
1 

Designing metabolic division of labor in microbial 
communities 

 
Meghan Thommes1,2,*, Taiyao Wang3,*, Qi Zhao3, Ioannis Ch. Paschalidis1,3,#, and Daniel Segrè1,2,4,# 
 
1Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA 
2Biological Design Center, Boston University, Boston, MA 02215, USA 
3Department of Electrical and Computer Engineering, and Division of Systems Engineering, Boston 
University, Boston, MA 02215, USA 
4Department of Biology, Department of Physics and Bioinformatics Program, Boston University, Boston, 
MA 02215, USA 
 
* These authors contributed equally 
# Corresponding authors:  Daniel Segrè, Tel. 1-617-358-2301, Email: dsegre@bu.edu 
    Ioannis Paschalidis, Tel. 1-617-353-0434, Email: yannisp@bu.edu 
 
Abstract 
Microbes face a tradeoff between being metabolically independent and relying on neighboring organisms 
for the supply of some essential metabolites. This balance of conflicting strategies affects microbial 
community structure and dynamics, with important implications for microbiome research and synthetic 
ecology. A “gedanken experiment” to investigate this tradeoff would involve monitoring the rise of mutual 
dependence as the number of metabolic reactions allowed in an organism is increasingly constrained. The 
expectation is that below a certain number of reactions, no individual organism would be able to grow in 
isolation, and cross-feeding partnerships and division of labor would emerge. We implemented this 
idealized experiment using in silico genome-scale models. In particular, we used mixed integer linear 
programming to identify tradeoff solutions in communities of Escherichia coli strains. The strategies we 
found reveal a large space of nuanced and nonintuitive metabolic division of labor opportunities, including, 
for example, splitting the TCA cycle into two separate halves. The systematic computation of possible 
division of labor solutions for 1-, 2-, and 3-strain consortia resulted in a rich and complex landscape. This 
landscape displays a nonlinear boundary, indicating that the loss of an intracellular reaction is not 
necessarily compensated by a single imported metabolite. Different regions in this landscape are associated 
with specific solutions and patterns of exchanged metabolites. Our approach also predicts the existence of 
regions in this landscape where independent bacteria are viable, but outcompeted by cross-feeding pairs, 
providing a possible incentive for the rise of division of labor. 
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Background 
Each microbial cell harbors a finite number of metabolic gene functions. The specific assortment 

of functions in a given organism is thus the outcome of a tradeoff between the cost of expressing different 
genes, and the benefit of those genes under different environments. This tradeoff is considered to be one of 
the possible drivers of diversity in natural microbial communities, giving rise to metabolically differentiated 
groups rather than an individual superorganism [1–8]. The emergence of metabolically differentiated 
subpopulations has also been documented to occur from isogenic populations in a fixed environment [9–
19]. The viability of co-existing populations of metabolically differentiated strains or species is often 
enabled by the exchange of metabolites [7, 11, 15, 16, 20–27]. For example, initially identical populations 
of Escherichia coli evolved on minimal glucose medium have been observed to give rise to a specialized 
subpopulation of cells that use the acetate secreted as a byproduct of glucose fermentation [15, 20, 21]. 
More broadly, metabolic interactions mediated by the exchange of small molecules help maintain the 
diversity and stability of natural microbial communities, and allow communities to accomplish 
metabolically-intensive tasks [5, 6, 27, 28]. Moreover, obligate metabolic interdependencies (such as 
mutualism) are believed to contribute to the high prevalence of unculturability and fastidiousness among 
natural microbial strains [7, 29–33].  

A recent and increasingly common strategy to study microbial interdependencies is the construction 
(or evolution) of artificial microbial consortia specifically designed to display obligate mutualism. Current 
approaches to building synthetic communities of interacting microbes have so far mainly relied on intuition 
about simple genetic perturbations that would cause organisms to engage in obligate cross-feeding. In these 
interactions, one strain is unable to synthesize an essential metabolite (e.g., an amino acid) that is supplied 
via overproduction or leakage by another strain [34–41]. This ensures that the two strains require each 
other’s presence in order to grow. While interesting and valuable, these strategies explore only a small 
portion of the very large and complex space of possible environmental and organismal modifications: in 
principle, organisms may have the potential to display complex cross-feeding strategies for multiple 
metabolites simultaneously, or in an environment-dependent manner [42, 43]. In fact, given the complexity 
of metabolism and its evolutionary history, it is possible that naturally evolved cross-feeding strategies may 
involve complex metabolic mutualism beyond single amino acid exchanges [44]. In particular, loss of 
functions in one organism due to compensation by others has been hypothesized to be widespread [45], and 
may involve multiple genes and complex pathway architectures [25]. In the engineering of consortia for 
specific metabolic engineering tasks, exploring this larger space of possibilities may open up novel 
strategies for bio-production. 

Surveying the landscape of possible paths for metabolic differentiation leading to obligate 
mutualism is a combinatorially difficult problem. While future elaborations of existing methods for high 
throughout genetic modifications (e.g., MAGE [12]) may enable a systematic exploration of this space in 
vivo, computational models can provide a preliminary assessment of the landscape of possible strategies 
and of how these strategies depend on different constraints on metabolic network complexity. Constraint-
based models of metabolic networks, such as Flux Balance Analysis (FBA) [46–56], can specifically be 
leveraged to ask questions that cannot be easily addressed experimentally. FBA represents metabolism as 
a set of biochemical reactions, which are inferred from genome annotations and literature curation, and 
considers cellular metabolism as a resource-allocation problem. Given a set of biochemical, 
thermodynamic, and environmental constraints, FBA uses linear programming to determine the distribution 
of fluxes through a reaction network that satisfies a given optimization objective. Typically, this objective 
is to maximize the flux through a biomass-producing reaction, so FBA determines how a cell should 
optimally allocate nutrients based on its environment and biochemical capabilities so that growth rate is 
maximized. FBA has also been increasingly used to study metabolic interactions in microbial consortia [7, 
8, 50–54, 57–61, 23–25, 27, 36, 47–49], as well as to predict optimal genetic knockouts for metabolite 
production [46]. 

Here, we explore how metabolic differentiation emerges from an isogenic population by using a 
newly developed constraint-based modeling approach which we name Division Of Labor in Metabolic 
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Networks (DOLMN). In particular, using DOLMN, we explore the space of feasible single-strain or multi-
strain metabolic networks by systematically limiting the number of intracellular and transport reactions in 
each metabolic model. After introducing the mathematical and integer linear programming formulation of 
DOLMN, we illustrate its capabilities through an analysis of division of labor based on core carbon 
metabolism in E. coli [55]. We next apply DOLMN to a genome-scale E. coli model [56], and show that 
metabolically differentiated and interdependent communities are able to exist under harsher reaction 
constraints than a single, isolated strain, and even outcompete the single strain in some cases. Our results 
broaden the scope of possible metabolic interdependencies between metabolically different species, with 
applications in understanding diversity in natural microbial communities and in designing new artificial 
consortia. 

 
Results 
A method to design division of labor in microbial communities 

The metabolic division of labor problem consists of partitioning a given metabolic network (which 
we will refer to as the “global network”) into subnetworks representing individual organisms (which we 
will also call simply “strains”) (see minimal example in Figure 1). Each strain has its own metabolic 
network, including intracellular reactions, as well as transport reactions, which determine how it interacts 
with the environment. Environmental availability of different nutrients is defined by constraints on the 
exchange reactions, which enable the inflow and outflow of environmental metabolites and byproducts. In 
solving this division of labor problem, we make specific assumptions that reflect the nature and architecture 
of metabolic networks across different species: (i) We do not set any specific a priori expectations about 
the presence of reactions in different strains. Consequently, a reaction from the global network may be 
selected to appear in one or more strains, or may not appear in any strain at all; (ii) We expect each strain’s 
subnetwork to be a well-connected, fully functional metabolism, so as to be capable of producing that 
strain’s biomass (see Methods); (iii) Upon simulating co-culture of multiple co-existing strains, we require 
that all such strains must have equal growth rates, so that they would be able to stably co-exist in a chemostat 
[8, 41, 62, 63]. 

To solve this problem, we devised Division Of Labor in Metabolic Networks (DOLMN), which is 
formulated as a combinatorial optimization problem. Inputs of DOLMN are the global network (encoded 
in a stoichiometric matrix S, and accompanied by upper and lower flux bounds, as in standard FBA 
formulations, see Methods); the number of target strains (K); and constraints on the number of intracellular 
(TIN) and transport (TTR) reactions allowed in each strain. Key outputs of DOLMN are a binary reaction 
vector (t) whose elements indicate whether a given reaction is present in a given strain, and a continuous 
flux vector (x) for all reaction rates. Note that there is no specific requirement for two or more strains to 
end up using different reactions from the global network. A specific solution could entail multiple strains 
having exactly the same reactions, and not interacting with each other. We expect division of labor to arise 
only upon making TIN or TTR too small for any individual strain to be able to survive without receiving 
specific molecular components from a metabolically distinct partner (Figure 1a). Note that elements of t 
can switch ON or OFF as a function of the current constraints, irrespective of their state under different 
constraints. 

DOLMN, described in detail in Methods, involves the use of Mixed Integer Linear Programming 
(MILP). Our problem is NP-complete. It can be solved exactly for core metabolic network models (i.e., 
global network of ~100 reactions), but it requires heuristics and long computational time for genome-scale 
models (~1000 reactions).  

 
Metabolic division of labor in E. coli core metabolism 

As a first test and illustrative example of DOLMN, we investigated how E. coli core carbon 
metabolism [55] on minimal glucose medium would be partitioned between two strains (i.e., two trimmed 
versions of the E. coli core network) for a given limit on the number of allowed reactions (see Figure 2 and 
Methods for details). Besides imposing constraints on the number of reactions allowed in each strain, we 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/442376doi: bioRxiv preprint 

https://doi.org/10.1101/442376
http://creativecommons.org/licenses/by/4.0/


4 

further required that both strains have the same growth rate of at least 0.1 hr-1, effectively simulating stable 
co-existence in a chemostat [8, 41, 62, 63]. An interesting outcome of this analysis, obtained for 
subnetworks containing no more than 11 transport reactions and 24 intracellular reactions, was the 
discovery of a metabolic strategy in which each strain performs half of the tricarboxylic acid (TCA) cycle. 
None of the strains, in this case, were able to perform all needed metabolic functions without the inflow of 
specific metabolites produced by the partner. In particular, exchange of 2-oxoglutarate and pyruvate was 
necessary for survival of this 2-species consortium (Figure 2). This example illustrates how, even for a 
relatively small network, DOLMN can provide predicted division of labor strategies that could not be easily 
designed manually. Furthermore, DOLMN could be applied to other core metabolic models [68], which 
have been generated for a large number of organisms. 

 
A growth landscape illustrates division of labor strategies in E. coli genome-scale metabolism 

We next applied DOLMN to a much larger global network, namely genome-scale E. coli 
metabolism [56]. In this case, individual strains found by the algorithm would represent E. coli variants 
with a reduced set of functionalities. We systematically mapped the landscapes of possible 1-, 2-, and 3-
strain simulations to display how the growth rates (Figure 3a,b and Figure S2a in Additional File 1) vary 
as a function of TIN and TTR. One first observation, consistent with expectations, is that as TIN decreases (for 
unconstrained number of transport reactions) individual strains reach a limit beyond which they cannot 
sustain growth, whereas consortia of two and three strains are still viable. For the example analyzed in 
Figure 3, a 1-strain subnetwork needs at least 254 intracellular reactions to grow, whereas 2-strain 
subnetworks only require 215 intracellular reactions each, and 3-strain subnetworks require 203 
intracellular reactions each (Figure S1a in Additional File 1). 

The observed landscapes display a fundamental nonlinear tradeoff between minimizing TIN 
(intracellular complexity) and minimizing TTR (metabolic exchange). This nonlinearity implies that 
removing the same number of transport reactions at different points along the frontier of the feasible region 
can be compensated by adding different numbers of intracellular reactions. For example, decreasing TTR by 
2 at large TTR can be compensated by adding a single intracellular reaction (increasing TIN by 1), while 
removing the same number of transport reactions at small TTR will require a much larger compensation with 
intracellular reactions (Figure 3a,b, Figure S2 in Additional File 1). It is important to note that decreasing 
TTR negatively influences growth because it restricts not only each strain’s ability to take up metabolites, 
but also its ability to secrete metabolites. If an organism cannot secrete metabolites, it accumulates waste 
(which results in an infeasible FBA solution). Irrespective of the number of strains in the community, it 
looks like the E. coli strain subnetworks require at least 9 transport reactions in order to support growth (see 
Figure S4 in Additional File 1 for which transporters at kept when TIN=9).  

Further analysis of the landscapes for 1-, 2-, and 3-strain communities also reveals the existence of 
regions in which division of labor potentially provides a competitive advantage. Given that multiple strains 
co-existing in a consortium have to share available resources, they will tend to grow slower than 
individually growing strains (Figure 3a,b). One notable exception is a thin strip at the boundary in which 
an individual strain can grow. At this frontier for a single strain, we observe that 2-strain communities can 
grow more rapidly than 1-strain communities (Figure 3c). A biologically important implication of this 
result is the fact that the 2-strain communities would in principle have the chance to collectively outcompete 
the 1-strain ones. Similarly, 3-strain communities grow faster than 2-strain communities along the boundary 
in which 2-strain communities can grow (Figure S2h in Additional File 1). These results suggest that the 
number of strains that achieve the highest growth rates under a given set of circumstances may naturally 
increase as environmental constraints tighten. This situation could rise, for example, if the burden of protein 
cost in the cell were to increase, or if selection processes were to gradually favor streamlined strains (e.g., 
as previously observed experimentally by [10–19, 33]). 

 
Emergence of obligate mutualism is coupled with sharp metabolic network differentiation and 
exchange of different chemicals 
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Based on intuition, and on the results obtained for the core model (Figure 2b) we expect that the 
capacity of two or more E. coli strains to survive together under tighter constraints on the number of allowed 
reactions is due to metabolic division of labor and cross-feeding. A global overview of how metabolism 
enables co-existence of 2-strain communities in the (TTR,TIN) landscape can be obtained by plotting the 
metabolic distance (see Methods) between each of the strain’s subnetworks (Figure 4a) or the number of 
metabolites exchanged between them (Figure 4b). The fraction of reactions each of the strain subnetworks 
have in common tends to overall decrease as TIN and TTR decrease (Figure 4a, Figure S5a in Additional 
File 1), indicating that it is in general more advantageous for 2-strain communities to perform division of 
labor as the constraints became more severe. These division of labor strategies are also visible in terms of 
the number metabolites that the 2-strain communities have to exchange with each other in order to grow 
(Figure 4b and Figure S6a in Additional File 1). In short, multiple-strain communities can grow under 
stricter constraints on TIN because they distribute metabolic reactions and exchange metabolites. Overall, 
different 2-strain communities can vary widely in terms of the metabolites being exchanged, with molecules 
ranging from central carbon compounds such as acetate and pyruvate to amino acids (Figure 5a).  

In order to gain better insight into the metabolic changes that accompany the rise of pairs of obligate 
mutualistic strains, we reduced the multi-dimensional space of fluxes using PCA (see Methods). Clusters 
in the principal component space would indicate common metabolic strategies, hardly detectable through 
visual inspection of the network themselves; paths between these clusters would additionally portray how 
the strain subnetworks move through this metabolic space as constraints become more stringent. We 
observed three clusters, indicating three major metabolic strategies (Figure 4a inset, Figure S8 in 
Additional File 1). The largest cluster occurs at the origin, and corresponds to large TIN. That is, for fairly 
unconstrained intracellular metabolism, all strains (for 1- and 2-strain simulations) perform the same 
metabolic strategy, in line with the expected metabolic regime for E. coli grown on minimal glucose 
medium [55, 56]. However, as TIN becomes more constrained (i.e., the number of intracellular reactions 
allowed decreases), the 2-strain subnetworks move away from each other, indicating that they diversify into 
different metabolic strategies. Note that the specific path followed by these networks as TIN decreases is 
also a function of TTR (Figure 4a inset, Figure S8 in Additional File 1). 

To understand the different metabolic strategies associated with different clusters in the PCA, we 
calculated the Euclidean distance between pathways in each of the two strains in a 2-strain community and 
mapped it to the (TTR,TIN) landscape (see Methods). A striking outcome of this distance analysis was the 
fact that, for a broad range of TTR values (9–29), the 2-strain subnetworks had a large difference in their 
TCA cycle (Figure 4c), mirroring the observation reported for the core E. coli network (Figure 2b). This 
strategy of splitting the TCA cycle was also supplemented by large differences in 
glycolysis/gluconeogenesis, which was in fact observed along the entire TIN boundary for 2-strain 
communities (Figure S9 and Figure S10 in Additional File 1), suggesting that this could represent a 
generalized version of the acetate utilization phenotype observed in classical evolutionary experiments [8, 
20, 21]. 

As indicated by the increase in number of exchanged metabolites as constraints become tighter 
(Figure 4b), the pairs of metabolically differentiated strains described above can survive due to metabolic 
cross-feeding. For example, in a 2-strain community, one of the strains could utilize the metabolites 
available from the environment, and secrete byproducts that can enable the other strain to survive. We again 
used the (TTR,TIN) landscape to track how constraints affect the metabolites being exchanged (Figure 4d, 
Figure S12 in Additional File 1). Different metabolites display drastically different patterns (Figure S12 
in Additional File 1): some metabolites are exchanged almost universally (e.g., acetate) while others appear 
only in specific sub-regions of the landscape (e.g., glutamate below the TIN boundary for 1-strain 
communities). Notably, succinate is shown to be exchanged predominantly at the TIN boundary of 2-strain 
communities (Figure 4d), in very close correspondence to the area of the landscape where the TCA cycle 
is drastically split (Figure 4c). This suggests that, based on genome-scale simulations, succinate would be 
one of the key intermediates for the rise of E. coli strains surviving by using complementary halves of the 
TCA cycle. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/442376doi: bioRxiv preprint 

https://doi.org/10.1101/442376
http://creativecommons.org/licenses/by/4.0/


6 

Fluxes of metabolic sharing can be strongly coupled 
Consortia of obligate symbiotic partners are predicted to emerge in regions of the (TTR,TIN) 

landscape where 1-strain communities are infeasible. As shown above, what makes these consortia viable 
(i.e., what makes it feasible for the corresponding strains to produce biomass despite the strong restriction 
on intracellular reactions) is the possibility of metabolite exchange between the 2-strain communities.  

We thus sought to perform analysis of the metabolites being exchanged across the whole (TTR,TIN) 
landscape. In the specific setup used for the in silico experiments, out of 143 total extracellular metabolites, 
only 37 metabolites (25.9%) were exchanged in at least one simulation of 2-strain communities. Most of 
these exchanged metabolites (78.4%) were exchanged in at least 10% of all co-culture simulations (Figure 
5a). A class of abundantly exchanged molecules is the set of amino acids. These solutions can be viewed 
as similar to artificially imposed auxotrophies used to engineer synthetic consortia [37–41, 64]. Other 
frequently exchanged molecules include carboxylic acids (e.g., acetate and pyruvate) and nucleic acids 
(e.g., thymidine and adenine), which are known to be exchanged in natural communities [20, 21, 27, 59]. 

Additional insight can be gathered by exploring the relationship between exchanged metabolites, 
i.e., by asking whether we should expect specific pairs of metabolites to be simultaneously exchanged in 
the same or opposite directions between two organisms. Knowledge of such correlations/anti-correlations 
may be useful as a strategy for choosing biomarkers (if two organisms exchange A, they are also likely to 
exchange B), as an indicator of fundamental metabolic tradeoffs (X can provide A only if Y provides B), 
or as a broad suggestion for the existence of unavoidable couplings in the interactions present in a microbial 
community. We applied the Spearman correlation to exchange reaction fluxes (Figure 5b) in order to 
measure if metabolites are exchanged jointly (both taken up or secreted by a strain, positive ρ) or 
reciprocally (one is taken up and the others is secreted by a strain, negative ρ). The Spearman correlation 
can tell us if metabolic complementation exists between 2-strain communities.  

Two major patterns emerge from this analysis. First, by looking at the hierarchically clustered 
correlation matrix, one can immediately recognize several block structures. The largest block structure 
seems dominated by amino acid exchange. In particular, two sets of (mostly) amino acids seem to be highly 
correlated within each set, but highly anti-correlated across the sets. The first set includes L-arginine, L-
histidine, L-threonine, and uridine, which are all correlated with each other, whereas the second set includes 
L-isoleucine, L-leucine, ornithine, L-proline, L-serine, L-tryptophan (as well as acetate and L-alanine, with 
weaker coefficients). Interestingly, these anti-correlated block sets do not seem to map trivially to different 
precursor pathways (e.g., upper vs. lower glycolysis), suggesting that other metabolic tradeoffs may 
determine these patterns. One can also observe a second block structure dominated by amino acids that are 
all correlated, containing D-alanine, L-asparagine, L-lysine, L-phenylalanine, pyruvate, L-tyrosine, and – 
to a less extent – fumarate, 2-oxoglutarate, putrescine, and L-valine.  

The second significant outcome of this correlation matrix is related to the TCA cycle splitting result 
illustrated above. In particular, succinate and fumarate are anti-correlated (ρ = -0.60), indicating reciprocal 
exchange. These two metabolites are intermediates of the TCA cycle, and are involved in sequential steps, 
suggesting that this anti-correlation corresponds to the metabolic division of labor strategy characterized 
by splitting of the TCA cycle (Figure 2b). This is further conformed by the fact that the region in the 
(TTR,TIN) landscape where succinate is exchanged matches very closely with the region in which the 2-strain 
communities have very distinct use of the TCA cycle (Figure 4c,d). 

 
Discussion 

In this study, we proposed a set of methods and thought experiments to systematically explore the 
space of possible division of labor strategies in synthetic microbial consortia as the number of transport and 
intracellular reactions are constrained. We found not only that 2-strain communities can survive with less 
metabolic reactions than individual strains because they distribute reactions and exchange metabolites, but 
also that under some conditions, two cross-feeding strains may grow faster than one strain. There is a 
nonlinearity in how loss of internal reactions can be compensated by transporters, indicating that a single 
metabolite supplied by the environment or another strain can offset the loss of multiple intracellular 
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reactions. These non-trivial synergistic states have not been hypothesized before and would be difficult to 
find without the aid of computational methods.  

Although this study is purely computational, it provides a new conceptual framework and new 
predictions, including specific testable modifications, and it enables us to perform analyses that are 
currently beyond current experimental capabilities. The phenotypic space we explore involves 5,000 in 
silico experiments on the full E. coli network, across 1-, 2-, and 3-strain communities at multiple constraints 
on the number of transport and intracellular reactions. Furthermore, for each organism’s model we take into 
account a large number of variables (1,075 reactions and 761 metabolites in each strain). Efficient 
algorithms are therefore a key step towards designing functional and stable division of labor strategies in 
synthetic microbial communities. 

Experimental testing of the proposed division of labor strategies in E. coli may prove challenging 
due to the multiplicity of gene deletions that would have to be simultaneously performed. Recently 
developed technologies, such as multiplex automated genome engineering (MAGE) [65], conjugative 
assembly genome engineering (CAGE) [66], and the CRISPR/Cas system [67], could in principle facilitate 
such an endeavor. Still, a challenge of implementing multiple targeted knock-outs experimentally is the 
chance of encountering high-order epistatic interactions between genes that are difficult to predict 
computationally, and that may result in non-viable strains. Thus, instead of implementing all of the genetic 
perturbations at once, it may be advisable to engineer increasingly complex interactions involving gradual 
modifications of different reactions and pathways. Moreover, rather than deleting the genes, one could 
consider engineering promoters to reduce the flux through each reaction and potentially let the strains 
evolve in the lab.  

Our results may be relevant for microbial ecology of natural communities, as well as for the study 
of synthetic microbial consortia. Ongoing efforts in synthetic ecology are currently mostly focused on 
engineering metabolic dependencies by making one strain unable to produce a terminal biomass precursor 
(e.g., an amino acid), which is then provided by another strain. Although this strategy has yielded new 
insight into how microbes interact within communities, it may not be reflecting the possible complexity of 
natural metabolic interactions. Obligate mutualistic organisms within communities may be 
thermodynamically and metabolically linked based on the exchange of metabolites that are part of core 
metabolic processes. Our approach has the capacity to uncover this kind of “deep symbiosis” between 
organisms, such as the split TCA cycle. Interestingly, the TCA cycle appears in an incomplete form in many 
microbes [68–70], and reduction in the lower half of the TCA cycle occurred in E. coli evolution 
experiments [71, 72]. Moreover, some bacteria, such as E. coli, switch between the full TCA cycle and a 
branched variant when operating under aerobic and anaerobic conditions, respectively [73, 74]. These 
observations also suggest that complex – and yet poorly understood – solutions to community-level 
metabolic efficiency may have arisen through co-evolution in the form of intricate division of labor 
strategies. 
 Our predictions were initially produced under the assumption that the different perturbations 
applied by our method correspond to genetic modifications. However, our predictions could equally be 
interpreted as being a consequence of instances of gene down-regulation instead of gene loss [14]. In other 
words, all the solutions found by DOLMN may in principle manifest themselves in the form of phenotypic 
differentiation within a population of cells. In a complex multicellular system (such as the human body) 
this could mean division of labor among cell types in different tissues, whereas in clonal populations of 
microbes this could imply phenotypic variation due to heterogeneous gene expression [75–77]. Single-cell 
studies of microbial physiology [14], aided by genome-scale models of metabolism, could help unravel 
both genomic and transcriptional variability potentially associated with division of labor in the microbial 
world. 

 
Conclusions 

We computationally explored the possible ways in which sets of metabolic reactions can be 
distributed among interacting microbial strains, with the goal of better understanding the tradeoff between 
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metabolic self-reliance and mutualistic exchange. The mathematical problem of designing metabolically 
viable organisms and communities from a global set of possible reactions is a very difficult one. The 
approach, heuristics, and examples illustrated in this work show, however, that solutions identified by our 
algorithm are feasible and biologically interpretable. In addition to illustrating specific nontrivial avenues 
for engineering communities of co-dependent E. coli strains, our approach could be viewed as a first step 
towards addressing a broader, overarching question, namely whether the metabolic network of individual 
organisms in natural communities is predictable based on first principles. One could imagine, in particular, 
that abundant horizontal gene transfer and long-term selection processes in ecosystems may have acted 
over geological time to efficiently allocate genes into mutually dependent organisms, very much like our 
algorithm does. With increasing computational power and further optimized algorithms, it may become 
possible to extend our approach to a larger number of organisms, with the potential of providing a general 
theoretical scaffold for understanding how environments shape division of labor strategies and microbial 
diversity. 

 
Methods 
Flux balance analysis (FBA) 

To mathematically formulate FBA, let 𝐒𝐒 denote the stoichiometric matrix of dimensions 𝑚𝑚 ×  𝑛𝑛, 
where 𝑚𝑚 is the number of metabolites and 𝑛𝑛 the number of metabolic fluxes. Metabolic fluxes are defined 
as a vector 𝒙𝒙, where 𝒙𝒙𝒍𝒍𝒍𝒍 and 𝒙𝒙𝒖𝒖𝒍𝒍 are lower and upper bounds, respectively, on the metabolic fluxes. These 
bounds are implied by empirical evidence of irreversibility or by nutrient availability in the growth medium. 
The cellular objective is expressed as a vector of weight coefficients for each reaction (e.g., biomass), 
denoted by c, and the optimal objective value is a scalar 𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜. The FBA problem is formulated as: 

𝑍𝑍𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑚𝑚𝑎𝑎𝑥𝑥𝐱𝐱 𝐜𝐜′𝐱𝐱 
s. t. 𝐒𝐒𝐱𝐱 = 𝟎𝟎,                                                                        (1) 
𝐱𝐱𝒍𝒍𝒍𝒍 ≤ 𝐱𝐱 ≤ 𝐱𝐱𝒖𝒖𝒍𝒍, 

where 0 is the vector of all zeroes and primes indicate transpose. 
 

Community-level flux balance analysis 
In order to perform FBA capturing all reactions spanning an entire microbial community, we 

introduce a “universal stoichiometric matrix,” also denoted by 𝐒𝐒 , which expresses the stoichiometric 
coefficients of all metabolic reactions in the community irrespective of the organism they belong to, as in 
[61]. Specifically, 𝐒𝐒 ∈  ℝ𝑀𝑀×𝑁𝑁  where 𝑀𝑀 =  𝑀𝑀𝑒𝑒 +  𝑀𝑀𝑖𝑖  represents the number of distinct metabolites and 
𝑁𝑁 =  𝑁𝑁𝑒𝑒 +  𝑁𝑁𝑜𝑜  +  𝑁𝑁𝑖𝑖 represents the number of distinct reactions (see Figure S16 in Additional File 1). The 
M distinct metabolites consist of two types: 𝑀𝑀𝑒𝑒 extracellular and 𝑀𝑀𝑖𝑖 intracellular metabolites. There are 3 
different types of reactions: 𝑁𝑁𝑒𝑒  extracellular reactions, 𝑁𝑁𝑜𝑜  transport reactions, and 𝑁𝑁𝑖𝑖  intracellular 
reactions. The availability of nutrients (extracellular metabolites) from the environment is encoded in the 
extracellular reactions, and intracellular reactions encode each organism’s metabolism. Organisms use 
transport reactions to move metabolites between their intracellular compartment, which is unique to each 
organism in the community, and the extracellular environment, which is shared by all organisms in the 
community. 

 
A method for metabolic division of labor 

We first reformulate the universal stoichiometric matrix 𝐒𝐒 to construct putative stoichiometric 
matrices for each species in the community. In particular, we construct a community stoichiometric 
matrix 𝐒𝐒𝐜𝐜 whose structure is shown in Figure S17 in Additional File 1. The block matrices  𝐒𝐒𝐞𝐞,  𝐒𝐒𝐭𝐭𝐭𝐭,  𝐒𝐒𝐭𝐭𝐭𝐭, 
and  𝐒𝐒𝐢𝐢 in  𝐒𝐒𝐜𝐜  are consistent with those in 𝐒𝐒. Organisms in the community share the same nutrients and 
extracellular reactions. Because there are 𝐾𝐾 organisms in the community, we replicate the block [𝐒𝐒𝐭𝐭𝐭𝐭,𝐒𝐒𝐢𝐢] 
that includes transport reactions and intracellular reactions K times and diagonally arrange them in  𝐒𝐒𝐜𝐜. 
Similar compositions of stoichiometric matrices had used in previous work on community level flux 
balance modeling [43, 78, 79].  
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After the intracellular metabolites are obtained via the transport reactions, intracellular reactions 
take place inside each organism. This construction leads to a community stoichiometric matrix  𝐒𝐒𝐜𝐜 ∈
 ℝ𝑀𝑀𝑐𝑐×𝑁𝑁𝑐𝑐 , where 𝑀𝑀𝑐𝑐  =  𝑀𝑀𝑒𝑒 + 𝐾𝐾 × 𝑀𝑀𝑖𝑖  and 𝑁𝑁𝑐𝑐  =  𝑁𝑁𝑒𝑒 + 𝐾𝐾 × (𝑁𝑁𝑜𝑜 + 𝑁𝑁𝑖𝑖) . Notice that  𝐒𝐒𝐜𝐜  has one block 
column for extracellular reactions (𝑁𝑁𝑒𝑒  columns) and 𝐾𝐾 block columns (of dimension 𝑁𝑁𝑜𝑜 + 𝑁𝑁𝑖𝑖), one for each 
organism, including all transport and intracellular reactions. 

To capture design choices, we introduce a binary putative vector 𝒕𝒕 = (𝑡𝑡1,··· 𝑡𝑡𝑁𝑁𝑐𝑐), where 𝑡𝑡𝑗𝑗 ∈  {0,1}, 
𝑗𝑗 = 1, … ,𝑁𝑁𝑐𝑐 , is a binary variable, indicating whether the j-th reaction is included in the corresponding 
organism (Figure S17 in Additional File 1). With 𝒕𝒕 and  𝐒𝐒𝐜𝐜 available, we can partition  𝐒𝐒𝐜𝐜 to 𝐾𝐾 individual 
matrices, 𝐒𝐒𝐤𝐤, by removing column 𝑗𝑗 with 𝑡𝑡𝑗𝑗 = 0. 

The problem of identifying 𝒕𝒕 can now be formulated as the following MILP problem: 
max

 𝐱𝐱,𝐭𝐭
𝐜𝐜′ 𝐱𝐱 

s. t.  𝐒𝐒𝐜𝐜𝐱𝐱 =  𝟎𝟎, 
        𝐱𝐱𝑙𝑙𝑙𝑙 ≤  𝐱𝐱 ≤  𝐱𝐱𝑢𝑢𝑙𝑙                                                       (2) 
        diag(𝐱𝐱lb)𝐭𝐭 ≤  𝐱𝐱 ≤  diag(𝐱𝐱ub)𝐭𝐭, 
        ti ∈ {0,1}, 
        tmin ≤ 𝐑𝐑𝐭𝐭 ≤ tmax, 

where diag(𝐱𝐱) denotes a diagonal matrix whose main diagonal consists of the elements of vector 𝐱𝐱, 𝐑𝐑 is a 
regularization matrix, and 𝐭𝐭min, 𝐭𝐭max  are appropriately defined constant vectors. Specifically, by 
appropriately defining 𝐑𝐑, 𝐭𝐭min, 𝐭𝐭max, we can impose constraints on the number of internal and transport 
reactions for each organism. 

  
E. coli models 

E. coli core [55] and genome-scale iJR904 [56] models were retrieved from the BiGG database 
[80]. The models were downloaded as .mat files in the COBRA (COnstraints-Based Reconstruction and 
Analysis) format [81]. Stoichiometric matrices were reformatted as a community stoichiometric matrix  𝐒𝐒𝐜𝐜, 
as previously described and shown in Figure S17 in Additional File 1. Reaction and metabolite names were 
re-ordered to correspond with the community stoichiometric matrix. 

 
The First Optimization Problem 

Suppose there are 𝐾𝐾  organisms. The upper bound on the number of active transport and 
intracellular reactions in each organism is TTR and TIN, respectively. We let xbiomk denote the flux of the 
biomass reaction for each organism 𝑘𝑘 = 1, … ,𝐾𝐾. We also let 𝑇𝑇𝑇𝑇𝑘𝑘  and 𝐼𝐼𝑁𝑁k denote the index sets of the 
transport and internal reactions for each organism 𝑘𝑘, respectively. The MILP (Problem 2) takes the form: 

max
 𝐱𝐱,𝐭𝐭

𝐜𝐜′ 𝐱𝐱 
s. t.  𝐒𝐒𝐜𝐜𝐱𝐱 =  𝟎𝟎,      
        𝐱𝐱𝐥𝐥𝐥𝐥 ≤  𝐱𝐱 ≤  𝐱𝐱𝐮𝐮𝐥𝐥 , 
        xbiom1  = ⋯ = xbiomK  ≥  0.1,                           (3) 
        diag(𝐱𝐱𝐥𝐥𝐥𝐥)𝐭𝐭 ≤  𝐱𝐱 ≤  diag(𝐱𝐱𝐮𝐮𝐥𝐥)𝐭𝐭, 
        � 𝑡𝑡𝑗𝑗

𝑗𝑗∈𝑇𝑇𝑇𝑇𝑘𝑘
 ≤ 𝑇𝑇𝑇𝑇𝑇𝑇 ,       𝑘𝑘 ∈ {1,⋯K}, 

        � 𝑡𝑡𝑗𝑗
j∈𝐼𝐼𝑁𝑁k

 ≤ 𝑇𝑇𝐼𝐼𝑁𝑁  , 𝑘𝑘 ∈ {1,⋯K}, 

        𝑡𝑡𝑗𝑗 ∈ {0,1}. 
Let 𝐱𝐱,  𝐭𝐭∗denote an optimal solution of the MILP problem above. 

We note that solving such a large-scale MILP, which involves hundreds or thousands of integer 
variables, is computationally expensive. Our experiments suggest that solving Problem 3 for a community 
of two E. coli core models can be done relatively quickly (on the order of minutes or hours). On the other 
hand, solving the problem for a community model of two iJR904 E. coli models is very time consuming. 
We employ certain methods to speed up finding an optimal solution. One method leverages the fact that 
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instances with similar values for TTR  and TIN  have similar sets of active reactions. Specifically, as we 
decrease the values of TTR and TIN we use the sets of active reactions corresponding to larger TTR and TIN  
to generate feasible solutions that are offered as putative solutions to the MILP solver. This tends to 
drastically decrease solution times. A complementary approach uses a decomposition idea. In particular, 
for solving problems involving a community of K organisms, we can use solutions for K-1 organisms and 
append solutions for the additional organism. This generates feasible solutions and it is possible to search 
for an effective feasible solution by varying the way the K-organism community is decomposed into a (K-
1)-organism community and an additional organism. 

 
The Second Optimization Problem 

In order to reduce redundant fluxes in transport and intracellular reactions, a second optimization 
problem is introduced where the integer variables are fixed to the optimal solution 𝐭𝐭∗of the first stage 
problem (Problem 3), and the biomass fluxes are also set to the optimal values obtained by the first stage 
problem (Problem 3). Specifically, we solve: 

min
𝐱𝐱

 ‖ 𝐱𝐱‖1 
s. t.  𝐒𝐒𝐜𝐜𝐱𝐱 =  𝟎𝟎,      
        𝐱𝐱𝐥𝐥𝐥𝐥 ≤  𝐱𝐱 ≤  𝐱𝐱𝐮𝐮𝐥𝐥 , 
        xbiomk  = 𝑥𝑥biomk

∗ , k ∈ {1,⋯K} ,                     (4) 
        diag(𝐱𝐱𝐥𝐥𝐥𝐥)𝐭𝐭∗ ≤  𝐱𝐱 ≤  diag(𝐱𝐱𝐮𝐮𝐥𝐥)𝐭𝐭∗. 

This problem minimizes the ℓ1 norm of the flux vector to induce sparsity (as in the “sparse FBA” of [81]) 
and can be rewritten as a linear programming problem. 
 
Data Structure and Analysis 

For each constraint on the number of transport reactions, TTR, DOLMN outputs a structure, C 
(“model”) for each strain. This structure C contains fields to indicate the constraint on the number of 
intracellular reactions, TIN (“model.sparse_con”); the reaction names in the global network (“model.rxns”); 
the growth rates at each TIN (“model.biomass”); the reaction flux values at each TIN (“model.flux”); and the 
reaction binary integer values at each TIN (“model.int”). The function algorithm2models parses C into 
individual metabolic models, calculates the exchange flux of each individual strain (instead of the 
community exchange flux), and identifies exchanged metabolites. 

The analysis of the DOLMN output is performed in several MATLAB scripts. All analysis is split 
between the core and full iJR904 E. coli model. The scripts dolmn1a_parse_iJR904.m and 
dolmn1b_parse_core .m apply the function algorithm2models to all of the DOLMN outputs for the full and 
core iJR904 E. coli models, respectively. The scripts dolmn2a_summary_iJR904.m and 
dolmn2b_summary_core.m restructure the data for plotting, calculate the Jaccard distance and exchange 
flux correlations, and perform standard PCA (MATLAB function pca). Interpolation for the constraint 
landscapes are performed in dolmn2a_summaryInterp_iJR904.m and dolmn2b_summaryInterp_core.m. 
All main text figures are plotted by dolmn3_figures_main.m and all supplementary figures are plotted in 
dolmn4_figures_supp.m. 

All data (raw and analyzed), functions, and scripts can be found in the GitHub repository 
(https://github.com/segrelab/dolmn). Analysis was performed with MATLAB 2017b. MILPs were solved 
by GUROBI 7.0 (http://www.gurobi.com, [82]). 
 
Transport Reaction Flux to Exchange Reaction Flux 

Metabolite exchange requires (i) that the metabolite was not already in the environment (was not 
part of the medium); (ii) that one organism secretes the metabolite (positive exchange flux); and (iii) that 
another organism takes up the metabolite (negative exchange flux). DOLMN finds the net exchange flux 
of the community, so we had to calculate the exchange flux of each strain in a multi-strain solution. The 
calculated exchange flux is the sum of all transport reactions: 

𝐱𝐱𝐞𝐞𝑘𝑘 = 𝐒𝐒𝐭𝐭𝐭𝐭𝐱𝐱𝐭𝐭                                                                            (5) 
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and the sum of each calculated exchange flux must be equal to the net exchange flux of the community: 
𝐱𝐱𝐞𝐞 = � 𝐱𝐱𝐞𝐞𝑘𝑘

𝑘𝑘∈{1,⋯K}
                                                            (6) 

 
Calculating Metabolic Differentiation 

The Jaccard distance was used to measure the difference between models based on how many 
reactions were different between strains. The Euclidean distance was used to measure how the flux 
distributions differed between strains. The built-in MATLAB function pdist2 was used to calculate Jaccard 
and Euclidean distances, with the ‘jaccard’ and ‘euclidean’ metrics, respectively. 

 
Identifying Exchanged Metabolites 

Metabolites are exchanged if one strain secretes the metabolite (has a positive exchange flux) and 
the other takes it up (has a negative exchange flux). Metabolites that were part of the medium (e.g., 
hydrogen ions) were not considered to be exchanged even if one strain secretes it and the other takes it up. 
We created the MATLAB function identifyExchangedMets to determine which metabolites, if any, are 
exchanged between strains. 

 
Principal Component Analysis 

Principal component analysis (PCA) was performed on the intracellular flux values of 1- and 2-
strains using the built-in MATLAB function pca. The biomass flux was excluded from the intracellular 
reactions and was instead used to normalize the intracellular flux values. 

 
Spearman Correlation of Exchange Reaction Flux 

The Spearman correlation of exchange reaction fluxes and the phi coefficient of exchanged 
metabolite profiles were calculated using the MATLAB function corr, with the ‘Spearman’ and ‘Pearson’ 
type, respectively. While the Spearman correlation yields information on how metabolites are exchanged 
together (e.g., if they are both secreted or taken up or if they are inversely exchanged), the phi coefficient 
indicates if a metabolite is exchanged at the same (TTR,TIN) constraints. In general, the phi coefficient 
measures the association between two binary variables (in this case, the metabolite exchange profiles as in 
Figure 4d and Figures S11-12 in Additional File 1). The Spearman correlation of exchange reaction fluxes 
was clustered by the shortest Euclidean distance using the MATLAB functions linkage and dendrogram. 

 
List of Abbreviations Used 
FBA: Flux Balance Analysis; DOLMN: Division Of Labor in Metabolic Networks; LP: Linear 
Programming, MILP: Mixed Integer Linear Programming 
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Figure 1. Division Of Labor in Metabolic Networks (DOLMN), illustrated as a toy model. (a) One- 
and two-strain solutions of a toy model. K indicates the number of target strains and TIN is the constraint on 
the number of intracellular reactions allowed in each strain. Metabolites X, Y, and Z are required for each 
network to grow (i.e., produce biomass). Two strains can exchange metabolites Y and Z (c), but a single 
strain can only take up environmental metabolites (b). (a) When TIN=2, 1- and 2-strain communities perform 
the same metabolic functions: take up metabolite X, convert metabolite X to metabolite Y, convert 
metabolite Y to metabolite Z, and create biomass from metabolites X, Y, and Z. The strains do not take up 
or secrete metabolites Y or Z, indicated as a hollow arrow. When TIN=1, an individual strain is no longer 
feasible because it cannot create metabolite Z, indicated as a hollow circle. The alternative solution, where 
reaction 1 is knocked out (not shown), is also infeasible because then the single strain cannot create 
metabolite Y. However, 2-strain communities are still feasible because the strains exchange metabolites Y 
and Z. If TIN=1 and the number of transport reactions allowed is constrained to two, then 2-strain 
communities are no longer feasible (not shown). (b-c) Toy metabolic network and corresponding 
(community) stoichiometric matrices and reaction binary vectors of 1- (b) and 2- (c) strain communities. 
The value of each stoichiometric coefficient represents the number of moles of each metabolite that 
participates in a reaction, with the sign indicating if a metabolite is a product (positive) or a reactant 
(negative). Exchange reactions are in black; transport reactions are in either light green (b), orange (c), or 
purple (c); and intracellular reactions are in either dark green (b), orange (c), or purple (c). 
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Figure 2. A DOLMN flux solution of E. coli core carbon metabolism. (a) The metabolic network of the 
core E. coli model, containing 95 reactions and 72 metabolites. This model contains 20 extracellular 
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metabolites and 52 intracellular metabolites, as well as 20 exchange reactions, 25 transport reactions, 49 
intracellular metabolic reactions, and 1 biomass reaction. The biomass reaction is not shown. Pathways and 
extracellular metabolites are labeled. Key intracellular reactions are labeled using the legend. (b) The 
solution of 2-strain communities when 11 transport reactions (TTR=11) and 26 intracellular reactions 
(TIN=26) are allowed. Reactions that the algorithm identifies as excluded or that have zero flux are indicated 
as a hollow arrow. The tricarboxylic acid (TCA) cycle is split between the two strains. Both strains consume 
oxygen, glucose, phosphate, and ammonium, and secrete carbon dioxide and water. The strains exchange 
the TCA intermediate 2-oxoglutarate and the glycolytic intermediate pyruvate (bolded). 
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Figure 3. (TTR,TIN) growth landscapes of 1- and 2-
strain communities. The gray region depicts the 
infeasible region in which strains cannot grow 
because there are not enough transport reactions to 
take up and secrete metabolites. Strains were 
required to maintain a biomass flux of at least 0.1 
hr-1. (a) Growth landscape of 1-strain communities. 
Biomass flux values are interpolated to obtain 
values for when the number of transport reactions 
allowed (TTR) are 23, 25–33, 35–37, and 39–45. As 
less transport constraints are allowed (decreasing 
TTR), more intracellular reactions (TIN) are required. 
For example, when TTR decreases from 21 to 19, 
only 1 additional intracellular reaction is required. 
However, when TTR decreases 11 to 9, 3 additional 
intracellular reactions are required. (b) Growth 
landscape of 2-strain communities. For example, 
when TTR decreases from 41 to 39, TTR only 
increases by 1, but when TTR decreases from 11 to 
9, TTR increases by 11. (c) Growth landscape of the 
difference in growth rates between 2- and 1-strain 
communities, where the constraints at which 2-
strain communities grow faster than 1-strain 
communities are indicated. Only constraints at 
which 1- and 2-strain communities can both grow 
are included. 
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Figure 4. (TTR,TIN) landscapes of metabolic differentiation and exchange in 2-strain communities. The 
gray region depicts the infeasible region in which strains cannot grow because there are not enough transport 
reactions to take up and secrete metabolites. (a) Jaccard distance between reaction binary vectors (t) in 2-
strain community simulations. Strains that are more metabolically differentiated (have less reactions in 
common) have a larger distance. Two-strain communities are more metabolically differentiated when they 
are in the region where a single strain cannot grow. Inset shows the principal component analysis (PCA) 
plot of 2-strain communities at TTR = 10, 19, 30, and 45, with arrows pointing from TIN = 285 to the growth 
boundary (TIN = 267, 237, 222, and 215, respectively). (b) The number of metabolites exchanged between 
strains in 2-strain community simulations. The number of exchanged metabolites increases as the constraint 
on the number of intracellular reactions becomes harsher (decreasing TIN). As the constraint on the number 
of transport reactions becomes harsher (decreasing TTR), the number of exchanged metabolites decreases. 
(c) Euclidean distance between the fluxes of TCA cycle reactions in 2-strain community simulations. (d) 
Constraints at which the 2-strain communities exchange succinate. Two-strain communities distribute the 
TCA cycle at the same constraints as they exchange succinate (Point-Biserial correlation coefficient of 0.63, 
Figure S18a in Additional File 1). 
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Figure 5. Characterization of exchanged metabolites for 2-strain community simulations. (a) Bar plot 
of the percentage of simulations a metabolite is exchanged in 2-strain communities, clustered hierarchically, 
as in (b). The Spearman correlation of exchanged metabolites, measuring the relationship of the metabolite 
exchange. A positive value specifies that the metabolites are both secreted or both taken up by a strain (only 
secretion is shown) and a negative value specifies that one metabolite is taken up and the other is secreted 
by a strain. 
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