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Abstract 
Motivation: Mammalian genomes can contain thousands of enhancers but only a subset are 
actively driving gene expression in a given cellular context. Integrated genomic datasets can be 
harnessed to predict active enhancers. One challenge in integration of large genomic datasets 
is the increasing heterogeneity: continuous, binary and discrete features may all be relevant. 
Coupled with the typically small numbers of training examples, semi-supervised approaches for 
heterogeneous data are needed; however, current enhancer prediction methods are not 
designed to handle heterogeneous data in the semi-supervised paradigm. 
Results: We implemented a Dirichlet Process Heterogeneous Mixture model that infers 
Gaussian, Bernoulli and Poisson distributions over features. We derived a novel variational 
inference algorithm to handle semi-supervised learning tasks where certain observations are 
forced to cluster together. We applied this model to enhancer candidates in mouse heart tissues 
based on heterogeneous features. We constrained a small number of known active enhancers 
to appear in the same cluster, and 47 additional regions clustered with them. Many of these are 
located near heart-specific genes. The model also predicted 1176 active promoters, suggesting 
that it can discover new enhancers and promoters. 
Availability: We created the ‘dphmix’ Python package: https://pypi.org/project/dphmix/ 
Contact: alan.moses@utoronto.ca 

Introduction 
Enhancers are cis-regulatory elements in DNA that can influence expression levels of target 
genes when bound to transcription factors (TFs). They are thought to exist in at least three 
states of differing activity: active, primed and poised enhancers (Calo and Wysocka, 2013), 
such that only a subset of bound regions (active enhancers) play a role in gene regulation in a 
given cellular context. Although different states are distinguished by differential patterns of 
histone modifications and transcriptional regulator recruitment, systematically classifying the 
state of an enhancer remains a challenge (Zentner et al., 2011; Catarino and Stark, 2018). 
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Given an active enhancer, it is possible to predict tissues in which it is active (Pennacchio et al., 
2007; Li et al., 2018). However, these methods do not address the problem of predicting the 
states of enhancers in a specific tissue. 
 
Modern genomic data is highly heterogeneous and may contain continuous (e.g. histone 
modification levels), binary (e.g. TF-binding) and discrete features (e.g. counts of methylated 
sites) and, in principle, supervised machine learning methods can be used to identify active 
enhancers with integrated heterogeneous genomics data. Enhancer activity, however, is highly 
tissue-specific (Bulger and Groudine, 2011), and there are few tissues for which large numbers 
of active enhancers have been identified, limiting the application of recent supervised enhancer 
prediction approaches such as DECRES (Li et al., 2018) and REPTILE (He et al., 2017) to 
identify active enhancers in tissues of interest. Furthermore, currently, supervised methods have 
not been designed to predict enhancer states other than active and inactive enhancers. 
 
Clustering (or unsupervised) techniques could, in principle, identify clusters of genomic regions 
that are enriched with different states of enhancers without large training sets. Unsupervised 
methods like ChromHMM (Ernst and Kellis, 2012) and Segway (Hoffman et al., 2012) can 
predict enhancers; however, these methods were designed for genome segmentation rather 
than enhancer state prediction over enhancer candidates (like TF-bound regions). Ideally, the 
small numbers of experimentally validated active enhancers should be used if possible: this 
motivates the development of semi-supervised approaches that can integrate heterogeneous 
data.  
 
To integrate high-dimensional genomic data and predict enhancer states over enhancer 
candidates, we developed a variational Dirichlet Process Heterogeneous Mixture (DPHM or an 
infinite heterogeneous mixture) model that infers Gaussian, Bernoulli and Poisson distributions 
over continuous, binary and non-negative discrete features, respectively. To take advantage of 
small labeled training sets where available, we derive a novel variational inference algorithm for 
a semi-supervised DPHM model that forces a subset of the data (like experimentally validated 
enhancers) to cluster together. Our Bayesian model also has the advantages that 1) the number 
of clusters, or enhancer states, is inferred from the data and 2) the number of hyperparameters 
does not grow with the number of clusters, simplifying inference for heterogeneous data 
integration. The DPHM model outperformed Gaussian mixture models in clustering synthetic 
heterogeneous datasets in unsupervised and semi-supervised settings. The DPHM model can 
also outperform k-means, in certain settings, even when k-means is given the correct number of 
clusters.  
 
To illustrate the power of the DPHM model to integrate heterogeneous genomic data, we 
employed it to predict new enhancers based on heterogeneous features from the Encyclopedia 
of DNA Elements (ENCODE) Project (ENCODE Project Consortium, 2012). We applied the 
semi-supervised DPHM model to a dataset of 6,209 genomic regions bound by Nkx2-5, a 
master regulator in heart development (Tanaka et al., 1999; Schott et al., 1998), in embryonic 
mouse heart with the constraint that a set of known active enhancers have to cluster together. 
Through our novel variational inference algorithm, 47 new regions clustered with the 

2 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 8, 2019. ; https://doi.org/10.1101/442392doi: bioRxiv preprint 

https://doi.org/10.1101/442392
http://creativecommons.org/licenses/by/4.0/


experimentally known active enhancers in this tissue. Furthermore, we discovered 5 large 
classes of genomic regions in the data. Some classes, including the class with the known active 
enhancers, were significantly (q < 0.05) enriched with various biological processes. Another 
class, enriched for house-keeping genes, appears to contain active promoters. Moreover, each 
functional class of enhancers was enriched with at least 60 different TF-binding motifs and 
some motifs can be utilized to discriminate the classes from each other. Our analysis indicates 
that the semi-supervised DPHM model is a principled Bayesian method for discovering 
biologically relevant clusters in heterogeneous genomic data in the semi-supervised learning 
paradigm. 

Methods 

Data 
Dupays et al. (2015) identified genomic regions bound by Nkx2-5 using chromatin 
immunoprecipitation sequencing (ChIP-seq) from embryonic mouse heart tissue. Genomic 
coordinates for the binding sites were converted from the GRCm37/mm9 to the GRCm38/mm10 
genome build. To incorporate information about the functional conservation of the sites, we 
identified regions of the human genome (GRCh38/hg38 build) whose DNA sequences are 
alignable to the sites using LiftOver (Hinrichs et al., 2006). We found that 6209/7246 of the 
binding sites in the mouse genome had human orthologs. 109 of the regions overlapped with 
experimentally validated developmental enhancers in mouse heart tissue, identified by the 
VISTA Enhancer Browser (Visel et al., 2007). Features for the regions were generated from 
ENCODE datasets (ENCODE Project Consortium, 2012) for mouse and human heart tissues. 
Supplementary Table 1 lists all of the datasets that we used to extract features. We extracted 81 
mouse features and 33 human features. Details about feature extraction techniques are 
provided in the supplementary. 

Dirichlet Process Heterogeneous Mixtures 
The DPHM model takes observations with heterogeneous features and clusters them based on 
similarities between their features. Continuous, binary and non-negative discrete features are 
assumed to follow Gaussian, Bernoulli and Poisson distributions, respectively, and are assumed 
to be mutually independent so the conditional likelihood of an observation is the product of 
distributions, with cluster-specific parameters, for each feature. In this section, we assume the 
data has rg, rb and rp Gaussian, Bernoulli and Poisson features, respectively.  
 
Figure 1 shows the latent variables of the semi-supervised DPHM model. μ and τ contain the 
means and precisions of the Gaussian features, respectively, p contains the probability 
parameters for the Bernoulli features and λ contains the average rate parameters for the 
Poisson features. The subscripts on the variables denote their feature indices and associated 
clusters. For example, μtj represents the mean parameter for the j-th Gaussian feature and 
cluster t. 
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Priors 
Distribution parameters (μ, τ, p and λ) are drawn from their conjugate priors (Bishop, 2006). The 
conjugate priors for Gaussian, Bernoulli and Poisson distributions are NormalGamma (NG), 
Beta and Gamma distributions, respectively. Since features are assumed to be mutually 
independent, the joint conjugate prior for the distribution parameters can be expressed as: 

μ, τ, p, λ ∼�NG(𝜈𝜈𝑗𝑗, 𝜌𝜌𝑗𝑗 ,𝑎𝑎𝑗𝑗 , 𝑏𝑏𝑗𝑗)

𝑟𝑟𝑔𝑔

𝑗𝑗=1

�Beta(𝛾𝛾𝑘𝑘,𝛿𝛿𝑘𝑘)
𝑟𝑟𝑏𝑏

𝑘𝑘=1

�Gamma(𝜀𝜀𝑙𝑙, 𝜁𝜁𝑙𝑙)

𝑟𝑟𝑝𝑝

𝑙𝑙=1

    (1) 

where hyperparameters νj , ρj , aj and bj control the prior mean, precision, shape and rate 
parameters, respectively, of the NG distribution that generates the mean and precision for the j-
th Gaussian feature. γk and δk represent the prior shape parameters of the Beta distribution that 
creates the probability parameter for the k-th Bernoulli feature. εl and ζl are the prior shape and 
rate parameters, respectively, for the Gamma distribution that generates the average rate 
parameter for the l-th Poisson feature. The conjugate prior eases computations in the algorithm 
because the cluster-specific posterior distributions of μ, τ, p and λ will be members of the 
conjugate prior’s family; we refer to this family as ’NGBG’. 
 
Cluster assignments (denoted by c) for each observation are drawn from multinomial 
distributions, and their prior parameters are mixing weights for the clusters. Mixing weights are 
constructed through the truncated stick-breaking process (Ishwaran and James, 2001) that sets 
an upper bound, T, on the number of clusters. Mixing weights are completely determined by 
stick-breaking variables {𝑣𝑣𝑡𝑡}𝑡𝑡=1𝑇𝑇  that depend on α, a hyperparameter that controls cluster sizes. 
Although there are T clusters, some of them will be empty if T is large enough and can be 
ignored in downstream analyses. Cluster assignments, stick-breaking variables and distribution 
parameters form the latent variable space, while α and parameters of the NGBG prior form the 
hyperparameter space of the DPHM model. 
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Fig. 1. A Bayesian network depicting the dependencies between hyperparameters, latent variables and 
observations in the DPHM. Each observation, xi, depends on their cluster assignment (ci for observations 
that are not in any must-link constraints and cm for observations in a must-link constraint m) and 
distribution parameters (μ, τ, p and λ). Distribution parameters depend on parameters of the NGBG prior 
(ν, ρ, a, b, γ, δ, ε and ζ). Distribution parameters and hyperparameters related to Gaussian, Bernoulli 
and Poisson features are green, blue and purple, respectively. Each cluster assignment depends on the 
vts that are generated through the stick-breaking construction. M represents a set of must-link constraints 
for semi-supervised clustering. 

Variational Inference for Semi-supervised DPHM Models 
We use variational inference (Beal, 2003; Blei and Jordan, 2006) to fit the DPHM model to a 
dataset X. Variational inference approximates the true posterior of the latent variables with a 
variational distribution q by maximizing the evidence lower bound (ELBO): 

ELBO(q) = 𝔼𝔼[ln𝑃𝑃(𝑋𝑋, 𝜇𝜇, 𝜏𝜏,𝑝𝑝, 𝜆𝜆, 𝑐𝑐, 𝑣𝑣)] − 𝔼𝔼[ln 𝑞𝑞(𝜇𝜇, 𝜏𝜏, 𝑝𝑝, 𝜆𝜆, 𝑐𝑐, 𝑣𝑣)]     (2) 
We optimize over the mean-field variational family so q factorizes into the product of variational 
densities for the latent variables. The variational density for a cluster assignment is 
parameterized by a ’cluster probability vector’ that contains probabilities of the corresponding 
observation belonging to the different clusters; each observation is assigned the cluster 
associated with the maximum probability in its cluster probability vector. We use φi to denote the 
cluster probability vector of the i-th observation. The learning task of variational inference is to 
find variational densities that maximize the ELBO; this can be accomplished through coordinate 
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ascent variational inference (Bishop, 2006). Lim and Wang (2018) derive variational density 
updates for latent variables of the Dirichlet Process Gaussian Mixture (DPGM) as shown in lines 
4, 5 and 8 of Algorithm 1. We use these updates for the variational densities of μ, τ, c and v in 
our DPHM model but we must update Bernoulli and Poisson parameters as well. We derived 
the coordinate-optimal updates for q(ptk) and q(λtl) which represent the variational densities of 
the Bernoulli and Poisson parameters, respectively: 

𝑞𝑞(𝑝𝑝𝑡𝑡𝑡𝑡) ∝ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑝𝑝𝑡𝑡𝑡𝑡�𝛾𝛾𝑘𝑘 + ∑ 𝜑𝜑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑏𝑏)

𝑖𝑖 , 𝛿𝛿𝑘𝑘 + ∑ 𝜑𝜑𝑖𝑖𝑖𝑖(1 − 𝑥𝑥𝑖𝑖𝑖𝑖
(𝑏𝑏))𝑖𝑖 �     (3) 

𝑞𝑞(𝜆𝜆𝑡𝑡𝑡𝑡) ∝ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �𝜆𝜆𝑡𝑡𝑡𝑡�𝜀𝜀𝑙𝑙 + ∑ 𝜑𝜑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑝𝑝)

𝑖𝑖 , 𝜁𝜁𝑙𝑙 + ∑ 𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖 �      (4) 
𝑥𝑥𝑖𝑖𝑖𝑖

(𝑏𝑏) is the k-th Bernoulli feature of the i-th observation and 𝑥𝑥𝑖𝑖𝑖𝑖
(𝑝𝑝) is the l-th Poisson feature of the 

i-th observation. φit is the probability of the i-th observation belonging to cluster t. We apply 
these updates for all t = 1..T, k = 1..rb and l = 1..rp.  
 
We derived a novel variational inference algorithm to fit DPHM models with must-link 
constraints, outlined in Algorithm 1. In the algorithm, 𝑥𝑥𝑖𝑖𝑖𝑖

(𝑔𝑔) is the j-th Gaussian feature of the i-th 
observation and c-i represents a vector of all cluster assignments except ci. We define a must-
link constraint as a set of indices for observations that must cluster together. In Figure 1 and 
Algorithm 1, M denotes a set of must-link constraints because the model can support multiple 
must-link constraints. While there are variational inference algorithms for semi-supervised 
classification models (Kingma et al., 2014), with finite numbers of classes, and Gibbs samplers 
for semi-supervised infinite mixture models (Vlachos et al., 2009), our work presents the first 
variational inference algorithm designed for semi-supervised infinite mixtures. In our algorithm, 
all observations in a particular must-link constraint are associated with a single cluster 
assignment variable, as shown in Figure 1, so they are all assigned the same cluster. In each 
iteration of coordinate ascent, our algorithm updates variational densities of global latent 
variables (μ, τ, p, λ and v) and uses their expectations to calculate cluster probability vectors. 
For each must-link constraint m, with observations 𝑋𝑋𝑚𝑚 = {𝑥𝑥𝑖𝑖}𝑖𝑖∊𝑚𝑚 and cluster assignment cm (the 
single cluster assignment variable for all observations in m), we derived the coordinate-optimal 
variational density of cm: 

𝑞𝑞(𝑐𝑐𝑚𝑚) ∝ exp[𝔼𝔼−𝑐𝑐𝑚𝑚[ln𝑃𝑃(𝑋𝑋𝑚𝑚, 𝑐𝑐𝑚𝑚|𝜇𝜇, 𝜏𝜏,𝑝𝑝, 𝜆𝜆, 𝑐𝑐−𝑚𝑚, 𝑣𝑣)]]     (5) 
where 𝔼𝔼−𝑐𝑐𝑚𝑚 is the expectation with respect to all latent variables except cm and c−m is a vector 
of all cluster assignments except cm. We obtain the cluster probability vector for the 
observations in m by evaluating the variational density over different clusters. Derivations for 
variational density updates are provided in the supplementary information. 
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Results 

Benchmarking the DPHM Against Other Methods 
To test whether the DPHM can outperform clustering models that assume Gaussian 
distributions over all features, we compared it to a finite Gaussian Mixture Model (GMM) and 
DPGM with the synthetic datasets (supplementary section 2.1.1). The DPHM model achieved 
significantly (Mann-Whitney U test p < 0.05) higher Adjusted Rand Indices (ARIs) (Hubert and 
Arabie, 1985) than the GMM and DPGM on all synthetic datasets in unsupervised and semi-
supervised settings (Supplementary Figure 1A, p-values shown in Supplementary Table 2), 
which shows the advantage of incorporating Bernoulli and Poisson distributions into the DPHM 
model. To determine if the DPHM can outperform a distance-based clustering algorithm, we 
compared it to k-means with the synthetic datasets and gave k-means the correct numbers of 
clusters. Against unsupervised k-means, the unsupervised DPHM achieved significantly higher 
ARIs on the 10 and 25-cluster datasets but there was no significant difference on the 50-cluster 
dataset. Against constrained k-means (Wagstaff et al., 2001), the semi-supervised DPHM 
achieved significantly higher ARIs on the 25-cluster dataset but there were no significant 
differences on the 10 and 50-cluster datasets. The performances of the DPHM and k-means 
were comparable on certain datasets and settings when k-means was given the correct 
numbers of clusters. 
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Since constrained k-means performed well on the synthetic datasets, we applied the DPHM and 
constrained k-means to a biological dataset (Nkx2-5 dataset) to evaluate their power to predict 
held-out VISTA enhancers (supplementary section 2.1.2). For each training set, we applied 
constrained k-means with different values of k and initial parameters and picked the setting 
which maximized the average silhouette (Rousseeuw, 1987). Across all training sets, 
constrained k-means predicted positive clusters that were an order of magnitude larger than the 
DPHM (Figure 2A) and achieved higher sensitivity lower bounds (SLBs) than the DPHM, across 
training set sizes (Figure 2B). The DPHM achieved higher precision lower bounds (PLBs) than 
constrained k-means (Mann-Whitney U test p < 0.05 for training set sizes between 10 and 90, 
inclusive, see Supplementary Table 3 for p-values) (Figure 2C). Taken together, these results 
show that regions appearing in the DPHM’s positive cluster are more likely to be experimentally 
validated enhancers and that constrained k-means and the DPHM have qualitatively different 
predictive performances.  
 
Finally, we tested the DPHM in a fully supervised learning paradigm. To do so, we considered 
all VISTA enhancers as the ‘positive set’ and all other regions as the ‘negative set’ and trained 
standard machine learning classifiers (supplementary section 2.2.3). To fit the parameters of the 
variational distribution of the fully supervised DPHM model, we created two must-link constraints 
corresponding to positives and negatives. We then allow all the VISTA enhancers to join either 
the positive or negative class. We evaluate the sensitivity of the methods in training and held-
out VISTA enhancers. In this context, the DPHM is a generative model that assumes 
independence among features, and as expected, we found that the DPHM achieved similar 
performance to Naive Bayes (Supplementary Figure 1B). Of the methods we tried, AdaBoost 
showed the best performance in the fully supervised paradigm, achieving perfect sensitivities 
(Supplementary Figure 1B). 

Sensitivity to the Training Set 
We performed a sensitivity analysis (supplementary section 2.2) to analyze how predicted active 
enhancers (PAEs) change as we tune the training set of the DPHM. We applied a semi-
supervised DPHM model to the Nkx2-5 dataset and trained the model on the complete training 
set. It discovered 47 PAEs [hereafter referred to as the semi-supervised DPHM’s predicted 
active enhancers (SDPHM-PAEs)] and most displayed epigenetic marks (Ernst et al., 2011) of 
active enhancers (Supplementary Figure 2A). Gene ontology (GO) enrichment analysis 
(supplementary section 2.3) revealed that the nearest genes of the SDPHM-PAEs were 
significantly enriched for expression in heart ventricle during postnatal development in mouse (q 
= 3.98 × 10−2), suggesting that the semi-supervised model may predict heart-specific active 
enhancers. One SDPHM-PAE, located 1,322bp upstream from the transcription start site (TSS) 
of Actc1 (a gene that transcribes cardiac alpha-actin), was previously functionally validated and 
confirmed to drive Actc1 expression (Fleischmann et al., 1998). Sensitivity analysis showed that 
the DPHM model can predict over half of the SDPHM-PAEs with 70 or more VISTA enhancers 
in the must-link constraint (Figure 2D). Furthermore, the SDPHM-PAE near Actc1 was predicted 
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to be an active enhancer for at least 3/5 training set samples with 70 or more VISTA enhancers 
in the must-link constraint. 
 
For comparison, we applied an unsupervised DPHM to the Nkx2-5 dataset and found that the 
cluster with the most VISTA enhancers had 17 VISTA enhancers and 104 PAEs. These PAEs 
had some marks of active enhancers (Supplementary Figure 2B) although their average H3K27 
acetylation (K27ac) signal (minmax-scaled K27ac features averaged across time points and 
PAEs) was significantly (one-sided t-test p = 8.81 × 10−4) lower than the average K27ac signal 
of SDPHM-PAEs. The nearest genes of the PAEs from the unsupervised model were not 
significantly (q < 0.05) enriched with any GO terms, suggesting that the unsupervised model 
could not predict enhancers near heart-specific genes. The results for the semi-supervised and 
unsupervised DPHM models indicate that the training data may allow the DPHM model to 
predict heart-specific enhancers with stronger activity. 
 

 
Fig. 2. (A) Sizes of positive clusters (the cluster with the training set) predicted by the DPHM and 
constrained k-means across training set sizes. The y-axis is log-scaled. For each training set size, both 
models were run 5 times with 5 different training sets. The plot shows mean positive cluster sizes and 
error bars represent one standard deviation across training sets. (B) Sensitivity lower bounds achieved by 
the DPHM and constrained k-means with different training set sizes. The plots shows the mean and error 
bars representing one standard deviation across training sets. (C) Precision lower bounds achieved by 
the DPHM and constrained k-means with different training set sizes. The plot shows the mean and error 
bars representing one standard deviation across training sets. (D) A comparison of the numbers of PAEs 
from the unsupervised DPHM model (with 0 regions in the must-link constraint) and semi-supervised 
DPHM models with differing training set sizes. For semi-supervised models with 10 to 100 regions in their 
training set, we randomly sampled their training sets, from the VISTA enhancers, 5 times and calculated 
the average number of PAEs, across the samples, for each training set size (red bars). In addition, for 
each training set size, we calculated the average number of PAEs that were also in the set of SDPHM-
PAEs (blue bars). Standard deviations, for the numbers of PAEs and SDPHM-PAEs, across sampled 
training sets were also calculated (black lines).  
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Clustering the Clusters 
The semi-supervised DPHM model, that was trained on the complete training set, found 47 
clusters in the Nkx2-5 dataset. In addition to the 47 SDPHM-PAEs, other clusters also contained 
regions with characteristics of active enhancers. Furthermore, groups of clusters shared 
characteristics of different enhancer states. We wanted to group similar clusters together using 
another clustering model. To this end, we represented each cluster (from the semi-supervised 
DPHM model that was trained on the complete training set) with a feature vector of expected 
values over its cluster-specific distribution parameters; all the values are continuous. We applied 
a DPGM (’dphmix’ runs a DPGM when all features are continuous) with α = 1 to group the 
clusters and found 14 classes (clusters of the original 47 clusters). Since the VISTA enhancers 
were forced to cluster together, they appeared in the same class. There are five large (over 500 
regions) classes that we number from 1 to 5 as shown in Figure 3A. We performed GO 
enrichment analysis (supplementary section 2.3) on each class to identify possible functions of 
their regions. Here, we analyze an interesting large class (class 2). Analyses for the other four 
large classes are provided in the supplementary information. In particular, class 3 contains 
regions with characteristics of active promoters (Ernst et al., 2011) and class 4 contains regions 
appearing to be inactive regions or decommissioned enhancers (Pradeepa, 2017).  
 

 
Fig. 3. (A) A heatmap showing the regions in the large classes. Each column represents an ENCODE 
feature in heart tissues and they were minmax-scaled to be between 0 and 1. (B) A heatmap showing the 
regression coefficients of JASPAR motifs in classes 1, 2, 3 and 5 compared to class 4 (predicted inactive 
regions). The vertical sizes of each row are proportional to the number of regions in the class 
corresponding to the rows in panel (A). Only motifs that have a significant (permutation test p < 0.05) and 
positive coefficient for at least one class compared to class 4 are included. Coefficients for class 4 are not 
available since it was used as the reference class for all the regressions. 
 
We associated class 2 with active enhancers as it contains the cluster with all of the VISTA 
enhancers. We refer to this class as the DPHM’s active enhancer class (DPHM-AEC). It also 
contains 4 other clusters for a total of 741 regions. It has the highest average H3K4 mono-
methylation (K4me1) signal (minmax-scaled mouse K4me1 features averaged across time 
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points and regions in the class) and second highest average K27ac signal in embryonic mouse 
tissue among all classes. Consistent with typical active enhancers, P300 and POL2 were bound 
to the vast majority of the regions in adult tissue (Spicuglia and Vanhille, 2012). GO annotation 
analysis on genes near (within 1Mb) regions from the DPHM-AEC revealed 100 significantly 
enriched biological processes. To ensure that the observed enrichments were not biased by 
VISTA enhancers, we conducted GO enrichment analysis on the regions in the class that are 
not in VISTA. The regions were still significantly enriched with 6/100 of the aforementioned 
processes, suggesting that they may be novel active enhancers with similar functions as VISTA 
enhancers. 

Comparison to Classes Discovered by Constrained K-means 
To determine if constrained k-means can discover classes of enhancers, we applied 
constrained k-means on the Nkx2-5 dataset with a must-link constraint on all 109 VISTA 
enhancers. Maximizing the average silhouette yielded k=2 classes (Supplementary Figure 3A). 
One class contains regions that appear to be active promoters while the other class contains all 
other regions, including the VISTA enhancers (Supplementary Figure 3B). Neither class was 
significantly (q < 0.05) enriched with any biological processes. Hence, if k is chosen to maximize 
the average silhouette, constrained k-means may separate enhancers from promoters but it 
could not discover different states of enhancers. This illustrates the advantage of the DPHM, 
which appears to identify multiple biologically relevant classes with characteristics of different 
enhancer states. 
 
Next, we applied constrained k-means with k=14 (to match the number of classes found by the 
DPHM). Constrained k-means found 3 large classes. Two of these contain a mixture of regions 
with characteristics of poised, primed, weak, inactive and decommissioned enhancers 
(Supplementary Figure 3C, red and cyan bars). The other large class had the VISTA enhancers 
so we refer to this class as the constrained k-means’ active enhancer class (CKM-AEC). 
Regions in the CKM-AEC had characteristics of active enhancers (Supplementary Figure 3C). 
The genes near regions from the CKM-AEC were not significantly (q < 0.05) enriched with any 
processes that were enriched in VISTA enhancers whereas 2 heart-specific processes enriched 
in the DPHM-AEC were enriched in VISTA enhancers (Supplementary files: 
class2_noVISTA_SigProcesses and ckm_aec_noVISTA_SigProcesses), supporting the idea 
that the DPHM has more power to predict heart-specific active enhancers even when k was 
given. Most of the regions that appeared to be active promoters (class 3 found by the DPHM) 
are now dispersed over 5 other classes found by constrained k-means. The analysis reveals 
that constrained k-means can identify different classes of enhancers, given the right k, but the 
classes appear less specific than those found by the DPHM. 

Motif Enrichment Analysis of Classes 
We performed motif enrichment analysis (supplementary section 2.4) to identify differentially 
enriched motifs, which were conserved across 6 mammals, between classes found by the 
DPHM. Each class was enriched with at least 60 different conserved motifs, compared to class 
4 (predicted inactive regions). In particular, 86 motifs were enriched in the DPHM-AEC and their 
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TFs were significantly (q < 0.05) enriched for 17 biological processes, including regulation of 
muscle system process (q = 6.59 × 10−3). The motifs for other classes were not significantly 
enriched with any processes, suggesting that the TFs associated with the 23 motifs (or a subset 
of them) uniquely enriched in the DPHM-AEC may preferentially bind to active enhancers and 
facilitate biological processes in the developing mouse heart. While 80 motifs are enriched in 
multiple classes (shared motifs), each class is uniquely enriched with at least 7 motifs (Figure 
3B) suggesting that many different TFs may be required to determine enhancer states. We 
repeated this analysis using multinomial regression and found similar results (supplementary 
figure 4).  

Discussion 
We derived the semi-supervised variational DPHM model to cluster heterogeneous data with 
must-link constraints using a Bayesian framework. We showed that the DPHM and constrained 
k-means have qualitatively different predictive performances on biological data and that the 
DPHM achieves higher precision lower bounds, which is important in enhancer prediction 
because false positives are costly in experimental validation. We used the DPHM to cluster 
genomic regions bound by a master regulator in embryonic mouse heart based on 
heterogeneous ENCODE features and predicted the most similar regions to a set of known 
active enhancers. Further studies will determine whether other epigenomics datasets (Roadmap 
Epigenomics Consortium et al., 2015; Noguchi et al., 2017) and positive enhancers identified 
through self-transcribing active regulatory region sequencing (STARR-seq) (Liu et al., 2017) can 
potentially be utilized to train DPHMs and predict states of new enhancer candidates.  
 
Clustering the clusters revealed multiple functional classes of enhancers in the Nkx2-5 ChIP-
seq dataset, and motif enrichment analysis suggested that many different motifs may be 
required to discriminate the classes from each other. Experimental validation is required to 
determine if the motifs uniquely enriched in specific classes control different enhancer states 
and whether multiple binding events are required for enhancers to transition from an inactive 
state to a functional state. However, there are examples of multiple TF binding events driving 
expression of the Hbb gene to facilitate cell fate transitions (Capellera-Garcia et al., 2016; 
Mitchell et al., 2012). 
 
Our semi-supervised DPHM approach solves a different problem than other enhancer prediction 
methods (Ernst and Kellis, 2012; Hoffman et al., 2012; He et al., 2017; Li et al., 2018) as it 
predicts enhancer states from a set of bound regions. In the fully supervised paradigm, we 
found AdaBoost was better at predicting held-out VISTA enhancers, but this is not the 
recommended use case for our model: the DPHM was designed to predict an unbounded 
number of enhancer states. Supervised enhancer classifiers can only predict classes that are 
present in the training set. To separate active enhancers from inactive enhancers, they require 
labelled training examples of active and inactive enhancers. While training regions can be 
labelled based on the presence of certain histone marks, TF binding or enhancer RNA 
expression, these are neither necessary nor sufficient for enhancer activity (Catarino and Stark, 
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2018). The advantage of the semi-supervised approach is to predict multiple classes even when 
the training set only includes validated active enhancers. Consistent with this, we also showed 
that constrained k-means can predict enhancer classes, but requires a priori information about 
the number of classes. Moreover, although the PAEs from the unsupervised DPHM model were 
weaker candidates for active enhancers compared to the SDPHM-PAEs, the unsupervised 
model discovered PAEs with some active enhancer marks so it can still be used for enhancer 
clustering. 
 
One of the advantages of an infinite mixture model over a finite mixture model is that the 
number of hyperparameters in an infinite mixture model only scales with the number of features, 
whereas, in a finite mixture model, it scales with the number of features and clusters. Our 
DPHM model has 1 + 4rg + 2rb + 2rp hyperparameters, while a GMM, with a diagonal covariance 
matrix, would have k − 1 + 2k(rg + rb + rp), where k is the number of clusters. Hence, the DPHM 
model reduces the number of hyperparameters by a factor of order k, which can be substantial if 
k is large. Instead of variational inference, DPHMs can also be fit with Markov Chain Monte 
Carlo methods (Neal, 2000), however, convergence is difficult to assess and not guaranteed in 
a finite number of iterations. We implemented a Gibbs sampler (Vlachos et al., 2009) to fit the 
semi-supervised DPHM but found that our implementation was numerically unstable when the 
data had a large number of features. 
 
Further work is required to determine whether our DPHM model is viable for clustering regions 
genome-wide based on chromatin state. The algorithm is O(Tn) as it passes through the entire 
dataset and all clusters to update cluster probability vectors, but would still require a large 
amount of time for large datasets as it has to complete a full pass over the dataset at each 
iteration of coordinate ascent. Moreover, there is substantial overhead in gathering files, 
extracting features for every genomic region and exhaustively testing different priors. Stochastic 
variational inference could speed up the algorithm for larger datasets as it allows some 
variational parameters to be updated based on subsamples of the data (Hoffman et al., 2013). 
 
The purpose of clustering the clusters was to reduce the number of clusters, but, in principle, 
this can also be accomplished by tuning α. For large datasets, however, α has a marginal effect 
on the number of clusters, because variational densities for most of the stick-breaking variables 
are primarily determined by cluster probabilities rather than α (line 4 of Algorithm 1). The 
clustering of clusters is a novel, model-based method to hierarchically cluster data in a multi-
way tree structure. Blundell et al. (2010) derived a hierarchical clustering algorithm that 
produces multi-way trees, but the algorithm is O(n2 log n), so it may have difficulties scaling to 
large data. In contrast, even for hierarchical clustering, our method is still O(Tn), as each layer 
of clustering is done independently and only adds terms of order n to the time complexity. 
Nonetheless, our method is heuristic and further work is needed to create a principled, scalable 
Bayesian hierarchical clustering model.  
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Conclusion 
In this paper, we derived the DPHM model to cluster genomic regions bound by a master 
regulator in embryonic mouse heart based on heterogeneous features. In addition, we derived a 
variational inference algorithm to force known active enhancers to cluster together. The semi-
supervised DPHM model discovered 47 regions that were similar to the known active enhancers 
and near heart-specific genes. Furthermore, we clustered the clusters from the DPHM model to 
find 5 large classes of enhancers with distinct patterns over their features. The class with the 
known active enhancers was enriched with heart-specific biological processes and TF-binding 
motifs that are important for muscle system processes. The other functional classes of 
enhancers were also enriched with many different TF-binding motifs. Our results show that the 
semi-supervised DPHM model provides a principled Bayesian method for clustering 
heterogeneous data with small training sets. 
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