivity etc.) and properties of its intended target(s). Here, 274 

we focus on efficacy-related properties of the targets. 275 

Prevalence of disease genes 276 

Drugs, that modulate targets with genetic evidence for a human disease, are less likely 277 

to fail in clinical trials for lack of efficacy19. Knowledge of human genetics can help to 278 

understand the biological function of the target, find target engagement biomarkers for 279 

clinical trials and estimate dose-response curves31. These factors can enhance the 280 

chances of a drug to succeed. 281 

We compared the prevalence of OMIM32 and Protein Truncating Variants escaping 282 

nonsense mediated decay (PTVesc) genes33 among tissue-specific genes and drug 283 

targets. OMIM genes have an entry in the Online Mendelian Inheritance in Man® 284 

Morbid Map data base32, are well-known disease genes and are likely to be explored 285 

in target discovery. By constrast, PTVesc genes are an emerging class of candidate 286 

genes that can cause disease by gain-of-function mechanism. PTVesc genes are 287 

significantly depleted of genetic variants, that result in mRNA that escape nonsense-288 

mediated decay and production of truncated proteins with altered function (e.g., 289 

PNPLA3 and APOL1)33. Methods for detection of PTVesc are recently developed, so 290 

PTVesc genes are unlikely to be explored to the same extend as OMIM genes. Tissue-291 

specific genes were enriched in both OMIM and PTVesc genes (Fig. 5). The outcomes 292 

of Fisher exact test for tissue-specific genes were 272 of 1,018 > 3,870 of 18,377, 293 

Bonferroni adjusted p-value 2*10-4 for OMIM genes and 159 of 1,018 > 1,913 of 294 

18,377, Bonferroni adjusted p-value 4*10-6 for PTVesc genes. As expected, drug 295 

targets for oncology and non-oncology indications across all phases of clinical 296 
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development were enriched only in OMIM genes (Fig. 5a). By contrast, the prevalence 297 

of PTVesc genes among drug targets did not significantly deviate from the overall 298 

prevalence among protein-coding genes (Fig. 5b).  299 

In total, 386 of 1,018 tissue-specific genes (37.9%) were OMIM genes or PTVesc 300 

genes or both. Thus, tissue-specific genes were more likely to provide necessary 301 

information for development of efficacious drugs through human genetics than protein-302 

coding genes overall. 303 

Network analysis 304 

The ability to spread perturbations through the cell and cause phenotypic changes is 305 

a key property of drug targets, which is reflected by topological properties in protein-306 

protein interaction (PPI) networks34. We explain the network topology properties in 307 

Supplementary Fig. 3. We recommend section 2 in35 for a detailed explanation of the 308 

relationship between network topology properties and spread of perturbations.  309 

We performed network analysis on STRING v10.536 (Supplementary Data 2) 310 

because tissue-specific proteins are well represented in this data base37. We included 311 

three gene sets with known ability to affect phenotype as controls. Distribution of 312 

network-topological properties of these genes should indicate if the PPI network 313 

accurately reflects the ability of genes to spread perturbations and cause phenotype. 314 

Essential genes cause cell death or hamper growth upon silencing in two human 315 

cancer cell lines38. These genes serve as positive control for severe phenotypes. 316 

OMIM genes cause disease and serve as positive control for less severe phenotypes. 317 

Genes with rare homozygous loss-of-function rhLOF variants in three human cohorts 318 

serve as negative no-phenotype controls (British-Pakistani, ExAC and Icelandic 319 

individuals, Suppl. Table 2 from39). The human subjects come from the general 320 

population and are assumed to be healthy, so loss of function of rhLOF genes is 321 
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assumed to be compensated. No association between presence of rhLOF genes and 322 

rate of drug prescriptions and medical consultations has been confirmed in the British-323 

Pakistani cohort39. 324 

First, we investigated the sources of supporting evidence for PPIs (Supplementary 325 

Fig. 4). Tissue-specific genes did not markedly differ from all protein-coding genes in 326 

this respect. Each PPI had a score reflecting the amount of cumulative evidence 327 

supporting existence of the interaction. Interestingly, non-oncology drug targets from 328 

phase 1 to the market tended to have more high confidence PPIs than other gene 329 

categories (a). PPIs for oncology drug targets and essential genes had more support 330 

from co-expression across multiple experiments and tissues (f) and the experimental 331 

evidence channel (g). PPIs of non-oncology drug targets tended to have more support 332 

from pathway data bases (h). We concluded that indirect (functional) interactions were 333 

important for non-oncology targets and kept both physical and functional interactions 334 

for analysis. Most PPIs were supported by published scientific literature (i). The 335 

number of reported PPIs and the number of published articles per gene were 336 

correlated (Kendall tau b = 0.31), indicating a source of bias for network topology 337 

analysis. The neighbourhood (c), fusion (d) and co-occurrence (e) channels provided 338 

support for relatively few PPIs, consistent with primary relevance of these three 339 

evidence channels for PPIs in Archaea and Bacteria36. 340 

We observed that most PPIs had low confidence scores even for drug targets (b). 341 

Mora and Donaldson demonstrated that removing low confidence interaction does not 342 

substantially improve the ability to discriminate drug targets based on their topological 343 

properties40. Hence, we analysed the complete interaction set, but directly 344 

incorporated the confidence in PPIs into the calculations and computed weighted 345 

topological properties (see Methods/Network analysis for details). The calculations 346 
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were performed on the largest connected component including 19,574 proteins and 347 

5,676,527 PPIs. The network diameter (unweighted) was 6. Topological properties of 348 

the nodes accurately reflected their ability to spread perturbations through the network 349 

(Fig. 6 and Table 1). Distributions of centrality scores among rhLOF genes did not 350 

significantly differ from the overall distributions among protein-coding genes (except 351 

for slightly lower closeness centrality scores). Drug targets, OMIM genes and essential 352 

genes had elevated centrality scores. Betweenness centrality was the only topological 353 

property that could distinguish tissue-specific genes from all protein-coding genes 354 

(Table 1). The trend was nominally significant but did not pass the correction for 355 

multiple testing. Our results were consistent with the previous study on regulatory 356 

networks, in which the Sonawane et al. applied a less stringent definition of tissue-357 

specificity and found that tissue-specific genes serve as “bottlenecks” on signaling 358 

paths41. 359 

We further investigated which tissue-specific genes had high betweenness centrality 360 

scores. The ten highest betweenness centrality scores were for genes encoding 361 

hormones (insulin INS; glucagon GCG; POMC giving rise to adrenocorticotrophin and 362 

lipotropin beta in the pituitary), other secreted proteins (albumin ALB; neuropeptide S 363 

NPS; plasminogen PLG; APOA1, a major constituent of high density lipoprotein 364 

cholesterol), rate limiting enzyme in synthesis of bile acids CYP7A1, mitochondrial 365 

enzyme FDXR and electron transporter FDX1 acting together in synthesis of steroid 366 

hormones in the adrenal glands. Enzymes and secreted proteins, that were expressed 367 

in a tissue-specific manner, had higher betweenness centrality scores than other 368 

tissue-specific genes (Supplementary Table 1). These genes may have important 369 

functional interactions and their modulation may cause effects outside of their tissue-370 

of-origin. For example, aliskiren fumarate inhibits the kidney-specific enzyme renin 371 
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REN that is part of the renin–angiotensin–aldosterone system, lowers blood pressure 372 

and mitigates manifestations of hypertension in the whole body.  373 

Historic precedents to guide future applications 374 

In total, only 100 of 1,018 (9.8%) tissue-specific genes were explored as targets of 375 

marketed or clinical trial drugs. 284 of the remaining 918 (30.9%) tissue-specific genes 376 

were classified as Tdark in the TCRD data base42, i.e., were poorly researched with 377 

unknown biological function. 529 of 918 (57.6%) showed some indication of 378 

druggability by small molecule or antibody approaches (Supplementary Fig. 5). The 379 

definition of druggability constantly expands, and targets that cannot be modulated 380 

with small molecules or antibodies may be targeted by antisense oligonucleotides or 381 

other approaches. Hence, the opportunities to identify novel drug targets among 382 

tissue-specific genes were not exhausted. In the next subsections, we review how 383 

tissue-specific genes have been used historically and highlight promising future 384 

applications. 385 

Tissue-specific drug targets 386 

Tissue-specific genes are targeted by drugs approved for diverse disease indications 387 

(Table 2). Tissue-specific genes can be targeted by small molecules (e.g., ACE - 388 

captopril), analogues of endogenous substances (AVPR1B – desmopressin acetate, 389 

an analogue of vasopressin), antibodies (TNF - etanercept) and new modalities. We 390 

and other researchers9,17 demonstrated that tissue-specific genes are enriched in 391 

OMIM genes. Hence, defective forms of tissue-specific genes causing rare monogenic 392 

diseases are potential targets for genome editing with the emerging CRISPR/Cas9 393 

technology (e.g., surfactant genes in surfactant deficiencies43, SERPINA1 in alpha-1 394 

antitrypsin deficiency44). 395 
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Historically, tissue-specific genes were predominantly targets for non-oncology 396 

diseases. However, tissue-specific genes also find applications in oncology (e.g., 397 

mitotane for endocrine therapy in inoperable adrenocortical carcinoma45) and as 398 

targets for pharmacoenhancers. These application scenarios may be expanded in the 399 

future. 400 

The pharmacoenhancer Cobicistat is administered together with antiretroviral drugs 401 

and inhibits cytochromes of CYP3A subfamily that degrade antiretroviral drugs 402 

primarily in the liver and intestines. Cobicistat helps to maintain therapeutic 403 

concentration of antiretroviral agents for a longer time whereby improving adherence 404 

to therapy in HIV patients46. Drug-metabolizing enzymes such as the liver-specific 405 

cytochromes CYP1A2, CYP2D6 and CYP2C947 may be candidate targets for other 406 

pharmcoenhancers to improve bioavailability or prolong action of the main drug.  407 

Tissue-specific genes represent potential targets for antibody-based therapies (e.g., 408 

mammary gland specific transcription factor ANKRD30A for breast cancer48). 409 

Promoters of tissue-specific genes can be used in oncolytic viral therapies to achieve 410 

specific expression of the virus in the target tissue (e.g., urothelium-specific 411 

adenovirus CG8840 with uroplakin 2 UPK2 promoter for bladder cancer49 and 412 

prostate-specific antigen KLK3 targeted adenovirus CG7870 for prostate cancer50). N-413 

acetylgalactosamine (GalNAc)-conjugated antisense oligonucleotide drugs bind to the 414 

liver-specific ASGR1 and enable targeted delivery to hepatocytes51. Similarly, tissue-415 

specific genes can be explored as targets for other targeted delivery approaches, and 416 

not only in cancer. 417 

Finally, TNF exemplifies a category of genes that dramatically change their expression 418 

in disease and become specific to inflamed or cancerous tissue (represented by EBV-419 

transformed lymphoblastoid cell line and transformed fibroblasts in GTEx). Anti-TNF 420 
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drugs like etanercept are used to treat rheumatoid arthritis, psoriatic arthritis and 421 

ankylosing spondylitis. TNF is 3.55 log2 fold (11.7 times on linear scale) higher in 422 

synovial membranes of recently diagnosed patients with psoriathic arthritis, who are 423 

naïve to anti-TNF treatment, than in healthy donors52. This example highlights the 424 

importance of extensive tissue panels including both healthy and disease tissues such 425 

as E-MTAB-373253 for target discovery in cancer and inflammatory diseases. 426 

Other applications 427 

Tissue-specifically produced secreted proteins (or the corresponding recombinant 428 

peptides, proteins and other synthetic analogs) are used as replacement therapy. The 429 

best-known examples include hormone replacement therapies (insulin in type 1 430 

diabetes, thyroid hormone in hypofunction of thyroid gland, oxytocin to induce labour, 431 

etc.) and medication containing pancreatic or gastric enzymes to aid digestion (e.g., 432 

Creon). Other replacement therapies are in development. For example, FDA recently 433 

approved the coagulation factor-albumin fusion protein Idelvion for congenital 434 

complement factor IX F9 deficiency while other complement replacement therapies 435 

are in clinical trials54. In our analysis, 268 of 918 tissue-specific genes, that were not 436 

yet explored as targets of marketed or clinical trial drugs, encoded secreted proteins, 437 

which may represent opportunities for new replacement therapies (e.g., hormones and 438 

their combinations for treatment of type 2 diabetes and obesity55, artificial saliva with 439 

recombinant lysozyme in treatment of xerostomia and Sjögren’s syndrome56). 440 

Tissue-specific genes with protein products entering the bloodstream can serve as 441 

biomarkers to monitor the state or function of a tissue. For example, KLK3, better 442 

known as prostate cancer antigen, has prostate-specific expression, enters 443 

bloodstream, displays elevated levels in prostate cancer and benign hyperplasia of the 444 

prostate and is used as a pre-screening test for prostate cancer57. Tissue-specific 445 
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biomarkers indicating tissue damage have several conceptual advantages over 446 

conventional laboratory tests including higher specificity58. For example, circulating 447 

proteins with liver-specific expression are evaluated as markers of acetaminophen 448 

induced hepatotoxicity59. Biomarkers discussed in literature tended to conform to more 449 

liberal definitions of tissue-specificity, which may be sufficiently stringent for successful 450 

development of biomarkers (e.g., RBP4, evaluated in59, satisfied constraint x = 5 in 451 

liver and had lower expression in adipose tissues and pituitary, NPPB encoding NT-452 

pro-BNP satisfied x = 4 in heart atrial appendage with high expression in some left 453 

ventricle samples). 454 

Non-coding genes 455 

We focused on protein-coding genes, but long non-coding RNA (lncRNA) also tend to 456 

be expressed in tissue- and cell-type specific manner60. We identified 2,113 long non-457 

coding RNAs (Supplementary Data 3), from which 77 were tissue-specific at x = 6 458 

and confirmed polyadenylated, i.e., reliably detected with the GTEx RNA sequencing 459 

protocol. Long non-coding RNAs have potential as drug targets61. For example, 460 

prostate-specific lncRNA PCGEM1 is candidate target in prostate cancer62. 461 

DISCUSSION 462 

We conducted a retrospective analysis of tissue-specific genes compared to drug 463 

targets in all phases of clinical development. Targets of phase 1 drugs reflect the most 464 

recent research. By contrast, targets of marketed drugs have undergone at least a 465 

decade in preclinical and clinical development and reflect older research.  466 

Theoretically, overrepresentation of tissue-specific targets on the market and 467 

depletion in phase 1 could reflect a historic shift in target selection paradigms. 468 

However, Rouillard and colleagues20 studied phase 3 drugs (projects with comparable 469 

“age”) and demonstrated that drugs modulating tissue-specific targets are more likely 470 
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to succeed in phase 3 and gain regulatory approval. Thus, the data presented in Fig. 471 

2 and Supplementary Fig. 1 do not merely represent a historic trend. We are justified 472 

to state that drugs modulating tissue-specific targets are indeed more likely to progress 473 

in the clinic. We observed that tissue-specific genes, satisfying x = 6, were 1.8 times 474 

more likely to become targets of marketed drugs and 2.3 times more likely to become 475 

targets of marketed non-oncology drugs than protein-coding genes overall. Our 476 

findings were consistent with the previous studies8,9. 477 

Success of tissue-specific genes as drug targets may be due to a complex 478 

combination of factors. Good understanding of target biology is essential for target-479 

based drug discovery. Tissue-specific genes are involved in specialized tissue 480 

functions and human diseases, in which genetic evidence can provide the necessary 481 

supporting information for development of new drugs. By contrast, broadly expressed 482 

genes may have diverging functions and protein isoforms with distinct subcellular 483 

localization in different tissues7. The biology of tissue-specific genes may be less 484 

complex to study than the biology of broadly expressed genes, which may contribute 485 

to the development of efficacious drugs. The ability to spread perturbations within and 486 

outside the tissue-of origin may be a direct contributing factor to efficacy of drugs 487 

modulating tissue-specific genes with high betweenness centrality scores, especially 488 

enzymes and genes encoding secreted proteins. Narrow expression profile decreases 489 

the probability of side effects in non-intended target tissues. Tissue-specific genes are 490 

depleted in loss-of-function intolerant genes, have average number of neighbors and 491 

are located in interactome regions with average connectivity as indicated by 492 

distributions of strength and eigenvector centrality scores. These properties indicate 493 

improved safety, as they are in sharp contrast to oncology targets, whose modulation 494 

can cause severe side effect.  495 
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Feasibility is another crucial component to the success of a drug program. Murine 496 

models are commonly used to assess toxicity and for early efficacy studies in vivo and 497 

can serve as a ‘filter’ to make stop/go decisions for a drug project. The targets of drugs 498 

from phase 1 to the market are biased towards evolutionary conserved genes. We 499 

suggest using humanized mouse models or other non-rodent species with smaller 500 

evolutionary distance to humans to overcome translational challenges and enable the 501 

development of tissue-specific genes and other less conserved biological entities like 502 

long non-coding RNAs63 as drug targets. 503 

MATERIALS AND METHODS 504 

Gene expression 505 

Gene-level RPKM values were downloaded from The Genotype-Tissue Expression 506 

Consortium30 (https://gtexportal.org/home/, release 6). The per-tissue mean RPKM for 507 

each gene was subjected to Z-transformation across tissues and then to a second Z-508 

transformation across genes to bring all Z-scores to the same scale. We identified 509 

18,377 protein-coding genes and 2,113 long non-coding RNA with HGNC approved 510 

gene symbol64. The non-alternative loci data set was obtained from the HGNC 511 

Database (www.genenames.org, 30.08.2017).  512 

Drug targets 513 

Mechanism-of-action targets of marketed and clinical trial drugs, disease indications 514 

and year of first approval for marketed drugs were extracted from ChEMBL version 515 

2365. Drugs were classified as phase 1, 2, 3 or marketed drugs based on the maximal 516 

phase they reached in clinical trials. Disease indications were mapped to Disease 517 

Ontology66. Proteins were classified as oncology or non-oncology targets based on 518 
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parent terms in Disease Ontology. If a protein was targeted by at least 1 oncology 519 

drug, it was considered an oncology target. 520 

Meta-data 521 

Example compounds with exact Ki or IC50 activity values against human proteins, 522 

measured in assays with direct interaction and the highest confidence score=9, were 523 

retrieved from ChEMBL v2365. Mapping from ENSEMBL identifiers to PDB and 524 

polyadenylation data were obtained from GENECODE consortium67 version 27. 525 

Mapping to enzyme EC numbers, Uniprot and NCBI Gene (Entrez) identifiers were 526 

extracted from the HGNC non-alternative loci data set64. Target Development Level 527 

(TDL) was retrieved from TCRD version 4.6.242. Subcellular localization and protein 528 

family information were obtained from UniProt/SwissProt68. Probabilities of being loss-529 

of-function intolerant (pLI) were retrieved from Supplementary Data of the ExAC 530 

consortium flagship publication27. Associations with Mendelian diseases were 531 

retrieved from OMIM Morbid Map32 (copyright John Hopkins University, AstraZeneca 532 

purchased license JHU agreement number A30699 and reference number C03746). 533 

We included only binary indicator variables (has/does not have an entry in the Morbid 534 

Map). Number of PubMed-indexed articles linked to each gene was retrieved from 535 

NCBI Gene69 https://www.ncbi.nlm.nih.gov/gene/ on the 02.01.2018. Human to mouse 536 

orthologs, Ka/Ks ratios and percentages of sequence identity and similarity were 537 

extracted from ENSEMBL Compara70 version 91. The lists of essential genes38, 538 

PTVesc33 and rhLOF39 genes were obtained from supplementary data of the 539 

respective publications. Biological function of the genes was described according to 540 

the NCBI Gene/RefSeq summary71 unless explicitly indicated otherwise. 541 

Network analysis 542 
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Human protein-protein interaction network was downloaded from STRING v 10.5 (file 543 

9606.protein.links.detailed.v10.5.tsv)36. Topological properties were calculated with 544 

igraph72 version 1.2.1. Weighted k-shell decomposition was computed as described 545 

in73. Combined evidence scores were used as edge weights for strength, eigenvector 546 

centrality and k-shell calculations, i.e., the overall ‘influence’ of a node was 547 

proportional to the number of its neighbors combined with confidence in its PPIs. Edge 548 

weights were taken as (1 – combined evidence score) for centrality measures based 549 

on shortest paths, i.e., shortest paths were the ‘least uncertainty paths’.  550 

Mapping from GWAS to candidate genes 551 

Genetic associations were obtained from GWAS Catalog74 (data set: all 552 

associations v1.0, access: 30.08.2017, https://www.ebi.ac.uk/gwas/). Coordinates of 553 

genetic variants (SNPs) were mapped from genome assembly GRCh38 to GRCh37 554 

by SNP identifiers (rsids) in 1000 genomes phase 375. Proxy SNPs with r2 >= 0.8 were 555 

identified within 50 kilobasepairs in the CEU population using --hap-r2-positions 556 

command with vcftools76 version 0.1.13. GWAS variants and their proxy SNPs were 557 

mapped to significant single-tissue eQTL from GTEx30 version 7. 558 

Statistical analysis 559 

We applied Fisher exact test for count data because sample sizes were small in some 560 

instances (e.g., 3 tissue-specific targets in phase 1 at x = 6) and to be consistent in 561 

other analyses. Mann-Whitney U test was used to test differences between groups for 562 

continuous variables. Wilcoxon test with explicit handling of tied values in 563 

exactRankTests77 version 0.8-29 was used to test differences in year of first approval 564 

in Fig. 3c. Tests for enrichment or depletion were one-tailed, other tests were two-565 

tailed. Bonferroni correction for multiple testing was applied as appropriate. P-values 566 
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< 0.05 were considered significant. Statistical analyses were summarized in 567 

Supplementary Information 1. Figures were generated with ggplot278 version 3.0.0, 568 

viridis79 version 0.5.1, VennDiagram80 version 1.6.20 and UpSetR81 version 1.3.3. 569 

Analyses were performed in R82 version 3.4.1. 570 

Data availability statement 571 

All data, that were generated in this study, are provided as Supplementary data sets. 572 

Annotated Z-score tables for protein-coding genes including the tissue-specific gene 573 

and drug target subsets are provided in Supplementary Data 1. Network topology 574 

properties are provided in Supplementary Data 2. Long non-coding RNAs are listed 575 

in Supplementary Data 3. Columns, that were used as input data for figures, are 576 

labelled within each supplementary data set. Summary-level data (counts and 577 

percentages) behind figures are included in the Supplementary Information 1. 578 

Source data for Fig. 4a can be retrieved directly from Ensembl Compara70 v 91. 579 

 580 
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Table 1. Betweenness centrality scores in STRING v 10.5. Betweenness centrality 831 

scores are displayed separately in tabular form due to skewed distributions. IQR 832 

stands for interquartile range. P-values are from two tailed Mann-Whitney U test 833 

between the gene categories and all protein-coding genes (marked as ‘Reference’). 834 

Group Median (IQR) Nominal p Bonferroni p 

All proteins, N=19,574 14 (0-19,548) Reference Reference 

Tissue-specific (x=6), N=1,004 32.1 (0-19,536.3) 7.3*10-3 0.088 

Essential, N=1,713 29,414.2 (40-130,570) 8.9*10-179 1.1*10-177 

OMIM, N=3,844 14,754.6 (7-59,036.2) 2.6*10-169 3.1*10-168 

rhLOF, N=107 8 (0-2,241.5) 0.2 1 

Marketed, oncology, N=211 48,734.4 (11,077.1-201,844.9) 2.0*10-46 2.4*10-45 

Marketed, non-oncology, N=477 1,331.4 (13-44,616.7) 5.5*10-23 6.6*10-22 

Phase 3, oncology, N=146 69,496.3 (12,503.2-357,208.5) 3.6*10-33 4.3*10-32 

Phase 3, non-oncology, N=266 8,921.6 (38.5-59,684.4) 2.7*10-21 3.3*10-20 

Phase 2, oncology, N=239 58,807 (595.9-375,702) 9.4*10-46 1.1*10-44 

Phase 2, non-oncology, N=315 1,996.8 (9-53,038) 2.5*10-15 3.0*10-14 

Phase 1, oncology, N=253 51,848.7 (5,140.7-222,555.3) 6.8*10-46 8.1*10-45 

Phase 1, non-oncology, N=79 19,390.9 (53.2-7,7431.6) 1.4*10-7 1.7*10-6 
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Table 2. Examples of tissue-specific (x = 6) targets of marketed drugs. 844 

Target genes (tissue with highest expression) Drug and indication 

CYP11A1, CYP11B1 (Adrenal gland) Mitotane (adrenocortical carcinoma) 

TNF (EBV-transformed lymphocytes) Etanercept (autoimmune disease) 

SLC5A2 (Kidney) Empagliflozin (type 2 diabetes) 

SLC22A6, SLC22A8 and SLC22A11 (Kidney) Probenecid (gout) 

CPS1 (Liver) Carglumic acid (hyperammonaemia) 

CYP3A7 (Liver) Cobicistat (HIV infection) 

CALCR (Hypothalamus) Calcitonin (hypercalcemia, osteoporosis) 

PNLIP (Pancreas), LIPF (Stomach) Orlistat (obesity) 

AVPR1B (Pituitary) Desmopressin acetate (diabetes Insipidus) 

CHRNA1, CHRND, CHRNG (Skeletal muscle) Atracurium besilate (myorelaxant in surgery) 

ACE (Terminal ileum) Captopril (hypertension) 

ATP4A, ATP4B (Stomach) Omeprazole (peptic ulcers) 

SLC6A3 (Substantia nigra) Armodafinil (sleep disorders) 

TSHR (Thyroid) Thyrotropin alpha (thyroid cancer) 

CSF3R (Whole blood) Filgrastim (neutropenia) 

 845 
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Fig. 1. Examples of genes satisfying the most liberal (x = 2) and the most stringent (x = 10) definitions of
tissue-specificity in pancreas. a Amino acid transporter SLC43A1 satisfies constraint x = 2 and does not satisfy
more stringent definitions. b Hormone insulin INS satisfies the most stringent definition x = 10 and consequently
satisfies all more liberal definitions x = 2 to 9. The box plots show normalized expression levels in RPKM across 53
human tissues in GTEx release 6 (https://gtexportal.org/home/).
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Fig. 2. Prevalence of tissue-specific targets increased from phase 1 to the market. Percentages of tissue-
specific genes among targets of drugs in each phase of clinical development were plotted in comparison to the
”background” distribution among all protein coding-genes (black line). Tissue-specificity was defined at nine in-
creasingly stringent constraints x = 2 to 10 as illustrated in Fig. 1.
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Fig. 3. Tissue-specific targets, satisfying constraint x = 6, represented a less frequently reused (b vs a)
and older (c) subset of targets of marketed drugs. a Reuse of all targets of marketed drugs by other drugs in
clinical trials. b Reuse of tissue-specific (x = 6) targets of marketed drugs by other drugs in clinical trials. Venn
diagrams depict the number of targets in each phase of clinical development. Overlapping areas contain genes
that are targeted by several drugs in different phases of development. c Year of regulatory approval by FDA or
another agency of the first drugs modulating non-tissue-specific targets compared to tissue-specific (x = 6) targets
of marketed drugs. For example, carglumic acid was the first marketed drug modulating CPS1 and it was approved
in 2010.
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Fig. 4. Tissue-specific genes were subject to less strong selection pressure compared to all protein-coding
genes and drug targets. a Ka/Ks ratios for human-mouse 1:1 orthologs. 1:1 ortholog refers to a human gene with
one unique counterpart in mouse as opposed to 1-to-many or many-to-many orthologs that arise from duplication
or gene fusion events. b Percentages of loss-of-function intolerant (ExAC consortium pLI ≥ 0.9) and tolerant (pLI
≤ 0.1) genes among tissue-specific genes and drug targets compared to all protein-coding genes. Discrepancies in
sample size are due to different numbers of genes mapped to the respective data sets.
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Fig. 5. Tissue-specific genes were enriched in disease genes and potential disease genes with gain-of-
function mechanism. The bars show percentages of a OMIM and b PTVesc genes in each gene category.
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Fig. 6. Centrality scores in STRING v 10.5. a Strength b Eigenvector centrality c Closeness centrality (normal-
ized) d Weighted k-shell. Discrepancies in sample size are due to different numbers of genes mapped between data
sets.
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