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Abstract

As the size of genome-wide association studies (GWAS) increases, detecting interactions among single nucleotide
polymorphisms (SNP) or genes associated to particular phenotypes is garnering more and more interest as a means
to decipher the full genetic basis of complex diseases. Systematically testing interactions is however challenging
both from a computational and from a statistical point of view, given the large number of possible interactions to
consider. In this paper we propose a framework to identify pairwise interactions with a particular target variant, using
a penalized regression approach. Narrowing the scope of interaction identification around a predetermined target
provides increased statistical power and better interpretability, as well as computational scalability. We compare our
new methods to state-of-the-art techniques for epistasis detection on simulated and real data, and demonstrate the
benefits of our framework to identify pairwise interactions in several experimental settings.

1 Introduction
The amount of data generated by genome-wide association studies (GWAS) has dramatically increased in the last few
years. More diseases are now being tackled with larger cohorts. Nevertheless, despite this tangible progress, our un-
derstanding of complex diseases is still limited. The classical approach in GWAS is the marginal testing for association
of the phenotype of interest with each single nucleotide polymorphism (SNP) while correcting for multiple hypothesis
testing. However, this fails to explain most of the phenotypic variance known to be inheritable, a phenomenon also
known as missing heritability. Epigenetics and rare variants with small to moderate effects are among the reasons
advanced to explain the limitations of GWAS1,2. In addition, high-order epistatic effects, one of the main hypotheses
behind missing heritability3, are not taken into account in marginal testing.

By constructing additive models of significant SNPs, only a small fraction of the missing heritability, as mea-
sured by narrow-sense heritability3, is explained. For instance, the explained heritability for type II diabetes stands
at 6%4. For height, an extensively-studied trait, the explained proportion is only 5%5. By revealing genetic interac-
tions, epistasis can give an insight into the complex mapping between genotype and phenotype that cannot be extracted
from marginal association testing. For instance, several epistatic mechanisms have been highlighted in the onset of
Alzheimer disease6. Most notably, the interaction between the two genes BACE1 and APOE4 was found to be signifi-
cant on four distinct datasets.

Epistasis can be defined from two different angles: biological epistasis and statistical epistasis. The definition
of statistical epistasis dates back to Fisher7 who characterizes it as the departure from additivity in a mathematical
model relating multilocus genotypes to phenotypic variation. A number of strategies deployed in the context of sta-
tistical epistasis are reviewed in Cordell8 and Niel et al.9. The strategies can be partitioned into two main categories:
gene-gene interactions and SNP-SNP interactions. Approaching epistasis from the angle of gene-gene interactions is
consistent with the definition of biological epistasis10 as biomolecular or protein-protein interactions. Aggregator11
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and EigenEpistasis12 are examples of tools with gene-gene interaction statistics as final output. In particular, Ag-
gregator combines SNP-SNP interaction statistics to construct gene-level statistics. Exhaustive SNP-SNP interaction
testing is still the most popular approach. It requires to correct for multiple testing using procedures such as Bonferroni
correction13 or the Benjamini-Hochberg procedure14. The latter is an example of false-discovery rate (FDR) proce-
dures which are less stringent than family-wise error rate (FWER) procedures. The Bonferroni correction is a typical
FWER controlling approach. For all procedures, the correction comes at the cost of poor statistical power15. For
second-order interactions, billions of pairs of SNP must be tested, which impacts the statistical power. The decrease
in statistical power is even greater for higher-order interactions. Moreover, exhaustive testing beyond second-order
interactions is still unfeasible in reasonable time16. For increased speed, the current state-of-the-art BOOST17 and its
GPU-derivative18 add a preliminary screening stage that ensures the survival of significant interactions. Another fast
interaction search algorithm in the high-dimensional setting is the xyz-algorithm19, where the interaction problem is
considered from a different perspective. Instead of assessing the dependency between the product of two variables and
an outcome, the pair of interest is a first variable and the Hadamard product of the outcome and a second variable. To
reduce the computational overhead, the pair is projected on a set of random vectors. On the LURIC20 GWAS dataset,
the xyz algorithm tested more than 1011 interactions while being about as fast as a two-stage LASSO21.

In addition to exhaustive statistical testing, one can also fit exhaustive regression models with linear (“marginal”)
effect terms and quadratic “interaction” terms. For a better inference of the interactions, Bien et al.22 introduced
hierNET, a LASSO with hierarchy constraints between univariate and bivariate terms. When the truth is hierarchical,
hierNET outperforms exhaustive regression models. Though the hierarchy constraint is plausible for many applications,
it severely limits the scalability of the method to highly-dimensional problems particularly GWAS. The scope of the
current release of hierNET22 is only hundreds of predictors.

By contrast, instead of constructing exhaustive models, we focus on expanding knowledge around predetermined
loci, which we refer to as “targets” in what follows. Such targets can be drawn from the literature, experiments or top
hits in previous GWAS. Exhaustive genome-scale models with all pairwise terms are often computationally intensive
and suffer from low statistical power. The leverage of formerly identified SNPs is then a sensible option. A lower
number of interactions has to be studied with the additional guarantee that the target affects the phenotype in question.
Nonetheless, a similar partial study should account for other effects of both the target and the rest of the genotype not
owed to their interaction. A failure to address this issue can bias the results. In the epistasis literature, methods with
such properties are lacking. In clinical trials, similar problems are encountered where the goal is to infer the treatment
response variation uniquely due to the interaction between the treatment assignment and the clinical covariates. Devel-
oped specifically for this reason, propensity score23 techniques are a common approach to achieve that. We therefore
draw on those models to propose a family of model selection methods that robustly infer second-order interactions
with a fixed SNP, through the formulation of different L1-penalized regression problems. Given the high-dimensional
setting, sparsity-aware methods like LASSO are well suited for model selection in genomic applications. The first
category of methods developed in this work are regression approaches where the outcome combines the phenotype,
the target and propensity-like quantities. The candidate SNPs are used as covariates. We also present a weighted bi-
nary classification approach. The outcome is the target, while the phenotype is included in the sample weights with
the propensity score. A by-product of our work is a new framework to estimate conditional probabilities within the
genome using the semi-parametric representation of the chromosomes developed for fastPHASE24.

In the statistical literature, the selection of causal variants is a support recovery problem. For parameterized models
like the LASSO, stability selection25 is an attractive option as a model selection procedure. It aggregates the empirical
selection probabilities for each variable along the LASSO path while controlling for the family-wise error rate. The
original feature importance criterion in stability selection is the maximal selection probability along the stability path.
In our work, we use as a criterion the area under the stability path because it better accounts for the early stages of the
stability path.

In this paper, we propose a new framework to study epistasis by only focusing on the synergies with a predetermined
target. By proceeding this way, the methods developed in this work improve the recovery of interacting SNPs compared
to standard methods like GBOOST or LASSO with interaction terms. We evaluate the performances of our methods
against two baseline models on simulated GWAS for several types of disease models. We also conduct a case study
on a real GWAS dataset for type II diabetes to demonstrate the scalability of our methods and to investigate the result
differences between them.
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2 Material and Methods

2.1 Setting and notations
We model genotypes and phenotypes as a triplet of random variables (X,A, Y ), where Y is a discrete (e.g., in case-
control studies) or continuous phenotype, X = (X1, · · · , Xp) ∈ {0, 1, 2}p represents a genotype with p SNPs, and
A is a (p + 1)-th target SNP of interest. The reason why we split the p + 1 SNPs into X and A is that our goal is to
detect interactions involving A and other SNPs in X . We restrict ourselves to a binary encoding of A in {−1,+1},
which allows us for example to study both recessive and dominant phenotypes, depending on how we binarize the
SNP represented in A. We also introduce a version of the binarized target SNP taking values in {0, 1} by letting
Ã = (A+ 1)/2.

The target SNP A being binary, it is always possible to decompose the genotype-phenotype relationship as

Y = µ(X) + δ(X) ·A+ ε, (1)

where ε is a zero mean random variable and
µ(X) =

1

2
[E(Y |A = +1, X) + E(Y |A = −1, X)] ,

δ(X) =
1

2
[E(Y |A = +1, X)− E(Y |A = −1, X)] .

(2)

With these notations, we see from (1) that the term δ(X) · A represents the marginal effect of A as well as synergistic
effects between A and all SNPs in X . In the context of genomic data, we can interpret these synergies as pure epistatic
effects. Furthermore, if δ(X) is sparse in the sense that it only depends on a subset of elements ofX (which we call the
support of δ), then the SNPs in the support of δ are the ones interacting with A. In other words, searching for epistasis
between A and SNPs in X amounts to searching for the support of δ.

A GWAS dataset is a set of genotype-phenotype triplets (Xi, Ai, Yi)i=1,...,n, which we model as independently and
identically distributed according to the law of (X,A, Y ). To estimate the support of δ from GWAS data, we propose
below several models based on sparse regression and classification. The common thread between them is the use of
propensity scores, which model the linkage disequilibrium (LD) dependency between the target SNP A and the rest of
the genotype X . Mathematically, the propensity score π(A|X) corresponds to the conditional probability of A given
X . The balancing through the propensity scores filters out the common effects of the SNPs within X to only retain
the synergistic effects with the target A. The first family of methods we propose all fall under the modified outcome
banner. In these models, an outcome that combines the phenotype Y with the target SNP A and the propensity score
π(A|X) is fitted linearly to the genomic covariates X . We propose several variants of this approach, based on several
normalizations of π(A|X) to control for estimation errors. Our second proposition is a case-only method based on the
framework of outcome weighted learning (OWL) developed by Zhao et al.26. In this model, which is a weighted linear
regression, the outcome is the target SNP A, and the covariates are the rest of the genotype X . The phenotype and the
propensity score π(A|X) are incorporated in the sample weights Y/π(A|X). The following subsections (Sections 2.2
and 2.3) elaborate on those methods. Section 2.4 details our approach for the estimate of the propensity score π(A|X).
Finally, Section 2.5 explains how we perform model selection through stability selection.

If not stated otherwise, the full data pipeline is written in the R language. A comprehensive package covering the
methods presented in this paper will soon be made available on Bioconductor27.

2.2 Modified outcome regression
For a given sample, only one of the two possibilities A = +1 or A = −1 is observed, making the direct estimation of
δ(X) using (2) impossible from empirical GWAS data. The propensity score π(A|X) comes into play to circumvent
this problem. By considering Ã = (A+ 1)/2 ∈ {0, 1}, we can indeed rewrite (2) as:

δ(X) =
1

2
E

[
Y

(
Ã

π(Ã = 1|X)
− 1− Ã
π(Ã = 0|X)

)∣∣∣∣∣X
]
.

Given an estimate of π(Ã|X), we define the modified outcome Ỹ of an observation (X,A, Y ) as:

Ỹ = Y

(
Ã

π(Ã = 1|X)
− 1− Ã
π(Ã = 0|X)

)
, (3)
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and re-express simply

δ(X) =
1

2
E
[
Ỹ |X

]
. (4)

We note that our definition of modified outcome (3) generalizes that of Tian et al.28 where it is defined as Ỹ = Y Ã;
both definitions are equivalent in the specific situation considered by Tian et al.28 where A and X are independent, i.e.,
P (Ã = 1|X) = P (Ã = 1), and furthermore P (Ã = 1) = 1/2. Our definition (3) is valid when A and X are not
independent.

Given (4), we can estimate the support of δ from GWAS data by first transforming them into genotype - modified
outcome pairs (Xi, Ỹi)i=1,...,n, and then applying a model for support recovery in sparse regression of Ỹ given X . For
that purpose we implement a stability selection procedure explained below.

Furthermore, we propose several alternative definitions of Ỹ , which improve numerical stability and large-sample
variance by controlling for the inverse of the propensity score π(A|X). A first alternative, which we call normalized
modified outcome, separately normalizes the inverses of the propensity scores of cases and controls. It is consistent
and was found in empirical studies to have a lower variance than the original modified outcome estimator29:

Ỹi
n

=

(
n∑
i=1

Ãi

π(Ãi = 1|Xi)

)−1
YiÃi

π(Ãi = 1|Xi)
−

(
n∑
i=1

1− Ãi
π(Ãi = 0|Xi)

)−1
Yi(1− Ãi)
π(Ãi = 0|Xi)

.

However, both estimators may suffer from numerical instability because of the inverse of the propensity score
weighting. If the conditional probabilities π̂(Ai = 0|Xi) or π̂(Ai = 1|Xi) are small, the weight attributed to the
sample (i) can be very large relatively to other samples. The use of the inverse of the propensity scores is well-studied
in the statistical literature29,30. A second alternative definition of Ỹ , which we call shifted modified outcome, simply
consists in the addition of a small term ξ = 0.1 to obtain an upper-bound on the inverse of the propensity scores:

Ỹi = Yi

(
Ãi

π(Ãi = 1|Xi) + ξ
− 1− Ãi
π(Ãi = 0|Xi) + ξ

)
.

The last approach within this category, that we call robust modified outcome, is rather similar to modified outcome
and normalized modified outcome. In fact, all three of them are solutions to the following system of equations:

∑n
i=1

Ãi(Yi−µ1))

π(Ãi=1|X)
+ η1

Ãi−π(Ãi=1|X)

π(Ãi=1|X)
= 0∑n

i=1
(1−Ãi)(Yi−µ0)

1−π(Ãi=1|X)
− η0

Ãi−π(Ãi=1|X)

1−π(Ãi=1|X)
= 0

,

where µ1 = E
[
E
[
Y (1)|X

]]
and µ0 = E

[
E
[
Y (0)|X

]]
.

For all (η0, η1), µ̂1 − µ̂0 =
∑n
i=1 Ỹi/n is a consistent estimator for the average risk difference E [δ(X)]. Modified

outcome corresponds to the case (η0, η1) = (µ0, µ1). (η0, η1) = (0, 0) yields the second estimator, normalized modi-
fied outcome. Robust modified outcome is the solution to the above system with the smallest large-sample variance:

Ỹi
n

=

[
n∑
i=1

Ãi

π(Ãi = 1|Xi)

(
1− C1

π(Ãi = 1|Xi)

)]−1(
1− C1

π(Ãi = 1|Xi)

)
ÃiYi

π(Ãi = 1|Xi)

−

[
n∑
i=1

1− Ãi
π(Ãi = 0|Xi)

(
1− C0

π(Ãi = 0|Xi)

)]−1(
1− C0

π(Ãi = 0|Xi)

)
(1− Ãi)Yi
π(Ãi = 0|Xi)

,

where, 
C1 =

∑n
i=1((Ãi−π(Ãi=1|Xi))/π(Ãi=1|Xi))∑n
i=1((Ãi−π(Ãi=1|Xi))/π(Ãi=1|Xi))

2

C0 = −
∑n

i=1((Ãi−π(Ãi=1|Xi))/π(Ãi=0|Xi))∑n
i=1((Ãi−π(Ãi=1|Xi))/π(Ãi=0|Xi))

2

.

We can derive the expression of Robust modified outcome by using empirical estimates of η∗0 and η∗1 , the minimizers
of the large-sample variance of µ̂0 and µ̂1, respectively. For more details, we refer the reader to Lunceford and
Davidian29.
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2.3 Outcome weighted learning
Inspired by the OWL model of Zhao et al.26 in the context of randomized clinical trials, we now propose a second
formulation as a weighted binary classification problem to estimate δ(X) and its support. Like OWL, this formulation
amounts mathematically to predict A from X , where errors are penalized more or less depending on Y . We assume in
this section that Y takes only nonnegative values, e.g., Y ∈ {0, 1} for a case-control study. To take into account the
dependency between A and X , we extend the OWL definition and consider the following function:

d∗ ∈ argmin
d:{0,1,2}p→R

E
[

Y

π(A|X)
φ (Ad(X))

]
, (5)

where φ is a non-increasing loss function such as the logistic loss:

∀u ∈ R , φ(u) = log
(
1 + e−u

)
. (6)

The reason to consider this formulation is that:

Lemma 1. The solution d∗ to (5)-(6) is:

∀x ∈ {0, 1, 2}p , d∗(x) = ln
E [Y |A = +1, X = x]

E [Y |A = −1, X = x]
.

Proof. For any x ∈ {0, 1, 2}p we see from (5) that d∗(x) must minimize the function l : R→ R defined by

∀u ∈ R , l(u) = E
[

Y

π(A|X = x)
φ (Au) |X = x

]
= φ(u)E [Y |A = 1, X = x] + φ(−u)E [Y |A = −1, X = x]

which is minimized when l′(u) = 0, i.e.,

E [Y |A = 1, X = x]

E [Y |A = −1, X = x]
=
φ′(−u)

φ′(u)
= eu .

Lemma 1 clarifies how d∗ is related to δ: while δ is the difference of the expected phenotype conditioned to the
two alternative values of A, d∗ is the log-ratio of the same two quantities. In particular both functions have the same
sign for any genotype X . Hence we propose to estimate d∗ and its support, as an approximation and alternative to
estimating δ and its support, in order to capture epistatic phenomena with A.

For a given sample (X,A, Y ) if we define the weight W = Y/π(A|X), we can interpret d∗ in (5) as a logistic
regression classifier that predicts A from X , with errors weighted by W . Hence d∗ and its support can be estimated
from GWAS data by standard tools for weighted logistic regression and support estimation; we implement a stability
selection procedure combined with elastic net regularized logistic regression, explained below.

In the case of qualitative GWAS studies, we encode Y as 0 for controls and 1 for cases. The regression weights
W of controls thus become 0, resulting in a case-only approach for epistasis detection. Tools such as PLINK31

and INTERSNP32 implement optional case-only analyses, which can be more powerful in practice than a joint case-
control analysis8,33,34,35. In the case of PLINK and INTERSNP, additional hypotheses such as the independence of
gene-gene frequencies are needed to ensure the validity of the statistical test. In our case, the family of weights
{Wi = 1/π(Ai|Xi)}i=1,··· ,n corrects for the dependency between the target A and the genotype X . We can therefore
forego such hypotheses on the data. We may even argue that the controls are indirectly included in the regression model
through π(A|X). It represents the dependency pattern within the general population, and not only within cases.

2.4 Estimate of the propensity score
As mentioned above, the propensity score π(A|X) is recurrent in clinical trials. In such a context, A is the treatment
assignment andX are the clinical covariates. The outcome for clinical trials is the treatment response. We are interested
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in the interaction between the treatment and the covariates to understand the main drivers for treatment response.
Practitioners often opt for a parametric model for the propensity score π(A|X) e.g. a regression model:

logit (π(A = 1|X)) = γTX.

It is common practice to include a number of higher-order terms to model the interaction between the clinical covariates
withinX . The included variables are preferably either causal (related to the response) or confounding variables (related
to both the response and the treatment assignment).

For single-nucleotide polymorphisms, a similar logistic regression model is also possible to model the structural
dependence between the target of interest A and the rest of the genotype X . Because of the ultra high-dimensional set-
ting and the linkage disequilibrium along the chromosomes, we opt instead for a more structure-aware model, namely
a hidden Markov model24. The hidden states represent contiguous clusters of phased haplotypes. The emission states
correspond to SNPs. Several authors24,36,37,38 advocate this model as a more flexible representation than haploblocks39.
Our selection of this model was also motivated by the heavy skewness of the estimated propensity score distributions
towards 0 and 1 due to the severe overfitting of regression models. In Appendix A, we provide a full characterization
of this model.

The hidden Markov model representation of the genome was developed to perform imputation, and has essentially
remained confined to that application. For example, the fastPHASE software24 based on this model leads to near-
perfect imputation results, with error rates typically lower than 0.01. Among other applications, this representation
has been used to construct knockoff copies of SNPs40 to control the false discovery rate in GWAS41. The estimate of
the propensity scores π(A|X) is a new application of this representation in the context of genome-wide association
studies.

Since the structural dependence is chromosome-wise, we only retain the SNPs located on the same chromosome as
the SNP A, which we denote here by XA. Mathematically, this is equivalent to the independence of the SNPs A and
XA from the SNPs of other chromosomes.

The pathological cases π(A|XA) ≈ 1 and π(A|XA) ≈ 0 can be avoided by the removal of all SNPs within a certain
distance of A. In our implementation, we first performed an adjacency-constrained hierarchical clustering of the SNPs
located on the chromosome of the target A. We fixed the maximum correlation threshold at 0.5. To alleviate strong
linkage disequilibrium, we then discarded the SNPs within a three-cluster window of SNP A. Such filtering is sensible
since we are looking for biological interactions between functionally-distinct regions. The neighboring SNPs are not
only removed for the estimation of the propensity score, but also in the regression models searching for interactions.
Other alternatives do exist to control the tails of the conditional distribution π̂(A|X). A straightforward approach is to
trim the upper and lower percentiles (often the 1st and 99th percentiles)42,43.

After fitting the unphased genotype model using fastPHASE, the last remaining step is the application of the
forward algorithm44 to obtain an estimate of the two potential observations (A = 1, XA) and (A = −1, XA). The
Bayes theorem yields the desired propensity scores π(A|XA) = π(A|X).

2.5 Support estimation
In order to estimate the support of δ in the case of modified outcome regression (4), and of d∗ in the case of OWL (5),
we model both functions as linear models and estimate non-zero coefficients by elastic net regression45 combined with
stability selection25.

More precisely, given a GWAS cohort (Xi, Ai, Yi)i=1,...,n, we first define empirical risks for a candidate linear
model x 7→ γ>x for δ and d∗ as respectively

R1(γ) =
1

n

n∑
i=1

(
Ỹi − γ>Xi

)2

, R2(γ) =
1

n

n∑
i=1

Yi
π(Ai|Xi)

φ(Aiγ
>Xi) .

For a given regularization parameter λ > 0 and empirical risk R = R1 or R = R2, we then define the elastic net
estimator:

γ̂λ ∈ argmin
γ

R(γ) + λ
[
s||γ||1 + (1− s)||γ||22/2

]
,

where we fix s = 10−6 to give greater importance to the L1-penalization. Over a grid of values Λ for the penalization
parameter λ, we subsampleN = 50 times without replacement the whole cohort. The size of the generated subsamples
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I1, · · · , IN is bn/2c. Each subsample I provides a different support for γ̂λ, which we note Ŝλ(I). For λ ∈ Λ, the
empirical frequency of the variable Xk entering the support is then given by:

ω̂λk =
1

N

N∑
j=1

1(k ∈ Ŝλ(Ij)).

In the original stability selection procedure25, the decision rule for including the variable k in the final model is
max
λ∈Λ

ω̂λk ≥ t. The parameter t is a predefined threshold. For noisy high-dimensional data, the maximal empirical

frequency along the stability path max
λ∈Λ

ω̂λk may not be sufficiently robust. In line with the results of Haury et al.46,

we found that the area under the stability path
∫
λ
ω̂λK dλ is a better criterion for model selection. The main intuition

behind the better performance is the early entry of causal variables into the LASSO path.
Finally, to determine the grid Λ, we make use of the R package glmnet47. We generate a log-scaled grid of 200

values (λl)l=1,··· ,200 between λ1 = λmax and λ200 = λmax/100, where λmax is the maximum λ leading to a non-zero
model. To improve the inference, we only retain the first half of the path comprised between λ1 and λ100. The benefit
of a thresholded regularization path is to discard a large number of irrelevant covariates that enter the support for low
values of λ.

3 Results

3.1 Simulations
Disease model

We simulate phenotypes using a logit model with the following structure:

logit(P (Y = 1|Ã = i,X)) = βTi,VXV + βTWXW +XT
Z1

diag (βZ1,Z2)XZ2 ,

where V,W,Z1 and Z2 are random subsets of {1, · · · , p}. The variables within the vector XV interact with A. In
the disease model, we also included two other sets of variables XW and (XZ1 , XZ2). The variable XW corresponds
to marginal effects while the two other variables XZ1

and XZ2
correspond to quadratic effects. The effect sizes

β0,V , β1,V , βW and βZ1,Z2
are sampled from N (0, 1). Given the symmetry around 0 of the effect size distributions,

the simulated cohorts are approximately equally balanced between cases and controls.
To account for the diversity of effect types in disease models, we simulate four scenarios with different overlap

configurations between XV and (XW , XZ1). For each of the scenarios detailed below, we conducted 125 simulations:
5 sets of causal SNPs {A, V,W,Z1, Z2} × 5 sets of size effects {β0,V , β1,V , βW , βZ1,Z2} × 5 replicates.

• Synergistic only effects, |V ∩W | = 0, |V ∩ Z1| = 0, |V | = |W | = |Z1| = |Z2| = 8;

• Partial overlap between synergistic and marginal effects, |V ∩W | = 4, |V ∩ Z1| = 0, |V | = |W | = |Z1| =
|Z2| = 8;

• Partial overlap between synergistic and quadratic effects, |V ∩W | = 0, |V ∩ Z1| = 4, |V | = |W | = |Z1| =
|Z2| = 8;

• Partial overlap between synergistic and quadratic/marginal effects, |V ∩W | = 2, |V ∩ Z1| = 2, |V | = |W | =
|Z1| = |Z2| = 8.

Because of the filtering window around the SNP A, the causal SNPs (XV , XW , Z1, Z2) were sampled outside
of that window. The second constraint on the causal SNPs is a lower bound on the minor allele frequencies (MAF).
We fixed that bound at 0.2. The goal is to obtain well-balanced marginal distributions for the different variants. For
rare variants, it is difficult to untangle the statistical power of any method from the inherent difficulty in detecting
them. The lower bound is also coherent with the common disease-common variant hypothesis48: the main drivers of
complex/common diseases are common SNPs.
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Genotype simulations

We simulated genotypes using the second release of HAPGEN49. The underlying model for HAPGEN is the same
hidden Markov model described in Appendix A. The starting point is a reference set of population haplotypes. The
accompanying haplotypes dataset is the 1000 Genomes phase 3 reference haplotypes50. In our simulations, we only
use the European population samples. The second input to HAPGEN is a fine scale recombination map. Consequently,
the simulated haplotypes/genotypes exhibit the same linkage disequilibrium structure as the original data.

In comparison to the HAPGEN-generated haplotypes, the final markers density for SNP arrays is significantly
reduced. For example, the sequencing technology for the WTCCC case-control consortium51 is the Affymetrix 500K.
As its name suggests, “only” five hundred thousand positions are genotyped. As most GWAS are based on SNP array
data, we only extract from the simulated genotypes the markers of the Affymetrix 500K. In the subsequent QC step, we
only retain common bi-allelic SNPs defined by a MAF> 0.01. We also remove SNPs that are not in a Hardy-Weinberg
equilibrium

(
p < 10−6

)
.

For iterative simulations, HAPGEN can be time-consuming, notably for large cohorts consisting of thousands of
samples. Instead, we proceed in the following way: we generate once and for all a large dataset of 20 thousand samples
on the 22nd chromosome. To benchmark for varying sample sizes n ∈ {500, 1000, 2000, 5 000}, we iteratively sample
uniformly and without replacement n-times the population of 20 000 individuals to create 125 case-control cohorts.
On the 22nd chromosome, we then select p = 5 000 SNPs located between the nucleotide positions 16 061 016 and
49 449 618. We do not conduct any posterior pruning to avoid filtering out the true causal SNPs.

Evaluation

We benchmark our new methods against two baselines. The first method is GBOOST17, a state-of-the-art method
for epistasis detection. For all SNP pairs, it implements the log-likelihood ratio test statistic to compare the goodness
of fit of two models: the full logistic regression model with main effect terms and interaction terms, and the logistic
regression model with main effects only. The preliminary sure screening step to discard a number of SNPs from
exhaustive pairwise testing was omitted, since we are only interested in the GBOOST score for the pairs of the form
(A,Xk), where Xk is the k-th SNP. The second method, which we refer to as product LASSO, originates from the
machine learning community. It was developed by Tian et al.28 to estimate interactions between a treatment and a
large number of covariates. It fits an L1-penalized logistic regression model with A × X as covariates. The variable
of interest A is symmetrically encoded as {−1,+1}. Under general assumptions, Tian et al.28 show how this model
works as a good approximation to the optimal decision rule d∗ (see Section 2.3).

We visualize the results of our methods in terms of receiver-operating characteristic (ROC) curves and precision-
recall (PR) curves. The ROC and PR curves are derived from the stability paths. For each SNP, the score is the area
under its corresponding stability path. For ROC/PR curves, no normalization is needed to bring the scores into the [0, 1]
range. The labels are 1 for the SNPs interacting with the target A, and 0 otherwise. The covariates and the outcome
differ between our methods. That implies a different regularization path for each method and as a result, incomparable
stability paths. For better interpretability and comparability between the methods, we use the position l on the stability
path grid Λ = (λl) s.t. λl > λl+1 instead of the value of λl for computing the area under the curve.

In Figure 1, we provide the ROC and PR curves for the fourth scenario which corresponds to a partial overlap
between synergistic and quadratic/marginal effects and for a sample size n = 500. Because of space constraints, all
ROC/PR figures and corresponding AUC tables are listed in Appendix B. The figures represent the average ROC and
PR curves of the 125 simulations in each of the four scenarios. To generate those figures, we used the R package
precrec52. It performs nonlinear interpolation in the PR space. The AUCs were computed with same package.

Regardless of the scenario and the sample size, the areas under all ROC curves are higher than 0.5. That confirms
that all of them perform better than random, yet with varying degrees of success. By contrast, the overall areas under
the precision-recall curves are low. The maximum area under the precision-recall curve is 0.41, attained by Modified
Outcome with shifted weights for n = p. This can be attributed to the imbalanced nature of the problem: 8 synergistic
SNPs out of 5 000. For both ROC and PR, we do also observe increasing AUCs with the cohort size.

The best performing methods are robust modified outcome and GBOOST. Robust modified outcome has a slight
lead in terms of ROC AUCs, notably for low sample sizes. The latter setup is the closest to our intended application
in genome-wide association studies. Of special interest to us in the ROC space is the bottom-left area. It reflects
the retrieval performance for highly-ranked instances. For all scenarios, we witness a better start for robust modified
outcome. The other methods within the modified outcome family behave similarly. Such a result was expected because
of their theoretical similarities. Despite the model misspecification, product LASSO performs rather well. On average,
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Figure 1: Average ROC (left) and PR (right) curves for the fourth scenario and n = 500

it comes third to GBOOST and robust modified outcome. The outcome weighted learning approach which is an
approximation to estimating δ has consistently been the worst performer in the ROC space.

In PR space, the results are more mixed. For low sample sizes, robust modified outcome is still the best performing
method. As the sample size increases, we observe that other methods within the modified outcome family, notably
shifted modified outcome, surpass the robust modified outcome approach. Surprisingly, the good performance of
GBOOST in ROC space was not reproduced in PR space. This might be explained by the highly imbalanced nature
of the problem and the lower performance of GBOOST, compared to robust modified outcome in the high specificity
region of the ROC curves (lower left). By contrast, product LASSO is always trailing the best performer of the modified
outcome family. As for ROC curves, we are also interested in the beginning of the PR curves. For a recall rate of 0.125,
the highest precision rate is near 0.5 for the first, third and fourth scenario. That implies that we detect on average one
causal SNP in the first two SNPs. For the second scenario, the highest precision rate is even higher at approximately
0.68. The area under the stability path is then a robust score for model selection in the high dimensional setting.

It is worth noting the homogeneous behavior of the different methods across the four scenarios. For a given sample
size, and for a given method, the ROC and PR AUCs are similar. This suggests they all successfully filtered out the
common effects term µ(X) even in presence of an overlap between the causal SNPs within µ(X) and δ(X).

3.2 Case study : type II diabetes dataset of the WTCCC
As a case study, we selected the type II diabetes dataset of the WTCCC51 to illustrate the scalability of our methods to
real datasets. To the best of our knowledge, no confirmed epistatic interactions exist for type II diabetes. We propose
instead to study the synergies with a particular target: rs41475248 on chromosome 8. The first criterion to our choice is
the presence of a significant epistatic effect. For that purpose, we initially ran GBOOST. SNP rs41475248 is involved
in 3 epistatic interactions, when controlling for a false discovery rate of 0.05. The second criterion is being a common
variant. The MAF of the selected target is 0.45.

Before running our methods on the WTCCC dataset, we applied the same QC procedures with the following
thresholds: 0.01 for minor-allele frequencies and p > 10−6 for the Hardy-Weinberg equilibrium. The number of
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remaining variants is 354 439 SNPs. The number of samples is 4 897, split between 1 953 cases and 2 944 controls.
To solve the different L1-penalized regressions, we abandoned glmnet in favor of another solver, biglasso53. glm-

net does not accept as input such ultra-high dimensional design matrices. On the other hand, biglasso was specifically
developed for similar settings thanks to its multi-threaded implementation and utilization of memory-mapped files. Be-
cause biglasso does not implement sample weighting, it cannot be used to run outcome weighted learning. Moreover,
this approach performed worse than the modified outcome approaches on simulated data, and we therefore excluded it
from this case study.

GBOOST Modified
outcome

Normalized
modified
outcome

Shifted
modified
outcome

Robust
modified
outcome

Product
LASSO

GBOOST 1.000 0.200 0.203 0.202 0.070 0.152
Modified outcome 0.200 1.000 0.411 0.405 0.150 0.283

Normalized
modified outcome

0.203 0.411 1.000 0.406 0.153 0.284

Shifted modified
outcome

0.202 0.405 0.406 1.000 0.179 0.301

Robust modified
outcome

0.070 0.150 0.153 0.179 1.000 0.257

Product LASSO 0.152 0.283 0.284 0.301 0.257 1.000

Table 1: Concordance between methods used to determine SNPs synergistic to rs41475248 in type II diabetes, mea-
sured by Kendall’s tau.

The main difficulty for the evaluation of GWAS methods is the biological validation of the study results. We often
lack evidence to correctly label each SNP as being involved or not in an epistatic interaction. Evaluating the model
selection performance of the different methods on real datasets is then impossible. However, we can study the concor-
dance between them. A common way to proceed is Kendall’s tau which is a measure of rank correlation. In Table 1,
we give the correlation matrix of our methods and the two baselines of Section 3.1. All elements are positive which
indicates a relative agreement between the methods. Modified outcome, normalized modified outcome and shifted
modified outcome have the highest correlation coefficients. Such a result was expected because of their theoretical
similarities. We also note that the lowest score is for robust modified outcome and GBOOST. In the previous section,
these two methods were the best performing. This suggests those two methods can make different true discoveries.

In any follow-up work, we will only exploit the highly-ranked variants. A weighted tau statistic that assigns a higher
weight to the first instances is therefore more relevant. Weighted nonnegative tau statistics better assess the relative
level of concordance between different pairs of methods, while the sign in Kendall’s tau shows if two methods rather
agree or disagree. In Table 2, we list Kendall’s tau coefficients with multiplicative hyperbolic weighting. Similarly, we
notice that robust modified outcome is least correlated with GBOOST and most correlated with product LASSO.

Aside from rank correlation, another option to appraise the results is to measure the association between the top
SNPs for each method and the phenotype. Table 3 lists the Cochran-Armitage test p-values for the top 25 SNPs for
each method in an increasing order. Though synthetic univariate measures, the Cochran-Armitage statistics give us an
indication of the true ranking performance. Robust modified outcome is clearly the method with the lowest p-values.
For instance, the top 14 SNPs have a p-value lower than 0.001. That confirms the result of our simulations that robust
modified outcome is the best performer for capturing causal SNPs. The p-values associated to product LASSO and
GBOOST are also relatively low, with respectively 5 and 4 p-values lower than 0.001. However, we note the overall
difficulty in drawing clear conclusions for all methods. Without multiple testing correction, most of the p-values for
each method already exceed classical significance levels e.g. 0.05. For 3 out of 6 methods, the p-values of the 25th

SNP are greater than 0.90. Nonetheless, the existence of such high p-values further demonstrates the capacity of our
methods in discovering novel associations undetected by univariate methods.
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GBOOST Modified
outcome

Normalized
modified
outcome

Shifted
modified
outcome

Robust
modified
outcome

Product
LASSO

GBOOST 1.000 0.483 0.481 0.517 0.423 0.501
Modified outcome 0.483 1.000 0.851 0.857 0.462 0.586

Normalized
modified outcome

0.481 0.851 1.000 0.860 0.467 0.594

Shifted modified
outcome

0.517 0.857 0.860 1.000 0.504 0.603

Robust modified
outcome

0.423 0.462 0.467 0.504 1.000 0.596

Product LASSO 0.501 0.586 0.594 0.603 0.596 1.000

Table 2: Concordance between methods used to determine SNPs synergistic to rs41475248 in type II diabetes, mea-
sured by Kendall’s tau with multiplicative weights.

GBOOST Modified
outcome

Normalized
modified
outcome

Shifted
modified
outcome

Robust
modified
outcome

Product
LASSO

0.0000047 0.0000000 0.0000000 0.0000000 0.0000000 0.0000047
0.0002632 0.0000015 0.0000015 0.0000015 0.0000000 0.0000075
0.0002667 0.0002667 0.0002667 0.0002667 0.0000001 0.0000172
0.0006166 0.0027308 0.0027308 0.0027308 0.0000012 0.0002667
0.0015069 0.0093734 0.0093734 0.0093734 0.0000049 0.0005286
0.0028872 0.0633055 0.0633055 0.0633055 0.0000059 0.0110392
0.0031533 0.0724198 0.0724198 0.0724198 0.0000075 0.0122543
0.0034323 0.0925877 0.0925877 0.0771170 0.0000172 0.0152912
0.0081128 0.1126164 0.1043632 0.0925877 0.0002030 0.0346055
0.0093734 0.1272777 0.1126164 0.1126164 0.0002667 0.0347964
0.0142695 0.2552284 0.1567974 0.1272777 0.0003047 0.0396448
0.0633055 0.2926915 0.2971396 0.1639805 0.0004643 0.0396932
0.0771170 0.3436741 0.3529366 0.2971396 0.0005286 0.0527104
0.1616393 0.3529366 0.5012038 0.3529366 0.0005841 0.0633055
0.2089538 0.5871432 0.5506690 0.5012038 0.0015214 0.0763114
0.2114803 0.5985624 0.5985624 0.5707955 0.0016353 0.1126164
0.2256368 0.6016953 0.7183847 0.5985624 0.0025709 0.1185275
0.2586186 0.6361937 0.7199328 0.7000506 0.0064196 0.1796624
0.2654530 0.7183847 0.7342897 0.7183847 0.0080405 0.2552284
0.4105146 0.7342897 0.7656055 0.7342897 0.0110392 0.3308890
0.4323674 0.7979653 0.7706524 0.7979653 0.0122543 0.3867409
0.4376669 0.8683271 0.7979653 0.7993838 0.0124442 0.5045073
0.4796214 0.8820292 0.7993838 0.8683271 0.0136452 0.5985624
0.5871432 0.9188037 0.8820292 0.8821872 0.0346055 0.6238335
0.9479547 0.9903334 0.8821872 0.9188037 0.0396932 0.8821872

Table 3: Cochran-Armitage test p-values for the top 25 SNPs for each method

4 Discussion
We presented a new family of methods for epistasis detection. They revolve around detecting new interactions with
specific targets/genes. Given our partial understanding of common diseases, such refocused models could be more
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useful in the understanding of the underlying biology. Hundreds of genes have already been associated with several
common diseases via univariate GWAS. For type II diabetes, we mention the genes TCF7L2 and ABCC8. The latter
affects insulin regulation, while the former impacts both insulin secretion and glucose production. The next step is to
build upon these findings to detect potential synergies between these genes and the rest of the genome. Beyond a better
understanding of disease mechanisms through new biomarker discovery, we see the development of combination drug
therapies as a potential application of our work.

Among the methods we propose, robust modified outcome seems the most suited in practice to GWAS applications.
The AUCs are overall the highest in addition to the early retrieval performance. More importantly, robust modified
outcome outperforms GBOOST. From a dimensionality point of view, the closest simulations to real GWAS are for
sample sizes n = 500. Across the four scenarios, robust modified outcome not only outperforms the current state-of-
the art for epistasis detection GBOOST, but also the other methods based on regression models. However, the low PR
AUCs show that there is still room for improvement. The highest observed PR AUC is 0.17. In the PR space, we also
note that several of our methods clearly outperform GBOOST for all scenarios and all sample sizes. Interestingly, the
GBOOST ROC curves behave similarly to other methods. Such differences between ROC and PR curves are common
for highly-skewed datasets where PR curves are more informative54. The main point of our methods is to focus on
the synergies with a particular target while discarding other effects. The consistent ROC and PR AUCs across the
four different scenarios show that they are rather successful at that. Their performance is not strongly impacted by the
presence of additional marginal and/or epistatic effects.

The case study that we carried for type II diabetes demonstrates the scalability of all methods to real GWAS. One
way to improve runtime is to adjust the number of subsamples used for stability selection; however this may come
at the expense of performance. The development of new and faster LASSO solvers55,56 for large scale problems will
further help improve the adoption of our methods by end-users.

According to two rank correlation measures (Kendall’s tau and weighted Kendall’s tau), we see that all methods
tend to agree, though partially. In simulations, synthetic performance measures like ROC and PR AUCs were relatively
close. On the other hand, the rank correlations do not show complete agreement (values far from 1). For instance,
GBOOST least agrees with robust modified outcome. However, the two methods are the best performing in our
simulations. We conclude that a consensus method combining GBOOST and robust modified outcome could improve
the recovery of interacting SNPs. Theoretically, the ranking differences between the methods motivate the question
of the guarantees for support recovery in terms of effect sizes and dependence structure among covariates. Common
variants with low effect sizes is a major hypothesis for missing heritability. A recent paper from Boyle et al.57 even
advances the hypothesis of an “omnigenic” model. It proposes that most heritability lies outside of core pathways;
principally within regulatory pathways. That means that a large number of variants influence the phenotype. However,
that brings up the question of causality: how to define a causal SNP when all variants are related to phenotype?

The simulations prove that a number of the highly-ranked SNPs are false positives. That is accentuated by the
imbalanced nature of our problem: a handful of causal SNPs for thousands of referenced SNPs. Hopefully, the con-
tinual decrease in genotyping costs will result in a dramatic increase in sample sizes and, in consequence, statistical
power. For instance, the UK Biobank58 comprises full genome-wide data for five hundred thousand individuals. We
also point out that our methods do naturally extend to higher-order interactions. The main idea is combining two SNPs
into a single target through a binary function such as the product of the two SNPs. We expect results to depend on
both the combination rule and our encoding choice for each SNP. Moreover, a loss of information occurs with such
simplifications. We leave a study of those extensions to future work.

The main contribution of our work is extending the causal inference framework to epistasis by developing propensity-
like scores for genomic data. The superior performance of robust modified outcome is partially owed to its robustness
against propensity scores misspecification. An area of improvement is the propensity score estimation which can bene-
fit a large number of methods. An interesting proposal from Wager et al.59 completely forgoes propensity scores for the
estimate of average treatment effects. All of the presented methods were originally developed for clinical trials where
the analog to the target SNP is the treatment assignment and to the genotype are the clinical covariates. Given the rich
literature in that field, this opens the door to a much broader panel of methods. In particular, future directions of our
work include conditioning for multiple covariates (whether clinical covariates, variables encoding population structure
or other genetic variants) to account for, among other things, higher-order interactions and population stratification.
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[25] Meinshausen, N. and Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 72, 417–473.

[26] Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012). Estimating Individualized Treatment Rules Using
Outcome Weighted Learning. Journal of the American Statistical Association 107, 1106–1118.

[27] Huber, W., Carey, J., V., Gentleman, R., Anders, S., Carlson, M., et al. (2015). Orchestrating high-throughput
genomic analysis with Bioconductor. Nature Methods 12, 115–121.

[28] Tian, L., Alizadeh, A. A., Gentles, A. J., and Tibshirani, R. (2014). A Simple Method for Estimating Interactions
Between a Treatment and a Large Number of Covariates. Journal of the American Statistical Association 109,
1517–1532.

[29] Lunceford, J. K. and Davidian, M. (2004). Stratification and weighting via the propensity score in estimation of
causal treatment effects: A comparative study. Statistics in Medicine 23, 2937–2960.

[30] Austin, P. C. and Stuart, E. A. (2015). Moving towards best practice when using inverse probability of treat-
ment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies.
Statistics in Medicine 34, 3661–3679.

[31] Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., de Bakker,
P. I., Daly, M. J., et al. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage
Analyses. The American Journal of Human Genetics 81, 559–575.

[32] Herold, C., Steffens, M., Brockschmidt, F. F., Baur, M. P., and Becker, T. (2009). Intersnp: genome-wide
interaction analysis guided by a priori information. Bioinformatics 25, 3275–3281.

[33] Gatto, N. M. (2004). Further development of the case-only design for assessing gene-environment interaction:
evaluation of and adjustment for bias. International Journal of Epidemiology 33, 1014–1024.

[34] Piegorsch, W. W., Weinberg, C. R., and Taylor, J. A. (1994). Non-hierarchical logistic models and case-only
designs for assessing susceptibility in population-based case-control studies. Statistics in Medicine 13, 153–162.

[35] Yang, Q., Khoury, M. J., Sun, F., and Flanders, W. D. (1999). Case-only design to measure gene-gene interaction.
Epidemiology (Cambridge, Mass.) 10, 167–70.

[36] Sun, S., Greenwood, C. M., and Neal, R. M. (2007). Haplotype inference using a bayesian hidden markov model.
Genetic Epidemiology 31, 937–948.

15

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/442749doi: bioRxiv preprint 

https://doi.org/10.1101/442749
http://creativecommons.org/licenses/by-nd/4.0/


[37] Rastas, P., Koivisto, M., Mannila, H., and Ukkonen, E. (2005). A hidden markov technique for haplotype
reconstruction. In Lecture Notes in Computer Science In Lecture Notes in Computer Science. (Springer Berlin
Heidelberg).

[38] Kimmel, G. and Shamir, R. (2005). A block-free hidden markov model for genotypes and its application to
disease association. Journal of Computational Biology 12, 1243–1260.

[39] Gabriel, S. B. (2002). The structure of haplotype blocks in the human genome. Science 296, 2225–2229.

[40] Barber, R. F. and Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. The Annals of Statistics
43, 2055–2085.

[41] Sesia, M., Sabatti, C., and Candès, E. J. (2018). Gene hunting with hidden markov model knockoffs. Biometrika.

[42] Cole, S. R. and Hernan, M. A. (2008). Constructing inverse probability weights for marginal structural models.
American Journal of Epidemiology 168, 656–664.

[43] Lee, B. K., Lessler, J., and Stuart, E. A. (2011). Weight trimming and propensity score weighting. PLoS ONE 6,
e18174.

[44] Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE 77, 257–286.

[45] Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 67, 301–320.

[46] Haury, A. C., Mordelet, F., Vera-Licona, P., and Vert, J. P. (2012). TIGRESS: Trustful Inference of Gene
REgulation using Stability Selection. BMC Systems Biology 6.

[47] Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software 33.

[48] Schork, N. J., Murray, S. S., Frazer, K. A., and Topol, E. J. (2009). Common vs. rare allele hypotheses for
complex diseases. Current Opinion in Genetics & Development 19, 212–219.

[49] Su, Z., Marchini, J., and Donnelly, P. (2011). HAPGEN2: simulation of multiple disease SNPs. Bioinformatics
27, 2304–2305.

[50] Auton, A. e. (2015). A global reference for human genetic variation. Nature 526, 68–74.

[51] Burton, P. R. et al. (2007). Genome-wide association study of 14, 000 cases of seven common diseases and 3,
000 shared controls. Nature 447, 661–678.

[52] Saito, T. and Rehmsmeier, M. (2016). Precrec: fast and accurate precision–recall and ROC curve calculations in
r. Bioinformatics 33, 145–147.

[53] Zeng, Y. and Breheny, P. (2017). The biglasso package: A memory- and computation-efficient solver for lasso
model fitting with big data in r. ArXiv e-prints.

[54] Davis, J. and Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Proceedings of
the 23rd international conference on Machine learning - ICML ’06 pp. 233–240.

[55] Le Morvan, M. and Vert, J. (2018). WHInter: A working set algorithm for high-dimensional sparse second order
interaction models. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
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A Genotypic hidden Markov model
In this Appendix, we explicit the transition and emission probabilities for the genotypic hidden Markov model. For
that purpose, we start by considering a pair of ordered haplotypes Ha =

(
Ha

1 , · · · , Ha
p

)
∈ {0, 1}p and Hb =(

Hb
1 , · · · , Hb

p

)
∈ {0, 1}p. We recall that the two haplotypes correspond to the same positions. The hidden vari-

ables Za =
(
Za1 , · · · , Zap ,

)
and Zb =

(
Zb1, · · · , Zbp,

)
represent cluster memberships. They take discrete values in

{1, · · · ,K}p. Scheet and Stephens24 define the clusters as a “(common) combination of alleles at tightly linked SNPs”.
The underlying hidden Markov models for the two alleles have identical forms. We then focus on the first allele a. We
follow the notations of41.

The marginal distribution of the first hidden state can be written as:

qhap1 (k) = α1,k, k ∈ {1, · · · ,K}.

For j ∈ {2, · · · , p}, the transition matrix Qhapj is given by:

Qhapj (k′|k) = P (Hj = k′|Hj−1 = k′) =

{
e−rj + (1− e−rj ) αj,k′ , k′ = k
(1− e−rj ) αj,k′ , k′ 6= k

.

The parameter r = (r2, · · · , rp) can be assimilated to the recombination rate between loci j − 1 and j, although
Scheet and Stephens24 point out the general mismatch between the observed recombination rates and the estimate of
r. The parameter α = (αj,k)(j,k)∈{1,···p}×{1,··· ,K} is the relative frequency of the cluster k in locus j.

Conditionally on the latent state Zhapj = zj , the allele Hj is a Bernoulli random variable, Hj |Zj ∼ B(θj,zj ). θj,zj
is the frequency of allele 1 in cluster zj at the position j:

fhapj = (hj ; zj , θ) =

{
1− θj,zj , hj = 0
θj,zj , hj = 1

.

Under the Hardy-Weinberg equilibrium (HWE), a third hidden Markov model for the unphased genotype can be
derived by combining the HMMs of the two alleles a and b. The emission states X = (X1, · · · , Xp) ∈ {0, 1, 2}p
are given by the sum of the emission states, Ha + Hb =

(
Ha

1 +Hb
1 , · · · , Ha

p +Hb
p

)
. Because of the phase inde-

termination, the latent states are unordered pairs of haplotype latent states, Z = ({Za1 , Zb1}, · · · , {Zap , Zbp}). Thus,
the dimensionality of the latent variable space is K(K + 1)/2. The different probabilities of the genotype model are
computed by considering the two cases: Zaj = Zbj and Zaj 6= Zbj .

The initial latent state distribution is given by:

qgen1 ({ka, kb}) =

{
(α1,ka)2, ka = kb

2α1,kaα1,kb ka 6= kb
,

In a similar fashion, the transition probabilities:

Qgenj ({ka, kb}|{ka, kb}) =

{
Qhapj (ka|ka)Qhapj (kb|kb) +Qhapj (kb|ka)Qhapj (ka|kb), ka 6= kb

Qhapj (ka|ka)Qhapj (kb|kb), otherwise
,

and, the emission probabilities are

fj(xj ; {ka, kb}, θ) =

 (1− θj,ka)(1− θj,kb), xj = 0
θj,ka(1− θj,kb) + (1− θj,ka)θj,kb , xj = 1
θj,kaθj,kb , xj = 2

.

For the estimate of the parameters ν = (α, r, θ), we use the imputation software fastPHASE24 which fits the hidden
Markov model using an expectation-maximization (EM) algorithm60. Its computational complexity isO

(
npK2

)
. The

complexity scales linearly for both p and n, rendering fastPHASE well-suited for real case-control datasets where the
number of SNPs is typically in the hundreds of thousands and the number of samples in the thousands. In practice, as
a trade-off between a rich representation of the clusters and the ensuing quadratic complexity, we chose K = 12.
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B Simulation results

B.1 First scenario: synergistic only effects
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Figure 2: Average ROC (left column) and PR (right column) curves for the first scenario
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Table 4: Average ROC and PR AUCs for the first scenario

Method PR ROC

n =500

GBOOST 0.0362 0.7075
Modified outcome 0.0468 0.6747
Robust modified outcome 0.0973 0.7414
Normalized modified outcome 0.0512 0.6754
Shifted modified outcome 0.0644 0.6794
Outcome weighted learning 0.0254 0.6282
Product LASSO 0.0895 0.6514

n =1000

GBOOST 0.1270 0.7688
Modified outcome 0.1284 0.7131
Robust modified outcome 0.1302 0.7434
Normalized modified outcome 0.1255 0.7120
Shifted modified outcome 0.1470 0.7224
Outcome weighted learning 0.0613 0.6764
Product LASSO 0.1619 0.7032

n =2000

GBOOST 0.2103 0.8169
Modified outcome 0.2252 0.7512
Robust modified outcome 0.2070 0.8449
Normalized modified outcome 0.2266 0.7501
Shifted modified outcome 0.2704 0.7753
Outcome weighted learning 0.1045 0.7394
Product LASSO 0.2711 0.7989

n =5000

GBOOST 0.2276 0.8697
Modified outcome 0.3512 0.8218
Robust modified outcome 0.3011 0.8818
Normalized modified outcome 0.3548 0.8248
Shifted modified outcome 0.3907 0.8423
Outcome weighted learning 0.2139 0.7847
Product LASSO 0.3779 0.8546
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B.2 Second scenario: partial overlap between synergistic and marginal effects
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Figure 3: Average ROC (left column) and PR (right column) curves for the second scenario
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Table 5: Average ROC and PR AUCs for the second scenario

Method PR ROC

n =500

GBOOST 0.0516 0.7186
Modified outcome 0.0563 0.6750
Robust modified outcome 0.1716 0.7502
Normalized modified outcome 0.0590 0.6713
Shifted modified outcome 0.0712 0.6918
Outcome weighted learning 0.0367 0.6345
Product LASSO 0.0994 0.6659

n =1000

GBOOST 0.1190 0.7773
Modified outcome 0.1195 0.7092
Robust modified outcome 0.1574 0.7601
Normalized modified outcome 0.1233 0.7080
Shifted modified outcome 0.1443 0.7160
Outcome weighted learning 0.0805 0.6923
Product LASSO 0.1609 0.7170

n =2000

GBOOST 0.1933 0.8226
Modified outcome 0.2294 0.7708
Robust modified outcome 0.2732 0.8183
Normalized modified outcome 0.2321 0.7623
Shifted modified outcome 0.2532 0.7753
Outcome weighted learning 0.1114 0.7360
Product LASSO 0.2507 0.7762

n =5000

GBOOST 02454 0.8821
Modified outcome 0.3718 0.8344
Robust modified outcome 0.3286 0.8916
Normalized modified outcome 0.3739 0.8309
Shifted modified outcome 0.4079 0.8487
Outcome weighted learning 0.1930 0.7769
Product LASSO 0.3537 0.8467
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B.3 Third scenario: partial overlap between synergistic and quadratic effects
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Figure 4: Average ROC (left column) and PR (right column) curves for the third scenario
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Table 6: Average ROC and PR AUCs for the third scenario

Method PR ROC

n =500

GBOOST 0.050 0.6970
Modified outcome 0.0570 0.6559
Robust modified outcome 0.1148 0.7296
Normalized modified outcome 0.0569 0.6627
Shifted modified outcome 0.0714 0.6703
Outcome weighted learning 0.0260 0.6233
Product LASSO 0.0889 0.6282

n =1000

GBOOST 0.1228 0.7746
Modified outcome 0.1362 0.7181
Robust modified outcome 0.1513 0.7444
Normalized modified outcome 0.1373 0.7175
Shifted modified outcome 0.1546 0.7226
Outcome weighted learning 0.0728 0.6778
Product LASSO 0.1620 0.7100

n =2000

GBOOST 0.1814 0.8307
Modified outcome 0.2430 0.7733
Robust modified outcome 0.2697 0.8235
Normalized modified outcome 0.2496 0.7724
Shifted modified outcome 0.2737 0.7886
Outcome weighted learning 0.1129 0.7535
Product LASSO 0.2543 0.7921

n =5000

GBOOST 0.2467 0.8767
Modified outcome 0.3663 0.8241
Robust modified outcome 0.2660 0.8790
Normalized modified outcome 0.3669 0.8236
Shifted modified outcome 0.3944 0.8376
Outcome weighted learning 0.1965 0.7893
Product LASSO 0.3158 0.8439
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B.4 Fourth scenario: partial overlap between synergistic and quadratic/marginal effects
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Figure 5: Average ROC (left column) and PR (right column) curves for the fourth scenario
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Table 7: Average ROC and PR AUCs for the fourth scenario

Method PR ROC

n =500

GBOOST 0.0479 0.6900
Modified outcome 0.0521 0.6427
Robust modified outcome 0.1066 0.7065
Normalized modified outcome 0.0513 0.6460
Shifted modified outcome 0.0591 0.6623
Outcome weighted learning 0.0227 0.6218
Product LASSO 0.0762 0.6174

n =1000

GBOOST 0.1163 0.7647
Modified outcome 0.1283 0.7288
Robust modified outcome 0.1687 0.8049
Normalized modified outcome 0.1338 0.7200
Shifted modified outcome 0.1438 0.7388
Outcome weighted learning 0.0479 0.6838
Product LASSO 0.1554 0.7206

n =2000

GBOOST 0.2129 0.8237
Modified outcome 0.2794 0.8007
Robust modified outcome 0.2986 0.8478
Normalized modified outcome 0.2763 0.8032
Shifted modified outcome 0.2960 0.8050
Outcome weighted learning 0.1530 0.7641
Product LASSO 0.2927 0.7899

n =5000

GBOOST 0.2823 0.8656
Modified outcome 0.3541 0.8127
Robust modified outcome 0.3823 0.8568
Normalized modified outcome 0.3597 0.8175
Shifted modified outcome 0.4091 0.8388
Outcome weighted learning 0.2106 0.8031
Product LASSO 0.4000 0.8399
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