
Ebert and Schulz

Fast Detection of Differential Chromatin
Domains with SCIDDO
Peter Ebert1,2 and Marcel H. Schulz1,3,4,5*

Abstract

The generation of genome-wide maps of histone modifications using chromatin immunoprecipitation
sequencing (ChIP-seq) is a common approach to dissect the complexity of the epigenome. However,
interpretation and differential analysis of histone ChIP-seq datasets remains challenging due to the genomic
co-occurrence of several marks and their difference in genomic spread. Here we present SCIDDO, a fast
statistical method for the detection of differential chromatin domains (DCDs) from chromatin state maps.
DCD detection simplifies relevant tasks such as the characterization of chromatin changes in differentially
expressed genes or the examination of chromatin dynamics at regulatory elements.
SCIDDO is available at github.com/ptrebert/sciddo
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Background
Large epigenome mapping consortia such as DEEP [1],
BLUEPRINT [2] or ENCODE [3] produce an ever–
increasing amount of reference epigenomes for a mul-
titude of different cell types. With the ultimate goal
of compiling a publicly available catalog of 1000 refer-
ence epigenomes released under the IHEC [4] umbrella,
the computational interpretation of large amounts of
epigenome data presents a formidable challenge for
bioinformatics. However, the cell–type specific and dy-
namic nature of the epigenome adds substantial com-
plexity to the problem of characterizing cellular simi-
larities and differences on the epigenetic level. More-
over, limited resources commonly force scientists to in-
vestigate only a small number of biological replicates
per condition of interest. Despite all these challenges,
the discoveries in the field of epigenomics have greatly
enhanced our understanding of transcriptional regula-
tion, cellular identity and disease development [5–9].

An important component of the epigenetic landscape
are post–translational modifications of histone pro-
teins, briefly referred to as histone marks. The inter-
pretation of histone mark data is particularly intricate
as the interplay between different histone marks results
in a combinatoric complexity that is largely absent for
other epigenetic modifications such as DNA methyla-
tion. To give an example, bivalent chromatin domains
that mark developmental genes in embryonic stem cells
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represent a biologically meaningful co–occurrence of
several different histone marks [10, 11]. The realization
that histone mark combinations can be interpreted as
local activity states of the genome, so–called chromatin
states, led to the widespread use of probabilistic graph-
ical models to discover these “hidden states” [12–16].
Popular tools such as ChromHMM [13] or EpiCSeg [15]
have tremendously simplified the analysis of histone
data as they summarize the combined effect of his-
tone mark co–occurrences in a manageable number of
discrete chromatin states. After functional characteri-
zation, the discovered chromatin states are commonly
augmented with textual labels to ease interpretation,
e.g., identifying regions as active or poised promot-
ers, or distinguishing between weak and strong tran-
scriptional activity. However, in our experience, the
generated chromatin state maps are often manually
inspected in only a limited number of loci or simply
serve as additional genomic annotation data. Given
that chromatin state maps provide a neat abstraction
of the various histone mark combinations, it stands to
reason that a more comprehensive view on them may
offer valuable guidance in exploratory studies.

So far, there are only few tools available that use
chromatin state maps to identify regions of differen-
tial chromatin marking. ChromDet [17] can be applied
in a genome–wide manner and uses multiple corre-
spondence analysis (an analog to principal component
analysis for categorical data) followed by an iterative
clustering approach to identify regions that perfectly
partition the samples into cell–type or lineage specific
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groups (so–called chromatin determinant regions). The
computational burden of a ChromDet analysis is low-
ered by various filtering steps to remove uninformative
or outlier regions, which renders ChromDet analyses
prohibitive for small sample numbers. This preprocess-
ing also requires enough insight into the nature of the
samples at hand to manually set appropriate filtering
thresholds.
Other available tools for the differential analysis of
chromatin state maps enable only the analysis of a
predefined set of genomic regions. The ChromDiff [18]
tool represents chromatin states in user–specified re-
gions of interest, e.g., the bodies of all coding genes, as
normalized coverage vectors. After batch effect correc-
tion using a regression model, ChromDiff uses the non–
parametric Mann–Whitney–Wilcoxon test to identify
differential chromatin states between sample groups,
e.g., contrasting all male and female samples. Since
ChromDiff relies on standard statistical tests for its
analysis, sufficient statistical power in terms of num-
ber of available samples per group is mandatory to find
any significant differences between the groups. The re-
cently published Chromswitch package [19] similarly
identifies differential chromatin states only in prese-
lected regions of interest. Chromswitch can only an-
alyze a single chromatin state at a time and uses a
binary “presence/absence” encoding to construct fea-
ture vectors that are subsequently clustered. The clus-
ter assignments resulting from the hierarchical cluster-
ing are then scored by their agreement with the known
biological labels of the samples and manual threshold-
ing on these score is required to select the final set of
chromatin state switches.
A common denominator of all existing methods is that
they consider chromatin state similarity as a binary
variable, i.e., any chromatin state is, to exactly the
same extent, (dis–) similar to any other chromatin
state. We argue that this is an oversimplification and,
as we will show below, much is to be gained when mea-
suring chromatin state similarity using a quantitative
scale.
In summary, current methods are limited to region–
based analysis, focus on individual chromatin states,
require a comparatively large number of biological
replicates for their statistical analysis, and use a quite
basic representation of chromatin state similarity,
which hinders general applicability of existing meth-
ods.

We devised a new method for the score–based iden-
tification of differential chromatin domains (SCIDDO)
with the goal of providing a generally applicable tool
for the fast identification of differential chromatin
marking. One of SCIDDO’s main features is its capa-
bility to identify potentially large and heterogeneous

regions of differential chromatin marking, which we re-
fer to as differential chromatin domains (DCDs). The
statistical evaluation of the identified domains relies
on well–established theory borrowed from score–based
biological sequence analysis. This transfer of theory
enables an interpretable presentation of SCIDDO’s re-
sults and facilitates downstream analysis. In the fol-
lowing, we present results obtained by analyzing four
groups of replicated human samples with SCIDDO.
In this straightforward analysis, we assessed the ro-
bustness of our method by comparing DCDs between
individual replicates and characterized the identified
domains by overlapping them with differentially ex-
pressed genes (DEGs) and various regulatory annota-
tion datasets. We compared SCIDDO to other meth-
ods for the differential analysis of histone data and col-
lected evidence that highlights SCIDDO’s usefulness
in identifying regions of dynamic chromatin changes,
e.g., enhancers switching from an “on” to an “off” state
between cell types. Finally, we discuss potential limi-
tations and future applications of our method.

Results
Score–based identification of differential chromatin
domains
The differential analysis with SCIDDO consists of two
major parts, data preparation and the actual analysis
run (see Figure 1 for an overview). In the data prepa-
ration step (Figure 1 (A)), SCIDDO creates a single
coherent dataset storing all data and metadata rele-
vant for the analysis to ensure later reproducibility of
the results. As part of the data preparation, the state
emission probabilities of the chromatin state segmen-
tation model are used to compute pairwise chromatin
state dissimilarities (see Methods). Starting from this
dataset, SCIDDO then performs the differential anal-
ysis as follows: for each comparison contrasting sample
group X versus group Y, SCIDDO first compares in-
dividual replicates against each other, say, X–2 versus
Y–1 (Figure 1 step (B)). In this process, each observed
chromatin state pair in the two chromatin state maps
is assigned a score that quantifies the dissimilarity of
the two states: positive scores indicate state dissimilar-
ity, and negative scores indicate state similarity (Fig-
ure 1 (C); see Methods). Candidate regions showing
differential chromatin marking are identified on this
level of replicate comparisons by searching for chro-
mosomal segments that show a high cumulative score,
which indicates a strong dissimilarity on the chromatin
state level; hence, we refer to this value as the differ-
ential chromatin score (DCS) of the segment (Figure 1
step (C) to (D)). It should be pointed out that extract-
ing segments based on (locally) maximal DCSs implies
also a maximization of the segment length, and no
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(predefined) minimum or maximum length has to be
specified. To proceed from candidate regions identified
in individual replicate comparisons (e.g., X–2 versus
Y–1) to candidate regions that are representative of all
samples X versus Y, overlapping candidate regions are
merged by averaging their DCSs and taking the union
of their genomic coverages (Figure 1 (E)). As the fi-
nal step in the analysis, the segment DCSs are turned
into an Expect (E) value, which allows to filter the
resulting candidate regions for their statistical signifi-
cance (Figure 1 step (F)). The E–value (see Methods)
has the interpretation of indicating how many candi-
date regions with at least a similarly high DCS could
arise simply due to chance when comparing random
sequences of the same length. In other words, when
filtering the candidate regions for a default E–value
of less than 1 to call DCDs, SCIDDO restricts the
results to those chromosomal regions where the chro-
matin states are so different between the samples that
one would not expect to find such a difference simply
due to chance. To simplify visualizations, we report
E–values after a negative log10 transform in the re-
mainder of this study. The aforementioned threshold
of 1 is thus transformed to 0 and larger E–values indi-
cate higher statistical stringency.

To demonstrate the usefulness of SCIDDO in a dif-
ferential analysis setting, we compiled a medium–sized
dataset of high quality DEEP samples that includes
both distantly as well as more closely related cell
types. We selected three biological replicates of mono-
cytes (Mo 1, 3 and 5) and two biological replicates of
macrophages (Ma 3 and 5); these hematopoietic sam-
ples have been extensively characterized in previous
work [20] and are only separated by a single step of
cellular differentiation. Additionally, we selected two
biological replicates of hepatocytes (He 2 and 3; Addi-
tional file 1: Table S1) and two replicates of the HepG2
cell line (HG 1 and 2; Additional file 1: Table S1).
Though HepG2 is commonly used as an in vitro model
in liver–related studies, its state as an immortalized
cell line distinguishes it from the primary hepatocytes
in our dataset. Hence, the dataset we compiled enabled
us to evaluate SCIDDO’s performance at various de-
grees of “cellular relatedness”.
For each sample in the dataset, we included the
six histone marks (H3K27ac, H3K27me3, H3K36me3,
H3K4me1, H3K4me3, H3K9me3) plus the respective
Input control that are defined as the chromatin con-
stituents of an IHEC reference epigenome (Additional
file 1: Table S1). For later functional characterization
of the identified DCDs, we also downloaded mRNA–
seq expression data for all samples (Additional file 1:
Table S2). The chromatin state maps that we used for

the following analysis were generated using a prede-
fined ChromHMM model (CMM18) [12, 13, 21] to sim-
plify interpretation of the chromatin states (see Meth-
ods; Additional file 1: Figure S1, Table S3). Scores
representing pairwise dissimilarity between chromatin
states were derived from the chromatin state emis-
sion probabilities of the same ChromHMM model (see
Methods).
We performed a differential analysis for all six pos-
sible pairings of sample groups in our dataset, i.e.,
(i) HepG2 vs. hepatocytes; (ii) HepG2 vs. mono-
cytes; (iii) HepG2 vs. macrophages; (iv) hepatocytes
vs. monocytes; (v) hepatocytes vs. macrophages, and
(vi) monocytes vs. macrophages. The entire SCIDDO
analysis including data preparation completed within
minutes on a moderately powerful compute server (Ad-
ditional file 1: Table S4). The results presented for
this analysis are structured as follows: first, we provide
some evidence that our data follow the theoretical as-
sumptions necessary for a sound statistical evaluation.
Next, we highlight the robustness of SCIDDO’s results
across replicates and then provide a more biology–
oriented characterization of the identified DCDs.

Differential chromatin scores follow extreme value
distribution
The last step in the SCIDDO workflow described above
consists of turning the DCSs into an E–value that is
used for filtering the set of candidate regions to obtain
the final set of DCDs. This step relies on theory de-
veloped for biological sequence analysis (see Methods)
and requires first a normalization of the raw cumu-
lative DCSs to account for the fact that comparing
longer chromosomal sequences increases the chances
of observing higher cumulative DCSs. This normaliza-
tion uses two estimated statistical parameters, λ and
K, that lack a biological interpretation, but can be
thought of as scaling factors for the scoring system and
the sequence length, respectively. Second, the theory
assumes a null model of random sequences, and under
this null model, the distribution of the scores should
in the limit converge in distribution to a Gumbel–
type extreme value distribution (see Methods). We
confirmed that this is indeed the case in our analy-
sis by comparing randomized chromatin state maps
with each other and fitting all maximal DCSs identified
during this sampling procedure to a Gumbel distribu-
tion (Figure 2A). We also plotted the per–chromosome
estimates of the statistical parameters λ and K that
are needed for the score normalization (Figure 2B; see
Methods), and could confirm that the estimates are
within reasonable bounds given examples from liter-
ature [22]. The observed agreement with theory thus
supports the last step in the SCIDDO analysis (Fig-
ure 1 step (C)) of filtering candidate regions based on
their E–value.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/441766doi: bioRxiv preprint 

https://doi.org/10.1101/441766


Ebert and Schulz Page 4 of 27

SCIDDO robustly identifies differential chromatin
domains
Histone ChIP–seq data is known to be affected by var-
ious sources of noise, e.g., ranging from artifacts in-
troduced during library preparation, to irregularities
caused by varying mappability in the reference genome
or to spurious signal due to unspecific antibody bind-
ing [23–25]. In combination, biological and technical
variation can render any differential analysis pointless
if the results are dominated by noise, and not by the
biological signal of interest. To test if the identified
candidate regions were indeed representative and not
replicate–specific, we computed the Spearman corre-
lation of the E–values between all overlapping candi-
date regions. We visualized an exemplary case selected
based on the mean of all comparisons. This exemplary
case shows a Spearman correlation of 0.72 between
the candidate regions (Figure 3). The red bars in the
lower left corner indicate candidate regions that are
unique to the respective replicate comparison. It can
be observed that unique candidate regions tend to have
comparatively lower E–values whereas those candidate
regions found in both replicate comparisons tend to
have higher E–values. In general, the average Spear-
man correlations across all replicate comparisons are
consistently in high range from 0.67 (HepG2 vs. hepa-
tocytes) to 0.73 (HepG2 vs. monocytes; Additional file
1: Table S5).

Differential chromatin domains occur in various
regulatory contexts
Since it is well–established that histone marks occur
in various regulatory contexts, e.g., ranging from pro-
moters and enhancers to gene bodies, it stands to rea-
son that bona fide DCDs should predominantly occur
in similar regulatory contexts. To test this hypothe-
sis, we intersected the DCDs identified by SCIDDO
with various annotation datasets and observed that,
in general, around 80 to 90% of all DCDs overlap with
at least one type of genomic annotation (Figure 4).
Since there is no theory that would enable us to for-
mulate an a priori expectation about the extent to
which differences on the chromatin level should oc-
cur between any two cell types, we cannot assess the
plausibility of the absolute numbers of identified do-
mains. Nevertheless, it can be observed that the low-
est number of domains is detected in the comparison
of monocytes to macrophages (Figure 4F), i.e., when
comparing the two most closely related cell types in
our dataset. For all other comparisons, the number
of identified chromatin domains is approximately 4–
to more than 5–fold higher, but yet shows a similar
tendency of a smaller number of identified chromatin
domains for more closely related cell types.

These results also illustrate that the distribution of
overlaps seems not to be affected by the number of
DCDs identified. In all comparisons, at least ∼70% of
the DCDs overlap with at least one regulatory region
annotated in the Ensembl Regulatory Build [26]. The
Regulatory Build comprises several different types of
regulatory regions and has extensive genome coverage.
Hence, the Regulatory Build enables us to interpret the
relevance of DCDs in light of various functional cate-
gories. Since the distribution of genomic locations of
the DCDs seems fairly similar across all comparisons,
and analogous observations can be made when exam-
ining the length distribution of the DCDs (Additional
file 1: Figure S2), we examined if there is a difference in
DCD E–values aggregated over all comparisons (Fig-
ure 5). DCDs overlapping any regulatory region show
higher E–values compared to those DCDs that have no
overlaps (Figure 5, bottom panel). This effect is most
pronounced for annotated promoters and transcription
factor binding sites (TFBS), and this seems not to be
an effect of regulatory region size (Figure 5, top panel).
The average number of distinct regulatory region over-
laps per DCD shows that a DCD often spans several
of the shorter regulatory regions, with the exception
of TFBS, which is the least abundant region type with
a median size <1 kbp in the Regulatory Build. At the
other end of the size spectrum are promoters, which
also show hardly any variation around a median of one
DCD overlap per promoter.

Formation of differential chromatin domains affects
gene expression
The results presented in the previous section indicate
that DCDs largely overlap with a variety of regulatory
regions, and thus it seems plausible that the formation
of a DCD should have functional consequences, e.g., by
modulating gene expression levels. Apart from basic
considerations about the magnitude of the observed
E–values, we also hypothesized that DCDs covering
larger parts of the gene body could indicate stronger
changes in gene expression. To give a canonical ex-
ample, a gene that is entirely repressed by means of
polycomb–mediated silencing should be enriched for
the histone mark H3K27me3, and this marking should
be replaced by H3K36me3 as soon as the gene is acti-
vated and actively transcribed [27]. On the other hand,
if the gene expression is modulated, e.g., by chang-
ing transcription factor binding in enhancer regions,
the effect on the chromatin marking in the gene body
could arguably be less pronounced. To investigate this
hypothesis, we stratified all genes by the fraction of
their gene body length being covered by a DCD (no
overlap in gene body or enhancers, less or more than
50% gene body overlap). Next, we computed gene ex-
pression fold changes using DESeq2 [28] (see Methods)
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for the six sample group comparisons and visualized
the fold change for all genes in the three DCD overlap
groups as a cumulative distribution (Figure 6; Addi-
tional file 1: Figures S3 and S4). The curves indicate
that genes covered by more than 50% of their body
length with a DCD indeed exhibit stronger changes
in their expression level (orange lines). A similar ef-
fect, albeit weaker, can be observed for genes having
less than 50% of their body or their promoter cov-
ered by a DCD (blue lines). In many cases, the dif-
ference in fold change relative to the group of genes
that does not overlap a DCD is significant. Addition-
ally, we applied the same method to test if the number
of gene–associated enhancers that overlap a DCD had
a similar bearing on gene expression (Figure 6, mid-
dle and right panels; Additional file 1: Figures S3 and
S4). This enhancer–centric view shows a stable pat-
tern across most sample comparisons that indicates
that stronger changes in gene expression occur if more
gene–associated enhancers overlap a DCD. This obser-
vation is particularly intriguing when restricting the
view on intergenic enhancers, where, as opposed to
intragenic enhancers, there is lower chance of a coin-
cidental overlap with a DCD. In general, a small but
noticeable difference compared to the no DCD overlap
group (gray dashed line) can be expected as soon as
2–3 enhancers show a DCD (magenta curve).

SCIDDO detects chromatin changes in differentially
expressed genes
By design, SCIDDO does not impose any restrictions
on the regions of interest that can be interrogated in a
differential analysis. Since there is no general model of
chromatin variation that would enable us to assess the
plausibility of the identified differential chromatin do-
mains irrespective of their genomic context, we decided
to focus on a small–scale case study that is arguably
of broad biological interest.
We investigated to what extent DCDs can be used
to specifically identify differentially expressed genes
(DEGs). As ground truth for this analysis, we used
the same DESeq2 results as above, but applied a
threshold to split the genes into differentially expressed
and stable ones (see Methods). As a first step, we
checked what percentage of DEGs could be recovered
using SCIDDO’s DCDs (Figure 7). For four out of the
six sample comparisons, more than 90% of all DEGs
could be recovered with DCDs either overlapping the
gene body, the gene promoter or at least one gene–
associated enhancer. For the comparison of HepG2 to
primary hepatocytes (Figure 7A), approximately 81%
of DEGs could be recovered, and for the comparison
of monocytes to macrophages, 54% of all DEGs were

recoverable by using DCDs (Figure 7F). The compara-
tively lower rate of DEG recovery for the monocyte to
macrophage comparison seems to be in line with the
already observed trend of fewer differences on the chro-
matin level with increasing cellular relatedness (e.g,
see Figure 4). We present a more in–depth analysis
of this observation in the following section of the Re-
sults. Next, we tested if it was possible to broadly
distinguish between DEGs and stably expressed genes
by thresholding on the E–values of the DCDs that
overlap gene bodies. To that end, we stratified the set
of DEGs based on their fold change into three groups
(top 20%, middle and bottom 40%) and plotted the E–
value distribution of the DCDs for these three groups
and for all other chromatin domains (Figure 8, bot-
tom panel). We find that DEGs with the highest fold
change in expression overlap DCDs that have a sig-
nificantly higher E–value on average relative to DCDs
overlapping the remaining DEGs. Furthermore, it is
interesting to observe that the E–value distribution of
the DCDs overlapping stable genes is similar to those
that do not overlap any gene (but could, e.g., overlap
with intergenic enhancers). The number of distinct
DCDs that overlap any given gene shows no notable
variation across all groups (Figure 8, middle panel).
The distribution of the gene body lengths in the re-
spective groups appears to be fairly balanced (Fig-
ure 8, top panel) and thus does not suggest that the
number of DCD overlaps or the observed difference in
E–value distribution is a simple effect of gene body
length. We explicitly confirmed this by repeating the
analysis, but this time stratifying DEGs by gene body
length (Additional file 1: Figure S5). The E–values of
the DCDs overlapping the longest genes are compara-
tively lower, and this suggests that larger E–values are
probably not a result of increasing gene body length.

Methodological and biological limitations for
chromatin–based detection of differentially expressed
genes
The theory borrowed from local scoring and imple-
mented in SCIDDO is used to assign a measure of
statistical stringency — the E–value — to each dis-
covered DCD. Yet, the theory does not offer a way to
decide what threshold on the E–value best separates
genuine from chance observations. The necessary nor-
malization to account for the length of the sequences
being compared immediately suggests that short but
biologically true differential regions will be assigned
an (untransformed) E–value well above SCIDDO’s de-
fault threshold of 1.
We checked the extent to which the default E–value
threshold of 1 could limit SCIDDO’s ability to identify
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— especially short — DEGs. We binned all DEGs by
their gene body size and plotted the amount of genes
with a DCD overlapping their gene body at E–value
thresholds of 1 and 100 (Figure 9). The histogram
shows the expected behavior of SCIDDO to predomi-
nantly recover longer DEGs by means of finding a DCD
in their gene body. However, relaxing the E–value
threshold seems not to affect this general trend as the
additional DEGs also show a tendency toward longer
gene bodies. We thus wondered if other technical or
biological artifacts might exacerbate the detection of
DEGs on the chromatin level. We focused specifically
on the comparison of monocytes to macrophages where
approximately only 54% of all DEGs could be recov-
ered using DCDs (see Figure 7F).

As a first step, we examined if artifacts in the data
could be the reason for the low DEG recovery rate. Be-
sides chromatin states with annotated function, chro-
matin state maps usually include a so–called back-
ground state that represents regions of no detectable
signal (state number 18 labeled as “quiescent” in the
CMM18 model). It is important to realize, though,
that the interpretation of this background state is dif-
ficult. While it is conceivable that technical problems
caused this lack of a signal in certain regions of the
genome, it may be biologically meaningful in others.
Moreover, the six canonical histone marks included in
this study certainly cover a wide range of functionally
important chromatin signals, but they do not represent
the entire regulatory chromatin landscape. To give an
example, the recently characterized H3K122ac histone
modification is also found at active enhancers that lack
the canonical H3K27ac marking [29]. Given these un-
certainties, we opted for a conservative approach and
considered the background state as not differential rel-
ative to all other chromatin states (see Methods and
Figure 1).
We evaluated how many DEGs might not be recov-
erable under these conditions for the monocyte to
macrophage comparison. For each of the 1110 DEGs
that could not be recovered, we computed the percent-
age of the gene body length covered with the back-
ground state (averaged over all replicates in the re-
spective groups). We found that close to a hundred
genes that are covered to at least 60% with the back-
ground state are shared between the monocyte and the
macrophage group (Figure 10A). At a higher thresh-
old of 80% body coverage, this number drops to 35
genes. Given that this considers genes that are in the
same uninformative chromatin state to roughly the
same extent in all samples — and being differentially
expressed at the same time — it seems justifiable to
assume that the non–detection of these genes is not

a limitation of SCIDDO. When focusing on the genes
that are covered with the background state in either
monocytes or macrophages, the numbers rise consid-
erably (Figure 10B). 164 genes are above the lower
threshold of at least 60% coverage, and when raising
the threshold to at least 80% coverage, 72 genes are
still affected. In this scenario, the non–detection of the
DEGs is hence largely driven by the lack of a signal in
one of the two sample groups.

Considerations involving the background state might
explain a few hundred cases of DEGs that could not be
recovered by SCIDDO. It follows that a considerable
amount of genes were assigned biologically meaningful
chromatin states and yet were not detectable.
We hypothesized that a plausible cause for this could
be a comparatively weak change in gene expression for
non–detectable genes. When a gene is switched from
“off” to “on”, a substantial change in the histone mark-
ing can be expected. However, if the gene is already
actively transcribed and then simply upregulated, e.g.,
by activating additional enhancer elements (see Fig-
ures 6; Additional file 1: Figures S3 and S4), it is not
obvious why this change in expression should lead to
differential chromatin marking in the gene body. We
tested this hypothesis by plotting the mean difference
in expression, plus the minimal and maximal expres-
sion level in any sample, for all DEGs in the monocyte
to macrophage comparison (Figure 10C–E). We split
the genes into three groups based on DCD overlap in
their gene body, in any associated enhancers but not
in the body and no DCD overlap at all, i.e., the non–
detectable genes. The mean change in gene expression
is significantly higher in genes overlapping with a DCD
compared to those genes that have no differential chro-
matin marking. Interestingly, the minimal expression
level (Figure 10D) is still relatively high for those genes
that show differential chromatin marking only in their
enhancers. When relating the minimal to the maxi-
mal expression level (Figure 10D/E), the change in
expression can be characterized as follows: genes with
a DCD in their gene body jump from a low to a high
expression level; genes with no DCD in their body but
in their enhancer(s) show increased expression relative
to an already high level, and genes with no DCD at all
remain at a low to mildly elevated expression level. It
should be pointed out that the implied directionality is
supported by the observed expression changes for the
monocyte to macrophage comparison (see Additional
file 1: Figure S3).

There is a multitude of mechanisms beyond the chro-
matin level that can fine–tune gene expression [30–32].
Given that the DEGs lacking any sign of differential
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chromatin marking show also limited dynamics in their
expression changes, we wondered whether there was
any evidence of post–transcriptional control of these
genes. As control group, we selected all genes that
were not classified as differentially expressed but nev-
ertheless showed signs of differential chromatin mark-
ing in their gene body (N=760 for the monocyte to
macrophage comparison). We then plotted the num-
ber of annotated micro RNA targets using the Tar-
getScan v7.2 [33] annotation for both groups of genes
(Figure S6, bottom panel). There is indeed a small but
statistically significant difference in the number of an-
notated micro RNA targets per gene between the two
groups. This difference seems not to be caused by a
difference in 3’–UTR length, where it is actually the
group of DEGs without an overlapping DCD that has
the larger 3’–UTR regions on average (Figure S6, top
panel).

SCIDDO affords direct interrogation of chromatin
dynamics
A noteworthy feature of SCIDDO is the possibility to
filter DCDs by chromatin dynamics. Given that chro-
matin states generated by the CMM18 model have
been assigned meaningful labels (Additional file 1: Fig-
ure S1), users can exploit this easily interpretable an-
notation to filter DCDs. We used this feature in com-
bination with external validation data to investigate if
it is possible to identify enhancers that switch from an
“on” to an “off” state between two cell types. To this
end, we selected two sets of chromatin state labels as
representing active and inactive enhancer states (see
Methods). SCIDDO then uses these state labels to fil-
ter the DCDs and, by default, returns those subregions
of a DCD where the chromatin change of interest can
be observed between the selected cell types. It should
be emphasized that, while the chromatin dynamics fil-
tering is based on the identified DCDs, the individual
subregions returned by SCIDDO cannot be statisti-
cally evaluated by computing an E–value. Subregions
of a DCD can be as short as one or two genomic bins
and, thus, the computed E–value of a subregion is un-
likely to indicate statistical significance. For compar-
ison, we downloaded several ENCODE peak datasets
of the transcriptional co–activator EP300 (p300) for
the cell line HepG2 (see Methods). Though EP300 is
known to be highly predictive of tissue–specific en-
hancer activity [34], it cannot be assumed that all
downloaded EP300 peaks mark active enhancers that
are unique to HepG2, and are hence inactive in any
other cell type. As a consequence, an exhaustive over-
lap between EP300 peaks and (switching) enhancer
regions in DCDs cannot be expected. Instead, we hy-
pothesized that it is more realistic to assume that any

biologically meaningful enhancer switch within a DCD
subregion should likely also show a change in EP300
occupancy. We investigated this hypothesis by plotting
the count of EP300 peaks and their signal strength
for all peaks generally overlapping DCDs, and for all
peaks overlapping with DCD subregions showing en-
hancer switches from “on” to “off” and vice versa from
“off” to “on” for the comparison of HepG2 to mono-
cytes (Figure 11). There is a prominent difference both
in absolute number of peaks and in signal strength for
the two directions of enhancer switching. This exam-
ple illustrates that SCIDDO can also offer support in
downstream analysis by quickly identifying regions of
specific and directed changes on the chromatin level.

Differential chromatin domains recover differentially
expressed genes with increased stability compared to
individual histone marks
The number of available tools that use chromatin state
maps as input for a differential analysis is limited.
ChromDet [17] is designed for group comparisons with
at least 5 to 10 replicates each (personal communica-
tion), and thus did not give results on our dataset.
Similarly, ChromDiff [18] could not identify any differ-
ential chromatin marking (in genes), presumably due
to lacking statistical power given the limited number
of replicates in our dataset. The Chromswitch pack-
age [19] can only process one chromatin state at a
time, which complicates direct and fair comparisons
with the DCDs identified by SCIDDO.
We thus decided to compare SCIDDO to PePr [35],
an established tool for the differential analysis of indi-
vidual histone marks that can process replicated sam-
ples. This strategy has the advantage of reflecting the
canonical “rule–based” approach of interpreting his-
tone marks in well–characterized regulatory contexts,
e.g., by determining enhancer activity based on the
presence of H3K27ac peaks [36]. Specifically, we used
PePr to perform a differential analysis for the same six
sample group comparisons and evaluated PePr’s and
SCIDDO’s performance for the task of detecting DEGs
based on differential chromatin marking. To this end,
we considered two different scenarios: first, genes over-
lapping with at least one differential chromatin domain
(SCIDDO) or having at least one H3K36me3 peak in
one cell type but none in the other cell type (PePr)
were labeled as differentially expressed. This strategy
could be applied to all 20,091 genes in our gene anno-
tation (gene set G1). In the second scenario, differen-
tial chromatin in gene bodies was taken into account
in the same way, but as an additional requirement,
at least three annotated enhancers of a gene had to
show differential chromatin marking (H3K27ac peaks
for PePr) to label the gene as differentially expressed.
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This reduced the number of genes in the evaluation
set to 17,735 (88.3%; gene set G2), i.e., all genes that
had at least three enhancers annotated. We compared
the chromatin–based labeling of genes in sets G1 and
G2 with the ground truth computed with DESeq2 [28].
While we settled for a fix threshold on gene expression
fold change (> 2) and p–value (< 0.01) to identify
DEGs throughout this study, we varied these values
for the comparison between SCIDDO and PePr to ex-
amine the stability of their performance for different
levels of differential expression stringency. We calcu-
lated accuracy and F1 score for all sample compar-
isons and the gene expression fold changes 0.5, 1, 2
and 4 and p–values 0.1, 0.05, 0.01 and 0.001 for the
two gene sets G1 and G2 (Figure 12; Additional file
1: Figure S7). In summary, SCIDDO’s performance
is superior to PePr. Averaged over all comparisons,
SCIDDO shows an accuracy of 64.6% (G1) and 69.2%
(G2) and a F1 score of 57.5% (G1) and 59.1% (G2) for
the two different strategies of labeling a gene as differ-
entially expressed. For PePr, the average performance
scores are 57.6% (G1) and 57.7% (G2) accuracy and
54.6% (G1) and 54.7% (G2) F1 score.

Discussion
The use of chromatin state segmentation maps for
large–scale annotation and interpretation of reference
epigenomes is well established in the field of compu-
tational epigenomics (see, e.g., [12, 37]). Nevertheless,
comparatively little effort has been invested in the de-
velopment of generally applicable software that assists
researchers in exploiting these resources. To fill that
gap, we developed SCIDDO, a new tool that imple-
ments a score–based approach for the fast detection
of differential chromatin domains between potentially
small groups of replicated samples.

The results presented above indicate that SCIDDO’s
score–based approach is able to robustly identify con-
sistent sets of differential chromatin candidate re-
gions across individual biological replicate compar-
isons. This observation suggests that SCIDDO is well–
equipped for the commonly encountered situation of
limited replicate availability while still offering a statis-
tically sound evaluation of the detected DCDs. Though
the statistics implemented in SCIDDO do not afford a
theory–driven evaluation of the detected DCDs, e.g.,
no suitable E–value threshold is motivated by the
theory, we could validate our findings in several bi-
ologically meaningful ways. The considerable overlap
between the detected DCDs and various regulatory
annotation datasets (Figure 4) suggests a functional
role for the identified DCDs that is in line with pub-
lished studies [27, 38, 39]. By relating gene expression

fold changes to DCD formation in gene bodies and
gene–associated enhancers, we could show that this
presumed functional role seems indeed to have a mea-
surable effect on gene expression behavior (Figure 6,
Additional file 1: Figures S3 and S4). Our findings con-
form to the established view that extensive chromatin
changes in gene bodies as well as in gene–associated
enhancers are good indicators of the expected gene ex-
pression fold change [40–42]. It should be emphasized
that SCIDDO realizes this view on the interplay be-
tween chromatin changes and altered gene expression
without directly quantifying differences on, e.g., the
read count level. Nevertheless, SCIDDO is able to de-
tect most DEGs (Figure 7) and shows a performance
in such tasks that is on average superior and more
stable compared to competing approaches which im-
plement much more time–intensive strategies to differ-
ential chromatin analysis (Figure 12). Taken together,
the evidence supports the conclusion that SCIDDO’s
score–based approach to differential chromatin analy-
sis discovers biologically meaningful and interpretable
DCDs.

An observable trend in the dataset we analyzed is
the more limited variation on the chromatin level with
increasing cellular relatedness, e.g., what we have de-
tailed for the monocyte to macrophage comparison.
While this inverse relationship is plausible, it implies
that there is a natural limit in “resolution” of differen-
tial chromatin state analyses that governs SCIDDO’s
applicability in discerning cellular phenotypes or char-
acterizing differentiation pathways. Although we did
not investigate these potential limitations in depth,
we collected multiple lines of evidence that illustrate
various ways of how gene expression changes, and thus
different cellular phenotypes, could be realized with-
out necessarily leaving a detectable trace on the chro-
matin level (Figure 10, Additional file 1: Figure S6).
One of these blind spots in chromatin state maps is the
“quiescent” background state, i.e., the chromatin state
without any detectable signal. If possible, a more fine–
grained characterization of the background state would
be a promising way of extending score–based differen-
tial chromatin analyses to cover even more regions of
the (epi–) genome. To give an example, a widespread
background state in gene bodies in only one sample
group might be interpreted as biologically meaningful
(cf. Figure 10B), and thus, an adapted scoring for the
background state in this context could plausibly in-
crease DEG recovery rates via DCD overlap.

Adaptations to the pairwise chromatin state scor-
ing could be realized in a multitude of ways in fu-
ture studies. While our approach based on the Jensen–
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Shannon–Divergence has the benefit of not being af-
fected by biases in our dataset, which might be an issue
for data–derived scoring systems, it is also not cus-
tomized to any particular notion of differential chro-
matin. It is one of SCIDDO’s distinguishing features
that the user can specify any scoring scheme that ful-
fills the statistical assumptions and use for differential
chromatin analysis. It is thus conceivable to study only
a specific repertoire of dynamic chromatin changes
given an appropriately chosen scoring matrix, e.g., fo-
cusing on enhancers and ignoring transcribed regions.
Apart from such specific objectives, it would also be
intriguing to investigate if, for a given state segmenta-
tion model, generally applicable scoring systems could
be derived that are sensitive to the degree of cellu-
lar relatedness. In analogy to genome sequence anal-
ysis [43], this could provide a different view on the
dynamic epigenome in the course of cellular develop-
ment.

Conclusions
We developed SCIDDO as a versatile and fast tool
to better exploit the abstract information stored in
chromatin state segmentation maps. We presented evi-
dence highlighting how the differential analysis of chro-
matin state maps can be conveniently used to identify
differentially expressed genes or to characterize chro-
matin dynamics, and SCIDDO thus complements the
bioinformatics tool box in exploratory epigenome stud-
ies. SCIDDO’s score–based approach lends itself to de-
vising tailor–made scoring systems for specific analysis
tasks and suggests a new way of interrogating chro-
matin data from a high–level perspective.

Methods
Experimental data overview
All analyses were carried out using the official IHEC
human hg38/GRCh38 assembly. We selected the fol-
lowing high quality DEEP samples to include both
closely related as well as more distantly related cell
types in our analysis: two replicates of HepG2 (HG
1 and 2; Additional file 1: Table S1), two replicates
of hepatocytes (He 2 and 3; Additional file 1: Ta-
ble S1), three replicates of monocytes (Mo 1, 3, and
5 [20]) and two replicates of macrophages (Ma 3 and
5 [20]). All primary cell types were isolated from
healthy, adult donors. For each replicate, we down-
loaded the DEEP reference alignments for six histone
marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3,
H3K36me3, H3K9me3) and the corresponding Input
control as BAM files (Additional file 1: Table S1). Ad-
ditionally, we downloaded DEEP mRNA expression
data for all samples as raw read FASTQ files (Ad-
ditional file 1: Table S2). The hg38 genome reference

was restricted to fully assembled auto– and gonosomes
for all data preprocessing steps. The differential anal-
ysis with SCIDDO was then limited to autosomes and
chromosome X to alleviate any effects arising from the
uneven distribution of sexes in our dataset. Annotation
data were likewise limited to the same set of chromo-
somes. The GeneHancer [44] enhancer annotation was
licensed for academic use on 2017–05–30. The Gene-
Hancer annotation was reduced to gene–enhancer pairs
that could be mapped to gene identifiers in the GEN-
CODE v21 annotation [45].

Generation of chromatin state maps

Following IHEC recommendations, all histone BAM
files were filtered using Sambamba v0.6.6 [46] to ex-
clude low quality reads (mapping quality≥ 5; no dupli-
cated, unmapped or non–primary reads/alignments).
These filtered BAM files were used as input to gen-
erate chromatin state segmentation maps for all sam-
ples. We used the pre–trained 18–state ChromHMM
(CMM18) model provided by the Roadmap Epige-
nomics Mapping Consortium (REMC [21]). We de-
cided to use this pre–trained model because it has
been carefully designed using the large compendium of
epigenomes generated by the REMC. We thus assumed
that this model robustly captures chromatin states ir-
respective of the biological source of the samples at
hand. As an additional benefit, the chromatin states of
the CMM18 model were functionally characterized and
labeled by the REMC to make interpretation of the
state segmentation maps straightforward (Additional
file 1: Figure S1, Table S3). We executed version 1.12
of ChromHMM with commands BinarizeBam -b 200

and MakeSegmentation -b 200 and otherwise default
parameters to create the state segmentation maps.

Differential gene expression analysis

Gene expression estimates per replicate were com-
puted with Salmon v0.9.1 [47] using the GENCODE
v21 [45] annotation for protein coding genes. For each
gene in the GENCODE reference, we extracted ge-
nomic coordinates for the gene body (5’ to 3’ end) and
for the promoter (-2500 bp to +500 bp around the 5’
end) using custom scripts. After expression quantifi-
cation, we used DESeq2 v1.18.1 [28, 48] to obtain dif-
ferential expression estimates for all six possible pairs
of sample replicate groups in our dataset. We split the
DESeq2 results into groups of differentially expressed
genes (DEGs) and non–differentially expressed genes
(stable genes) based on an absolute log2 fold change in
expression of at least 2 and a multiple testing corrected
p–value of less than 0.01.
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Differential histone peak calling
We selected PePr [35] as a current state–of–the–art
tool for differential chromatin analysis as a reference
to compare to. We executed PePr v1.1.18 to perform
differential analysis including postprocessing for all six
possible pairs of sample replicate groups in our dataset.
All available replicates were processed in a single run of
PePr for each comparison. PePr was executed with hi-
stone peak type set to broad for the mark H3K36me3,
and otherwise default parameters. The resulting his-
tone peak sets were filtered to peaks with a q–value of
less than 0.01 using custom scripts.

Chromatin dynamics at EP300 peaks
EP300 peak datasets for HepG2 were downloaded from
ENCODE [3] (ENCFF674QCU and ENCFF806JJS)
and merged using bedtools v2.26.0 [49]. For the chro-
matin dynamics filtering, chromatin states 7–11 (genic,
active and weak enhancers) were considered as en-
hancer “on” states, and chromatin states 13, and 15–
17 (heterochromatin, bivalent enhancer and polycomb
repression) were considered as enhancer “off” states.

Statistical background for SCIDDO
The theory behind the statistical evaluation available
in SCIDDO has been developed in the context of bio-
logical sequence analysis, e.g., to identify runs of hy-
drophobic amino acids in protein sequences [50, 51].
Since the theory was left unaltered, we give only a
compact overview to introduce the necessary concepts
and nomenclature. The chromatin state maps of each
sample in the SCIDDO dataset can be represented as
a sequence X = {x1 . . . xp . . . xn}. Here, the xp are
assumed to be i.i.d. random variables over an alpha-
bet A and n is the length of the sequence. In our case,∣∣A∣∣ = 18 representing the 18 different chromatin states
of the CMM18 model. Each pair of states (ai, aj) is as-
signed a score sij where sij < 0 indicates state similar-
ity (uninteresting regions) and sij > 0 indicates state
dissimilarity (interesting regions; see below for deriva-
tion of the sij). We omit the superscript ij in the fol-
lowing to improve readability. When comparing two
chromatin state maps X,Y , each state pairing (xp, yp)
is assigned the respective score s as defined above.
This results in a sequence of scores S = {s1 . . . sn}
that is scanned for subsegments of highest cumulative
score. This approach is called local score computation
and can be done efficiently with a linear time algo-
rithm [52]. The set of all maximal scoring disjoint seg-
ments returned by this algorithm represents the set
of candidate regions for the respective chromatin state
map comparison. The (unnormalized) raw score R of a
candidate region is simply defined as the sum over all
scores in the candidate region R =

∑
k≤p≤l sp where

k and l indicate the position of the leftmost and of
the rightmost genomic bin included in the candidate
region. These cumulative scores have to be normalized
to account for the fact that higher scores have a higher
chance of occurring with increasing sequence length.
This normalization step requires the estimation of two
statistical parameters λ and K (for detailed derivation
of these parameters, see [51]). Since both λ and K lack
a biologically meaningful interpretation, they can be
simply thought of as scaling parameters for the scoring
system and the search space. For this parameter esti-
mation, SCIDDO relies on the routines implemented
in BLAST v2.7.1 [53]. Additionally, four assumptions
are needed for the theory to be applicable, which then
allows to model the limiting behavior of the score dis-
tribution as Gumbel–type extreme value distribution
(see [51], Figure 2):

1. The sequences are infinitely long
2. The xp are i.i.d. random variables
3. A positive score must be possible
4. The expected score is negative

Assumptions 1. and 2. of course do not apply to any bi-
ological sequence, but are needed for reasons of math-
ematical tractability [51]. Assumptions 3. and 4. are
tested by SCIDDO before starting the actual analysis,
safeguarding against errors in the statistical evalua-
tion. Under these conditions, the Expect value (E) for
a DCD with raw score R is then calculated as

E = K · L · e−λR (1)

where the factor L is the length of the chromosomal se-
quence adapted for replicate–variation. Since SCIDDO
has been designed to compare (small) groups of repli-
cates against each other, we adapted the calculation
of the total length of the sequence. Intuitively, adding
more and more biological replicates to a group of sam-
ples does not linearly increase the amount of informa-
tion contained in the respective group. At some point,
all biologically meaningful variation has been sampled
and, ignoring technical artifacts and stochastic effects,
no new chromatin states should be observed at any
position of the genome. Based on this consideration,
for each additional replicate in a group of samples,
SCIDDO only adds those positions to the total se-
quence length that show a new chromatin state com-
pared to all other biological replicates already in the
group. A complete description of this computation is
given as pseudocode in Additional file 1: Algorithm 1.

Fit of random scores to Gumbel–type extreme value
distribution
The calculation of the E–value as described above as-
sumes a null model of random sequences. Following the
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theory (cf. Theorem 1 in [51] and examples in [22]) the
normalized maximal scores should follow a Gumbel–
type extreme value distribution when comparing ran-
dom state sequences, in the limit of the sequence length
n. Since SCIDDO supports the use of customized scor-
ing schemes, it also supports the user in assessing if
the chosen scoring scheme follows this theoretical as-
sumption. To that end, SCIDDO scans the randomly
shuffled chromatin state maps of all sample pairs for
high scoring subsegments and retains only the maxi-
mally scoring subsegment per chromosome; if several
segments with identical scores emerge, only the first
one is kept. This process is iterated until a pre-specified
number of these “random” scores have been found. The
scores underlying Figure 2A have been generated in
that way. The user can then use these “random” scores
and, e.g., assess their fit to a Gumbel–type extreme
value distribution following our example in Figure 2A.
Notably, in Figure 2A, we jointly fitted all “random”
scores of all chromosomes to simplify the visualization.

Derivation of pairwise chromatin state similarity scores
The theoretical considerations presented in the pre-
vious section do not enforce the use of complicated
scoring systems that are in turn well–grounded in the-
ory, e.g., rather simple “match/mismatch” or empir-
ically derived scoring systems can be used if consid-
ered appropriate [50]. We thus decided to use the emis-
sion probability vectors of the 18 chromatin states (=
the hidden states of the ChromHMM Hidden Markov
Model) to compute pairwise similarity scores. The
state emissions Ei =

(
ehi . . . e

h
i

)
for state ai repre-

sent a probability distribution over the observed out-
puts, i.e., over the observed six histone modifications h.
This motivated using the symmetric Jensen–Shannon–
Divergence (JSD) [54] to compute chromatin state sim-
ilarities

JSD(Ei, Ej) = 2·H
(
Ei + Ej

2

)
−H (Ei)−H (Ej) (2)

where H is the Shannon entropy

H(Ei) = −
6∑

h=1

ehi · log(ehi ) (3)

Since the JSD has a lower bound of 0, the pairwise
similarities for each state were shifted by subtract-
ing the mean JSD. This resulted in negative scores
for similar states (JSD near zero) and positive scores
for dissimilar states. Scores are commonly represented
by integer values, which we realized by multiplying the

real–valued scores by a factor of 10 and rounding them
to integers afterwards. As mentioned above, SCIDDO
checks the adherence to assumptions 3. and 4. for any
custom scoring scheme such as our JSD–derived one
to ensure applicability of the Karlin–Altschul statis-
tics before starting a differential analysis.
A peculiarity of chromatin state maps is the so–called
background state (state 18 labeled as “quiescent” in
the CMM18 model). This state represents the lack of
any detectable signal in the input data. As it is a
priori impossible to identify the true source for this
lack of a signal, i.e., it could be a technical artifact
or biologically meaningful, the background state needs
to be handled with special care in the interpretation
of chromatin state maps. We decided to implement a
cautious strategy and replaced all pairwise state sim-
ilarities involving the background state with the min-
imal score generated with our JSD–based approach.
In other words, the background state is similar, i.e.,
not differential relative to all other chromatin states.
We opted for this strategy to avoid finding differential
chromatin domains that are dominated by the back-
ground state and could thus be challenging to inter-
pret.

List of Abbreviations
bp: base pair(s); DCD: differential chromatin domain;
DCS: differential chromatin score; tf: transcription fac-
tor; DEG: differentially expressed gene
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Figure 1: Overview of SCIDDO’s workflow to
identify differential chromatin domains (A) Data
preparation: chromatin state maps can be generated
using common tools (blue shaded area). The chromatin
state maps for all replicates of sample groups X and Y
are stored together with the chromatin state emission
probabilities in a SCIDDO dataset to ensure later re-
producibility of the analysis. The state emission prob-
abilities are used to compute chromatin state similar-
ity scores. (B)–(F) Workflow: the differential analysis
starts by comparing all replicate pairs in the dataset,
here exemplified as X–2 vs. Y–1 (B). All observed chro-
matin state pairs are scored with their respective dis-
similarity score (C). The resulting score sequences are
scanned for high–scoring candidate regions (D). Over-
lapping candidate regions of all replicate pairs are then
merged (E) and filtered after statistical evaluation to
generate the final set of differential chromatin domains
(F).
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Figure 2: Observed maximal scores and param-
eter estimates follow theoretical assumptions
(A) Probability plot of all normalized maximal scores
derived from comparing random sequences (y–axis)
fit to the theoretical quantiles of a Gumbel–type ex-
treme value distribution (x–axis). (B) Chromosomes
are sorted by increasing size (in genomic bins) from
left to right (x–axis) and the per–chromosome esti-
mates of the two statistical parameters λ (gray points)
and K (black triangles) are plotted on the same scale
(y–axis). R2: coefficient of determination

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 13, 2018. ; https://doi.org/10.1101/441766doi: bioRxiv preprint 

https://doi.org/10.1101/441766


Ebert and Schulz Page 17 of 27

0 100 200 300
He-3 v Mo-3

(-log10 Expect)

0

100

200

300

He
-3

 v
 M

o-
5

(-l
og

10
 E

xp
ec

t)

0.72

3

Figure 3: Candidate regions are robustly iden-
tified across individual replicates Exemplified
agreement of candidate regions identified in replicate
comparisons. E–values of candidate regions identified
for He–3 vs. Mo–3 (x–axis) are plotted against E–
values of overlapping candidate regions identified for
He–3 vs. Mo–5 (y–axis). The red area indicates E–
values of those candidate regions that are unique to
the respective replicate comparison. ρ: Spearman cor-
relation of E–values
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Figure 4: Differential chromatin domains overlap
with annotated regulatory regions Bar heights in-
dicate percentage of identified differential chromatin
domains that overlap with different genomic annota-
tions for all six sample group comparisons (A–F). N :
total number of identified domains; coding genes: Gen-
code v21 protein–coding genes; lincRNA genes: Gen-
code v21 lincRNA genes; Reg. Build: Ensembl Regu-
latory Build v78; GeneHancer: GeneHancer annotated
enhancers limited to Gencode v21 gene set; Refseq
elem.: RefSeq functional elements
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Figure 5: E–value distribution of DCDs over-
lapping regulatory regions Bottom: boxplots show
distribution of E–values of all differential chromatin
domains overlapping regulatory region types as an-
notated in the Ensembl Regulatory Build (v78) ag-
gregated over all sample comparisons. Differences in
magnitude of E–values were assessed with two–sided
Mann–Whitney–U test and considered significant (*)
at p < 0.01. Middle: boxplots show distinct overlaps
per DCDs, i.e., the number of regulatory regions of
that type overlapping the same DCD. Top: Size dis-
tribution of the Ensembl regulatory regions. Dashed
line indicates a size of 1000 bp. Regulatory region
types: ctcf: CTCF binding sites; tfbs: transcription fac-
tor binding sites; open: regions of open chromatin; en-
hancer: enhancer; flanking: promoter–flanking regions;
promoter: promoter
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Figure 6: DCDs overlapping gene bodies and en-
hancers affect gene expression Left panels: genes
were stratified by the amount of DCD overlap either
covering more than 50% of the body (body; orange
curve) or less than 50% of the body or the promoter
region (partial; blue curve). Expression fold change of
the genes in the respective groups is plotted along
the x–axis within a restricted window for improved
readability. Statistical significance of the difference in
mean fold change of the groups relative to the no over-
lap group (“none”) was computed separately for neg-
ative and positive fold change genes using a two–sided
Mann–Whitney–U test (“*” significant with p < 0.01,
“-” not significant otherwise). Middle and right panels:
same analysis as for the gene body, but here counting
the number of intra– and intergenic enhancers (any-
where, middle) or only intergenic enhancers (right)
per gene that overlap a DCD. Expression fold changes
plotted within a restricted window for improved read-
ability. Statistical significance assessed as above.
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Figure 7: Differential chromatin domains recover
differentially expressed genes Bar heights indicate
percentage of recovered differentially expressed genes
by counting overlaps with differential chromatin do-
mains in gene bodies, in gene promoters (but not in
gene bodies) or in gene–associated enhancers (but not
in gene bodies or gene promoters). The leftmost bar is
annotated with the total number of recovered genes.
N : total number of differentially expressed genes per
comparison A–F.
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Figure 8: E–value distribution of DCDs overlap-
ping gene bodies Genes were stratified into four
groups based on their expression fold change (sta-
ble/no change, lowest 40%, middle 40% and top 20% of
DEGs according to expression fold change). Bottom:
boxplots show distribution of E–values of all DCDs
overlapping gene bodies in the respective groups ag-
gregated over all sample comparisons. The no overlap
group contains all E–values of DCDs not overlapping
any gene. Middle: boxplots show distinct DCD over-
laps per gene. Top: boxplots show gene body length
distribution of all genes in the respective group. Dif-
ferences in magnitude of E–values were assessed with a
two–sided Mann-Whitney–U test and considered sig-
nificant (*) with p < 0.01.
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Figure 9: Relaxing E–value threshold does not
help in detecting short DEGs All DEGs for all six
comparisons were binned based on their gene body size
(x–axis) and classified based on overlapping DCDs in
their gene body (y–axis). DCDs were called with the
default threshold of E < 1 (blue) and with a relaxed
threshold of E < 100 (orange).
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Figure 10: Uninformative chromatin state in
gene bodies and moderate changes in expres-
sion complicate DEG recovery Top: DEGs were
binned according to the fraction of gene body covered
with the background “quiescent” chromatin state (x–
axis). (A) Height of bars depicts number of genes in
intersection between monocyte and macrophage sam-
ples. (B) Height of bars depicts maximal number of
genes either from monocyte or from macrophage sam-
ples. Bottom: DEGs were stratified according to DCD
overlap in gene body/promoter (Body), or in at least
one enhancer (Enh.) or no DCD overlap (None). Box-
plots show distribution of gene expression values for
absolute mean differences (C) between monocyte and
macrophage samples, and for minimal expression (D)
and for maximal expression (E) in any sample. Dif-
ferences in magnitude were assessed using a two–sided
Mann–Whitney–U test and considered significant (*)
at p < 0.01 and not significant (n.s.) otherwise.
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Figure 11: Chromatin dynamics at HepG2 en-
hancer elements Height of the bars depicts total
number of peaks overlapping DCDs (left y–axis) and
box plots show distribution of the signal of the over-
lapping EP300 peaks (right y–axis). The three groups
represent EP300 peaks overlapping with DCDs in gen-
eral (left); with DCDs restricted to genomic locations
showing an enhancer “on” state in HepG2 (middle);
with DCDs restricted to genomic locations showing an
enhancer “off” state in HepG2. For all three groups,
the DCDs identified in the HepG2 to monocyte com-
parison were used.
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Figure 12: SCIDDO shows more stable per-
formance at detecting DEGs Box plots depict
SCIDDO’s and PePr’s (light grey) performance of de-
tecting DEGs quantified as F1 score (left) and as ac-
curacy (right). Performance values are summarized
over all sample group comparisons and for different
thresholds on gene expression fold change (0.5, 1, 2
and 4) and on adjusted p–values (0.1, 0.05, 0.01 and
0.001) computed with DESeq2 to call DEGs. At least
one DCD/differential H3K36me3 peak (PePr) was re-
quired in the gene body of a DEG to be consid-
ered detected on the chromatin level. Differences in
performance were assessed with a one–sided Mann–
Whitney–U test and considered significant “*” at p <
0.01.
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