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Abstract 1 
Diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) are 2 
widely used models to infer microstructural features in the brain from diffusion-weighted MRI. 3 
Several studies have recently applied both models to increase sensitivity to biological changes, 4 
however, it remains uncertain how these measures are associated. Here we show that cortical 5 
distributions of DTI and NODDI are associated depending on the choice of b-value, a factor 6 
reflecting strength of diffusion weighting gradient. We analyzed a combination of high, intermediate 7 
and low b-value data of multi-shell diffusion-weighted MRI (dMRI) in healthy 456 subjects of the 8 
Human Connectome Project using NODDI, DTI and a mathematical conversion from DTI to 9 
NODDI. Cortical distributions of DTI and DTI-derived NODDI metrics were remarkably associated 10 
with those in NODDI, particularly when applied highly diffusion-weighted data (b-value =3000 11 
sec/mm2). This was supported by simulation analysis, which revealed that DTI-derived parameters 12 
with lower b-value datasets suffered from errors due to heterogeneity of cerebrospinal fluid fraction 13 
and partial volume. These findings suggest that high b-value DTI redundantly parallels with 14 
NODDI-based cortical neurite measures, but the conventional low b-value DTI does not reasonably 15 
characterize cortical microarchitecture. 16 
 17 
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1. Introduction 1 
The diffusion motion of water molecules in brain tissue is affected by the local microarchitecture, 2 
including axons, dendrites and cell bodies. Diffusion tensor imaging (DTI) is a well-established 3 
model that describes Gaussian properties of diffusion motion in a fibrous structure like brain white 4 
matter from diffusion-weighted MRI (dMRI)1,2, and is widely used for inferring the microstructural 5 
changes related to plasticity and diseases (for review, Johansen-Berg and Behrens, 2013)3. In most 6 
cases, summary parameters of DTI, fractional anisotropy (FA) and mean diffusivity (MD), have been 7 
studied based on dMRI data acquired with low b-value (b-value less than 1000), however, these 8 
parameters have not been shown to be specific to underlying microstructural features of axons and 9 
dendrites (collectively referred to as neurites) and are often sensitive to tissue compartments other 10 
than neurites4.  11 
 12 
One recent advance for estimating the microstructural complexity of brain tissue using dMRI is the 13 
Neurite Orientation Dispersion and Density Imaging (NODDI)5. NODDI models dMRI signals by 14 
combining three tissue compartments: neurites, extra-neurites, and cerebro-spinal fluid (CSF), each 15 
with different properties of diffusion motion, and enables in vivo estimation of a neurite density 16 
index (NDI) and an orientation dispersion index (ODI), as well as a volume fraction of isotropic 17 
diffusion (Viso). NODDI requires dMRI data to be scanned with multiple b-values (e.g. b=700 and 18 
2000 sec/mm2) and relatively higher number of diffusion gradient directions (e.g. >90 directions over 19 
two b-shell) as compared with DTI5. The NDI estimates the volume fraction of neurites, including 20 
both axons and dendrites, whereas the ODI estimates the variability of neurite orientation: ranging 21 
from 0 (all parallel) to 1 (isotropically randomly oriented). NODDI has already been applied to many 22 
studies because of their feasibility. The variation of NODDI estimates in white matter have been 23 
related to aging6–11 and neurologic disorders12–14. Of note, NODDI has proven to be useful for gray 24 
matter neurite changes as reported in several clinical studies, e.g. in patients with IFN-α-induced 25 
fatigue15, Wilson’s disease16, cortical dysplasia17, aging18, and schizophrenia19. We recently 26 
optimized NODDI for cortical gray matter20, finding that the NODDI reflects neurobiology of 27 
cortical microarchitecture – cortical distribution of NDI is closely related to cortical myelin21 and 28 
ODI is associated with cortical organization of radial/horizontal fibers22,23. Although there is recent 29 
debate about oversimplified assumptions in NODDI such as uniform diffusivity24, it is of note that 30 
accumulated histological evidence indicates that NDI and ODI of neural tissues are reasonably 31 
representing histology-based neurite density25 and orientation dispersion25–28, respectively. 32 
 33 
Recently, there is accumulating evidence of combined DTI and NODDI analysis in clinical studies. 34 
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Those performed both DTI and NODDI in the pathological cortex all showed opposite changes 1 
between MD and NDI in Parkinson’s disease29, multiple sclerosis25, and stroke30. Our previous study 2 
also revealed that strong relationships between NODDI and DTI parameters in the cortex of healthy 3 
subjects, in particular, NDI and 1/MD were very highly correlated (R=0.97)20 when used three-shell 4 
dMRI data including high b-value, but not so highly correlated when used low b-value data. On the 5 
other hand, in vitro study showed that slower-decaying component found by high b-value dMRI 6 
signals were originated from intra-neurite water31, thus suggesting that MD obtained at high b-value 7 
is specifically reflecting neurite properties. High b-value DTI in clinical studies also implicate higher 8 
sensitivity to neurobiological changes than low b-value, e.g. the contrast between gray/white matter32, 9 
ischemic/hypoxic changes in the gray matter33, white matter disintegrity in schizophrenia34 and 10 
maturation in juveniles35. However, there is no consensus how DTI is associated with NODDI 11 
parameters, and how it is dependent on the b-shell scheme. 12 
 13 
In this study, we investigated how DTI and NODDI parameters are related with each other in cortical 14 
gray matter in healthy subjects. The measures were correlated by two methods and also analyzed by 15 
utilizing a recently derived mathematical function, which converts DTI to NODDI parameters24,36. 16 
We used the preprocessed dMRI data from Human Connectome Project (HCP), and estimated 17 
b-shell scheme dependency of the relationship between DTI and NODDI parameters. Since the 18 
function relies on the assumption that CSF compartment (Viso) is negligible in the tissue24,36, we also 19 
estimated Viso in the cortex and the white matter based on previous work20 and estimated effect on 20 
the partial voluming and the relationship between DTI and NODDI parameters. We performed 21 
simulation analysis in terms of b-value, proportion of CSF signal. Our main purpose is to highlight 22 
the neurite properties in the specific subtype of brain, cortical gray matter, in healthy subjects, and 23 
investigate how DTI specifically represent the cortical NODDI metrics. We also review the past 24 
literature which applied NODDI and DTI in vitro and in vivo dMRI studies and discuss the potential 25 
interpretability of DTI. 26 
 27 
2. Materials and Methods 28 
In order to comprehensively investigate the relationship between NODDI and DTI in cortical gray 29 
matter, we examined whether NODDI parameters can be accurately estimated from DTI using their 30 
mathematical relation. Publicly available MRI data from 456 healthy subjects (aged 22-35 years) the 31 
HCP (https://www.humanconnectome.org/) were used. In particular, dMRI datasets with different 32 
b-shell structures were analyzed to investigate how the b-shell scheme affects the relationship 33 
between two diffusion model. To clarify why their relationship depends on the diffusion scheme, we 34 
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also performed simulation analysis addressing several error sources such as CSF signals in dMRI 1 
data and partial volume effects. Data analyses were performed at RIKEN, and the use of HCP data in 2 
this study was approved by the institutional ethical committee (KOBE-IRB-16-24). 3 
 4 
2.1.1 Subjects and dMRI datasets 5 
We used the ‘S500 Release Subjects’ dataset from the publicly available HCP dataset, including 6 
high-resolution structural images (0.7-mm isotropic T1w and T2w images,37 and dMRI data 7 
(1.25-mm isotropic resolution)38. The dMRI data obtained with TR=5520ms and TE=89.5ms 8 
included 270 volumes with 90 volumes for each of the three shells of b-values (b=1000, 2000 and 9 
3000 s/mm2) in addition to 18 non-diffusion weighted (b=0 s/mm2) volumes. From this dataset, 456 10 
healthy subjects (age, 22-35 years) scanned with a complete dataset of 270 volumes were chosen, 11 
and 49 subjects were excluded based on incomplete dMRI scans. In our previous study, NDI and the 12 
reciprocal of MD (1/MD) showed very similar surface distributions when all of the dMRI data were 13 
used, but they did not show similar distributions when only a single shell of b=1000 dMRI data was 14 
used20. Therefore, we hypothesized that the relationship between DTI and NODDI may differ 15 
depending on the b-shell scheme of dMRI data. To address this, datasets with different b-shell 16 
schemes were used for analysis (Table 1), i.e. for each subject, seven types of b-shell datasets were 17 
derived from dMRI data as follows: three one-shell datasets using b=0 volume and any one of 18 
b=1000, 2000, or 3000 volume; three two-shell datasets using b=0 images and any two of b=1000, 19 
2000, or 3000 volume; and a three-shell dataset using all images.  20 
 21 
2.1.2 Calculation of the cortical surface map of original NODDI and DTI-derived NODDI 22 
parameters 23 
The DTI estimates (FA and MD) were calculated using each dataset of dMRI and the dtifit diffusion 24 
tensor modeling tool in Functional Magnetic Resonance Imaging of the Brain Software Library 25 
(FSL) 5.09 (http:// www.fmrib.ox.ac.uk/fsl). This linear DTI model was applied not only to a 26 
single-shell ‘standard’ b=1000 data but also to high b-value and multi-shell dMRI datasets. The 27 
primary reason of ‘forced’ fitting of DTI to such data was that we unexpectedly found 28 
correspondence of DTI metrics with those of NODDI in our previous paper. While it is known that 29 
these high b-value/multi-shell data take non-Gaussian distribution thus are more appropriate to apply 30 
a non-linear model like diffusion kurtosis imaging (DKI)39, there have been also a few reports that 31 
high b-value DTI sensitively detect the brain tissue pathologies32–35. The diffusion data were also 32 
fitted to the NODDI model using the optimized value of d// and Accelerated Microstructure Imaging 33 
via Convex Optimization (AMICO) 1.040, which re-formulates the original NODDI model as a linear 34 
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system and shortens the calculation time. The value of d// was optimized for the cerebral cortex (1.1 1 
× 10−3 mm2/s) and changed from the default value (1.7 × 10−3 mm2/s)20, because we are interested in 2 
the cerebral cortical gray matter. We used default values of regularization (λ=0.001 and γ=0.5) for 3 
AMICO.  4 
 5 
The parameters of the original NODDI model (NDIORIG and κ) and the DTI model (FA and MD) 6 
were mapped onto the cortical surface, as described previously20. Briefly, the algorithm for surface 7 
mapping identifies cortical ribbon voxels within a cylinder orthogonal to the local surface for each 8 
mid-thickness surface vertex on the native mesh and weights them using a Gaussian function 9 
(FWHM= ~4 mm, σ=5/3 mm), which reduces the contribution of voxels that contain substantial 10 
partial volumes of CSF or white matter21. The ODI in the original NODDI (ODIORIG) was calculated 11 
using the surface metric of κ and equation (5). The maps of DTI-derived NODDI parameters (NDIDTI 12 
and ODIDTI) were calculated by converting from DTI maps to NODDI maps based on the 13 
mathematical relation (Fig. 1 and Supplementary text 1.2). The surface maps were resampled using 14 
MSMAll surface registration41–43 and onto the 32k group average surface mesh. For surface-based 15 
analysis, we used Connectome Workbench (https://github.com/Washington-University/workbench, 16 
Marcus et al., 2013). The scripts used in this manuscript are available from NoddiSurfaceMapping 17 
(https://github.com/RIKEN-BCIL/NoddiSurfaceMapping).  18 
 19 
2.1.3 Statistical analysis 20 
Surface maps of NDIORIG, ODIORIG, Viso, NDIDTI and ODIDTI using each dataset were averaged 21 
across subjects and parcellated using the HCP’s multi-modal cortical parcellation (HCP_MMP1.0 22 
210P MPM version)41. The mean value of each measure for each of the 180 parcels per hemisphere 23 
was calculated. NDIORIG and ODIORIG calculated using all the dMRI data were considered ‘a gold 24 
standard’ reference. To investigate the linear relationship between DTI-derived NODDI parameters 25 
and the original NODDI parameters, the correlations between each parcellated surface map (NDIORIG, 26 
ODIORIG, NDIDTI and ODIDTI) and the reference in each subject were calculated using Pearson 27 
correlation analysis. To investigate whether DTI-derived NODDI parameters are biased, 28 
Bland-Altman analysis was performed in each dataset45. Briefly, Bland-Altman analysis is a method 29 
to confirm the presence or absence and degree of systematic bias visually by creating a scatter 30 
diagram (Bland-Altman plot), which is created by plotting the difference between two pairs of 31 
measured values on the y axis and the average value of the two measured values on the x axis. 32 
 33 
Since the quality of the NODDI estimates depends on the image quality and preprocessing, we 34 
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estimated the practical quality by the temporal signal-to-noise ratio (tSNR) of preprocessed b=0 1 
volumes and removed 29 surface parcels with tSNR<17 from the analysis. Therefore, a total of 331 2 
parcels in the whole cortex were used for the analysis. The cutoff was determined empirically in our 3 
previous study20. 4 
 5 
2.2 Simulation for the effect of heterogeneity in CSF volume fraction on parameters of NODDI, DTI 6 

and DTI-derived NODDI  7 
Since correlations and biases between original NODDI and DTI-derived parameters were dependent 8 
on the presence of high b-value data (b=3000 s/mm2) in the datasets (see section 3.1), simulations 9 
were performed to clarify whether and how potential sources of error can explain our findings of 10 
cortical DTI-derived parameters. One of potential sources is the amount of CSF compartment (Viso) 11 
in the voxel, which may be sum of intra-tissue CSF volume and partial voluming of CSF in the 12 
subarachnoid space (see also Supplementary text 2, Fig. S1). This compartment is not considered in 13 
the DTI or assumed to be zero in the DTI-derived NODDI calculation. The various levels or 14 
‘heterogeneity’ of CSF volume fraction in the cortical voxel can cause errors at various level and 15 
could result in biases of the cortical distribution. Although actual heterogeneity of CSF volume 16 
fraction in the cortex cannot be measured in vivo, the simulation for the error sensitivity of diffusion 17 
measures to varying level of CSF volume fraction may give some insights. Another source of the 18 
error may be an interaction between heterogeneity CSF volume fraction and b-shell scheme of the 19 
data, since low b-value dMRI data may contain more CSF signal than high b-value dMRI data. 20 
Therefore, we tested how variable level of CSF and b-shell scheme can cause changes in the 21 
parameters of the original NODDI, DTI and DTI-derived NODDI in comparison with those 22 
calculated in reference condition of NDI=0.25, ODI=0.30 and Viso=0.1, the mean value of cortex20. 23 
The values of Viso were varied from 0 to 0.6 (i.e. ΔViso from -0.1 to 0.5 in reference to Viso=0.1) with 24 
an interval of 0.1. Parameters of NODDI was calculated using the simulated three-shell dataset (bAll) 25 
and those of DTI and DTI-derived NODDI was calculated using any of seven b-shell datasets (Table 26 
1). The simulation data was created based on the mathematical equations and derivation described in 27 
the Supplementary text 3.1. To confirm the specificity of this findings, we also performed another 28 
simulation in which ‘homogeneous’ but small CSF volume fraction was assumed (Supplementary 29 
Text 3.2). The bias of DTI-derived NODDI and DTI parameters were also assessed by Bland-Altman 30 
analysis. (Supplementary text 3.2). 31 
 32 
3. Results 33 
3.1 Cortical maps of DTI-derived NODDI parameters using in vivo dMRI data 34 
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When the three-shell dataset (bAll) in 456 subjects of HCP data were used in the original NODDI, the 1 
cortical map of neurite density (NDIORIG) showed high intensity in the primary sensorimotor, visual, 2 
auditory cortices as well as the middle temporal (MT) area (Fig. 2A), while ODIORIG showed high 3 
intensity in the primary sensory, visual and auditory areas (Fig. 3A), as we reported previously20. 4 
Moreover, consistent with our previous study20, the cortical distribution of the NDIORIG was quite 5 
similar to that of the myelin map based on the T1w and T2w images, while the distribution of 6 
ODIORIG showed high contrast in the ‘granular cortex’ of von Economo and Koskinas 23, where 7 
cortical thickness is low and both radial and horizontal fibers are intermingled20.  8 
 9 
When using same three-shell dataset (bAll), cortical distribution of MD showed extremely inversed 10 
appearance to NDIORIG (Fig. 2B) as reported previously20 — this was also true when using high 11 
b-value one-shell dataset (b3000) (Fig. 2E), but not when using low b-value one-shell dataset (b1000) 12 
(Fig. 2H). In correlation analysis using the parcellated data (see Methods & Materials 2.1.3), MD 13 
strongly negatively correlated with NDIORIG when using three-shell dataset (bAll) (R=-0.96, 14 
p<0.00001) and high b-value one shell (b3000) (R=-0.86, p<0.00001), but did not strongly correlate 15 
when using low b-value one-shell dataset (b1000) (R=-0.31, p<0.00001) (Fig. 4). As for FA, cortical 16 
maps of FA showed moderate inversed appearance to ODIORIG and (negative) correlation with 17 
ODIORIG among all datasets (R=-0.40 ~ -0.62) (Fig. 3, 4). There were not strong correlations between 18 
FA and NDIORIG in any b-shell dataset (R=0.15 ~ 0.28) (Fig. 4).  19 
 20 
DTI-derived NODDI maps (NDIDTI, ODIDTI) also showed very similar cortical distributions of NDI 21 
and ODI in average surface maps across all subjects (Fig. 2A, C, F for NDIDTI and Fig. 3A, C, F for 22 
ODIDTI), particularly when using high b-value dataset including bAll and b3000. The correlation 23 
analysis showed that correlation coefficients between the DTI-derived NODDI and original NODDI 24 
parameters were extremely high for both NDI (NDIDTI/bAll: R=0.97, NDIDTI/b3000: R=0.87, 25 
p<0.00001) and ODI (ODIDTI/bAll R=0.94, ODIDTI/b3000 R=0.86, p<0.00001) (Fig. 4).    26 
 27 
To investigate the agreement of DTI-derived NODDI compared with the original NODDI, the 28 
Bland-Altman analysis was applied to the values of cortical parcellations using those of complete 29 
data and original NODDI as a reference. When all of the dMRI data (bAll) were used, the results of 30 
DTI-derived NODDI showed a consistent bias: NDIDTI overestimated by a difference of around 0.20 31 
and ODIDTI by 0.15 to 0.10 as compared with those of original NODDI (Fig. 5 A, C). The 32 
NDIDTI/b3000, (Fig. 5B) also showed a consistent bias, which was a little smaller than NDIDTI/bAll (Fig. 33 
5A). The bias of ODIDTI/b3000 (Fig. 5D) was almost same as in the three-shell dataset (Fig. 5C). 34 
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 1 
Other datasets including a high b-value shell also provided comparable results with the original 2 
NODDI (Fig. S3-4). If b=3000 is included in the two-shell data (b1000-3000 and b2000-3000), both NDIDTI 3 
and ODIDTI showed a similar surface distribution to the reference (Fig. S3 A, D, F, Fig. S4 A, D, F). 4 
The correlation coefficients were very high in the group-wise maps for both NDIDTI and ODIDTI 5 
(b1000-3000: R=0.97, R=0.89, b2000-3000: R=0.93, R=0.92, respectively, p<0.00001) (Fig. 4). The 6 
Bland-Altman analysis showed that the dataset of high and low b-value two-shell (b1000-3000) (Fig. 7 
S5) had a constant bias of NDIDTI and slightly upward sloping bias of ODIDTI, which were almost the 8 
same size as in the three-shell dataset. High b-value two-shell (b2000-3000) (Fig. S5 A) had also a 9 
constant bias of NDIDTI but with a somewhat smaller size than that in three-shell dataset (bAll). The 10 
bias of ODIDTI was almost same size as in the three-shell dataset (Fig. 5 C, S5 B). 11 
 12 
The dataset not including a high b-value shell showed inconsistent cortical distributions with the 13 
reference. For the two-shell dataset (b1000-2000), NDIDTI was a little different and the correlation 14 
coefficient was moderate (R=0.71, p<0.00001) (Fig. 4), while ODIDTI showed relatively high 15 
correlations in the group-wise maps (R=0.84, p<0.00001) (Fig. 4). One-shell datasets using lower 16 
b-value shells (i.e. b1000 and b2000) did not provide comparable surface maps of NDIDTI (Fig. S3 L, N) 17 
and ODIDTI (Fig. S4 L, N). For example, for the low b-value one-shell dataset (b1000), both NDIDTI 18 
and ODIDTI showed different surface distributions from the reference (Fig. S3 A, N, Fig. S4 A, N), as 19 
well as very low correlation coefficients for NDIDTI (R=0.33 p<0.00001) and ODIDTI (R=0.58, 20 
p<0.00001) (Fig. 4). This trend was also found when using the middle high b-value one-shell dataset 21 
(b2000). Only ODIDTI showed a similar surface distribution to the reference (Fig. S4 A, L) and high 22 
correlation coefficients (R=0.80, p<0.00001) (Fig. 4), while NDIDTI showed different surface 23 
distribution from the reference (Fig. S3 A, L) and relatively low correlations (R=0.59, p<0.00001) 24 
(Fig. 4). 25 
 26 
When comparing original NODDI parameters using one- or two-shell datasets to the reference, any 27 
two-shell datasets provided similar surface maps of NDIORIG and ODIORIG with the reference and 28 
they were highly correlated (R>0.91, p<0.00001) (Fig. S6). However, NDIORIG using low b-value 29 
one-shell datasets were not significantly correlated to the reference (R<0.19, p>0.00001), while 30 
ODIORIG was relatively correlated even though using one-shell datasets (R>0.71, p<0.00001) (Fig. 31 
S6), as show in the simulation study in Zhang et al5. 32 
 33 
3.2 Simulation for the effect of heterogeneity in CSF volume fraction on parameters of NODDI, DTI 34 
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and DTI-derived NODDI  1 
We simulated the percent changes in NODDI, DTI and DTI-derived NODDI depending on altered 2 
CSF compartment (Viso) and b-shell dataset. As compared with the reference condition (Viso=0.1), 3 
apparent differences in amount of change in the parameters were found across type of calculation 4 
(NODDI, DTI, DTI-derived NODDI) and b-shell schemes (Fig. 6). While the original NODDI using 5 
all the b-shell dataset (bAll) was reasonably unbiased by altered Viso, the parameters of DTI and 6 
DTI-derived NODDI tended to be largely biased particularly used b-shell datasets not including high 7 
b-value volumes (b=3000) (b1000, b2000, and b1000-2000) (Fig. 6). The dataset including high b-value 8 
(b3000, b1000-3000, b2000-3000 and bAll) were relatively less biased across ranges of Viso changes. These 9 
findings suggest that the error of DTI derived parameters is sensitive to the heterogeneity of CSF 10 
partial voluming, particularly when lower b-value data was applied. To confirm the specificity of this 11 
findings, we also performed another simulation in which ‘homogeneous’ but small CSF volume 12 
fraction was assumed (Supplementary Text 3.2). This confirmed that correlation between original 13 
NODDI and DTI-derived NODDI was reasonably high as long as CSF volume fraction is not 14 
‘heterogeneous’. 15 
 16 
Discussion 17 
Accumulating evidence have suggested that high b-value dMRI signal is more sensitive to neurites 18 
and neural tissue changes than low b-value dMRI signal. The in vitro study of optic nerve with 19 
q-space analysis of diffusion-weighted spectroscopy31 identified slower-decaying component of 20 
dMRI signals which have 1) diffusion displacement restricted to ~2 µm close to axonal diameter, 2) 21 
longer T2 than rapid diffusing components including myelin water and 3) dependency on neurite 22 
orientation, thus suggesting that this component originated from intra-neurite water. The T2 time for 23 
myelin water is very short (10-20ms), while intra- and extra-cellular water is longer than 60ms46, 24 
thus making dMRI signals with TE=89.5ms insensitive to myelin water. The dependency of high 25 
b-value diffusion-weighted signal on neurite orientation is largely caused by neurite membrane 26 
rather than by other longitudinal structures including myelin and neurofilaments47. Simulation 27 
showed that the majority of dMRI signals with b-value less than 1000 s/m-2 represents fast-diffusion 28 
components which may originate free water such as in CSF compartment. On the other hand, recent 29 
high b-value DTI in clinical studies showed higher sensitivity to neurobiological changes than low 30 
b-value — apparent diffusion coefficient from high b-value DTI was sensitive to the contrast 31 
between gray/white matter32, ischemic/hypoxic changes in the gray matter33, white matter 32 
disintegrity in schizophrenia34 and maturation in juveniles35. Taken together, signals obtained at high 33 
b-value are likely sensitive to neurobiological changes including neurites, however, there is not 34 
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completely established model that quantitates a specific property of neurites. The DTI and NODDI 1 
are among the most widely used models: the former is a simplified linear model that accounts for 2 
Gaussian process of diffusion motion of water molecule in the tissue, and the latter explicitly models 3 
neurite properties in the tissue based on non-linear nature in high b-value data. 4 
 5 
The NODDI is among the most validated models for its predictability of neurite properties. 6 
Accumulated histological evidence indicates that NDI and ODI of brain and spinal cord tissues are 7 
reasonably correlated with histology-based neurite density25 and orientation dispersion25–28, 8 
respectively. The NODDI ODI is relatively robust against data quality5, and well represented the 9 
histology-based neurite orientation dispersion in all the studies25–28 including a single shell and 10 
multi-shell dMRI. It is notable that by applying multi-shell dMRI in the spinal cord specimen of 11 
multiple sclerosis. Grussu et al. 25 revealed that NDI of NODDI was fairly correlated with 12 
histology-based density of neurites as assessed by staining neurofilaments. However, since the 13 
intrinsic diffusivity is simplified5 (see section of Limitation), careful attention is needed for potential 14 
bias depending on the diffusivity, for example, when mixing analysis across tissue subtypes such as 15 
gray and white matter20. Therefore, we estimated specific tissue subtype, cortical gray matter and 16 
analyzed the relation of DTI metrics, DTI-derived NODDI metrics to the original NODDI. 17 
 18 
Here, we showed in healthy subjects that cortical metrics of DTI and DTI-derived NODDI 19 
parameters were highly correlated with those of original NODDI, when used a particular set of 20 
b-shell scheme in dMRI. 1) the DTI MD was negatively correlated with NODDI NDI when data 21 
included high b-value (b=3000) (R>0.9), 2) the DTI FA was partially correlated with NODDI ODI 22 
and NDI particularly when used middle to lower ranged b-value (b=1000-2000) (R>0.87), 3) both 23 
NDI and ODI of DTI-derived NODDI showed high correlation with the original NODDI (R>0.9) 24 
when used dMRI data including high b-value (b=3000). Simulation analysis suggests that less 25 
relation of DTI to NODDI when used low b-value data is due to higher sensitivity to heterogeneity in 26 
CSF volume fraction in the intra-tissue and/or partial volume. The HCP data and simulation showed 27 
that high b-value dMRI data resulted in a constant numerical bias, i.e. same amount of error over the 28 
range of values, potentially due to the bias in the DTI measures coming from non-Gaussian 29 
distribution of high b-value dMRI data. Since high b-value dMRI data is often in non-Gaussian 30 
distribution, applying linear DTI model for such high b-value dMRI data may result in biases of 31 
calculated measures as compared with those used b=1000 dMRI data. Past literature also notes that 32 
when using high b-value dMRI data, the values of MD were underestimated48 and those of FA were 33 
overestimated4,49,50 compared with those of b=1000 dMRI data. We’ve also confirmed in the 34 
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simulation that the biases are constant over a possible range of values between DTI-derived NODDI 1 
and original NODDI (data not shown). Therefore, the bias of DTI may be due to the effect of 2 
kurtosis of high b-value dMRI data. These findings indicate that DTI parameters in cortical gray 3 
matter are highly related to those of NODDI when analyzed using high b-value dMRI data and are 4 
not very predictive when used low b-value dMRI. This suggests that analyzing cortical 5 
microarchitecture by both DTI and NODDI is redundant and does not surpass usefulness of cortical 6 
neurite mapping by either way. 7 
 8 
The DTI and DTI-derived NODDI were sensitive to the errors caused by heterogeneity of CSF 9 
volume fraction and b-shell scheme of the data. When not using the high b-value shell, the cortical 10 
distribution of DTI-derived NODDI parameters showed completely different pattern from those of 11 
original NODDI (Fig. S3-4). Our simulation suggests this is because low b-value DTI-derived 12 
NODDI parameters are more sensitive to change in Viso due to heterogeneity and partial voluming of 13 
CSF (Fig. 6). Low b-value dMRI is theoretically sensitive to fluid signals or ‘T2 shine-through’ 14 
effect as well as to tissue diffusivity, whereas high b-value dMRI is more specific to tissue 15 
diffusivity32,51. In addition, the partial volume effects of CSF may vary across cortical regions 16 
according to cortical thickness and their heterogeneity within the cortex. The effect is not completely 17 
removed even though the partial volume effect is reasonably reduced by surface-based analysis as 18 
compared with volume-based analysis (see Supplementary text 2, Fig. S1). Moreover, the model of 19 
DTI by itself does not account for multi compartments in the tissue and also suffers from a partial 20 
volume effect of CSF and results in fitting error particularly in the cortex2,52. In contrast, the NODDI 21 
explicitly considers a CSF compartment s is insensitive to the heterogeneity of CSF as shown in the 22 
simulation study (Fig 6). The high b-value DTI and DTI-derived NODDI parameters were also 23 
biased in a fixed manner (Fig 5 and Supplementary text 3.2), which are likely caused by 24 
non-Gaussian distribution36. The values of MD were underestimated and those of FA were 25 
overestimated (Supplementary Text 3.2) in high b-value datasets, consistent with previous studies for 26 
MD48 and FA4,49,50.  27 
 28 
The current study gives insights and interpretations into recent studies which applied NODDI and 29 
DTI in the same sample. In particular, NODDI and DTI showed different sensitivity to the 30 
neurobiological changes of interest, while there is a potential variety of CSF contamination and data 31 
sampling. Grussu et al. studied NODDI and DTI in spinal cord in healthy subjects53. They applied 32 
DTI to low b-value dMRI and NODDI to multi-shell data and found that NODDI ODI was the most 33 
sensitive to the contrast between gray and white matter. Kamagata et al., applied both DTI and 34 
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NODDI parameters in Parkinson’s disease and controls using multi-shell dMRI data29. The DTI was 1 
calculated using low b-value data (b=1000) and NODDI with 2-shell of b=1000 and 2000. 2 
Interestingly, both NDI and ODI of the NODDI metrics in the cortical gray matter were more 3 
sensitive to discriminate patients from controls than those of DTI, which may support higher 4 
sensitivity of NODDI than low b-value DTI to the neuropathological changes in this disease. These 5 
are in line with our result that DTI-derived NODDI parameters with low to middle b-value data was 6 
not strongly correlated with the high b-value NODDI parameters. Mah et al. also studied NODDI 7 
and DTI in early adolescent brain and found that NODDI NDI was more sensitive to age-related 8 
changes as compared to DTI MD54. They also showed that subcortical gray matter structures, which 9 
may be less affected by partial voluming CSF than cortex, showed high correlation between MD and 10 
NDI (R=0.69-0.88) and between FA and ODI (R=0.70-0.81). In addition, Batalle et al. analyzed 11 
cortical metrics of NODDI and DTI in infant brain and results were complicated55. They applied 12 
relatively low-resolution dMRI (2mm) for small sized brain and found the dissociated pattern of 13 
changes in the cortical NDI and MD. As expected, MD and NDI showed inversed pattern across ages 14 
but only after gestational age of 38-week. Parallel pattern between MD and NDI was found before 15 
age of 38-week, which may be due to errors in partial voluming of CSF due to small sized brain and 16 
thin cortex. The partial volume effect of CSF may not be negligible in their results, since DTI data 17 
was calculated based on the low b-value dMRI data.  18 
 19 
Preclinical studies also showed neurobiological changes by NODDI and DTI. Using Alzheimer’s 20 
model of transgenic mice, Colgan et al. performed NODDI and DTI using multi-shell dMRI data and 21 
found higher sensitivity of NODDI NDI than low b-value DTI MD to histology-based marker of 22 
neurodegeneration, tau immunoreactivity56. The in vitro study using spinal cord specimen of 23 
multiple sclerosis was scanned with multi-shell dMRI including high b-value. They also showed that 24 
MD of DTI was negatively correlated with histology-based neurite density in the same specimen. 25 
Our previous study which used multi-shell dMRI data also found a very strong relationship between 26 
DTI MD and NODDI NDI and that values of FA was also associated with ODI depending on the 27 
MD20. 28 
 29 
This study provides important implications for future dMRI studies. First, it is redundant to apply 30 
both DTI and NODDI to dMRI data for estimating microstructure in cortical gray matter. As 31 
formulated by a mathematical conversion from DTI to NODDI, there is no additional quantitative 32 
information available by applying both. When used low b-value dataset, DTI suffers from the errors 33 
of CSF heterogeneity as compared with NODDI. Therefore, users can choose either method 34 
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depending on the dMRI data acquired, and neurobiological significance may not be changed. Second, 1 
a high b-value DTI is potentially useful for cortical neurite mapping, particularly in clinical setting. A 2 
shorter dMRI scan will be particularly helpful for clinical patients such as patients with Alzheimer’s 3 
disease who cannot keep still long time. DTI can be estimated with relatively few directions - at least 4 
6 or in general more than 30 are recommended 57, whereas the original NODDI is recommended with 5 
at least 90 directions 5, which means three times higher efficiency. HCP-style scanning with high 6 
spatial resolution dMRI with 30 directions does not exceed 3 min. Third, low b-value DTI is not 7 
appropriate for cortical mapping and suffer from errors from heterogeneity and partial voluming of 8 
CSF. The heterogeneity itself cannot be completely estimated by the currently available resolution of 9 
dMRI. A special sequence, such as ‘fluid-attenuated inversed recovery DTI’, can be useful by 10 
reducing CSF signals 58,59. Meanwhile, the NODDI is more robust against the errors from CSF 11 
partial voluming for cortical mapping of microarchitecture. 12 
 13 
One of limitations of this study is that it relies on the relative validity of NODDI over DTI. Recently, 14 
there is subject of debate about the eligibility on simplification in the NODDI associated with 15 
constrained intrinsic diffusivity24,60. There is an attempt to develop a novel method that explicitly 16 
analyzes local complexities of diffusivity24. The method is potentially useful for future application; 17 
however, it is technically demanding for scanning, particularly, specific diffusion gradient encoding 18 
both in linear tensor and spherical tensor. There is also need for investigations on whether the 19 
intrinsic diffusivity is significantly changed in-vivo and how it influences the quantification of 20 
neurite properties in the gray matter. In the previous study, we optimized the intrinsic diffusivity for 21 
the gray matter (1.1 × 10−3 mm2/s) based on non-linear multiparametric fitting20, which resulted in 22 
reasonable findings of correlation between neurite density and myelin contrast as expected from 23 
histological evidence61,62. Second, we did not analyze the relationship between DTI and NODDI in 24 
the ‘white matter’ in this article. We estimated that the volume fraction of isotropic diffusion is 25 

larger in the white matter (0.21±0.1) than in the gray matter (0.09±0.06) (see also Supplementary 26 

Text 2), as expected from the fact that the white matter is also a major site for convective flow of 27 
CSF63. Despite potential larger fraction of CSF, the white matter is not affected by partial voluming 28 
of CSF in the subarachnoid space like in the cortical gray matter. Therefore, as long as the volume 29 
fraction of CSF is relatively heterogenous across regions in the white matter, the relationship of 30 
NODDI and DTI may be similar to those in the gray matter. This is also supported by the current 31 
simulation studies on heterogeneity of CSF volume fraction as shown in section 3.2 and 32 
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Supplementary Text 3.2. Third, we applied DTI model for multi-shell dMRI datasets, which are 1 
known to have non-Gaussian distribution. Mathematically, non-linear model like DKI39 is more 2 
suitable for such non-Gaussian dMRI data than DTI. There is also evidence that parameters of DTI 3 
such as FA and MD are comparable with those from DKI64, however, we did not include the 4 
comparison of DKI with NODDI in this study because of limited space.  5 
 6 
5. Conclusion 7 
For addressing cortical microarchitecture, conventional DTI with low b-value dataset is not very 8 
useful because of contamination with the heterogeneity of CSF, whereas NODDI is robust against 9 
these factors. Cortical DTI parameters were closely associated with those of NODDI, particularly 10 
using data including high b-value data. DTI-derived NODDI based on high b-value dataset showed 11 
remarkably similar cortical distributions with those of NODDI, supporting the previous notion of the 12 
mathematical conversion between the DTI and NODDI. Simulation also supported these findings 13 
that potential intra-tissue CSF fraction and partial voluming of arachnoid CSF may be causing the 14 
error and bias in the cortical maps different from those of original NODDI. Although its similarity, 15 
analyzing with high b-value dataset and DTI does not add more information for cortical 16 
microarchitecture than NODDI. 17 
 18 
6. Notes 19 
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 Table 1  17 
Abbreviations of 

b-shell datasets 

Datasets of non-diffusion weighted (b=0) and diffusion-weighted MRI 

volumes (b=1000,2000 and 3000) 

b1000  b=0 (18), b=1000 (90)  

b2000 b=0 (18), b=2000 (90)  

b3000 b=0 (18), b=3000 (90)  

b1000-2000 b=0 (18), b=1000 (90), b=2000 (90)  

b1000-3000 b=0 (18), b=1000 (90), b=3000 (90)  

b2000-3000 b=0 (18), b=2000 (90), b=3000 (90)  

bAll  b=0 (18), b=1000 (90), b=2000 (90), b=3000 (90) 

 18 
 19 
Legends 20 
Table 1 21 
The table lists abbreviations of b-shell datasets used in the main text and corresponding datasets of 22 
dMRI in different b-shell schemes. The numbers in parentheses indicate the number of b0 volumes 23 
with repeatedly obtained for b=0 volume or diffusion weighted directions with different b-vectors (or 24 
directions of diffusion-weighted gradient) for each of the b=1000, 2000 and 3000 shells. 25 
 26 
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Figure 1. Relationships of DTI and NODDI when assumed non-CSF compartment. The equations 1 
for DTI-derived NODDI calculation (Eq. 2-5) and d// =1.1×10-3 mm2/s (optimized for gray matter) 2 
were used to simulate relationships between (A) Neurite density index (NDI) vs inversed mean 3 
diffusivity (1/MD), over the range of MD= 1500 to 2000 s/mm2, and (B) orientation dispersion 4 
index (ODI) vs MD when fractional anisotropy (FA) ranged from 0.1 to 0.6. Details of derivation of 5 
mathematical function of DTI and NODDI are described in Supplementary text 1.2. 6 
 7 
Figure 2. Cross-subject average cortical surface maps of neurite density index (NDI) and mean 8 
diffusivity (MD). 9 
Cortical surfaces are different in terms of computation methods: original NODDI NDI (NDIORIG) 10 
(A, D, G), DTI-derived MD (B, E, H) and DTI-derived NODDI NDI (NDIDTI) (C, F, I) with 11 
different b-shell datasets used: all three b-values (bAll), only those of b=3000 (b3000) and b=1000 12 
(b1000), respectively. Reference cortical surface maps of NDIORIG with bAll in (A) showed high 13 
values in primary sensorimotor, visual, auditory cortices as well as the middle temporal (MT) area, 14 
similar to the cortical myelin distribution as reported previously20. Both MD/bAll and MD/b3000 (B, 15 
E) showed inversed appearance to the reference, as well as both NDIDTI/bAll and NDIDTI/b3000 16 
(C, F) showed very similar surface distribution to the reference. Note that NDIORIG/b3000 in (D) 17 
showed a different pattern from the reference and any computation methods using b1000 (G, H, I) 18 
did not show comparable pattern with the reference. https://balsa.wustl.edu/L66BP 19 
 20 
Figure 3. Cross-subject average cortical surface maps of orientation dispersion index (ODI) and 21 
fractional anisotropy (FA).  22 
Cortical surfaces are different in terms of computation methods: original NODDI ODI (ODIORIG) 23 
(A, D, G), DTI-derived FA (B, E, H) and DTI-derived NODDI ODI (ODIDTI) (C, F, I), each used 24 
different b-shell datasets: all three b-values (bAll) vs only those of b=3000 (b3000) and low b-values 25 
(b1000), respectively. A reference cortical map of ODI (ODIORIG/bAll) in (A) showed high values 26 
in the early sensory areas including somatosensory, auditory, and visual. Note that ODIORIG/b3000, 27 
ODIDTI/bAll in (C) and ODIDTI/b3000 in (F) showed similar distribution to the reference. Any 28 
computation methods using b1000 (H, I, J) did not show comparable pattern with the reference. Data 29 
at https://balsa.wustl.edu/pkkKj 30 
 31 
Figure 4. Correlation coefficients of DTI-derived parameters (MD and FA) and DTI-derived NODDI 32 
parameters (NDIDTI and ODIDTI) with the references that are the original NODDI parameters on 33 
three-shell dataset (NDIORIG/bAll and ODIORIG/bAll). Correlation coefficients to the references 34 
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were calculated using averaged surface maps across all subjects in each different b-shell dataset type 1 
(b1000, b2000, b3000, b1000-2000, b1000-3000, b2000-3000 and bAll). All correlations were 2 
significant (p<0.00001). 3 
 4 
Figure 5. Bland-Altman plots between DTI-derived NODDI and original NODDI parameters in vivo. 5 
(A and C) show Bland-Altman plots between DTI-derived NODDI parameters in the three -shell 6 
dataset (bAll) and the original NODDI parameters in the three-shell dataset (bAll). (B and D) show 7 
Bland-Altman plots between DTI-derived NODDI parameters in the high b-value one-shell dataset 8 
(b3000) and the original NODDI parameters in the three-shell dataset (bAll). Plots are coloured by 9 
their density. Blue lines show the mean±1.96*SD and the red line shows the mean value. 10 
Abbreviations; NDIORIG: neurite density index estimated using the original NODDI model, 11 
ODIORIG: orientation dispersion index estimated using the original NODDI model, NDIDTI: 12 
neurite density index estimated using DTI-derived NODDI, ODIDTI: orientation dispersion index 13 
estimated using DTI-derived NODDI.  14 
 15 
Figure 6. Results of simulation for percent errors in DTI-derived parameters depending on various 16 
range of the CSF volume fraction. A) The percent errors in NDI in NODDI (%ΔNDIORIG, left 17 
panel), DTI MD (%ΔMD, middle panel) and DTI-derived NDI (%ΔNDIDTI, right panel) against 18 
various levels of CSF volume fraction (Viso) relative to the refence value (=0.1). B) The percent 19 
errors in ODI from the NODDI (%ΔODIORIG, left panel), DTI FA (%ΔFA, middle) and 20 
DTI-derived ODI (%ΔODIDTI, right panel). Dataset types of b-shell schemes b1000, b2000, b3000, 21 
b1000-2000, b1000-3000, b2000-3000 and bAll are shown in different colored lines as in the legend 22 
in each panel. Note that the one-shell low b-value data set (b1000) shows the largest size of errors in 23 
DTI and DTI-derived NODDI parameters among all the datasets, which suggests high sensitivity to 24 
partial volume effects in the cortical gray matter. The smallest change in DTI-derived NODDI and 25 
DTI parameters was found when using the three-shell dMRI data (bAll), followed by the high 26 
b-value two-shell (b1000-3000) and one-shell dMRI data (b3000). Abbreviations; NDIORIG: 27 
original NODDI neurite density index, ODIORIG: original NODDI orientation dispersion index, 28 
NDIDTI: DTI-derived NODDI neurite density index, ODIDTI: DTI-derived NODDI orientation 29 
dispersion index 30 
 31 
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