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Abstract 

Inter-areal neuronal phase synchronization is thought to involve oscillations below 100 Hz while 

faster oscillations are presumed to be coherent only in local circuits. We show with human 

intracerebral recordings that 100−300 Hz high-gamma activity (HGA) can be phase synchronized 

between widely distributed regions. HGA synchronization was neither attributable to physiological 

and technical artefacts nor to epileptic pathophysiology, e.g., it was as prevalent in areas distant 

from the epileptic zone as within. HGA phase synchronization exhibited a reliable large-scale 

connectivity and cortex-wide community structures. Moreover, HGA synchronization displayed a 

laminar profile opposite to that of low-frequency oscillations by being stronger between the deep 

than the superficial cortical layers. Hence HGA synchronization constitutes a novel and temporally 

highly accurate form of consistent timing relationships in large-scale human cortical activity. We 

suggest that HGA synchronization elucidates the temporal microstructure of spiking-based neuronal 

communication per se in cortical circuits. 

  

Keywords: ripple, high gamma activity, high-frequency oscillations, synchronization, functional 

connectivity, epilepsy 

Abbreviations:  
cPLV: complex-valued phase-locking-value (Methods eq.1) 
EZ: epileptogenic zone 
HFO: high-frequency oscillations (100−200 Hz) 
HGA: high-gamma activity (100−300 Hz) 
iPLV: the imaginary part of the complex PLV 
LFP: local-field potential 
nEZ: putative healthy SEEG recording sites 
PLV: the absolute value of the complex PLV  
SEEG: stereo-electroencephalography 
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Introduction 
Observations of organized neuronal population activities at frequencies above 100 Hz, such as high-

gamma activity (HGA, 100−300 Hz)1, high-frequency oscillations (HFOs, 100−200 Hz) and ripple 

oscillations (150−200 Hz)2,3 are abundant in electrophysiological recordings from cortical structures 

of humans1,4 and experimental animals5,6. Several lines of evidence link HGA with perceptual and 

cognitive processes1,4,7–9, and overall indicate that high-amplitude HGA is a key signature of 

“active” neuronal processing. Ripple oscillations have been traditionally associated with sharp 

waves and off-task memory formation, but recent studies report ripples also during the performance 

of attention tasks10.  

Electrophysiological HGA signals are thought to mainly arise from broad-band multi-unit spiking 

activity (MUA) and hence to directly reflect the local peri-electrode neuronal population activity 

per se11,12. HGA13 and ripple oscillation signals do, however, also contain contributions from post-

synaptic potentials. While the synaptic mechanisms underlying the hippocampal ripple oscillations 

are already well understood, it appears that genuine oscillations with presumably synaptic-

communication-based mechanisms also contribute to the HGA signals13.  

HGA has been thought to be exclusively local in terms of spike synchronization and phase 

coupling. For slower (< 100 Hz) neuronal oscillations, phase relationships among distributed 

neuronal assemblies are instrumental for coordinating neuronal communication and processing14,15. 

Several lines of experimental and theoretical evidence have shown that these phase relations are 

dependent on frequency and neuroanatomical distance, and on the axonal conduction delays in 

particular, so that slow oscillations are generally more readily phase coupled over long distances 

than fast oscillations16–18. In line with this notion, measurements of long-range phase coupling in 

animal15,19 and human16 brains suggest that neuronal oscillations only in frequency bands below 100 

Hz exhibit inter-areal phase synchronization20 whereas the inter-areal cooperative mechanisms of 

HGA have remained poorly understood. 

We hypothesized that long-range synchronization and phase coupling of HGA, even if unexpected, 

could nevertheless be conceivable because local synchronization and high collective firing rate can 

endow local pyramidal cell populations greatly enhanced efficiency in engaging their post-synaptic 

targets21, which would be experimentally observable as inter-areal HGA phase coupling. Such a 

finding would constitute a direct observation of the actual spiking-based long-range neuronal 
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communication per se. Nevertheless, there is little evidence for HGA synchronization over long 

distances so far22.  

In this study, we searched for long-range HGA synchronization using an extensive database of 

resting-state human stereo-electroencephalography (SEEG) recordings (N = 67). We used sub-

millimeter accurate SEEG-electrode localization23 and white-matter referencing16 to obtain 

neocortical local-field potential (LFP) signals with little distortion from signal mixing with 

neighboring grey-matter or distant volume-conducted sources. We found that among these LFPs, 

long-range HGA synchronization was a surprisingly robust phenomenon and much stronger than 

synchronization at around 100 Hz. We rigorously excluded the possibilities of HGA 

synchronization being attributable to putative confounders such as the epileptiform pathophysiology 

or physiological and technical artefacts. The network architecture of resting-state functional 

connectivity achieved by HGA synchronization was split-cohort reliable and had a modular large-

scale architecture that were distinct from those of lower frequencies. These findings thus reveal in 

the human brains a novel form of spatio-temporally highly accurate neuronal coupling and thereby 

elucidate the cerebral organization of fast neuronal communication. 

Results 

Probing human large-scale brain dynamics with SEEG 

We recorded ~10 minute resting-state human cortical (local-field potential) LFP signals from 92 

consecutive patients with stereo-electroencephalography (SEEG). Among them, 25 subjects were 

excluded from further analyses due to previous brain surgery (temporal lobotomy) or an MRI-

identified cortical malformation (Suppl. Table 1, Suppl. Fig. 1). The final cohort of 67 patients 

yielded a total of 7068 non-epileptic grey matter contacts (113 ± 16.2 per subject, mean ± SD, range 

70-152) that gave a dense sampling across all neocortical regions (Fig. 1a) and of seven canonical 

functional brain systems defined by fMRI intrinsic connectivity mapping24,25 (Fig. 1b).  

We assessed the phase interactions between all LFP signals recorded from non-epileptic neocortical 

grey-matter locations. This yielded a dense coverage of cortical interactions with 5,500 ± 1,600 

(mean ± SD) contact pairs per subject (range: 2,094−9,947) and a total of 368,043 contact pairs. Out 

of all possible within-hemispheric connections in the 100-parcel Schaefer atlas25, these recordings 

sampled at least 80% of the left- and 90% of the right-hemispheric connections (Fig. 1c) and 

provided abundant sampling on the scale of functional systems (Fig. 1d). The present data thus 

yield comprehensive insight into large-scale dynamics and connectivity in the human brain.  
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Long-range phase correlations in high-gamma activity 

We estimated inter-electrode-contact phase coupling with the phase-locking value (PLV) for 18 

frequency bands between 3 and 320 Hz (see Methods). The inter-contact PLV estimates were 

averaged across subjects for three ranges of inter-contact-distance quartiles for each frequency band 

(Fig. 2a). The first quartile (0−2 cm) was excluded to avoid contamination from residual volume 

conduction. We found that the mean PLV increased from 3 to 7 Hz and then decayed rapidly from 

100 Hz as expected16. However, from 100 Hz onward, the mean PLV increased monotonically, 

indicating highly significant HGA phase synchronization in all distance ranges.  

To quantify the neuro-anatomical extent of HGA synchronization, we assessed the connection 

density, K, that was defined as the fraction of contact pairs exhibiting significant (p < 0.001 for 

observed > surrogate PLV) phase synchronization (Fig. 2b). Even at long ranges (> 6 cm), more 

than 70% of >100 Hz connections were significant and both the PLV and K findings were split-

cohort reliable (Suppl. Fig. 4). HGA phase synchronization was thus a widespread phenomenon in 

SEEG recordings of resting-state brain activity.  

Figure 1 Cohort size ensures significant 
coverage of cortical interactions  a Number of 
non-epileptic contacts per cortical regions 
(Schaefer et al. 2017, 100 parcels). b Number 
of contacts per functional system (Yeo et al. 
2011): visual (VIS), sensori-motor (SM), dorsal 
attention (DAN), ventral attention (VAN), 
limbic (LIM), fronto-parietal (FP) and default 
mode (DEF) systems. c Cortical functional 
connectivity coverage of Schaefer parcellation: 
The percentage of left-hemispheric (blue), 
right-hemispheric (yellow) and inter-
hemispheric (red) regions pairs that are 
connected by at least x edges. Inter-hemispheric 
coverage was low. d Number of contact pairs 
connecting each pair of functional systems.  
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Visual inspection of HGA synchronization in SEEG electrode time series (Fig. 2 c−f) was in line 

with these observations and readily revealed episodes of significant HGA coupling in time windows 

across centimeter-scale distances. Notably, synchronized HGA was observed as low-amplitude 

oscillation-like activity that was visible in the time series also without filtering, which provides first 

evidence for that HGA synchronization was not attributable to spikes or technical artefacts. 

Given the novelty and unexpected nature of these observations, we performed a series of control 

analyses to exclude the possibilities that HGA synchronization were due to: referencing schemes 

and volume conduction (Suppl. Fig. 1 & 2), non-neuronal signal sources (Suppl. Fig. 3), inadequate 

filter attenuation or settings (Suppl. Fig. 5), amplifier noise or pathological neuronal activity, such 

as inter-ictal spikes, or contamination from muscular signals (Suppl. Fig. 6). The results of these 

analyses converged on the conclusion that the seemingly anomalous HGA synchronization can only 

Figure 2 High-Gamma Activity shows 
significant and robust long-range 
phase synchrony. a Mean phase 
synchrony strength and spatial extent (b) 
estimated with PLV as a function of 
frequency and in short (2 to 4.6 cm, 
pink), medium (4.6-6 cm, blue), and 
long (6 to 13 cm, green) distance ranges. 
Dashed lines represent surrogate 
(N=100) data level for p<0.001. Shaded 
areas represent confidence limits (two-
tail; p<0.05) for bootstrapped values 
(N=100). c-f Examples from two distinct 
subjects of long-range HGA phase 
synchrony with non-zero phase lag (c, d) 
and near-zero phase lag (e, f), and their 
temporal relation to fluctuations in slow 
rhythms; MFG (azure traces): medial 
frontal gyrus, IPS (red traces): intra-
parietal sulcus. 
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be explained by true long-range synchronization between local cortical neuronal assemblies (Suppl. 

Text). This conclusion was further consolidated by the findings, as detailed below, that HGA 

synchronization was predominant in specific functional systems, and had a community structure 

and laminar connectivity profile that were distinct from those of slower activities, which are 

inconceivable for technical or physiological artefacts.  

Neuroanatomical localization of high-gamma synchronization 

To characterize the neuro-anatomical features of HGA synchronization networks, we investigated 

large-scale phase coupling of HGA in two spatial resolutions. First on the level of functional 

systems24, robust HGA phase synchrony was found within and between all systems, but the 

strongest and most widespread phase synchrony was found between and within the default-mode 

(DEF) and limbic (LIM) systems (Fig. 3a,b). This observation is in line with the hypothesis that 

HGA synchronization reflects healthy patterns of neuronal communication that is dominated by 

activity in these systems, DEF in particular26, during resting state. The observed systems-level 

connectivity pattern was split-cohort reliable (Suppl. Fig. 4), which rules out biases of individual 

subsets with distinct aetiologies. 

To examine the architecture of HGA synchronization at a finer resolution, we used the 100-parcel 

Schaefer atlas25 and pooled data across subjects to estimate the connectome of inter-regional phase-

synchrony for each frequency. We found these connectomes to be split-cohort reliable (permutation 

test, p < 0.05, one-tailed) across the range of frequency bands investigated, including the HGA 

frequency band (Suppl. Fig. 4).  

We then applied Louvain community detection to identify the putative communities therein and 

found sets of regions to represent robust modules in the HGA frequency bands (see Suppl. Text). 

The numbers of regions assigned reliably to communities were much higher than expected by 

chance (bootstrap test, p < 0.05, one-tailed) for each HGA frequency and throughout the 

investigated range of the Louvain resolution parameter values γ = 1−1.5 (Suppl. Fig. 9), i.e., the 

parameter influencing the number of communities identified. These networks largely also 

demonstrated significant community structures compared to equivalent random networks 

(permutation test, p < 0.05, one-tailed) at a range of resolutions (Suppl. Fig. 9).  
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The communities in the high-gamma frequencies were similar to each other and dissimilar from 

communities in the lower frequency bands (Fig. 3c). For the 190 Hz connectome (e.g., in matrix 

form see Fig 3d), at a low spatial resolution, the network was split into four large communities that 

were divided into six to seven communities at higher resolutions (Fig. 3 e,g). The majority of the 

communities comprised adjacent brain regions but also included spatially distant regions (Fig. 3 

f,h). Demarcation of spatilly distal regions into the same modules is not only population level 

confirmation of long-range HGA synchrony observed at contact level, but also a strong indication 

of the functional relevance thereof. The whole-brain networks of HGA synchronization thus 

exhibited statistically significant and distinctive community structures in putatively healthy brain 

structures, as well as patterns of connection strengths that are stable across participants. These 

results thus further support the neurobiological origin of HGA synchronization. 

Figure 3 Neuro-anatomical localization of High-Gamma synchronization  a Mean PLV across HGA 
frequencies (113-320 Hz) between Yeo functional systems, i.e., visual (VIS), sensori-motor (SM), dorsal 
attention (DAN), ventral attention (VAN), limbic (LIM), fronto-parietal (FP) and default mode (DEF) 
systems. b The fraction of significant (K) contact-wise PLV edges (p<0.01) between Yeo functional 
systems. c Similarity of modules between networks of 18 frequency bands from 3 Hz to 320 Hz. Average 
similarities for resolution parameter values from 1 to 1.5 are shown. d With resolution parameter γ = 1.3, 
Louvain method identified six modules in 190 Hz PLV adjacency matrix. The allocation of left (e) and 
right hemisphere (g) cortical regions to modules in 190 Hz PLV matrix for resolution parameter values 
from 1 to 1.5. Neuro-anatomical localization of cortical modules for left (f) and right hemisphere (h) at 
190 Hz (resolution parameter=1.3). Regions for which modules can be identified reliably are shown in 
dark shades while regions for which module assignment is unreliable are shown in corresponding lighter 
shades of the same color. 
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High-gamma phase correlations have a unique laminar profile 

Deep and superficial cortical laminae are known to contribute differently to inter-areal phase-

synchronization at frequencies below 100 Hz16. We next asked whether HGA synchronization 

networks also would show a similar differentiation between the laminae across distances. 

Leveraging our accurate localization of the electrode contacts, we divided the electrode contacts 

into “deep” and “superficial” by their cortical depth (see Methods), and assessed HGA phase 

coupling strength separately between the contacts in deep and superficial layers. This analysis 

reproduced the prior observation16 of low-frequency (< 30 Hz) phase coupling being stronger 

among superficial sources, which is well in line with recent observations about the laminar 

localization of, e.g., alpha oscillation sources in human cortex27. In contrast, however, HGA 

synchronization was stronger (Fig. 4a, see inset) and more prevalent (Fig. 4b) among signals from 

deep cortical layers in all distance ranges (p < 0.05, Bonferroni corrected with Nfreq. = 18). This 

reverse pattern was also observed with iPLV and in bipolar recordings (Suppl. Fig. 2). Although the 

resolution of SEEG is insufficient for further investigating the underlying neuronal generators of 

these oscillations, e.g., with a current source density analysis, our results indicate that HGA 

Figure 4 High-Gamma phase synchrony differs between cortical layers a Mean synchrony strength (PLV 
between contacts) at short (2−4.6 cm, pink), medium (4.6−6 cm, blue), and long (6−13 cm, green) distance 
ranges shows distinct spectral profiles for contact pairs in deep cortical layers (-0.3 < GMPI ≤ 0; blue) and 
contact pairs in superficial cortical layers (0.5 < GMPI < 1; red).  Dots represent the frequencies at which the 
difference between the superficial and deep contact was significantly (permutation test, N=100: p < 0.05, 
Bonferroni corrected along with 18 frequencies). The GMPI value represents the distance between contact and 
white-gray-matter border normalized by the cortical thickness. Inset: mean PLV of superficial and deep layer 
contact in the HGA frequency range. Shaded areas: the confidence intervals of 2.5% and 97.5% of 
bootstrapped population variance (100 bootstraps re-sampled with replacement); dashed lines represent 
confidence limit for p< 0.001 computed from 100 surrogates. b Mean fraction of significant edges (K) with 
p<0.001 computed from 100 surrogates. 
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Figure 5 Stronger High-Gamma phase synchrony is 
associated with maximal amplitude correlations 
between cortical sites  a High amplitude (normalized) 
samples between contact pairs is correlated with high 
phase consistency between these contact pairs. x and y 
axis represent the quintiles of normalized amplitude 
profiles of a pair of contact channel 1 and channel 2, 
respectively. Each element in the matrix is the mean of 
instantaneous PLV between all significant channel pairs 
(p <0.001 with 100 surrogates) as a function of their 
moment-to-moment normalized amplitudes. b Strength 
of moment-to-moment amplitude correlation. 
Distribution of instantaneous phase samples (light grey) 
in each amplitude bin and its distance from uniform 
distribution (black) of samples (i.e., null-hypothesis for 
the absence of moment-to-moment amplitude 
correlation).  

synchronization originates in neuronal circuitry distinct from that producing the slower LFP 

oscillations.  

Long-range HGA synchronization is associated with local synchronization indexed by HGA 

amplitude 

To further delve into the physiological plausibility of HGA synchronization, we asked whether it 

was related to the moment-to-moment variability in the amplitudes of local HGA. HGA amplitude 

is likely to tightly reflect the number of neurons in the local assembly and the degree of their local 

synchronization, both of which are central to the ability of a local assembly to engage its post-

synaptic targets effectively. We thus hypothesize that the moments of strongest inter-areal HGA 

phase synchrony would coincide with the 

moments when both contacts recorded high 

HGA amplitudes. We selected electrode 

contacts exhibiting significant HGA 

synchronization and for each contact pair, 

distributed the data sample-by-sample into a 

2D matrix according to quintiles of the 

normalized local amplitudes (see Methods). 

First, inspecting the variability in the 

numbers of samples among the cells of these 

2D matrices we found that there was a slight 

positive correlation between the amplitudes 

so that the coincidence of the largest-

quintile amplitudes was ~1 % more 

prevalent than the coincidence of the 

smallest and largest amplitudes. Second, 

after equalizing the sample counts in 

amplitude quintile pairs, we estimated the PLV from samples in each quintile pair, and averaged the 

PLVs across electrode pairs and subjects for each frequency separately. We found that while HGA 

phase coupling was significant across a range of local amplitudes, it was the strongest in those 

moments when the HGA amplitudes were the largest in both contacts and essentially insignificant 

when either location exhibited the lowest HGA amplitudes (Fig. 5a, b). Quantitatively, PLV was 

very dependent on the local oscillation amplitudes and exhibited a ~400 % difference between 

smallest and largest values in data averaged across the HGA band and a 200-800% difference in 
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Figure 6 High-Gamma amplitude is modulated by 
the phase of slower oscillations a Left: Among 
putatively healthy regions (nEZ), beta to low gamma  
band amplitude is coupled with the phase of low 
frequencies (theta to alpha). nPAC: population mean 
of individual phase-amplitude-coupling (PAC) PLV 
estimates normalized by within-subject surrogate 
mean.  Right: fraction of significant edges (K) for 
phase-amplitude coupling on the population level. b 
Within the epileptogenic zone (EZ), prominent PAC 
is observed between delta, theta and alpha and faster 
brain rhythms. c Connections between EZ and nEZ 
recording sites also show PAC coupling between 
theta to alpha and faster brain rhythms. 

individual HGA frequencies with the strongest effects observed at highest frequencies (Suppl. Fig. 

8). These data thus strongly support the notion of local HGA synchronization being instrumental for 

long-range HGA phase coupling.  

Phase-amplitude coupling (PAC) of HGA with theta and alpha oscillations characterizes 

healthy brain dynamics 

The “nesting” of fast oscillations in cycles of 

slower oscillations is an often-observed 

phenomenon in electrophysiological 

recordings at both < 1 Hz28,29 and > 1Hz 

frequencies. We assessed whether HGA were 

nested within specific phase of slow rhythms 

by evaluating phase-amplitude correlations 

(see Methods) throughout the 3−320 Hz 

frequency range and among all pairs, 

excluding self-connections, of grey matter 

electrode contacts. We analyzed data from 

electrode contacts in the epileptogenic zone 

(EZ) to dissociate healthy from pathological 

patterns of PAC. 

 

Among the putatively healthy LFP recordings, 

i.e., nEZ contacts, the amplitudes of beta and 

low-gamma oscillations (14−40 Hz) were 

strongly coupled with the phase of theta and 

alpha oscillations (5−10 Hz) (Fig. 6a). 

Importantly, the amplitudes of HGA, peaking 

between 100−200 Hz, exhibited clear 

coupling with the phase of these theta−alpha 

oscillations. However, a fundamentally 

distinct cross-frequency PAC pattern was 

observed within the EZ (Fig. 6b), where 

instead of predominant narrow-band 
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theta/alpha coupling, the amplitudes of oscillations from the lowest frequencies to HGA were 

locked to the phase of delta-band (here 3 Hz) oscillations. This putatively pathological pattern was 

also reflected in PAC evaluated between the healthy and epileptic areas, which exhibited both the 

delta and theta/alpha nesting of faster activities (Fig. 6c). 

Is high-gamma synchrony a feature of epileptic brain tissue?  

A crucial question for the functional implications of HGA synchronization is whether it is mainly a 

pathological property of the epileptogenic network or a feature of healthy brain activity and 

neuronal communication therein. The earlier finding of systematic HGA community structures 

across subjects with diverse aetiologies already provided evidence in support of the latter 

alternative. We further addressed this question first by asking whether the strength of HGA 

synchronization was significantly stronger in the EZ or between the EZ and nEZ. Controlling for 

the neuroanatomical distance of the electrode-electrode interactions, we found the epileptogenic 

zone to exhibit significantly stronger phase synchronization than healthy areas at low frequencies 

(3−10 Hz) but no significant differences were observed in the HGA frequency band (Fig. 7, see also 

Suppl. Fig. 7e).  

We then tested whether the strength of HGA synchronization overall was correlated with the 

frequency of inter-ictal spikes; a proxy for the magnitude of epileptic pathology. No such 

correlation was observed (Suppl. Fig. 6). These data thus converged onto the conclusion that HGA 

synchronization is a property of healthy brain dynamics that is preserved in these patients. 
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Figure 7 Phase synchronization is stronger within 
the epileptogenic zone (EZ) in low frequencies Top: 
At low frequencies (3-10Hz) and short-to-medium 
distances, mean phase synchrony among EZ regions 
(pink) is significantly stronger than for nEZ-nEZ (blue) 
or EZ-nEZ (green) connections. At higher frequencies 
(2nd to bottom row), this difference between EZ-EZ and 
nEZ-nEZ and EZ-nEZ recording site becomes 
insignificant across all distance ranges. Shaded areas 
represent 5th and 95th percentile of PLV values 
(bootstrapping, N=500). Distance ranges: short (2 cm ≤ 
x < 4.6 cm); medium (4.6 cm ≤ x < 6 cm), long (6 ≤ x < 
13 cm) 

Discussion 
Strong correlation of HGA with neuronal firing rate 

and the BOLD signal30,31, as well as the ubiquitous 

association of cortical HGA with a range of cognitive 

processes1,4,7–9 have led to the notion of HGA being a 

direct indication of ‘active’ neuronal processing per 

se1,4–6. In the same frequency range, high-frequency 

oscillations (HFOs) are predominantly observed in 

epileptogenic brain areas and are elevated in 

magnitude prior to epileptic seizures32. The 

relationship between HGA and HGOs has remained 

unclear; HFOs may either be a phenomenon separate 

from HGA and integral to epileptic pathophysiology 

or, alternatively, pathological modulation of 

otherwise physiological HGA that also is known to 

exhibit oscillatory temporal patterning13.  

In either case, little is known about the large-scale phase synchrony of HGAs or HFOs, and they 

have been considered exclusively as local phenomena. HGA amplitude fluctuations may be coupled 

inter-areally in human cortical networks during reading33, and similarly, ripple oscillations bursts 

co-occur between the rat hippocampus and association cortices during memory formation34. 

However, amplitude correlation does not have the temporal precision that phase-coupling has for 

carrying out important computational functions during neuronal processing. Nonetheless, inter-areal 
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phase-coupling has been thought to exist only in slow brain rhythms but not in HGA frequency 

bands. To the best of our knowledge, there is only one reported HGA inter-areal phase coupling22. 

In this study, Yamamoto et al (2014) reported phase synchronization of ripple oscillations within 

the entorhinal-hippocampal circuit in behaving rats.  

We report here that in the human brains, neuronal activity in the 100−300 Hz frequency range may 

be phase synchronized across several centimeters during awake resting-state brain activity. Long-

range synchronization was highly reliable and not explained by physiological or technical artefacts 

in the recorded data. HGA synchronization was also primarily a physiological phenomenon and not 

explained by epileptic pathophysiology. HGA synchronization thus constitutes a novel form of 

neuronal long-range coupling in the dynamic functional architecture on human brain dynamics. We 

suggest that these observations of HGA synchronization open a new avenue into measuring and 

understanding neuronal communication in the human brains at the level of pre-synaptic population 

spiking, spike synchronization, and their post-synaptic potentials in remote targets. 

Micro- and macroscale cortical architecture of HGA synchronization 

HGA synchronization exhibited systematic organization at several spatial and temporal scales. At 

the level of cortical systems determined by fMRI intrinsic connectivity24, HGA synchronization was 

most pronounced within and between the limbic- and default-mode systems. These areas exhibit 

high level of activity during resting-state 26 and thus this finding is in line with the notion that HGA 

synchronization reflects neuronal processing or communication per se. Interestingly, in a subset of 

subjects who had recordings both during resting-state and during sleep, we found differences in 

HGA synchronization patterns between these two conditions (Suppl. Fig. 7). This suggests that 

HGA synchronization is state-dependent similar to fMRI resting-state connectivity in humans 35 and 

non-human primates36. 

In addition to this insight into HGA synchronization among fMRI-derived brain systems, we 

examined the intrinsic community structure in the whole-brain connectome of HGA 

synchronization. We found evidence for significant and split-cohort reliable community structures 

in HGA synchronization. Together with the split-cohort reliability of the connectome itself, these 

findings show that HGA synchronization has a group-level stable cortical topology that is 

independent of individual subjects and thus also a structure that is not dictated by the individual 

pathogenesis or electrode placement. Moreover, this ties HGA synchronization with phase and 

amplitude interaction networks in slower frequencies, which as known to have salient community 

structures37–40. The HGA communities, however, were dissimilar with those at slower frequencies, 
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which may be attributable to distinct cortical generator mechanisms of the slow and HGA signals. 

This conclusion was supported by the finding that at the scale of cortical laminae, HGA 

synchronization was significantly stronger among electrode contacts in deep than superficial layers 

whilst the opposite laminar organization was found for theta, alpha, and beta oscillations in SEEG 

here and in prior work16. HGA synchronization thus exhibits reliable neuroanatomical organization 

at scales from cortical laminae to brain systems with phenomenological differences with the 

oscillations in slower frequencies. HGA synchronization is thus not a “by-product” of neuronal 

interactions coupling the slower oscillations, but rather a hitherto undiscovered component in the 

organization of large-scale brain dynamics. 

HGA synchronization is not attributable to artefactual sources 

The connectivity and community structures of HGA synchronization as well as its laminar 

organization strongly suggest that it may not be attributable to physiological or technical artefacts 

such as signals from muscles or extra-cranial sources. Nonetheless, we corroborated this notion 

with a number of controls. First, in addition to white-matter referencing, HGA synchronization was 

observable with bipolar referencing, indicating that its current sources are millimeter-scale local in 

cortical tissue and very unlikely to originate from extracranial or muscular sources during inter-ictal 

events41. Second, HGA synchronization was also observable with linear-mixing insensitive 

interactions metric and hence not attributable to volume conduction42. Third, HGA synchronization 

was comparable among electrodes along single electrode shafts and between electrodes in different 

shafts, which excludes the contributions of implantation-related lesion along the shafts as well as 

voltage diffusion because of perfusion of CSF in the cortical lesion following shafts implant. 

Fourth, similar observations were made with two different SEEG data-acquisition systems and the 

recordings with the same electrodes in saline solution did not show any indication of artificial HGA 

synchronization. HGA coupling thus does not arise from the signal amplifier or data-acquisition 

electronics. 

HGA activity is not explained by pathological epileptic activity  

The role of epileptic pathology is overall a concern for research carried out with epileptic patients. 

Although HGA within the epileptogenic zone show peculiar spectral and amplitude contents43,44, 

and are temporally predictive of upcoming seizures, most recent work has questioned its 

pathological-only origin45,46. We addressed question of physiological vs. pathophysiological genesis 

of HGA synchronization through several lines of analyses. First, only the putatively healthy brain 

areas and time-windows with no epileptic spikes were included in the primary analyses of HGA 

synchronization. Second, if HGA synchronization was attributable to epileptic pathophysiology, 
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one would expect highly individual large-scale patterns, but instead of such, we observed that both 

the connectivity and community structures of HGA were split-cohort reliable at the group level and 

thus not driven by individual pathology. Third, in direct comparisons of HGA synchronization 

among healthy areas, between healthy areas and the epileptic zone, and within the epileptic zone, 

we did not find significant differences between these conditions. We found the epileptic zone to be 

distinct from healthy brain areas both in delta-frequency phase synchronization and in the phase-

amplitude coupling of delta and theta oscillations with HGA. Hence, if HGA synchronization were 

a property of the epileptic zone, it would likely have been observed in this analysis. Finally, we 

observed no phase coupling of HGA with epileptic spikes. Taken together, HGA synchronization 

appears to be a property of healthy brain dynamics rather than being attributable to epileptic activity 

or pathophysiology. 

Putative generative mechanisms HGA synchronization 

What mechanisms could underlie the signal generation of long-range phase coupled HGA? Whereas 

synaptic mechanisms are known to contribute to the generation of synchronized ~200 Hz 

oscillations during hippocampal sharp-wave events47, it has remained disputed whether broad-band 

HGA in the 100-300 Hz range is associated with synaptic mechanisms generating neuronal 

population oscillations with rhythmicity in specific time scales19. A recent study13 argues that 

putatively-spiking-related broadband and genuinely oscillatory components with presumably 

synaptic-communication-based mechanisms are dissociable in the HGA signals, even though 

several studies suggest HGA to arise from neuronal spiking activity48,49 per se. We speculate that 

the HGA signals observed in this study may reflect both local cortical population spiking activity 

and the consequent downstream post-synaptic potentials resulting from these volleys of spikes. 

Long-range MUA synchronization has not been previously reported, but it is important to note that 

unlike the micro-electrodes used in animal research, the larger surface area of the electrodes heavily 

predisposes SEEG specifically to detecting population spiking activity50 that is already locally 

synchronized in a sizeable assembly and thus able to achieve post-synaptic impact in distant 

targets21. Hence, by construction, SEEG may be effectively filtering out asynchronous multi-unit 

activity that is unlikely to achieve well-timed downstream effects. 
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Methods 

Data acquisition 

We recorded SEEG data from 67 subjects affected by drug resistant focal epilepsy and undergoing 

pre-surgical clinical assessment for the ablation of the epileptic focus. We acquired monopolar 

(with shared reference in the white matter far from the putative epileptic zone) local field potentials 

(LFPs) from brain tissue with platinum–iridium, multi-lead electrodes. Each penetrating shaft has 8 

to 15 contacts, and the contacts were 2 mm long, 0.8 mm thick and had an inter-contact border-to-

border distance of 1.5 mm (DIXI medical, Besancon, France). The anatomical positions and 

amounts of electrodes varied according to surgical requirements 1. On average, each subject had 17 

± 3 (mean ± standard deviation) shafts (range 9-23) with a total of 153 ± 20 electrode contacts 

(range 122-184, left hemisphere: 66 ± 54, right hemisphere:  47 ± 55 contacts, grey-matter contacts: 

110±25). We acquired an average of 10 minutes of uninterrupted spontaneous activity with eyes 

closed in these patients with a 192-channel SEEG amplifier system (NIHON-KOHDEN 

NEUROFAX-110) at a sampling rate of 1 kHz. Before electrode implantation, the subjects gave 

written informed consent for participation in research studies and for publication of their data. This 

study was approved by the ethical committee (ID 939) of the Niguarda “Ca’ Granda” Hospital, 

Milan, and was performed according to the Declaration of Helsinki. 

Signal pre-processing 

We excluded electrode contacts (1.3±1.2, range 0−10, contacts) that demonstrate non-physiological 

activity from analyses. We employed a novel referencing scheme for SEEG data where electrodes 

in grey-matter were referenced by the contacts located in the closest white-matter (CW)2.  This 

referencing scheme is proven optimal for preserving phase relationship between SEEG contact 

data2. Since one same white-matter contact can be used for referencing multiple cortical contacts, 

we rejected derivations with shared reference. The final size of channels analysed is on average 

110±25 for each subject and 7491 in total.  

Prior to the main analysis, SEEG time series were filtered with 18 Finite Impulse Response (FIR) 

band pass filters with central frequency (Fc) ranging from 2.50 to 320Hz. We used a relative 

bandwidth approach for filter banks such that pass band (Wp) and band stop (Ws) were defined as 

0.5×Fc and 2×Fc, respectively. We excluded all 50 Hz line-noise harmonics using a band-stop 

equiripple FIR filter with 1 % of maximal band-pass ripples and 3 up to 8Hz width for the stop band 

parameters.  
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Epileptic events such as interictal spikes are characterized by high-amplitude fast temporal 

dynamics as well as by widespread spatial diffusion. Due to possible filtering artefacts around 

epileptic spikes and the resultant increase in synchrony, we discard periods of 500ms containing 

Interictal Epileptic Events (IIE).  We defined such periods as the temporal windows where at least 

10% of cortical contacts demonstrated abnormal concurrent sharp peaks in more than half of the 18 

frequency bands. Such episodes were excluded from within- and cross-frequency synchrony 

analysis. To identify such periods, we divided the signal in multiple 500 ms non-overlapping 

windows and detected IIE events in amplitude envelopes as the time point exceeding 5 times the 

standard deviation greater than the channel mean amplitude. 

Defining the epileptic zones based on seizure activities in SEEG signals 

The epileptogenic and seizure propagation zone were identified by clinical experts by visual 

analysis of the SEEG traces1,3.  Epileptogenic areas are the hypothetical brain areas that are 

necessary and sufficient for the origin and early organization of the epileptic activities 4, from where 

contacts recording often show low voltage fast discharge or spike and wave events at seizure onset.  

Seizure propagation area are recruited during the seizure evolution, but they do not generate 

seizures 5,6, from where contact recording show delayed, rhythmic modifications after seizure 

initiation in the epileptogenic areas. In this study, we combined epileptogenic and propagation areas 

as the epileptogenic zone (EZ) to distinguish from the rest of brain areas that are referred to as 

putative healthy zones (nEZ). 

Functional connectivity estimates 

We estimated inter-areal phase-phase interactions at individual subject level using the Phase 

Locking Value (PLV). Defining 𝑥′(𝑡)  =  𝑥(𝑡)  +  𝑖H[𝑥(𝑡)] as the analytical representation of the 

signal 𝑥(𝑡), where H[∙∙] denotes the Hilbert transform, complex PLV (cPLV) is computed as 7: 

𝑐𝑃𝐿𝑉 = 1
 𝑇
∑ 𝑥′(𝑡)

|𝑥′(𝑡)|
𝑦′∗(𝑡)
|𝑦′(𝑡)|

𝑇
𝑡=1             (1) 

where T is the sample number of the entire signal (i.e., ~10 minutes), and * is complex conjugate. 

We computed cPLV for the entire recording excluding 500 ms time windows showing epileptic or 

artefactual spikes (see below). The PLV is the absolute value of complex cPLV (𝑃𝐿𝑉 = |𝑐𝑃𝐿𝑉|), 

and it is a scalar measure bounded between 0 and 1 indicating absence of phase and full phase 

synchronization, respectively.  

Additionally, we used imaginary part of cPLV (𝑖𝑃𝐿𝑉 = 𝐼𝑚(𝑐𝑃𝐿𝑉)), metric insensitive to zero-lag 

interactions caused by volume conduction 8–10, for verification. For both PLV and iPLV 
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connectivity, the fraction of significant edges (K) is the number of significant edges divided by the 

total possible edge number. 

Statistical hypothesis tests 

We estimated the null-hypothesis distributions of interaction metrics with surrogates that preserve 

the temporal autocorrelation structure of the original signals while abolishing correlations between 

two contacts. For each contact pair, we divided each contact’s narrow band time series of into two 

blocks with a random time point k so that 𝑥1(𝑡) =  𝑥(1 … 𝑘) and 𝑥2(𝑡) = 𝑥(𝑘…𝑇), and constructed 

the surrogate as  𝑥𝑠𝑢𝑟𝑟(𝑡) =  [𝑥2 ,𝑥1 ]. We computed surrogate PLV across all channel pairs and 

assembled the surrogate interaction matrix, and its means and standard deviations were later used in 

hypothesis testing. 

Correlation estimates post-processing 

To demonstrate the changes of interaction strength as a function of spatial distance between 

recording sites, we divided the inter-contact distances into three ranges (short (SH) 2 cm ≤ x < 4.6 

cm; medium (MD) 4.6 cm ≤ x < 6 cm, and long-range (LG) 6 ≤ x < 13 cm) with same number of 

edges falling into each distance bin.  Therefore, we averaged across subjects all the edges falling 

within each distance bin and for each frequency band separately (N=48702/range). The confidence 

intervals for PLV and iPLV, were expressed relatively to the surrogate means (SM) for PLV 

(3.42*SM corresponding to p < 0.001, Rayleigh distribution), and the surrogate standard deviations 

(SD) for iPLV (3.58*SD corresponding to p < 0.001, normal distribution). 

To compare signals from superficial and deep layers in the grey matter (Fig. 4 and Suppl. Fig. 3), 

we divided the contacts into “shallow” and “deep” based their Grey Matter Proximity Index 

(GMPI)2 that is defined as the relative distance between the contact location and the nearest white-

grey surface, normalized by the grey matter thickness at that location:  

GMPI = [(C − W) ⋅ (P − W)]/|P − W|             (2) 

where P(x, y, z), W(x, y, z) and C(x, y, z) are the vertices on the pial, white-matter surface and 

contact coordinates in 3D individually reconstructed brain from MRI scan, respectively. Values 0< 

GMPI < 1 indicate that the contact midpoint is located in grey matter whereas a negative GMPI 

indicates that the contact midpoint is in the white matter.  

We used -0.3<GMPI<0 and 0.5<GMPI<1.2 to classify deep and superficial layer contacts 

respectively. Next, PLV and iPLV estimates were averaged across subjects between deep-deep 

(DD) and superficial-superficial (SS) contact-pairs. We tested for between groups difference with a 
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paired permutation test (100 random samples created by shuffling SS and DD labels within 

subjects; threshold for significance corrected for multiple comparisons with Bonferroni p < 0.05/N, 

with N=18). 

Anatomical co-localization of SEEG implant and Functional System characterization 

To show that high-gamma phase coupling is associated with a common systems-level mechanism, 

we assessed the fraction of significant edge (K) between functional systems11. We extracted cortical 

parcels from pre-surgical T1 MRI 3D-FFE (used for surgical planning) using Freesurfer 12, and we 

used the new Schaefer parcellation 13 that favours functional networks topology over structural 

(gyral) topology 14. The resulting cortical meshes were divided (with a range of resolutions from 

100 to 1000 parcels) into seven functional systems: Visual, somato-motor (SM), Dorsal Attentional 

(DAN), Ventral Attentional (VAN), Limbic, Fronto-parietal (FP), and Default Mode Network 

(DMN).  This atlas does not include subcortical regions and thus subcortical contacts were 

discarded from this analysis. We thus assigned each cortical contact to a cortical parcel that belongs 

to a functional system. We then computed the fraction of significant edges (K) between 7 functional 

systems.  

Note that we initially conducted this analysis in the Destrieux 148-parcel atlas 14, but we re-

analysed the whole dataset with the Schaefer atlas 13 after its release for both verifying the 

observations in the Destrieux atlas and for achieving optimal parcel-to-system morphing quality. 

Cross-frequency coupling of slow rhythm phase and fast rhythm amplitude  

Two signals of distinct rhythms are cross-frequency phase-amplitude coupled (PAC) if the phase of 

a slow neuronal oscillation modulates the amplitude fluctuations of the faster neuronal oscillations. 

PAC can be estimated using phase synchronization, Euler’s formula, or examining whether the 

power of fast rhythms is non-uniformly distributed over low-frequency phase 15–19. 

The rationale is that if the power fluctuations of fast rhythms are modulated by the phase of the 

slow oscillations, the fluctuations of these two time-series should be synchronized. In this study, we 

estimated PAC with the phase locking value (PLV) as: 

𝑃𝐿𝑉 = �1
𝑁
∑ 𝑒𝑖�𝜃𝑎𝑚𝑝(𝑛)−𝜃𝑝ℎ𝑎𝑠𝑒(𝑛)�𝑁
𝑛=1 �    (3) 

where 𝜃𝑎𝑚𝑝(𝑛) is the phase time series of the power envelope of fast rhythm while 𝜃𝑝ℎ𝑎𝑠𝑒(𝑛) is the 

narrow band phase time series of the slow rhythm.  When there is a consistent relationship between 

these two time-series, the vector length of the mean phase differences (in the polar coordinate 
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across all n samples) should be greater than zero, and a maximum value of 1 indicates perfect 

coupling. The significance of PAC PLV value was determined in the same manner in individual 

subjects as we conducted for 1:1 phase synchrony described earlier. 

Detecting the modular structures  

If observed individual level long-range phase synchrony between SEEG contacts are truthful, we 

next ask whether on the population level, the observed synchrony networks are functionally 

meaningful, i.e., the networks across frequencies, especially the HGA band, contains well defined 

modules of brain regions.  To answer this question, we first unambiguously assigned each SEEG 

contact located in the cortex  to one of the 100 Schaefer parcels13 (subcortical contacts were not 

analyzed). For each frequency, we pooled PLV values of contact-pair originating from homologous 

parcel-pair across population, and then collapsed those PLV values in parcel-pair using the median 

of these contact-pair PLV values (using median due to the non-normality of PLV distribution). By 

doing so, we collapsed sparsely sampled patient contact-pair networks into well-sampled 

population-level phase synchrony networks between brain regions (see Fig. 1c).  Due to low inter-

hemispheric contact coverage, we limit our investigation to intra-hemispheric modular structures. 

Moreover, given the sparse and non-homogenous sampling of cortical space across patients, 10% to 

20% of all possible parcel-pairs have not been sampled, i.e., missing values (Fig. 1c).   

Next, to identify modular structures in these synchrony networks, we employed a consensus 

clustering approach while missing values were accounted for20. Thereby, the observed modules of 

brain regions are less likely confounded by distributed local fragmentation of the network topology 

due to missing values. Briefly, the assumption is that the PLV values of the missing part of the 

networks follow the same probability distribution function of observed networks. For each observed 

phase synchrony network at any frequency, we generated 5,000 variants of the original network, 

wherein each missing edge was filled in with the PLV value of a randomly and independently 

selected existing edge. We next applied Louvain algorithm21–23 to identify modules in each of the 

5,000 variants. The range of the resolution parameter γ, which influences the number of 

communities identified, was set from 1 to 1.5 with 0.05 interval. The resolution parameter (γ) 

weights the importance of the null model (i.e., absence of modular structure) against which the 

original network is compared, when identifying the network partition or modules which maximise 

the modularity value: 

𝑄(𝛾) = 1
2𝑚
∑ �𝐴𝑖,𝑗 − 𝛾𝑝𝑖,𝑗�𝛿(𝜎𝑖,𝜎𝑗)𝑖,𝑗         (4) 
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where 𝑄(𝛾) is the modularity value at resolution parameter 𝛾, 𝑚 is the total strength of PLV values, 

𝐴𝑖,𝑗 is the PLV value in row 𝑖 and column 𝑗, while 𝑝𝑖,𝑗 are the PLV values expected by chance for 

row 𝑖 and column 𝑗, i.e., the null model. Here, 𝑝𝑖,𝑗 = 𝑘𝑖𝑘𝑗
2𝑚

, where 𝑘𝑖 and 𝑘𝑗 are the total strength of 

PLV values in row 𝑖 and column 𝑗 respectively. 𝛿(𝜎𝑖,𝜎𝑗) is 1 when node 𝑖 and node 𝑗 belong to 

same community, and 0 otherwise. Values of resolution parameter γ less than 1 produces a small 

number of large communities since the null model is down-weighed. On the other hand, values of γ 

larger than 1 produce a high number of small communities since the null model is up-weighted. 

Next to assess the consensus in community assignments20 across the 5,000 variants at any given 

resolution (γ), we derived community co-assignment (binary) matrix C for each of the variants, 

wherein Mij equals one when brain region i and j are demarcated to the same module  otherwise 

zero. We then collapsed these 5,000 community co-assignment matrices into an average matrix and 

detected the modules therein with Louvain method with the same γ value used earlier to create the 

partitions. This consensus clustering method assumes that the set of 5,000 variants of the functional 

network are noisy versions of the true underlying network, and by averaging their partition 

assignments, the graph noise at individual level can be mitigated.  

We also evaluated similarity between two community assignments solutions m and n across 

frequencies and Louvain resolutions. Here m and n are two vectors with each element associated 

with a cortical parcel, and the value of the element is the community ID assigned to that parcel.  

With any given m and n, we could assemble the community co-assignment 𝐶(𝑚) and 𝐶(𝑛) as 

mentioned earlier. Thus, the partition similarity between m and n can be computed as 24: 

𝑐𝑜𝑟(𝑙𝑚, 𝑙𝑛) =
〈𝑙𝑚, 𝑙𝑛〉

�〈𝑙𝑚, 𝑙𝑚〉〈𝑙𝑛, 𝑙𝑛〉
 

where 〈𝑙𝑚, 𝑙𝑛〉 = ∑ 𝐶𝑖,𝑗
(𝑚)𝐶𝑖,𝑗

(𝑛)
𝑖,𝑗 . Since the dot product 〈𝑙𝑚, 𝑙𝑛〉 satisfies the Cauchy-Schwartz 

inequality such that 〈𝑙𝑚, 𝑙𝑛〉 ≤ �〈𝑙𝑚, 𝑙𝑚〉〈𝑙𝑛, 𝑙𝑛〉 , the value of partition similarity is 0 for 

uncorrelated partitions and 1 for identical partitions. We did not compare the similarity between left 

and right hemisphere of the brain because in the Schaefer atlas, the brain region demarcation are 

asymmetric across hemispheres. 

We also assessed the range of resolution parameter values at which modules could be reliably 

identified. This was done both at the level of the entire network as well as at the level of individual 

regions (see Suppl. text).  
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PLV in amplitude bins 

To assess whether larger values of phase synchrony were correlated with higher amplitude values, 

we estimated instantaneous amplitude and phase profiles of the filtered time-series by means of 

Hilbert transform. We then normalised each amplitude time-course by its median and divided the 

normalized amplitude samples in quintiles. For each frequency, we built an amplitude-amplitude 

correlation matrix containing the instantaneous phase difference between channel pairs of each 

time-samples at that amplitude bins. We discarded amplitude samples larger than twice the 

amplitude median to remove effects of subthreshold spikes. We quantified the number of time-

samples falling in each bin as a simple amplitude correlation measure. We hypothesized that that, if 

a given contact pair is amplitude correlated, the time-samples would not be randomly distributed 

over amplitude bins. Indeed, it will result in highly skewed distribution of time-samples towards 

larger amplitude bins. On the other hand, in the absence of real amplitude correlation that 

distribution would be undistinguishable from a uniform distribution. Hence, to test for a moment-to-

moment amplitude correlation, we quantified the distance of the time-sample distribution from a 

uniform distribution for each amplitude-amplitude bin under the above null-hypotheses of no 

correlation. To quantify whether phase consistency was correlated with moment-to-moment 

amplitude modulation, we quantified PLV in each amplitude-amplitude bin. The PLV is a measure 

sensitive to the sample number used25, hence we quantified the minimum number of samples falling 

in each bin and then quantified PLV in amplitude bin with matched time-samples. Specifically, for 

each contact pair, we computed instantaneous phase difference across the entire time course. By 

grouping instantaneous amplitude samples falling in same bin, we averaged phase differences in 

each amplitude bin and later averaged this quantity across channel pairs and subjects.  
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