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Abstract 1 

Diffusion tensor imaging (DTI) has been widely used in human neuroimaging, but its measures are 2 

poorly linked to neurobiological features in the gray matter, primarily due to the complexity and 3 

heterogeneity of gray matter. Previously, mean diffusivity of DTI in the cortical gray matter was 4 

shown to correlate highly with an index of neurites estimated by a recently proposed model, neurite 5 

orientation dispersion and density imaging (NODDI). NODDI explicitly models neurites and has 6 

been histologically validated. However, the generalizability of the relationship between DTI and 7 

NODDI has yet to be fully clarified. Here, we evaluate whether and how DTI can predict the cortical 8 

neurite metrics of NODDI, neurite density index (NDI) and orientation dispersion index (ODI). We 9 

generated a mathematical relationship between DTI and NODDI by assuming a negligible 10 

compartment of cerebro-spinal fluid (CSF) (DTI-NODDI); we predicted and validated quantitative 11 

values of the NDI and ODI by comparing estimates derived from DTI to the original NODDI using 12 

456 subjects’ data in the Human Connectome Project (HCP). Simulations for the error of 13 

DTI-NODDI were also performed to evaluate the impact of neglecting the CSF compartment and to 14 

characterize the effects of partial volume and heterogeneity of CSF and b-shell scheme of diffusion 15 

data. For both NDI and ODI, cortical distributions of DTI-NODDI closely resembled those in the 16 

original NODDI model, particularly when using data that included the highest diffusion weighting 17 

(b-value=3000). The DTI-NODDI values in cortical regions of interest were slightly overestimated 18 

but highly correlated with the original. Simulations confirmed that analyzing with high b-value data 19 

minimized error propagation from heterogeneity and partial voluming of CSF, although values were 20 

consistently overestimated. These findings suggest that DTI can predict the variance of NODDI 21 

metrics and hence neurite distribution of cortical gray matter when using high b-value diffusion MRI 22 

data.  23 

 24 
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1. Introduction 1 

The diffusion motion of water molecules in brain tissue is affected by the local microarchitecture, 2 

including axons, dendrites and cell bodies (Moseley et al., 1990). Diffusion tensor imaging (DTI) is a 3 

well established model that describes Gaussian properties of diffusion motion in a fibrous structure 4 

like brain white matter (Basser et al., 1994a, 1994b) and is widely used for inferring the 5 

microstructural changes related to plasticity and diseases (for review, Johansen-Berg and Behrens, 6 

2013). In most cases, summary parameters of DTI, fractional anisotropy (FA) and mean diffusivity 7 

(MD), have been studied, however, these parameters have not been shown to be specific to 8 

underlying microstructural features of axons and dendrites (collectively referred to as neurites) and 9 

are often sensitive to tissue compartments other than neurites (Pierpaoli and Basser, 1996). DTI 10 

analyses often fail to capture the specifically varying features of underlying microstructure; e.g. a 11 

decrease in FA may be caused by an increase in the dispersion of neurite orientation, a decrease in 12 

neurite density, or another tissue microstructural change (Jones and Cercignani, 2010; Pierpaoli et al., 13 

1996; Pierpaoli and Basser, 1996). In particular, using DTI in gray matter tissue is thought to be 14 

inaccurate due to the complexity and heterogeneity of gray matter diffusion (Assaf, 2018). Despite 15 

that, recent DTI studies suggest potential microstructural changes in the gray matter of patients with 16 

multiple sclerosis and Alzheimer’s disease (Calabrese et al., 2011; Eustache et al., 2016; Henf et al., 17 

2018), though the findings are yet to be associated with specific pathological changes. Therefore, it 18 

is worth addressing the issue of how closely DTI measures are associated with the underlying 19 

complexity of the gray matter microstructure, particularly those related to neurite properties.  20 

 21 

One recent advance for estimating the microstructural complexity of brain tissue using diffusion 22 

MRI (dMRI) is the Neurite Orientation Dispersion and Density Imaging (NODDI) (Zhang et al., 23 

2012). NODDI models dMRI signals by combining three tissue compartments: neurites, 24 

extra-neurites, and cerebro-spinal fluid (CSF), each with different properties of diffusion motion, and 25 

enables in vivo estimation of a neurite density index (NDI) and an orientation dispersion index (ODI), 26 

as well as a volume fraction of isotropic diffusion (Viso). NODDI requires dMRI data to be scanned 27 

with relatively higher number of diffusion gradient directions (e.g. >90 directions) and b-values (e.g. 28 

b=700 and 2000 sec/mm2) as compared with DTI (Zhang et al., 2012). The NDI estimates the volume 29 

fraction of neurites, including both axons and dendrites, whereas the ODI estimates the variability of 30 

neurite orientation: ranging from 0 (all parallel) to 1 (isotropically randomly oriented). Variation of 31 

NODDI estimates in white matter have been related to aging (Billiet et al., 2015; Chang et al., 2015; 32 

Eaton-Rosen et al., 2015; Genc et al., 2017; Kodiweera et al., 2016; Kunz et al., 2014) and neurologic 33 

disorders (Adluru et al., 2014; Billiet et al., 2014; Timmers et al., 2015). Gray matter changes jn 34 
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NODDI were also reported in patients with IFN-α-induced fatigue (Dowell et al., 2017), Wilson’s 1 

disease (Song et al., 2017), cortical dysplasia (Winston et al., 2014), aging (Nazeri et al., 2015), and 2 

schizophrenia (Nazeri et al., 2016). Importantly, histological studies suggest that NDI is correlated 3 

with myelin (Grussu et al., 2017) and that ODI is associated with complexity of fiber orientation 4 

(Grussu et al., 2017; Sato et al., 2017; Schilling et al., 2018).  5 

 6 

We recently optimized NODDI for cortical gray matter (Fukutomi et al., 2018), finding that the NDI 7 

is closely related to cortical myelin, as estimated by the ratio of T1w to T2w MRI images (Glasser 8 

and Van Essen, 2011) and that ODI is associated with cortical cytoarchitecture as mapped by Von 9 

Economo and Koskinas (Triarhou, 2009; von Economo and Koskinas, 1925). In addition, we found 10 

strong relationships between NODDI and DTI parameters in the cortex, in particular, NDI and 1/MD 11 

were very highly correlated (R=0.97) (Fukutomi et al., 2018). We proposed (Fukutomi et al., 2018) 12 

that this strong correlation reflects a recently derived mathematical relation between NODDI and 13 

DTI parameters (Edwards et al., 2017) (Lampinen et al., 2017). This relationship relies on the 14 

assumption that CSF compartment (Viso) is negligible in the tissue (Edwards et al., 2017, Lampinen 15 

et al., 2017). In support of this assumption for cortical gray matter, the estimated Viso in the cortex, 16 

particularly when mapped on the surface, is relatively small compared to that in the white matter 17 

(Fukutomi et al., 2018). In contrast, white matter may be a major site for convective flow of CSF 18 

(Rosenberg et al., 1980). 19 

 20 

In the present study, we evaluate whether NODDI parameters in cortical gray matter can be 21 

predicted from DTI parameters utilizing a mathematical relationship between the two models. We 22 

present a method that estimates cortical maps of NDI and ODI of NODDI based on DTI values 23 

(cortical DTI-NODDI), which is computationally less expensive than the original NODDI.  We 24 

used Human Connectome Project (HCP) data that had already preprocessed. Since the estimated size 25 

of the CSF compartment may depend on b-value and spatial resolution, we evaluated the quantitative 26 

accuracy of the surface distribution of NODDI measures using different b-values of dMRI. We 27 

additionally performed simulation analysis in terms of b-value, proportion of CSF signal, and 28 

random noise in data.  29 

 30 

2. Materials and Methods 31 

We first describe the models and formulations of the original NODDI and the DTI-based estimation 32 

of NODDI (DTI-NODDI). Based on the formulation, we evaluated the DTI-NODDI model for 33 

cortical neurite estimation using in vivo MRI data of the HCP (https://www.humanconnectome.org/).  34 
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We used publicly available data from 456 healthy subjects (aged 22-35 years) to test whether 1 

DTI-NODDI can provide as accurate neurite maps as those from the original NODDI model. In 2 

particular, dMRI datasets with different b-shell structures were analyzed to investigate how the 3 

b-shell scheme affects neurite estimations. We also performed simulation analyses to clarify how the 4 

b-shell scheme dependency of DTI-NODDI is associated with several error sources such as CSF 5 

signals in dMRI data, partial volume effects, and random noise. The reproducibility of DTI-NODDI 6 

was also assessed using test-retest HCP data. Data analyses were performed at RIKEN, and the use 7 

of HCP data in this study was approved by the institutional ethical committee (KOBE-IRB-16-24). 8 

 9 

2.1 Models  10 

2.1.1 The original NODDI Model 11 

The NODDI method models brain microarchitecture in three compartments that have different 12 

properties of water molecules’ diffusion motion: the intracellular compartment (restricted diffusion 13 

bounded by neurites), the extracellular compartment (outside of neurites and potentially including 14 

glial cells), and the CSF compartment (Zhang et al., 2012). The intracellular compartment is modeled 15 

as a set of sticks, i.e., cylinders of zero radius in which diffusion of water is highly restricted in 16 

directions perpendicular to neurites and unhindered along them (Behrens et al., 2003; Panagiotaki et 17 

al., 2012; Sotiropoulos et al., 2012). The orientation distribution of these sticks is modeled with a 18 

Watson distribution, because it is the simplest distribution that can capture the dispersion in 19 

orientations (Mardia and Jupp, 1990). The extracellular compartment is modeled with anisotropic 20 

Gaussian diffusion parallel to the main direction. The CSF compartment is modeled as isotropic 21 

Gaussian diffusion. The full normalized signal A is thus written as: 22 

 23 

A= (1-Viso ){Vic Aic+(1-Vic)Aec }+Viso Aiso,  (1) 24 

 25 

where Aiso and Viso are the normalized signal and volume fraction of the CSF compartment; the 26 

volume fraction of non-CSF compartment (1-Viso) is further divided into intracellular compartment 27 

(Vic) (=NDI) and extracellular compartment (1-Vic); Aic and Aec is the normalized signal of the 28 

intracellular and extracellular compartments, respectively. Additional NODDI parameters are 29 

isotropic diffusivity (diso) and intrinsic free diffusivity (d∥), i.e., the diffusivity parallel to neurites. 30 

Detailed expressions of mathematical equations and derivation are described in the Appendix, and 31 

these formulations were used for the simulation study described in Section 2.3. 32 

 33 

2.1.2 The DTI-based estimation of NODDI (DTI-NODDI) 34 
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The equations that relate NODDI to DTI models are detailed in previous studies (Edwards et al., 1 

2017; Lampinen et al., 2017). Briefly, the NDI and the orientation parameter ( can be expressed by 2 

using DTI measures such as MD and FA in the following equations, assuming that the CSF 3 

compartment (Viso) is negligible: 4 

𝑁𝐷𝐼 ൌ 1 െ ටଵ

ଶ
൬

ଷெ஽

ௗ//
െ 1൰    (2) 5 

𝜏 ൌ ଵ

ଷ
൬1 ൅ ସெ஽･ி஺

หௗ//ିெ஽ห√ଷିଶி஺మ൰,    (3) 6 

where d// is a constant for intrinsic diffusivity assumed in the NODDI model. The orientation 7 

dispersion index (ODI) is calculated using the following formulas: 8 

 9 

𝜏 ൌ ଵ

√గ఑ ୣ୶୮ሺି௞ሻ௘௥௙௜ሺ√఑ሻ
െ ଵ

ଶ఑
    (4)  10 

 11 

𝑂𝐷𝐼 ൌ ଶ

గ
arctan ቀଵ

఑
ቁ,    (5) 12 

 13 

where erfi is the imaginary error function and arctan is the arctangent. Based on these equations, 14 

once we have DTI measures such as FA and MD, 1) NDI can be analytically estimated from MD 15 

using formula (2) (NDIDTI) by using an assumed value of d//, 2)  can be calculated using formula (3) 16 

and values of MD and FA, 3)  can be estimated using formula (4) by using a look-up-table and a 17 

value of calculated at the previous step, and 4) ODIDTI was calculated using the formula (5) and . 18 

Plotting values of DTI and predicted NODDI makes their relationship much clearer (Fig. 1). Using 19 

d//=1.1 × 10−3 mm2/s (optimized for gray matter (Fukutomi et al., 2018)) and for an expected range of 20 

MD in the cortex (5 to 6 x 10-4 mm2/s, see Fig. 4B in (Fukutomi et al., 2018)), we found that the 21 

value of NDI is predicted by a monotonically increasing function of the inverse of MD (Fig. 1A) and 22 

that ODI is a monotonically decreasing function of MD but also has a floor effect based on the value 23 

of FA (Fig. 1B). 24 

 25 
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 1 
Figure 1. Relationships of values between NODDI and DTI based on DTI-NODDI model. The 2 
equations for DTI-NODDI (Eq. 2-5) and d// =1.1×10-3 mm2/s (optimized for gray matter) were used 3 
to simulate relationships between A) Neurite density index (NDI) vs inversed mean diffusivity 4 
(1/MD), over the range of MD= 1500 to 2000 s/mm2, and B) orientation dispersion index (ODI) vs 5 
MD when fractional anisotropy (FA) ranged from 0.1 to 0.6. Data at https://balsa.wustl.edu/r519 6 
 7 

2.2 Cortical DTI-NODDI using in vivo MRI data 8 

2.2.1 Subjects and dMRI datasets 9 

We used the ‘S500 Release Subjects’ dataset from the publicly available HCP dataset, including 10 

high-resolution structural images (0.7-mm isotropic T1w and T2w images, (Glasser et al., 2013) and 11 

dMRI data (1.25-mm isotropic resolution) (Sotiropoulos et al., 2013). The dMRI data included 270 12 

volumes with 90 volumes for each of the three shells of b-values (b=1000, 2000 and 3000 s/mm2) in 13 

addition to 18 non-diffusion weighted (b=0 s/mm2) volumes. From this dataset, 456 healthy subjects 14 

(age, 22-35 years) scanned with a complete dataset of 270 volumes were chosen, and 49 subjects 15 

were excluded based on incomplete dMRI scans. To investigate reproducibility, 32 subjects’ retest 16 

data were used. In our previous study, NDI and the reciprocal of MD (1/MD) showed very similar 17 

surface distributions when all of the dMRI data were used, but they did not show similar 18 

distributions when only a single shell of b=1000 dMRI data was used (Fukutomi et al., 2018). 19 

Therefore, we hypothesized that the validity of DTI-NODDI may differ depending on the b-shell 20 

scheme of dMRI data. To address this, datasets with different b-shell schemes were used for analysis 21 

(Table 1), i.e. for each subject, seven types of b-shell datasets were derived from dMRI data as 22 

follows: three one-shell datasets using b=0 volume and any one of b=1000, 2000, or 3000 volume; 23 

three two-shell datasets using b=0 images and any two of b=1000, 2000, or 3000 volume; and a 24 
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three-shell dataset using all images.  1 

 2 
Table 1 The table lists abbreviations of b-shell datasets used in the main text and corresponding 3 
datasets of dMRI in different b-shell schemes. The numbers in parentheses indicate the number of b0 4 
volumes with repeatedly obtained for b=0 volume or diffusion weighted directions with different 5 
b-vectors (or directions of diffusion-weighted gradient) for each of the b=1000, 2000 and 3000 6 
shells.  7 

Abbreviations of 

b-shell datasets 

Datasets of non-diffusion weighted (b=0) and diffusion-weighted MRI 

volumes (b=1000,2000 and 3000) 

b1000  b=0 (18), b=1000 (90)  

b2000 b=0 (18), b=2000 (90)  

b3000 b=0 (18), b=3000 (90)  

b1000-2000 b=0 (18), b=1000 (90), b=2000 (90)  

b1000-3000 b=0 (18), b=1000 (90), b=3000 (90)  

b2000-3000 b=0 (18), b=2000 (90), b=3000 (90)  

bAll  b=0 (18), b=1000 (90), b=2000 (90), b=3000 (90) 

 8 

2.2.2 Calculation of the cortical surface map of NODDI and DTI-NODDI parameters 9 

The DTI estimates (FA and MD) were calculated using each dataset of dMRI and the dtifit diffusion 10 

tensor modeling tool in Functional Magnetic Resonance Imaging of the Brain Software Library 11 

(FSL) 5.09 (http:// www.fmrib.ox.ac.uk/fsl). To compare DTI-NODDI with the original NODDI, the 12 

diffusion data were also fitted to the NODDI model using the optimized value of d// and Accelerated 13 

Microstructure Imaging via Convex Optimization (AMICO) 1.0 (Daducci et al., 2015), which 14 

re-formulates the original NODDI model as a linear system and shortens the calculation time. The 15 

value of d// was optimized for the cerebral cortex (1.1 × 10−3 mm2/s) from the original setting value 16 

(1.7 × 10−3 mm2/s) (Fukutomi et al., 2018), because we are interested in the cerebral cortical gray 17 

matter. We used default values of regularization (λ=0.001 and γ=0.5) for AMICO.  18 

 19 

The parameters of the original NODDI model (NDI and ) and the DTI model (FA and MD) were 20 

mapped onto the cortical surface, as described previously (Fukutomi et al., 2018). Briefly, the 21 

algorithm for surface mapping identifies cortical ribbon voxels within a cylinder orthogonal to the 22 

local surface for each mid-thickness surface vertex on the native mesh and weights them using a 23 

Gaussian function (FWHM= ~4 mm, σ=5/3 mm), which reduces the contribution of voxels that 24 

contain substantial partial volumes of CSF or white matter (Glasser and Van Essen 2011 Journal of 25 

Neuroscience). The ODIORIG was calculated using the surface metric of  and equation (5). 26 

Subsequently, NDIDTI and ODIDTI maps were calculated from FA and MD maps using in-house script 27 
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of DTI-NODDI written by MATLAB (R2013a) (http://www.mathworks.com/). The surface maps 1 

were resampled using MSMAll surface registration (Glasser et al., 2016; Robinson et al., 2014, 2018) 2 

and onto the 32k group average surface mesh. For surface-based analysis, we used Connectome 3 

Workbench (https://github.com/Washington-University/workbench,, Marcus et al., 2013). The tool 4 

for DTI-NODDI and NODDI surface mapping used in this manuscript is available from 5 

NoddiSurfaceMapping (https://github.com/RIKEN-BCIL/NoddiSurfaceMapping). All calculations 6 

were performed using a workstation including a 32 core CPU: Intel(R) Xeon(R) CPU E5-2687W v2 7 

@ 3.40GHz, Memory: 128GB, DIMM DDR3 1866 MHz (0.5 ns) and operation system: Ubuntu 8 

14.04. 9 

 10 

2.2.3 Statistical analysis 11 

Surface maps of NDIORIG, ODIORIG, Viso, NDIDTI and ODIDTI using each dataset were averaged 12 

across subjects and parcellated using the HCP’s multi-modal cortical parcellation (HCP_MMP1.0 13 

210P MPM version) (Glasser et al., 2016). The mean value of each measure for each of the 180 14 

parcels per hemisphere was calculated. NDIORIG and ODIORIG calculated using all the dMRI data 15 

were considered ‘a gold standard’ reference. To investigate the linear relationship between 16 

DTI-NODDI and the original NODDI, the correlations between each parcellated surface map 17 

(NDIORIG, ODIORIG, NDIDTI and ODIDTI) and the reference in each subject were calculated using 18 

Pearson correlation analysis. The linear regression analysis was also performed using the reference 19 

as independent variable and DTI-NODDI as predictors. The mean of the correlation coefficient 20 

across subjects was computed after using the Fisher Z transformation. To investigate whether the 21 

DTI-NODDI values are biased, Bland-Altman analysis was performed in each dataset (Bland and 22 

Altman, 1986). Briefly, Bland-Altman analysis is a method to confirm the presence or absence and 23 

degree of systematic bias visually by creating a scatter diagram (Bland-Altman plot), which is 24 

created by plotting the difference between two pairs of measured values on the y axis and the 25 

average value of the two measured values on the x axis. The reproducibility of each parcel of each 26 

estimate was investigated using 32 subjects’ test-retest data using the intra-class correlation 27 

coefficient (ICC) and the coefficient of reliability (CR) (Bland and Altman, 2003; Shrout and Fleiss, 28 

1979; Vaz et al., 2013). Subsequently, the median value of ICC and CR in all parcels was defined as 29 

the representative value of each estimate.   30 

 31 

Since the quality of the NODDI estimates depends on the image quality and preprocessing, we 32 

estimated the practical quality by the temporal signal-to-noise ratio (tSNR) of preprocessed b=0 33 

volumes and removed surface parcels with tSNR<17 from the analysis. The cutoff was determined 34 
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empirically in our previous study (Fukutomi et al., 2018). 1 

 2 

2.3 Simulation  3 

Since correlations and biases between DTI-NODDI and the original NODDI in HCP data were 4 

particularly dependent on the presence of high b-value data (b=3000 s/mm2) in the datasets (see 5 

section 3.1), simulations were performed to clarify whether potential sources of error can explain our 6 

findings of cortical neurite distributions with DTI-NODDI. A potential source of error was the 7 

amount of CSF compartment (Viso), which was assumed to be zero in the DTI-NODDI model. The 8 

size of the CSF compartment in a cortical voxel is the sum of CSF compartment in the cortical tissue 9 

and the partial volume of extra-tissue CSF because of the thin cortical ribbon (average 2.6mm, 10 

minimum 1.6mm) and the limited spatial resolution of the dMRI data (1.25mm iso-voxel in HCP 11 

data) (see also Supplementary text, Fig. S1). The effect of partial voluming may be different across 12 

cortical voxels depending on the locations of the voxels within the complex geometry of the cortical 13 

ribbon. The various levels of partial volume effects can cause heterogeneity of accuracy in each 14 

cortical voxel that could result in errors and biases when mapped on the cortical surface. Particularly, 15 

the effect of heterogeneity in CSF partial volume can change the size of the error in DTI-NODDI 16 

parameters depending on b-shell scheme of dMRI data, because low b-value dMRI data may contain 17 

more CSF signal than high b-value dMRI data. Therefore, it is important to demonstrate the 18 

robustness of DTI-NODDI against errors caused by partial voluming of CSF to ensure non-biased 19 

distribution of cortical DTI-NODDI maps. Our simulation analyses addressed three potential sources 20 

of error. First, the validity of the DTI-NODDI assumption of negligible CSF was evaluated by 21 

simulating cerebral cortex that contains a small amount of CSF with little variability (=0.1 in volume 22 

ratio). Second, we investigated whether heterogeneity of Viso would cause errors in DTI-NODDI 23 

parameters and how the sensitivity of DTI-NODDI to the heterogeneity of Viso error depends on 24 

b-shell datasets. Third, random noise in dMRI data was also investigated, because both DTI and the 25 

original NODDI model may have biases depending on SNR. Thus, we created simulation data with 26 

and without random noise in dMRI and assessed how the noise can affect bias in the measures of 27 

DTI-NODDI as compared with the assumed true values from the original NODDI model. All the 28 

simulation data were created based on the mathematical equations and derivation described in the 29 

Appendix. The details of two simulation analyses including assumed values and conditions are 30 

described below. 31 

 32 

2.3.1 Validity of the negligible CSF compartment assumption for cortical DTI-NODDI 33 

Although we confirmed that CSF volume in the cortex was small (average Viso=0.096), it may not be 34 
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small enough to justify using DTI-NODDI, particularly when using low b-value dMRI data, which 1 

might have a significant contribution of CSF. Therefore, we investigated using a simulation analysis 2 

whether the value of Viso in the cortex is small enough to use a mathematical relationship between 3 

DTI and NODDI that assumes negligible CSF for each b-shell dataset. The size of the CSF 4 

compartment (Viso) in the cortex was assumed to be homogeneous and small in a simulation analysis 5 

(Viso=0.1) since our estimated values using original NODDI were 0.096±0.063 (mean ± s.d.) in 6 

cortical gray matter and 0.21 ± 0.097 in the white matter (Supplementary Text and Fig. S1). Seven 7 

different combinations of b-shell datasets (same as Table 1) were created assuming following 8 

parameters as possible values within the cerebral cortex (Fukutomi et al., 2018); Viso=0.1, NDI 9 

ranging from 0.1 to 0.55 and ODI ranging from 0.040 to 0.84, independently and respectively (see 10 

Table 2). To investigate linearity, NDIDTI and ODIDTI were correlated with the true values using the 11 

Pearson correlation analysis for each dataset. Subsequently, a Bland-Altman analysis was performed 12 

between the original NODDI model and DTI-NODDI to investigate bias in the DTI-NODDI model. 13 

In addition, to investigate the effect of random noise in DTI-NODDI, the same analyses were also 14 

performed using simulation data with added Gaussian noise to produce a SNR level of 20.  15 

 16 

Table 2. Parameters and values used in simulation analysis. Note that all combinations of values of 17 

NDI and ODI were simulated. 18 

NDI 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 

ODI 0.040 0.11 0.16 0.30 0.37 0.47 0.55 0.61 0.70 0.84 

 19 

2.3.2 Error sensitivity of cortical DTI-NODDI to heterogeneity and partial volume effects of CSF 20 

Although the CSF compartment in the cortex is relatively small as compared with white matter, MRI 21 

signal in cortical voxels may have a contribution of CSF by partial volume effects and hence 22 

heterogeneity because of the limited resolution of dMRI data (1.25mm iso-voxel in HCP data). To 23 

address this, we evaluated the error sensitivity of DTI-NODDI to the heterogeneity of CSF (Viso) by 24 

systematic simulation with error propagation from Viso to DTI-NODDI parameters. The simulated 25 

dMRI datasets were created as cortical gray matter voxels but with different levels of partial volume 26 

CSF. The reference parameters were fixed to NDI=0.25, ODI=0.30, and Viso=0.1 because they were 27 

near the mean values estimated by cortical NODDI. The simulated dMRI datasets were created with 28 

different levels of error in Viso at -0.1 (i.e. assumed value of Viso=0), 0 (i.e. Viso=0.1) and from +0.1 29 

to +0.9 (i.e. Viso from 0.2 to 1.0) with an interval of 0.1. For each simulation dataset, NDIDTI and 30 

ODIDTI were calculated by DTI-NODDI, and then, %error in DTI-NODDI was calculated as the ratio 31 

of the estimated values to those without error in Viso. The same analysis was also performed using 32 
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simulated data with added Gaussian noise to an SNR level of 20. 1 

 2 

3. Results 3 

3.1 Cortical DTI-NODDI using in vivo dMRI data 4 

3.1.1 Reliability of DTI-NODDI as compared with the original NODDI 5 

When the three-shell dataset (bAll) in 456 subjects of HCP data were used in the original NODDI, the 6 

cortical map of neurite density (NDIORIG) showed high intensity in the primary sensorimotor, visual, 7 

auditory cortices as well as the middle temporal (MT) area (Fig. 2 A), while ODIORIG showed high 8 

intensity in the primary sensory, visual and auditory areas (Fig. 3 A), as we reported previously 9 

(Fukutomi et al., 2018). Moreover, consistent with our previous study (Fukutomi et al., 2018), the 10 

cortical distribution of the NDIORIG was quite similar to that of the myelin map based on the T1w and 11 

T2w images, while the distribution of ODIORIG showed high contrast in the ‘granular cortex’ of von 12 

Economo and Koskinas (von Economo and Koskinas, 1925), where cortical thickness is low and 13 

both radial and horizontal fibers are intermingled (Fukutomi et al., 2018).  14 

 15 

Interestingly, when DTI-NODDI was applied to the same three-shell dataset (bAll), similar cortical 16 

distributions of NDI and ODI (NDIDTI, ODIDTI) were obtained in average surface maps across all 17 

subjects (Fig. 2 B for NDIDTI and Fig. 3 B for ODIDTI). The pattern was also evident in single subject 18 

surface maps (Fig. S2 B for NDIDTI and S3 B for ODIDTI). The correlation analysis for the 19 

parcellated data (see Methods & Materials 2.2.3) showed that correlation coefficients between the 20 

DTI-NODDDI and original NODDI were extremely high in group average maps for both metrics 21 

(NDI: R=0.97, ODI: R=0.94, p<0.00001), as well as individual maps (NDI: R=0.92, ODI: R=0.89, 22 

p<0.00001) (Fig. 4) although the values were quite different between two methods. The regression 23 

equations were as follows; NDI: Y = 0.81X - 0.11, ODI: Y = 1.4X - 0.31.  24 
 25 
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 1 
Figure 2. Cross-subject average cortical surface maps of neurite density index (NDI). 2 
Cortical surfaces are different in terms of computation methods: original NODDI (NDIORIG) vs 3 
DTI-NODDI (NDIDTI) and b-shell datasets used: all three b-values (bAll), only those of b=3000 4 
(b3000) and two-shell with low b-values (b1000-2000). A) Cortical surface maps of NDI calculated using 5 
the original NODDI model (NDIORIG) with the three-shell dataset (bAll), which shows high intensity 6 
in primary sensorimotor, visual, auditory cortices as well as the middle temporal (MT) area, as 7 
reported previously (Fukutomi et al., 2018). B) NDIDTI calculated using the three-shell dataset (bAll), 8 
which shows very similar distributions of contrasts as in A. C) NDIORIG using the one-shell dataset 9 
(b3000), which shows a different pattern from the reference cortical map in A, while NDIDTI using the 10 
one-shell high b-value dataset (b3000) in D shows very similar surface contrasts to the reference in 11 
A.E, F) The cortical neurite maps of two-shell dataset with low b-values (b1000-2000) were also similar 12 
to the reference, but not much as those of bAll and b3000. Data at https://balsa.wustl.edu/xqln 13 
 14 
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 1 
Figure 3. Cross-subject average cortical surface maps of orientation dispersion index (ODI).  2 
Cortical surfaces are different in terms of computation methods: original NODDI (ODIORIG) vs 3 
DTI-NODDI (ODIDTI) and the b-shell datasets used: all three b-values (bAll) vs only those of b=3000 4 
(b3000) and two low b-values (b1000-2000). A, C and E show cortical surface maps of ODI calculated 5 
using the original NODDI model (ODIORIG) with the three-shell dataset (bAll), one-shell dataset 6 
(b3000) and two-shell dataset (b1000-2000), respectively. B, D and F show surface maps of ODI 7 
calculated using DTI-NODDI (ODIDTI) with the three-shell dataset (bAll), one-shell high b-value 8 
dataset (b3000) and two-shell dataset (b1000-2000), respectively. Data at https://balsa.wustl.edu/P7LX 9 
 10 

 11 
Figure 4. Correlation coefficients of NODDI parameters in different calculation methods with those 12 
in the reference (NDI_ORIG and ODI_ORIG with b_All). Correlation coefficients were calculated 13 
using each b-shell dataset types (b1000, b2000, b3000, b1000-2000, b1000-3000, b2000-3000 and bAll). Correlation 14 
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coefficients, which were calculated using average surface maps among all subjects, are shown in 1 
“AVERAGE”, while average of correlation coefficients, which were calculated in individual subjects, 2 
are shown in “INDIVIDUAL”. Asterisks (*) denotes statistical significance level with p<0.00001. 3 
Data at https://balsa.wustl.edu/7MZG 4 
 5 

To investigate further this difference of the values between DTI-NODDI and original NODDI 6 

parameters, the Bland-Altman analysis was applied to the values of cortical parcellations using those 7 

of complete data and original NODDI as a reference. When all of the dMRI data (bAll) were used, the 8 

results of DTI-NODDI showed a consistent bias: NDIDTI overestimated by a difference of around 9 

0.20 and ODIDTI by 0.15 to 0.10 as compared with those of original NODDI (Fig. 5 A, C). Therefore, 10 

these findings indicate that despite a steady bias, the DTI-NODDI model allows evaluating variance 11 

in cortical neurite properties similar to that in the original NODDI, at least when the full dataset of 12 

HCP dMRI was used. 13 

 14 
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 1 
Figure 5. Bland-Altman plots between DTI-NODDI and original NODDI in vivo. A and C show 2 
Bland-Altman plots between DTI-NODDI parameters in the three -shell dataset (bAll) and the 3 
original NODDI parameters in the three-shell dataset (bAll). B and D show Bland-Altman plots 4 
between DTI-NODDI parameters in the high b-value one-shell dataset (b3000) and the original 5 
NODDI parameters in the three-shell dataset (bAll). Plots are coloured by their density. Blue lines 6 
show the mean±1.96*SD and the red line shows the mean value. Abbreviations; NDIORIG: neurite 7 
density index estimated using the original NODDI model, ODIORIG: orientation dispersion index 8 
estimated using the original NODDI model, NDIDTI: neurite density index estimated using 9 
DTI-NODDI, ODIDTI: orientation dispersion index estimated using DTI-NODDI. Data at 10 
https://balsa.wustl.edu/6gwK 11 
 12 

We further tested whether DTI-NODDI can provide valid results given fewer b-shell datasets of 13 

dMRI. Interestingly, using a one-shell high b-value dataset (b3000), the cortical maps of DTI-NODDI 14 

resulted in similar and comparable surface distributions to the reference for both NDIDTI (Fig. 2D) 15 
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and ODIDTI (Fig. 3D) in average surface maps, while using this one-shell dataset in the original 1 

NODDI failed to show such a cortical pattern in NDI (Fig. 2C). The pattern was again evident in a 2 

single subject (Fig. S2 D and Fig. S3 D). The correlation coefficients were very high in the 3 

group-wise maps for NDIDTI and ODIDTI (R=0.87, R=0.86, respectively, p<0.00001), as well as in 4 

individuals (R=0.79, R=0.82, respectively, p<0.00001) (Fig. 4). The regression equations were as 5 

follows; NDI: Y = 0.82X - 0.071, ODI: Y = 1.4X - 0.27. The Bland-Altman analysis showed that the 6 

high b-value one-shell dataset (b3000) had a constant bias of NDIDTI that was a little smaller than that 7 

in three-shell dataset (bAll) (Fig. 5 A, B). The bias of ODIDTI was almost same as in the three-shell 8 

dataset (Fig. 5 C, D).  9 

 10 

As for the other datasets, a two-shell dataset including a high b-value shell (b1000-3000 and b2000-3000) 11 

also provided reasonable and comparable results with the original NODDI surface maps (NDIORIG 12 

and ODIORIG) (Fig. S4 and S5). If b=3000 is included (b1000-3000 sand b2000-3000), both NDIDTI and 13 

ODIDTI showed a similar surface distribution to the reference (Fig.S4 A, D, F, Fig.S5 A, D, F). The 14 

correlation coefficients were very high in the group-wise maps for both NDIDTI and ODIDTI 15 

(b1000-3000: R=0.97, R=0.89, b2000-3000: R=0.93, R=0.92, respectively, p<0.00001), as well as in 16 

individuals (b1000-3000: R=0.93, R=0.85, b2000-3000: R=0.86, 0.87, respectively, p<0.00001) (Fig. 4). If a 17 

high b-value shell was not included (b1000-2000), which is commonly achievable on clinical 3T 18 

scanners, NDIDTI was a little different but still had a similar surface distribution to the reference (Fig. 19 

2 A, F), and the correlation coefficient was reasonably high in the group-wise maps (R=0.71, 20 

p<0.00001), as well as in individuals (R=0.66, p<0.00001) (Fig. 4), while ODIDTI showed high 21 

correlations in the group-wise maps (R=0.84, p<0.00001), as well as in individuals (R=0.81, 22 

p<0.00001) (Fig. 3 A, F, Fig. 4). The Bland-Altman analysis showed that the dataset of high and low 23 

b-value two-shell (b1000-3000) (Fig. S6) had a constant bias of NDIDTI and slightly upward sloping bias 24 

of ODIDTI, which were almost the same size as in the three-shell dataset. High b-value two-shell 25 

(b2000-3000) (Fig.S6 A) had also a constant bias of NDIDTI but with a somewhat smaller size than that 26 

in three-shell dataset (bAll). The bias of ODIDTI was almost same size as in the three-shell dataset (Fig. 27 

5 C, S6 B). 28 

 29 

One-shell datasets using lower b-value shells (i.e. b1000 and b2000) did not provide reasonable surface 30 

maps of NDIDTI (Fig. S4 L, N) and ODIDTI (Fig. S5 L, N). For example, for the low b-value one-shell 31 

dataset (b1000), both NDIDTI and ODIDTI showed different surface distributions from the reference 32 

(Fig. S4 A, N, Fig. S5 A, N), as well as very low correlation coefficients for NDIDTI (R=0.33 33 

p<0.00001 in group and R=0.22, p<0.00001 in individuals) and ODIDTI (R=0.58, p<0.00001 in group, 34 
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R=0.53 p<0.00001 in individuals) (Fig. 4). This trend was also found when using the middle high 1 

b-value one-shell dataset (b2000). Only ODIDTI showed a similar surface distribution to the reference 2 

(Fig. S5 A, L) and high correlation coefficients (R=0.80, p<0.00001 in the group average, R=0.75, 3 

p<0.00001 in individual) (Fig. 4), while NDIDTI showed different surface distribution from the 4 

reference (Fig. S4 A, L) and relatively low correlations (R=0.59, p<0.00001 in the group average, 5 

R=0.51, p<0.00001 in individuals) (Fig. 4).  6 

 7 

The biases of DTI-NODDI in the other b-shell datasets were shown in Fig. S6. It is of note that 8 

although both the three b-shell dataset (bAll) and one-shell high b-value (b3000) had fixed biases of 9 

DTI-NODDI, a dataset with low b-value dataset (b1000) did not show as large of a bias in the NDI 10 

(Fig.S6 A). 11 

 12 

It is also of note that the cortical bias dependency on the b-shell scheme was also found in the 13 

original NODDI. As described previously, the high b-value one-shell dataset (b3000) did not show a 14 

comparable cortical distribution of NDI to the reference (Fig. 2C). Other one-shell datasets (b1000, 15 

b2000) in the original NODDI also did not show comparable cortical distribution, particularly in NDI 16 

(Fig. S4 A, I, K, M) or high correlations (Fig. 4) with the reference. 17 

 18 

As for reproducibility, NDIDTI and ODIDTI showed the highest reproducibility when using the 19 

three-shell dMRI data (bAll) (NDIDTI: ICC=0.60, CR=0.0081, ODIDTI: ICC=0.64, CR=0.011) among 20 

all of datasets (Table S1), followed by datasets with high b-value two-shell (b1000-3000, b2000-3000) and 21 

one-shell (b3000) (ICC>0.55, CR<0.011) (Table S1). These results did not differ much from those of 22 

the original NODDI; e.g. when using three-shell dMRI data (bAll), NDIORIG: ICC=0.58, CR=0.0073, 23 

ODIORIG: ICC=0.64, CR=0.016 (Table S1).  24 

 25 

3.1.2 Calculation time of DTI-NODDI 26 

The calculation time of the DTI model were less than three minutes per subject using the three-shell 27 

dMRI dataset as an input, and that of DTI-NODDI was less than one minute per subject using the 28 

DTI model data as the input. Therefore, the total calculation time from dMRI data to the DTI-based 29 

NODDI estimates was less than 4 minutes. In contrast, the calculation time of the original NODDI 30 

model with AMICO was more than one hour per subject using same computer. 31 

 32 

3.2 Results of simulations on the error sources of DTI-NODDI  33 

3.2.1 Validity of cortical DTI-NODDI to assume negligible CSF 34 
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We investigated whether value of Viso (=0.1) in the cortex is small enough to use the mathematical 1 

relationship between DTI and NODDI, which assumes negligible CSF for each b-shell dataset using 2 

simulation analysis (see 2.3.1 for details). When noise free data were used, NDIDTI and ODIDTI 3 

showed extremely strong linear correlation with the ground truth not only in high b-value datasets 4 

but also in low b-value datasets (all of them, R>0.97, p<0.00001) (Fig. 6). When Gaussian noise was 5 

added, NDIDTI also showed a very strong linear correlation with the ground truth as high as for noise 6 

free data in all b-shell datasets. ODIDTI also showed very a strong linear correlation, but somewhat 7 

lower than noise free data in all b-shell datasets (Fig. 6).  8 

 9 

 10 
Figure 6. Correlation coefficients of DTI-NODDI parameters (NDIDTI and ODIDTI) with respect to 11 
the ground truth in simulation analysis. Correlation coefficients were calculated using various b-shell 12 
dataset types (b1000, b2000, b3000, b1000-2000, b1000-3000, b2000-3000 and bAll) without noise (Noise Free) and 13 
with Gaussian noise such that SNR=20 (Noise Added). All of them have statistical significance level 14 
with p<0.00001. Note that this simulation does not consider partial volume effects (see also Figure 7 15 
for simulation of heterogeneity and partial volume effects of CSF). Abbreviations; NDIORIG: neurite 16 
density index estimated using the original NODDI model, ODIORIG: orientation dispersion index 17 
estimated using the original NODDI model, NDIDTI: neurite density index estimated using 18 
DTI-NODDI, ODIDTI: orientation dispersion index estimated using DTI-NODDI. Data at 19 
https://balsa.wustl.edu/17Mg 20 
 21 

Despite the high correlation, it is of note that the Bland-Altman analysis showed a constant bias 22 

between DTI-NODDI and original NODDI. Both NDIDTI and ODIDTI had a positive constant bias 23 

when used with the all b-shell dataset without random noise (Fig. 7 A). The degree of bias was not 24 

substantially changed when using high b-value datasets (b3000, b1000-3000 and b2000-3000), but they were 25 

smallest or absent when using a dataset of one-shell low b-value (b=1000) (Fig.S7-8). This pattern of 26 

bias in NDIDTI and ODIDTI (i.e. constant bias is sensitive to high b-value dMRI data) was basically 27 

same when tissue Viso was assumed to be 0 (Fig. S9-10). In addition, the overall patterns of the bias 28 

replicated those in HCP data. 29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 13, 2018. ; https://doi.org/10.1101/441659doi: bioRxiv preprint 

https://doi.org/10.1101/441659
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 1 

When the Bland-Altman analysis was performed using the noise added data, the pattern of constant 2 

bias in NDIDTI was observed similarly to noise free data (Fig. 7 B), and the slightly upward sloping 3 

bias in ODIDTI was observed similarly to in vivo data (Fig. 7 B). These findings in the simulation 4 

study suggest that 1) the assumption of negligible Viso in the cortical DTI-NODDI is acceptable at 5 

least in terms of the linearity of the values for all types of b-shell datasets. Random noise also 6 

slightly degraded estimation of ODIDTI, but still the correlation was very high (R>0.8). 2) Since these 7 

simulations all assumed that CSF volume of the cortex is ‘homogeneously’ very low, the next 8 

analysis will focus on this issue of inhomogeneity of CSF. 3) There are constant biases of NDI and 9 

ODI of DTI-NODDI when high b-value datasets are used. We speculate that these may be due to the 10 

error propagation from DTI measures, which are known to be biased when used high b-values 11 

dataset (see Discussion 4.3). Actually, our simulation showed that biases of DTI parameters were 12 

dependent on the b-values and random noise of data used in the analysis, i.e. when using data with 13 

higher b-values, the values of MD were underestimated (Fig. S11) and those of FA were 14 

overestimated (Fig. S12). The lower the SNR, the more values of FA were underestimated (Fig. S12), 15 

while those of MD were not biased (Fig. S11). 16 
 17 
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 1 
Figure 7. Bland-Altman plots between DTI-NODDI parameters and original NODDI parameters 2 
using the three-shell dataset (bAll) in simulation analysis. A shows Bland-Altman plots with noise 3 
free data. B shows Bland-Altman plots with noise added data such that SNR=20. Plots are coloured 4 
by their density. Abbreviations; NDIORIG: neurite density index estimated using the original 5 
NODDI model, ODIORIG: orientation dispersion index estimated using the original NODDI model, 6 
NDIDTI: neurite density index estimated using DTI-NODDI, ODIDTI: orientation dispersion index 7 
estimated using DTI-NODDI. Data at https://balsa.wustl.edu/5njG 8 
 9 

3.2.2 Error sensitivity of cortical DTI-NODDI to heterogeneity and partial volume effects of CSF 10 

The error sensitivity of DTI-NODDI to heterogeneity of Viso was simulated by analyzing how the 11 

errors in DTI-NODDI propagated from the error in Viso (see 2.3.2 for details). By evaluating 12 

different b-shell schemes, we found apparent differences in the error sensitivity of DTI-NODDI 13 

across different b-shell schemes (Fig. 8). The %error of the DTI-NODDI estimates tended to be 14 
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smaller in datasets that included high b-value volumes (b=3000) (b3000, b1000-3000, b2000-3000 and bAll) 1 

than in those not including b=3000 images (b1000, b2000, and b1000-2000) when noise level was SNR=20 2 

(Fig. 8A); i.e. b-shell datasets including b=3000 images were more robust against heterogeneity of 3 

Viso than low b-value datasets. The largest %error in NDIDTI and ODIDTI were found in low b-value 4 

one-shell dMRI data (b1000) and the smallest %error were found in the three-shell dMRI data (bAll), 5 

with similar %error in high b-value two-shell dMRI data (b1000-3000). Random noise levels also 6 

affected the degree of %errors but did not change the ranking of b-shell datasets (Fig. 8B). These 7 

differences in the error sensitivity of Viso should be a major contributor of the difference in linearity 8 

among different b-shell datasets. 9 

 10 
Figure 8. Error propagation of the DTI-NODDI from error in the CSF volume fraction (Viso). 11 
The %error in the estimate of DTI-NODDI was simulated under variable errors in Viso relative to a 12 
true value (Viso=0.1). A) Results when using noise-added datasets with a noise level of SNR=20, B) 13 
Results when using noise-free datasets. Dataset types of b-shell schemes b1000, b2000, b3000, b1000-2000, 14 
b1000-3000, b2000-3000 and bAll are shown in different colored lines as in the legend in each graph. Note 15 
that the one-shell low b-value data set (b1000) is the largest error among all the datasets and 16 
particularly sensitive to small error in Viso, which may include partial volume effects in the cortical 17 
gray matter. The smallest error was found when using the three-shell dMRI data (bAll) or the high 18 
b-value two-shell dMRI data (b1000-3000). Abbreviations; NDIDTI: neurite density index estimated 19 
using DTI-NODDI, ODIDTI: orientation dispersion index estimated using DTI-NODDI, SNR: signal 20 
noise ratio. Data at https://balsa.wustl.edu/nPxP 21 
 22 
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Discussion 1 

We found that cortical DTI-NODDI showed a high correlation with known cortical distributions of 2 

neurite properties of the original NODDI, particularly when using high b-value dMRI data. The 3 

similarity was also evident even when one-shell high b-value dMRI data was used for DTI-NODDI. 4 

The amount of CSF estimated in the cerebral cortex using the original NODDI was small but 5 

non-zero. The simulation study revealed less sensitivity of errors in DTI-NODDI to partial voluming 6 

and heterogeneity of CSF particularly when using high b-value dMRI data. However, the HCP data 7 

and simulation showed that high b-value dMRI data resulted in a constant numerical bias, i.e. same 8 

amount of error over the range of values.   9 

 10 

The mathematical solution of DTI-NODDI indicated one-to-one correspondence between DTI-MD 11 

and NODDI-NDI over an expected range of values (Fig. 1). The NODDI NDI is an inverse function 12 

of DTI MD as shown in Eq. (2) and Fig. 1A, while the NODDI ODI is a function of both DTI FA 13 

and MD as in Eq. (3)-(5) and Fig. 1B. The former relationship was in fact confirmed by in vivo data 14 

in human brain (Fukutomi et al., 2018), which showed high correlation between cortical DTI MD 15 

and NODDI NDI (R=0.97) as in Fig. 4 B (Fukutomi et al., 2018). However, this observation was 16 

based on the measures calculated using the all b-value dataset of HCP (b=1000, 2000, 3000), and the 17 

relationship between ODI and DTI measures was not explored. Therefore, the present study 18 

extensively studied the validity of the DTI-NODDI using different dMRI b-value schemes in the 19 

same HCP subjects. 20 

 21 

Our simulations indicated that in any b-shell scheme the DTI-NODDI has a reasonably close 22 

relationship to the original NODDI even when noise is added (Fig. 6), while the in vivo measures of 23 

cortical DTI-NODDI agreed only when using datasets that included the high b-value shell (b=3000) 24 

(Fig. 4). When not using the high b-value shell, the cortical distribution of NDI and ODI of 25 

DTI-NODDI showed completely different pattern from those of original NODDI (Fig. S4-5). Why 26 

was the predictability of DTI-NODDI degraded when not using high b-value data, and why did the 27 

low b-value DTI-NODDI show poor correlation in spatial pattern? Our simulation suggests this is 28 

because low b-value DTI-NODDI is more sensitive to errors due to heterogeneity and partial 29 

voluming of CSF (Fig. 8). Low b-value dMRI is theoretically sensitive to fluid signals or ‘T2 30 

shine-through’ effect as well as to tissue diffusivity, whereas high b-value dMRI is more specific to 31 

tissue diffusivity (Burdette et al., 2001; DeLano et al., 2000). In addition, the partial volume effects 32 

of CSF may vary across cortical regions according to cortical thickness and their heterogeneity 33 

within the cortex is an important and unavoidable issue when using currently available MRI 34 
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(Gonzalezballester, 2002). The DTI model also suffers from a partial volume effect of CSF and 1 

results in fitting error particularly in the cortex (Basser et al., 1994b; Papadakis et al., 1999), as it 2 

does not consider a CSF compartment explicitly like in NODDI. Although the partial volume effect 3 

is reduced by surface-based analysis reduces compared to volume-based analysis (see Supplementary 4 

text, Fig. S1), it is not completely removed.  5 

 6 

Despite the high correlation of cortical metrics with original NODDI, the numerical values of 7 

DTI-NODDI when using high b-value data were not the same as those in the original NODDI. 8 

Bland-Altman plots of DTI-NODDI in HCP data showed a positive fixed bias in both NDI and ODI, 9 

particularly when using datasets with high b-value (b=3000), and the bias was the least when used a 10 

single-shell dataset of low b-value (b=1000) (Fig. 5, S6-7). This pattern was also confirmed in the 11 

simulation study, in which positive bias was the largest in DTI-NODDI using the high b-value 12 

datasets and the least when using the low b-value dataset, regardless of tissue CSF or random noise 13 

(Fig. 7, Fig.S7-8 and Fig. S9-10). The biases of DTI-NODDI are likely caused by the biases already 14 

in DTI, since measures of the former are mathematically calculated from those of the latter (Fig. 1). 15 

In fact, our full simulation showed that biases of DTI parameters were dependent on the b-values of 16 

data and random noise of data used in the analysis, i.e. when using data with higher b-values, the 17 

values of MD were underestimated (Fig. S11) and those of FA were overestimated (Fig. S12). The 18 

lower the SNR, the more values of FA were underestimated (Fig. S12), whereas those of MD were 19 

not biased (Fig. S11). These results were also consistent with previous studies, e.g. MD is biased to 20 

lower value by using dMRI data with higher b-value than with standard b-value (b=1000) (Hui et al., 21 

2010), and FA is positively biased with lower SNR, while MD is robust to lower SNR (Farrell et al., 22 

2007; Jones and Basser, 2004; Pierpaoli and Basser, 1996). Therefore, according to Eq (3)-(5), using 23 

low SNR data may enhance the positive bias in FA and hence cause an upward bias in ODIDTI. 24 

Therefore, the fixed biases of DTI-NODDI comes from the DTI model and non-linearity of the 25 

actual data, rather than the partial volume effect of CSF. Edwards et al. also refer to the kurtosis of 26 

diffusion signals in high b-value data, which can cause the bias in the DTI-NODDI (Edwards et al., 27 

2017).  28 

 29 

The current study shows a potential use of DTI-NODDI in estimating cortical neurites, however, 30 

there are many caveats when practically using this. One advantage of cortical DTI-NODDI may be 31 

that it could allow shorter dMRI scans, which could be helpful for clinical studies such as 32 

Alzheimer’s disease. DTI can be estimated with relatively few directions - at least 6 or in general 33 

more than 30 are recommended (Jones, 2004), whereas the original NODDI is recommended with at 34 
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least 90 directions (Zhang et al., 2012). Even scanning with high spatial resolution dMRI as in the 1 

HCP, the duration of a dMRI scan with 30 directions should not exceed 3 min. On the other hand, 2 

there are several disadvantages of using DTI-NODDI. First, when scanning with high b-values, it is 3 

uncertain whether the bias due to kurtosis will be near-constant even in pathological brains. Thus, 4 

this needs to be addressed in clinical studies to evaluate homogeneous sensitivity to cortical 5 

pathologies. There is also a possible improvement in the accuracy of cortical DTI-NODDI by 6 

applying a special sequence, such as ‘fluid-attenuated inversed recovery DTI’, reducing CSF signal 7 

in tissue even in low b-value dMRI (Chou et al., 2005; Kwong et al., 1991), potentially allowing low 8 

b-value DTI-NODDI without partial voluming of CSF. Second, the limited number of directions of 9 

dMRI may hamper sophisticated analysis such as diffusion tractography that usually requires high 10 

number of directions. Therefore, short time dMRI data optimized for DTI-NODDI could not be used 11 

for such a sophisticated analysis. 12 

 13 

Additional issues remain to be discussed. First, there is debate over the optimality of NODDI. Two 14 

issues will be discussed here as they relate to the current study. 1) In the current study, we considered 15 

the original NODDI parameters calculated using the three-shell dMRI datasets to be a ‘gold 16 

standard’, however, the optimal b-shell scheme for NODDI for true neurite estimation is still an open 17 

question. The original study that proposed NODDI suggested that the values of NODDI parameters 18 

did not strongly differ as long as two b-shell datasets were used (Zhang et al., 2012). This was 19 

consistent with the present study, which showed that in any combinations of two-shell datasets, the 20 

original NODDI measures were strongly correlated with those of the ‘gold standard’ three-shell 21 

dataset (Fig. 4). The optimal b-shell scheme of NODDI is, however, difficult to determine and out of 22 

scope of the current study, as in general the accuracy of non-linear fitting of the model largely relies 23 

on the number of discrete datasets, which is practically limited to a small number of b-shells in 24 

clinical dMRI. Therefore, we used the full three-shell dataset in HCP as a gold-standard of NODDI 25 

parameters. 2) The second issue is related to the assumptions of intrinsic diffusivity in the original 26 

NODDI model, which is also applicable to DTI-NODDI. Recent studies showed that the intrinsic 27 

diffusivity in the tortuosity model used in NODDI may not be realistic, and different between in the 28 

intra- and extra-neurite compartments (Jelescu et al., 2016), and the value of intrinsic diffusivity is 29 

variable across brain regions (Kaden et al., 2016). However, they needed to ignore the CSF 30 

compartment to estimate variability of the intrinsic diffusivity. There is also a recent attempt to apply 31 

a diffusion model using a general framework without fixing diffusivity (Lampinen et al., 2017), 32 

though stability, robustness, histological validity need to be evaluated.  33 

 34 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 13, 2018. ; https://doi.org/10.1101/441659doi: bioRxiv preprint 

https://doi.org/10.1101/441659
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Second, the current technique of DTI-NODDI needs to be carefully extended for application. As 1 

discussed above, the current analysis is all based on the data of young healthy subjects in HCP, and it 2 

is premature to conclude that DTI-NODDI can also provide similar results to NODDI in clinical 3 

patients. Thus further investigations are needed in the future. The technique also needs to be tested 4 

for investigating the neurite properties in the white matter. In fact, Edwards et al. applied 5 

DTI-NODDI in the white matter using one-shell low b-value dMRI data (Edwards et al., 2017) and 6 

they applied a correction of the bias due to kurtosis.  7 

 8 

5. Conclusion 9 

Cortical DTI-NODDI showed similar distributions to that of the original NODDI model, particularly 10 

when using at least one-shell of high b-value dMRI data. The DTI-NODDI with low b-value dMRI 11 

should have a smaller bias in absolute quantity in simulation but is practically biased in in vivo 12 

cortical distribution due to heterogeneity and partial voluming of CSF. These findings suggest that 13 

DTI can predict microstructural features related to neurites in the cerebral cortex at least when the 14 

conditions of data acquisition meet certain requirements such as a high b-value shell and high spatial 15 

resolution of dMRI.  16 

 17 

6. Notes 18 

Data of Supplementary Figures are available at https://balsa.wustl.edu/7M1q 19 
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8. Appendix 1 

In this section, we described formulation and derivation of the NODDI model, by which simulation 2 

study was performed. In the NODDI model, the signal (A) of the tissue is composed of CSF (Aiso), 3 

extracellular (Aec) and intracellular compartments (Aic) (Zhang et al., 2012) as in Eq. 1. The signal is 4 

also dependent on volume fractions of the CSF compartment (𝜈௜௦௢.) and the intracellular 5 

compartments (𝜈௜௖). We describe in detail how each of Aiso, Aec, and Aic can be expressed 6 

mathematically. We also describe how the Watson distribution can be expressed by a mathematical 7 

equation. 8 

 9 

1. CSF compartment (Aiso) 10 

Since Aiso is dependent on isotropic diffusion, it can be expressed as 11 

𝐴௜௦௢ ൌ 𝑒ି௕ௗ೔ೞ೚,                                                                                                                                                                            ሺ𝐴1ሻ12 

  13 

where b is b-value of dMRI and diso is the diffusion coefficient of the CSF. 14 

 15 

2. Extracellular compartment (Aec) 16 

According to Zhang et al. (Zhang et al., 2012), Aec is expressed as follows: 17 

𝐴௘௖ ൌ exp ቆെ𝑏𝒒் ∙ න 𝑓ሺ𝒏|𝝁, 𝜅ሻ𝐷ሺ𝒏ሻ
𝕊మ

𝑑𝒏 ∙ 𝒒ቇ,                                                                                                               ሺ𝐴2ሻ 18 

where 𝒒 is an unit vector which is the direction of diffusion weighting gradient and 𝐷ሺ𝒏ሻ is a 19 

cylindrical symmetry tensor whose main axis is along the direction of n. 20 

 21 

On the other hand, according to Zhang et al. (Zhang et al., 2012), let d∥ and dୄ be the diffusion 22 

coefficients which are parallel and perpendicular to the main axis in the intracellular compartment, 23 

respectively. The diffusion coefficients (d′∥ and d′ୄ) which are parallel and perpendicular to the 24 

main axis in the extracellular compartment, are expressed as follows: 25 

ቐ
𝑑′∥ ൌ 𝑑∥ െ 𝑑∥𝜈௜௖ሺ1 െ 𝜏ଵሻ

𝑑′ୄ ൌ 𝑑∥ െ 𝑑∥𝜈௜௖ ൬
1 ൅ 𝜏ଵ

2
൰ ,

                                                                                                                                                   ሺ𝐴3ሻ 26 

where 𝜏ଵ is expressed as follows (Zhang et al., 2012): 27 

𝜏ଵ ൌ െ
1

2𝜅
൅

1

√𝜋𝜅 ∙ 𝑒ି఑ ∙ 𝑒𝑟𝑓𝑖൫√𝜅൯
,                                                                                                                                       ሺ𝐴4ሻ 28 

 29 

where 𝑒𝑟𝑓𝑖ሺ𝑥ሻ is the incomplete error function and given as below: 30 
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𝑒𝑟𝑓𝑖ሺ𝑥ሻ ൌ
2

√𝜋
න 𝑒௧మ

𝑑𝑡
௫

଴
.                                                                                                                                                           ሺ𝐴5ሻ 1 

 2 

Since the principal axis of the extracellular compartment is assumed to be parallel to the z-axis, 3 

𝑫𝒆𝒄ሺ𝒛ො, 𝜅ሻ is expressed as below: 4 

𝑫𝒆𝒄ሺ𝒛ො, 𝜅ሻ ൌ ቌ
𝑑′ୄ 0 0
0 𝑑′ୄ 0
0 0 𝑑′∥

ቍ.                                                                                                                                             ሺ𝐴6ሻ 5 

 6 

Therefore, Aec is rewritten using Eq. (A2), (A6) as below: 7 

𝐴௘௖ ൌ 𝑒𝑥𝑝ሺെ𝑏𝒒் ∙ 𝑫𝒆𝒄ሺ𝝁, 𝜅ሻ ∙ 𝒒ሻ .                                                                                                                                       ሺ𝐴7ሻ  8 

Since 𝑫𝒆𝒄ሺ𝝁, 𝜅ሻ is a cylindrically symmetric tensor whose principal axis is in the direction of the 9 

principal axis of the Watson distribution (described in detail Appendix 4), namely 𝝁, 𝒒் ∙10 

𝑫𝒆𝒄ሺ𝝁, 𝜅ሻ𝒒 is a function of 𝜃 ൌ 𝒒 ∙ 𝝁 which is the relative angle between the principal axes of 11 

MPG and Watson distribution. Hence, without loss of generality, let 𝝁 ൌ 𝒛ො. Since 𝑫𝒆𝒄ሺ𝒛ො, 𝜅ሻ is 12 

cylindrically symmetrical to the z-axis in this case, Aec depends only on 𝜃 ൌ 𝒒 ∙ 𝝁, which is the 13 

angle between MPG and z-axis, not on the azimuthal angle ϕ. Hence, without loss of generality, let 14 

𝜙 ൌ 0. Now, let 𝑹൫െ𝜃𝒒൯ be the rotation matrix, which makes the direction of MPG (𝒒) parallel to 15 

z-axis,  16 

 17 

    𝒒் ∙ 𝑫𝒆𝒄ሺ𝒛ො, 𝜅ሻ𝒒 ൌ ൫𝑹൫െ𝜃𝒒൯ ∙ 𝒒൯
்

∙ 𝑫𝒆𝒄൫𝑹൫െ𝜃𝒒൯ ∙ 𝒛ො, 𝜅൯ ∙ ൫𝑹൫െ𝜃𝒒൯ ∙ 𝒒൯ 18 

ൌ 𝒛ො் ∙ 𝑫𝒆𝒄൫𝑹൫െ𝜃𝒒൯ ∙ 𝒛ො, 𝜅൯ ∙ 𝒛ො 19 

ൌ ሺ0 0 1ሻ ൭
1 0 0
0 𝑐𝑜𝑠𝜃 െ𝑠𝑖𝑛𝜃
0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

൱

்

ቌ
𝑑ᇱ

ୄ 0 0
0 𝑑ᇱ

ୄ 0
0 0 𝑑ᇱ

∥

ቍ ൭
1 0 0
0 𝑐𝑜𝑠𝜃 െ𝑠𝑖𝑛𝜃
0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

൱ ൭
0
0
1

൱ 20 

ൌ 𝑑ᇱ
ୄ𝑠𝑖𝑛ଶ𝜃 ൅ 𝑑ᇱ

ୄ𝑐𝑜𝑠ଶ𝜃.                                                                                                                       ሺ𝐴8ሻ21 

  22 

Summarizing the above, Aec is denoted using Eq. (A7), (A8) as below: 23 

𝐴௘௖ ൌ 𝑒𝑥𝑝൫െ𝑏ሺ𝑑ᇱ
ୄ𝑠𝑖𝑛ଶ𝜃 ൅ 𝑑ᇱ

ୄ𝑐𝑜𝑠ଶ𝜃ሻ൯ ,                                                                                                                          ሺ𝐴9ሻ   24 

where 𝜃 ൌ 𝒒 ∙ 𝝁. 25 

 26 

3. Intracellular compartment (Aic) 27 

According to Zhang et al., 28 
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𝐴௜௖ ൌ න 𝑓ሺ𝒏|𝝁, 𝜅ሻ𝑒ି௕ௗ∥ሺ𝒒∙𝒏ሻమ

𝕊మ
𝑑𝒏 ,                                                                                                                                  ሺA10ሻ 1 

where d∥ is intrinsic diffusivity. Aic cannot be expressed by elementary functions. First, the Watson 2 

distribution is expanded using spherical harmonics. Let 𝑓௟଴
௖ ሺ𝜅ሻ be an expansion coefficient, when 3 

𝑓ሺ𝒏|𝒛ො, 𝜅ሻ is expanded using spherical harmonics. 4 

𝑓ሺ𝒏|𝒛ො, 𝜅ሻ ൌ ෍ 𝑓௟଴
௖ ሺ𝜅ሻ𝑌௟଴ሺ𝜃𝒏, 0ሻ

ஶ

௟ୀ଴

.                                                                                                                                      ሺ𝐴11ሻ 5 

The Watson distribution 𝑓ሺ𝒏|𝝁, 𝜅ሻ, whose mean orientation is 𝝁, is expressed by using Wigner 6 

Rotation Matrix (A Morrison and A Parker, 1987) as follows: 7 

 8 

 𝑓ሺ𝒏|𝝁, 𝜅ሻ ൌ 𝑓 ቀ𝒏|𝐑 ቀെθ
𝐪

ቁ 𝒛ො, 𝜅ቁ 9 

ൌ 𝐑 ቀθ
𝐪

ቁ 𝑓ሺ𝒏|𝒛ො, 𝜅ሻ 10 

ൌ 𝐑൫θ𝐪൯ ෍ 𝑓௟଴
௖ ሺ𝜅ሻ𝑌௟଴ሺ𝜃𝒏, 0ሻ

ஶ

௟ୀ଴

 11 

ൌ ෍ 𝑓௟଴
௖ ሺ𝜅ሻ𝐑൫θ𝐪൯𝑌௟଴ሺ𝜃𝒏, 0ሻ

ஶ

௟ୀ଴

 12 

ൌ ෍ 𝑓௟଴
௖ ሺ𝜅ሻ ෍ 𝑌௟௠ᇱሺ𝜃𝒏, 𝜙𝒏ሻඨ

4𝜋
2𝑙 ൅ 1

௟

௠ᇲୀି௟

ஶ

௟ୀ଴

𝑌௟௠ᇱ
∗ ൫𝜃𝒒, 0൯,                                                                                ሺ𝐴12ሻ 13 

where 𝜃𝒒 is the angle between MPG direction and z-axis. 14 

 15 

We substitute this into the Aic (at this time 𝐪 ൌ 𝐳ො), because if m ് ׬ ,0 𝑒௜௠థଶగ
଴ 𝑑𝜙 ൌ 0, and if 16 

m ൌ 0, ׬ 1
ଶగ

଴ 𝑑𝜙 ൌ 2𝜋.  17 

 18 

𝐴௜௖ ൌ න ෍ 𝑓௟଴
௖ ሺ𝜅ሻ ෍ 𝑌௟௠ᇱሺ𝜃𝒏, 𝜙𝒏ሻඨ

4𝜋
2𝑙 ൅ 1

௟

௠ᇲୀି௟

ஶ

௟ୀ଴

𝑌௟௠ᇱ
∗ ൫𝜃𝒒, 0൯𝑒ି௕ௗ∥ሺ𝒛ො∙𝒏ሻమ

𝕊మ
𝑑𝒏 19 

ൌ න ෍ 𝑓௟଴
௖ ሺ𝜅ሻ ෍ 𝑌௟௠ᇱሺ𝜃𝒏, 𝜙𝒏ሻඨ

4𝜋
2𝑙 ൅ 1

௟

௠ᇲୀି௟

ஶ

௟ୀ଴

𝑌௟௠ᇱ
∗ ሺ𝜃𝒏, 0ሻ𝑒ି௕ௗ∥ሺ𝒛ො∙𝒏ሻమ

𝕊మ
𝑑𝒏 20 
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 2 

On the other hand, 𝑓௟଴
௖ ሺ𝜅ሻ are expansion coefficients, when 𝑓ሺ𝒏|𝒛ො, 𝜅ሻ is expressed using spherical 3 

harmonics. 4 

𝑓ሺ𝒏|𝒛ො, 𝜅ሻ ൌ ෍ 𝑓௟଴
௖ ሺ𝜅ሻ𝑌௟଴ሺ𝜃𝒏, 0ሻ

ஶ

௟ୀ଴

.                                                                                                                                       ሺ𝐴14ሻ 5 

𝑓௟଴
௖ ሺ𝜅ሻ can be determined by multiplying 𝑌௟ᇱ଴

∗ ሺ𝜃𝒏, 0ሻ and integrating both sides, because of the 6 

standard orthogonality of the spherical harmonics. 7 
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 12 

Now, according to Arfken et al. (Arfken and Weber, 2005), 13 
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2
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Hence, 𝑓௟଴
௖ ሺ𝜅ሻ is expressed using Eq. (A15), (A16) as below: 15 
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In addition, it can be also applied for factors below, which Aic contains: 17 
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In summary, Aic is expressed using Eq. (A13), (A17), (A18) as follows: 19 
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Moreover, the sum of 𝑙 should be performed for only the even numbers, because the symmetry of θ 3 

direction of the Watson distribution. 4 

 5 

4. The Watson distribution 6 

 7 

According to the original NODDI model (Zhang et al., 2012), the Watson distribution is expressed as 8 

follows: 9 

𝑓ሺ𝒏ሻ ൌ
1

𝑀 ቀ
1
2 ,

3
2 , 𝜅ቁ

𝑒఑ሺ𝝁∙𝒏ሻమ
 ,                                                                                                                                               ሺ𝐴20ሻ 10 

where M is the first type confluent hypergeometric function (Arfken and Weber, 2005) and is also 11 

referred to as Kummer function. Here, 𝝁, 𝜅 and 𝒏 are denoted as the mean orientation of the 12 

Watson distribution, concentration parameter, and the orientation of sticks in which water diffusion 13 

is restricted, respectively. Since the Watson distribution is also a function of 𝝁 and 𝜅, these 14 

variables are expressed as 𝑓ሺ𝒏ሻ ൌ 𝑓ሺ𝒏|𝝁, 𝜅ሻ. 15 

Let 𝝁 ൌ 𝒛ො (unit vector in the z direction) and let 𝑥 ൌ 𝑐𝑜𝑠𝜃, 𝑑𝑥 ൌ െ𝑠𝑖𝑛𝜃 ∙ 𝑑𝜃, we integrate over 16 

unit sphere 𝕊ଶ. 17 
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According to Arfken and Wever (2005), 21 
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where 𝛤ሺ𝑥ሻ is Gamma function, 𝛤൫1
2ൗ ൯ ൌ √𝜋, 𝛤൫3

2ൗ ൯ ൌ √𝜋
2ൗ . 23 

Hence, Eq. A21 is expressed using Eq. (A22) as follows: 24 
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Since we want to normalize the Watson distribution, we re-defined it as follows: 3 
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