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ABSTRACT 

Accurate stroke lesion segmentation is a critical step in the neuroimaging processing 

pipeline to assess the relationship between post-stroke brain structure, function, and 

behavior. While many multimodal segmentation algorithms have been developed for 

acute stroke neuroimaging, few are effective with only a single T1-weighted (T1w) 

anatomical MRI. This is a critical gap because most stroke rehabilitation research relies 

on a single T1w MRI for defining the lesion. Although several attempts to automate the 

segmentation of chronic lesions on single-channel T1w MRI have been made, these 

approaches have not been systematically evaluated on a large dataset. Here, we 

performed an exhaustive review of the literature and identified one semi- and three fully 

automated approaches for segmentation of chronic stroke lesions using T1w MRI within 

the last ten years: Clusterize, Automated Lesion Identification, Gaussian naïve Bayes 

lesion detection, and LINDA. We evaluated each method on a large T1w stroke dataset 

(N=181) using visual and quantitative methods. LINDA was the most computationally 

expensive approach, but performed best across the three main evaluation metrics (median 

values: Dice Coefficient=0.50, Hausdorff’s Distance=36.34 mm, and Average Symmetric 

Surface Distance = 4.97 mm), whereas the Gaussian Bayes method had the highest 

recall/least false negatives (median=0.80). Segmentation accuracy in all automated 

methods were influenced by size (small: worst) and stroke territory (brainstem, 

cerebellum: worst) of the lesion. To facilitate reproducible science, we have made our 

analysis files publicly available online at https://github.com/npnl/elsa. We hope these 

findings are informative to future development of T1w lesion segmentation algorithms.  

Keywords: stroke, big data, lesion segmentation, chronic stroke, MRI  
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1. INTRODUCTION 

Despite intensive research and rehabilitation efforts, stroke remains a leading 

cause of long-term disability world-wide (Mozaffarian et al., 2016). Stroke rehabilitation 

research aims to understand the relationship between brain, behavior, and recovery 

following a stroke and to use brain changes after a stroke to predict functional outcomes.  

Neuroimaging, and in particular, high-resolution T1-weighted (T1w) anatomical MRIs, 

have been used to examine structural brain changes after stroke. Careful investigation of 

post-stroke brain anatomy, using techniques such as voxel-lesion symptom mapping 

(VLSM) or calculation of the overlap percentage between the lesion and critical brain 

structures, have been useful for relating brain changes to behavioral outcomes (e.g., 

corticospinal tract lesion load; Bates, Wilson, & Saygin, 2003; Lindenberg et al., 2010; 

Riley et al., 2011; Zhu, Lindenberg, Alexander, & Schlaug, 2010). However, accurate 

and precise lesion annotation is necessary to conduct and draw valid clinical inferences 

from these analyses.   

To date, manual lesion tracing by an individual with expertise in neuroanatomy 

remains the gold standard for lesion segmentation. This procedure is a time and labor-

intensive process that requires domain expertise. Consequently, this is not feasible for 

studies with larger sample sizes, and becomes a limiting factor in large-scale stroke 

rehabilitation neuroimaging analyses. This is especially problematic for stroke 

rehabilitation research, as compared to acute stroke research, because there are few stroke 

segmentation algorithms that can be effectively used with only a T1w MRI for the lesion 

segmentation. In contrast, there are many more algorithms that have focused on 

multimodal lesion segmentation. 
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To clarify the distinction between acute stroke neuroimaging and stroke 

rehabilitation research, it is useful to note that acute stroke neuroimaging is typically 

acquired within the first few days after a stroke and used to make clinical decisions about 

acute stroke treatment. Multimodal MRI sequences are commonly acquired to support 

this decision-making process, including diffusion weighted imaging, perfusion weighted 

imaging, T2-FLAIR imaging, and others. A wealth of research attention has focused on 

developing optimal algorithms for quick lesion segmentation and prediction of gross 

clinical outcomes using these multimodal sequences.  

In contrast, stroke rehabilitation research typically focuses on understanding more 

fine-grained analyses of functional outcomes following stroke, such as upper or lower 

limb impairments, aphasia, and more. These studies often acquire research data in stroke 

participants at a less acute stage, anywhere from several weeks to many years after 

stroke. Typically, a single high-resolution T1w MRI is acquired to define the lesion, 

rather than the multimodal clinical imaging acquired at the acute phase. This is typically 

due to time and financial constraints, as well as the fact that at later chronic stages, 

swelling and inflammation are no longer expected to be visible. Instead, T1w MRIs are 

more sensitive to showing cortical necrosis beyond two weeks of stroke onset, and are 

therefore more suitable for detecting chronic stroke lesions (Allen, Hasso, Handwerker, 

& Farid, 2012). For rehabilitation research studies, the goal is often to acquire more 

detailed functional brain scans, such as resting state or task-based fMRI, or detailed 

anatomical scans such as for diffusion tractography, to understand specific functional and 

structural patterns associated with post-stroke functional recovery. The downside, 
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however, is that there are fewer lesion segmentation algorithms focused on only T1w 

MRIs.  

In recent years, a handful of automated and semi-automated lesion segmentation 

approaches have been developed in response to this problem (see literature search results 

in Supplementary Table 1). Automated segmentation approaches can be divided into two 

major categories: (1) supervised image classification techniques which use machine 

learning to train classifiers based on “ground truth” lesion examples (i.e., manually traced 

lesions), and (2) unsupervised approaches, which use mathematical modeling to first 

distinguish the lesional tissue characteristics from other tissue types without labeled 

responses and then separately cluster the voxels belonging to each tissue type. These 

automated approaches are promising, yet few comparisons between existing T1w lesion 

segmentation methods have been made, due to (a) the lack of large-sized, publicly 

available stroke T1w MRI datasets and (b) the intensive labor necessary to manually 

segment lesions as the benchmark for comparison.  

Systematic evaluations of existing algorithms can be useful to identify current 

best solutions, as well as areas where all algorithms might improve. An excellent 

example of a comparative evaluation of lesion segmentation algorithms comes from the 

multimodal, acute neuroimaging world in the form of the annual ischemic stroke lesion 

segmentation challenge (ISLES challenge; Maier et al., 2017; http://www.isles-

challenge.org/). ISLES organizers provide a training and testing dataset of multimodal 

MRI scans acquired from patients with acute stroke. Teams compete to develop 

algorithms that accurately segment the lesions and upload their algorithms to the ISLES 

website, after which the ISLES organizers evaluate the lesion segmentations and rank 
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participating research teams based on their performance. The focus of the ISLES 

challenge is to encourage the development of lesion segmentation methods for acute 

stroke characterized using multimodal MRI including perfusion MRI, diffusion-weighted 

imaging (DWI), and fluid-attenuated inversion recovery imaging (FLAIR). Multivariate 

modeling on these multimodal MRI data increases the sensitivity to early detectable 

changes after stroke (Allen, Hasso, Handwerker, & Farid, 2012; Baird & Warach, 1998; 

Yuh et al., 1991).  

However, a fair and systematic evaluation of the accuracy of computerized stroke 

lesion segmentation approaches performed on a large, publicly open dataset of chronic 

T1w MRIs is needed to facilitate the improvement of their clinical utility in the chronic 

stroke population. Here, we strived to provide an accurate reflection of the current state 

of approaches for unimodal T1w chronic stroke lesion segmentation by quantitatively 

evaluating the performance of existing segmentation algorithms for T1w MRI. We make 

our analysis files publicly available on our github repository 

(https://github.com/npnl/elsa) to facilitate reproducibility.  

 

2.  METHODS 

 We first performed a review of the literature to identify existing T1w MRI stroke 

lesion segmentation approaches. We then implemented the identified lesion segmentation 

approaches, and compared their performance to a ground-truth expert segmentation using 

various image metrics. Finally, we statistically evaluated how each automated 

segmentation approach performed against one another.   

2.1 Literature Search 
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A computerized search covering the period from April 2007 to April 2017 was 

conducted on the PubMED online database using the following terms: ((“lesion 

identification” OR “lesion detection” OR “lesion classification”) OR “lesion” AND 

(“stroke”[MeSH Terms] OR “brain”[MeSH Terms])) AND “automated”. Studies were 

limited to those in the English language.  

The initial search yielded 189 results. We then excluded articles that were 

targeted at lesions not caused by stroke (e.g., multiple sclerosis; n=144). Any articles that 

were not specifically on the topic of lesion segmentation methods were also excluded 

(n=31). This resulted in 14 remaining results (Supplementary Table 1). Finally, to 

provide a fair evaluation for algorithms for chronic, T1w stroke MRI, we identified only 

articles on lesion segmentation approaches that were performed on chronic stroke lesions 

and have shown to support segmentation on a single T1w (n=6, Table 1).  Of these six 

different lesion segmentation approaches, two were excluded as the software was either 

no longer available or not supported (S. Shen, personal communication; Shen, Szameitat, 

& Sterr, 2010; Guo et al., 2015). 

2.2 Software Overview 

Based on our literature search, we tested both semi- and fully automated 

approaches to lesion segmentation. In the following sections, a brief overview of each 

approach is provided. 

2.2.1 Semi-Automated Software 

We examined one semi-automated approach, Clusterize (Philipp, Groeschel, & 

Wilke, 2012; de Haan, Clas, Juenger, Wilke, & Karnath, 2015), as it was the only 

approach that met our literature search criteria. However, we acknowledge that other 
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tools that may be considered ‘semi-automated’, such as MRIcron 

(http://people.cas.sc.edu/rorden/mricron/index.html) and ITKSnap (Yushkevich et al., 

2006), are also publicly available and may be used in lesion segmentation, although they 

were not developed specifically for stroke lesion segmentation. Both MRICron and 

ITKSnap provide 3D-growth algorithms to fill an initial area, and require a relatively 

large amount of manual input to guide the automated segmentation mask, thus making 

them more comparable to manual lesion segmentation methods. For these reasons, and 

because they did not meet the literature search criteria, we did not include them in our 

evaluation.  

Clusterize Toolbox 

 The Clusterize approach is a semi-automated approach originally developed to 

identify demyelination load in metachromatic leukodystrophy using T2-weighted MRIs 

(Philipp et al., 2012). However, the Clusterize algorithm has been shown to perform 

comparably on both acute and chronic stroke T1w MRI datasets (de Haan, Clas, Juenger, 

Wilke, & Karnath, 2015).  

The Clusterize approach has an automated preprocessing step followed by a 

manual cluster selection step. The automated preprocessing step involves identification of 

the local intensity maxima on each image slice and assignment of each voxel to a single 

cluster core based on its intensity. This is followed by a manual cluster selection step and 

an optional freehand correction step to optimize the accuracy of the lesion mask.  

2.2.2 Fully Automated Software 

Three fully automated approaches resulted from our literature search and were 

currently available: the automated lesion identification toolbox (ALI), a Gaussian naïve 
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Bayes lesion detection method (lesion_gnb), and lesion identification with neighborhood 

data analysis (LINDA; Seghier, Ramlackhansingh, Crinion, Leff, & Price, 2008; Griffis, 

Allendorfer, & Szaflarski, 2016; Pustina et al., 2016). 

ALI Toolbox 

The automated lesion identification (ALI) approach is an unsupervised method 

that performs outlier detection to segment lesions using a fuzzy c-means algorithm 

(Seghier, Ramlackhansingh, Crinion, Leff, & Price, 2008). The outlier detection 

procedure includes a voxel-wise comparison between healthy and non-healthy tissue, 

using a healthy dataset to define the healthy tissue.   

lesion_gnb 

The lesion_gnb approach is a supervised method that performs Gaussian naïve 

Bayes (GNB) classification for the automated delineation of chronic stroke lesions 

(Griffis et al., 2016). The lesion_gnb approach used 30 training cases to create feature 

maps encoding information about missing and abnormal tissue, obtained from gray 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF) prior probability maps 

(PPM) and tissue probabilistic maps (TPM). The GNB classifier was trained on ground-

truth manually delineated lesions as well as these feature maps using a leave-one-out 

cross-validation approach. The trained GNB classifier is provided by the developers of 

the lesion_gnb toolbox. 

LINDA 

The LINDA approach is a supervised method that relies on feature detection and 

uses a random forest (RF) algorithm to train and classify lesioned voxels (Pustina et al., 

2016). In the LINDA method, features capturing aspects of geometry, subject specific 
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anomalies, and deviation from controls for sixty stroke subjects were fed into a single 

matrix containing information about a single voxel and its neighboring voxels. The 

matrix was then used to train the RF algorithm using manually delineated lesions as the 

ground truth. RF training was repeated two more times with successively hierarchical 

image resolution. The trained RF classifier is provided by the developers of LINDA. 

 

2.3 Data and Implementation of Algorithms 

2.3.1 Computational Platform and Software Installation 

All computations were performed on a Mac OSX Yosemite operating system with 

a 3.2 GHz Intel Core i5 processor and 8 GB RAM. To run the ALI, lesion_gnb, and 

Clusterize toolboxes, we used MATLAB version R2016b and SPM12. For the LINDA 

toolkit, we used R version 3.3.3, ANTsR version 0.3.1, ANTsRCore version 0.3.7.4, and 

ITKR version 0.4.12. See Table 2 for more information. 

2.3.2 Stroke Data 

We obtained our stroke dataset from the Anatomical Tracings of Lesions After 

Stroke (ATLAS) database; (Liew et al., 2018). ATLAS is a public database consisting of 

304 T1w anatomical MRIs of individuals with chronic stroke collected from research 

groups worldwide from the ENIGMA Stroke Recovery Working Group consortium. We 

excluded any MRIs with non-isometric voxels, as well as any MRIs that highly deviated 

from the normal range of the standard orientation. We also only included one MRI per 

individual (no inclusion of longitudinal data). One hundred and eighty-one T1w 

anatomical MRIs (100 left hemisphere stroke (LHS), 81 right hemisphere stroke (RHS)) 
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from a total of eight different scanners were included in the current analyses. Further 

information on image acquisition for stroke data can be found in Liew et al., 2018.  

2.3.3 Lesion Segmentation 

Expert Segmentation 

The ATLAS database included manually segmented lesion masks created by a 

team of trained individuals. For the purposes of this evaluation, we included only lesions 

that were designated as the primary stroke. Each lesion mask was carefully quality-

controlled. Briefly, each stroke lesion was segmented using either the coronal or axial 

view in MRIcron (http://people.cas.sc.edu/rorden/mricron/index.html) with either a 

mouse, track pad, or a tablet by one of eleven trained individuals, all of whom received 

detailed training and were compared for inter- and intra-rater reliability on five stroke 

lesions (inter-rater DC: 0.75±0.18; intra-rater DC: 0.83±0.13; Liew et al., 2018). After 

lesions were checked for accuracy by a separate tracer, lesion masks were smoothed 

using a 2mm FWHM kernel in order to smooth jagged edges between slices. For further 

information on the labeling protocol, see Liew et al., 2018. 

Semi-automated Segmentation 

Clusterize 

  We followed the standard procedure (previously described in 2.2.1) and manually 

selected clusters as our lesion mask. We did not perform additional manual correction, as 

this time-consuming process would have made the process analogous to a manual 

labeling procedure.  

Automated Segmentations 

ALI 
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The ALI method required a dataset of healthy controls to perform outlier 

detection. As the developers of the algorithm did not provide a healthy control dataset, 

we fed the algorithm with images of healthy subjects sampled from the Functional 

Connectome Project (http://fcon_1000.projects.nitrc.org, n=100). The developers of ALI 

did not recommend an optimal number of healthy controls, but specified that a larger set 

of healthy controls would better estimate the normal variability in brain structure (M. 

Seghier; personal communication).  

The following automated steps were implemented in the use of the ALI toolbox. 

All adjustable parameters were kept at their default values. First, segmentation and 

normalization of both healthy and stroke T1w MRI images were performed in SPM12. 

For stroke T1w MRIs, the ALI toolbox carried out a modified unified segmentation-

normalization algorithm, which included use of an extra lesion tissue class prior (defined 

as the mean of the standard white matter (WM) and cerebrospinal fluid (CSF) priors) to 

inform tissue probability maps for the segmentation of GM, WM, and CSF maps. GM 

and WM segmentations were then smoothed, and outlier detection comparing both GM 

and WM segmentations between patients and healthy controls was performed using fuzzy 

means clustering. Finally, the identified GM and WM outliers were combined into a final 

lesion mask.  

lesion_gnb 

To carry out the lesion_gnb approach, the following steps were implemented: we 

first specified whether the stroke was on the left or right hemisphere, as the program does 

not automatically detect the stroke hemisphere. Then, probabilistic tissue segmentation 

on the stroke T1w MRI was carried out using default parameters in the New Segment 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/441451doi: bioRxiv preprint 

https://doi.org/10.1101/441451
http://creativecommons.org/licenses/by-nc-nd/4.0/


tool in SPM12. Tissue segmentations were smoothed with an 8 mm FWHM kernel, and 

feature maps containing information about missing and abnormal tissue were derived 

from GM/WM/CSF TPMs. The trained and cross-validated GNB classifier provided by 

the developers was then used to predict lesion class labels. A minimum cluster size of 

100 voxels was specified as the threshold for retention of clusters in the final mask, and 

the final mask was smoothed using an 8 mm FWHM kernel. The choice of 8 mm FWHM 

kernel and the cluster size of 100 voxels were based on the default parameters set in the 

software. Per personal communication, an additional re-segmentation step using the final 

lesion has been recommended for improving normalization performance and outline 

precision (J. Griffis, personal communication; Sanjuán et al., 2013). We do not use the 

additional re-segmentation step for this analysis.  

LINDA 

LINDA requires all strokes to be presented on the left hemisphere. Therefore, as a 

first step, we mirrored the T1w MRIs for subjects with right hemisphere stroke so that the 

stroke appeared on the left hemisphere (n=81). The data were preprocessed with two 

iterations of bias correction and brain extraction, and spatial normalization was 

performed using Advanced Normalization Tools (ANTs; Avants et al., 2010). Six 

features (deviation of k-mean segmentation from controls, gradient magnitude, T1 

deviation from controls, k-mean segmentation, deviation of T1 asymmetry from controls, 

and raw T1 volume) were computed from the preprocessed T1w image. These features 

were fed to the pre-trained RF classifier provided by the developers, and the classifier 

was then run to detect the lesion at three different image resolutions, where the predicted 

lesion mask was inversely transformed from the template to the subject’s image space 
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after each iteration to improve prediction accuracy. For right hemisphere lesions, we 

flipped the images back to the right hemisphere after lesion segmentation. 

 

2.4 Post-Processing of Automated Lesion Masks 

As the three fully automated approaches generated lesion masks in their own 

stereotaxic spaces (i.e., using different templates), all lesion masks were converted back 

to native space for comparison of automated masks to expert masks. For the ALI and 

lesion_gnb approaches, lesion masks were inverse transformed using the transformation 

matrix resulting from SPM. As the LINDA toolbox included a lesion mask output in both 

native and stereotaxic space, no further processing was necessary for the LINDA 

approach.  

 

2.5 Segmentation Evaluation 

2.5.1 Visual Evaluation 

As a first step, we manually inspected the quality of the automated lesion mask 

outputs. To do so, we used an open-source package (Pipeline for the Analysis of Lesions 

after Stroke; PALS; http://github.com/NPNL/PALS) to perform a visual evaluation of the 

automated outputs (Fig. 1; Ito, Kumar, Zavaliangos-Petropulu, Cramer, & Liew, 2018). 

The Visual QC module in PALS facilitates visual inspection of lesion segmentations by 

creating HTML pages with screenshots of lesion segmentations overlaid on each 

subject’s T1w image, and allows for easy flagging of lesion masks that do not pass 

inspection. 
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 Given the nature of our multi-site, secondary testing data, we anticipated that 

there might be cases in which the lesion segmentation algorithms would either 1) produce 

a lesion mask that has no overlap with the expert segmentation, i.e., misclassify the 

lesion, or 2) identify no lesioned voxels, creating an empty mask file. For evaluating the 

performance across approaches, we decided to eliminate a case if any automated 

approach yielded an empty mask file, as this would not yield any comparable distance 

metric. Additionally, to provide a fair comparison of approaches, we also decided to 

eliminate cases in which all three automated algorithms produced lesion masks that had 

no overlap with the expert segmentation, considering them as poor test cases to avoid 

counting these cases against the segmentation algorithms (Table 3).   

2.5.2 Quantitative Evaluation 

Evaluation Metrics 

To evaluate the performance of each automated lesion segmentation approach 

compared to the expert segmentation, we implemented the following evaluation metrics: 

dice similarity coefficient (DC), Hausdorff’s Distance (HD) and Average Symmetric 

Surface Distance (ASSD). To assess over- and under-segmentation, we also obtained 

values on precision (also known as positive predictive value) and recall (sensitivity). We 

additionally calculated the lesion volume to assess whether the automated lesion 

segmentation approaches detected lesions of similar size to the expert segmentation. 

Finally, algorithmic efficiency was evaluated by obtaining the computational time for 

each segmentation approach. Evaluation metrics are described in detail below.  
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Dice Similarity Coefficient 

The dice similarity coefficient (DC) is a measure of segmentation accuracy. DC is 

calculated with the following equation:  

�� �  2 � |� 	 Y| � |X|  |Y|�⁄  

 DC ranges from 0 (no overlap) to 1 (complete overlap), and X and Y represent the voxels 

in the expert segmentation, and those in the automated segmentation respectively. 

Hausdorff’s Distance 

HD is a measure of the maximum distance between all surface points of two 

image volumes. It is defined as:  

����, �� � max� max
x�X

min
y�Y

���, ��, max
y�Y

min
x�X

���, ���  

where x and y are points of lesion segmentations X and Y respectively, and d(x,y) is a 

3D-matrix consisting of all Euclidean distances between these points. HD is measured in 

millimeters and a smaller value indicates higher accuracy.  

Average Symmetric Surface Distance 

Average symmetric surface distance (ASSD) is a measure of the average of all 

Euclidean distances between two image volumes. Given the average surface distance 

(ASD),  

�����, �� � � � !���
���

���, �� |�|"  

 where d(x,y) is a 3-D matrix consisting of the Euclidean distances between the two 

image volumes X and Y, ASSD is given as: 

������, �� � � �����, ��  �����, �� �/ 2 

 Similar to HD, the ASSD is measured in millimeters, and a smaller value indicates 

higher accuracy. 
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Precision and Recall 

Precision, also called positive predictive value, is the fraction of true positives 

(that is, overlapping points between the two images) within the automated segmentation. 

It is defined as: 

$%&' ( )! � *$ �*$  +$�⁄  

 where precision ranges from 0 to 1 (1 indicating optimal precision), and TP are the true 

positives and FP denotes false positives in the automated segmentation.   

Recall, also called sensitivity, is the fraction of true positives (overlapping points 

between the two images) within the expert segmentation. It is calculated with the 

equation: 

,&'-.. � *$ �*$  +/�⁄  

where recall ranges from 0 to 1 (1 indicating optimal recall), and TP denotes true 

positives and FN (false negative) denotes points that the automated segmentation failed to 

identify.  

2.5.3 Statistical Analyses 

All statistical analyses were carried out in R version 3.3.3. To prevent any undue 

influence of extremely easy or extremely difficult cases, we performed nonparametric 

analyses to use the ranks of each automated approach to determine whether one approach 

outperformed another.  For fair comparison, our statistical analyses were performed only 

on the fully automated approaches and did not include the lesion masks created in the 

Clusterize toolbox, which were driven by a degree of manual input. We report 

segmentation evaluation metrics for Clusterize in Table 4. 
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A Friedman test, the nonparametric equivalent of a one-way repeated measures 

ANOVA, was carried out to examine whether there was a significant difference in the 

performance among the fully automated segmentation approaches for each evaluation 

metric (DC, ASSD, HD, precision, and recall). Post hoc analyses with Wilcoxon signed-

rank tests were carried out using a Bonferroni correction for multiple comparisons. All 

Type I error rates were set at α<0.05.  

To further evaluate the utility of the automated segmentation approaches on lesion 

volume, we calculated a Pearson product-moment correlation coefficient for each 

automated approach to determine the relationship between the lesion volume of the 

expert segmentation and the lesion volume of the automated segmentation.  

2.5.4 Analyses of lesion characteristics in relation to segmentation accuracy 

 We assessed whether performance of any of the automated lesion segmentation 

approaches was associated with any particular lesion characteristics, such as stroke 

territory (cortical, subcortical, brainstem, cerebellar) and lesion size.  

 Segmentation accuracy was treated as a categorical variable with best and worst 

performing cases (e.g., based on DC), where DC values were ranked from lowest to 

highest, and cases below the 25th percentile (Q1) were treated as the worst performing 

cases, and cases above the 75th percentile (Q3) were treated as best performing cases. 

To assess for differences in accuracy in relation to stroke territory within each 

approach, we stratified segmentation accuracy by each automated approach. We then 

performed a Fisher’s exact test (with a 2 X 4 contingency table including segmentation 

accuracy and stroke territory variables) on each stratum. 
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To assess for differences in accuracy between approaches within each stroke 

territory, we stratified segmentation accuracy by each stroke territory. We then performed 

a Fisher’s exact test (with a 2 X 3 contingency table including segmentation accuracy and 

segmentation approach variables) on each stratum. 

We also created a lesion size variable by transforming lesion volume based on 

expert segmentations into three categories using the 33rd and 67th percentiles in the 

dataset of all lesion volumes as cut-off ranges for small, medium, and large lesions. We 

performed the same Fisher’s exact tests on lesion size as described above. 

All statistical tests were adjusted for multiple comparisons using a Bonferroni correction.  

 

3. RESULTS 

3.1 Exploratory Data Analysis 

3.1.1 Computational Time 

We first examined how long it took for each algorithm to run. For this evaluation, 

we used a subset of n=100 left hemisphere MRIs (from our total dataset of n=181). This 

was because additional steps were required for processing right hemisphere lesions in the 

LINDA toolbox, which would have made it difficult to compare total time across 

toolboxes. The average times to preprocess an image and detect a lesion for 100 left 

hemisphere stroke MRIs, in order from fastest to slowest, were as follows: Clusterize 

(106.43 seconds, but with an additional 251.75 seconds to manually identify each 

cluster), lesion_gnb (246.12 seconds), ALI (396.99 seconds, but with an additional 

247.83 seconds per each healthy brain), and LINDA (3843.66 seconds). Notably, for 

Clusterize, the manual identification time will vary by user and by lesion. For ALI, which 
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requires healthy brains for comparison, we used 100 healthy brains to match the number 

of stroke MRIs (see section 2.3.3).  

3.1.2 Visual Evaluation  

We performed a visual evaluation to assess the quality of the automated lesion 

masks and ascertain that the lesion masks were correctly transformed back to native 

space.  

For the Clusterize toolbox, there were 152 cases which resulted in a lesion mask, 

and 29 cases (16.02%) in which no cluster was detected as the lesion mask during manual 

identification. 

All fully automated approaches ran completely and produced a lesion mask file 

for each case. However, we identified a number of cases where either there were no 

lesioned voxels that resulted from the automated segmentation, creating an empty file 

(which we refer to as an empty mask; Table 3), or there was a complete mismatch 

between the automated and expert segmentation (i.e., all voxels in the automated mask 

were misclassified as the lesion, which we refer to as a misclassification). This had been 

anticipated as the algorithms were based on supervised learning with a limited number of 

their own training data for which lesions in some brain regions (e.g., cerebellum) were 

not included.    

Of the 181 cases, ALI successfully generated 129 lesion masks (71%) with at 

least a single voxel overlapping with the manual label. Lesion_gnb also detected 142 

cases (78%) with at least a single voxel overlap with the manual label, and LINDA 

detected 113 cases (62%).  
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There were 24 cases in which ALI produced an empty mask; 23 in which LINDA 

produced an empty mask (eight of these were the same cases as ALI); and zero in 

lesion_gnb (in other words, lesion_gnb always created a mask in which it identified what 

it considered to be lesioned voxels). We subsequently excluded these cases (n=23+24-

8=39) from the analysis of the evaluation metrics, as they would not yield any 

measurable metrics.  

In addition, ALI had 28 cases in which the automated segmentation was 

misclassified (e.g., no overlap between the automated lesion mask and the actual lesion 

identified by manual segmentation), lesion_gnb had 39 misclassified cases, and LINDA 

had 45 cases (Table 3). Ten of these were the same cases across all three approaches, and 

we removed these ten misclassified cases from evaluation, treating them as poor test 

cases. Hence, after exclusion of 39 cases that had empty masks and 10 misclassified 

cases, 132 total cases remained in our quantitative evaluation. 

For a discussion on the implications and possible reasons for misclassification and 

failed lesion detection, see section 4.4).  

 

3.2 Quantitative Evaluation  

The performance of each fully automated toolbox was evaluated across the 

following metrics: Dice Similarity Coefficient, Hausdorff’s Distance, Average 

Symmetric Surface Distance, Precision, and Recall (Fig. 2, 3). A summary of the 

findings, in which we ranked the toolboxes based on their relative performance to one 

another, can be found in Table 5. 

3.2.1 Dice Similarity Coefficient  
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Using a Friedman test, we found a statistically significant difference in DC among 

the three fully automated lesion segmentation approaches, χ2(2)= 27.10, p<0.0001; 

corrected using the Bonferroni adjustment which was applied to all the following tests. 

Median (IQR) DC values for ALI, lesion_gnb, and LINDA approaches were 0.40 (0.00 to 

0.81), 0.42 (0.00 to 0.88), and 0.50 (0.00 to 0.88), respectively. Post hoc analyses using 

Wilcoxon signed-rank tests on DC showed that LINDA outperformed lesion_gnb and 

ALI (sum of positive ranks, lesion_gnb: V=5359, p=0.01; ALI: V=1944, p<0.0001), and 

lesion_gnb outperformed ALI (V=2601, p<0.0001). 

3.2.2 Hausdorff’s Distance 

A statistically significant difference in ranks for HD was found among the three 

fully automated segmentation approaches, χ2(2)=43.09, p<0.0001. Median (IQR) HD 

values for ALI, lesion_gnb, and LINDA are as follows: 62.79 mm (12.81 to 127.10), 

58.19 mm (16.06 to 135.50), and 36.34 mm (7.55 to 91.75), where smaller values 

indicate better performance. Wilcoxon signed-rank tests showed that LINDA performed 

better than ALI and lesion_gnb (ALI: V=7156, p<0.0001; lesion_gnb: V=1915, 

p<0.0001). There were no significant differences between ALI and lesion_gnb (V=5085, 

p=0.34).  

3.2.3 Average Symmetric Surface Distance 

We also found a statistically significant difference in ASSD among the three fully 

automated segmentation approaches, χ2(2)=42.97, p<0.0001. Median (IQR) ASSD values 

for ALI, lesion_gnb, and LINDA approaches were 9.58 mm (1.94 to 76.11), 8.75 mm 

(1.88 to 36.94), and 4.97 (1.11 to 71.95), respectively. Again, smaller values indicate 

better performance. Pairwise comparisons showed that LINDA and lesion_gnb both 
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performed better than ALI (LINDA: V=6832, p<0.0001; lesion_gnb: V=5990, 

p=0.0008), but there were no significance differences between LINDA and lesion_gnb 

(V=3766, p=0.47). 

3.2.4 Precision and Recall  

We found a statistically significant difference in median precision among the 

three fully automated approaches, χ2(2)=41.59, p<0.0001. Median (IQR) precision values 

for ALI, lesion_gnb, and LINDA approaches were 0.31 (0.00 to 0.99), 0.29 (0.00 to 

0.84), and 0.60 (0.00 to 1.00), respectively. Here, higher values indicate better 

performance. Wilcoxon signed-rank tests showed that LINDA had higher precision rates 

than both ALI (V=1423, p<0.0001) and lesion_gnb (V=6961, p<0.0001), and there were 

no significant differences between ALI and lesion_gnb (V=3998, p=1.00). 

 We also found a statistically significant difference in recall among the three fully 

automated lesion segmentation approaches, χ2(2)= 97.86, p<0.0001. Median (IQR) recall 

values for ALI, lesion_gnb, and LINDA approaches were 0.61 (0.00 to 0.96), 0.80 (0.00 

to 0.99), and 0.59 (0.00 to 0.98), respectively, again with higher values indicating better 

performance. We found that lesion_gnb performed better than both LINDA (V=1084, 

p<0.0001), and ALI (V=1171, p<0.0001), and there were no significant differences 

between LINDA and ALI (V=4479, p=0.55).  

3.3 Volume Correlation  

For each of the fully automated segmentation approaches, we also examined the 

relationship between the lesion volumes of the automated segmentations and the lesion 

volumes of the expert segmentations across the 132 cases. To account for outliers, we 

removed observations for which the Cook’s distance was greater than 1 after fitting a 
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simple linear regression. Two observations were removed for LINDA, and one was 

removed for ALI and lesion_gnb each. After removing outliers, we calculated the 

Pearson correlation coefficient, and found a statistically significant positive correlation 

between the lesion volumes of the expert segmentations and the lesion volumes of each 

of the automated segmentations: ALI (r=0.75, p<0.0001), lesion_gnb (r=0.90, p<0.0001), 

and LINDA (r=0.84, p<0.0001). This suggests that the lesions that were automatically 

detected were of similar volume to those of expert segmentations.  

3.4 Lesion Characteristics of Highest and Lowest Performing Cases  

We then examined whether there were specific characteristics of the lesion that 

led to good or bad algorithm performance. Lesion characteristics (hemisphere of the 

lesion, stroke territory, and lesion size) for both best and worst performing cases based on 

DC values (top and bottom 25%) are provided in Table 6. For these comparisons, we 

included all 181 cases, treating cases which did not identify any lesioned voxels as 

having DC=0, as we wanted to examine what may have contributed to the cases in which 

lesion masks were misclassified or unidentified. Overall, across all lesion toolboxes, we 

found the worst algorithm performance for lesions brainstem or cerebellar regions, and 

for lesions that were small. Unsurprisingly, we found the best algorithm performance in 

cortical regions and for large lesions.  

3.4.1 Analyses of Cases by Stroke Territory 

For ALI, fisher’s exact test showed a significant difference in segmentation 

accuracy (low performing (DC < Q1) vs. high performing (DC > Q3)) among the stroke 

territories (cortical, subcortical, brainstem, cerebellar; p<0.0001). Pairwise comparisons 

showed significant differences between frequency of cortical lesions and all other types 
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of lesions (subcortical, brainstem, and cerebellar; p<0.0001), where cortical lesions 

performed better than the rest. For lesion_gnb, fisher’s exact test with Bonferroni 

correction showed a significant difference in segmentation accuracy (low performing 

(DC < Q1) vs. high performing (DC > Q3)) among the stroke territories (cortical, 

subcortical, brainstem, cerebellar) (p<0.0001). Again, pairwise comparisons further 

showed significant differences between frequency of cortical lesions and all other types 

of lesions (p<0.0001), with cortical lesions performing better than the rest. For LINDA, 

we also found a significant difference in segmentation accuracy among the stroke 

territories (p<0.0001). Again, pairwise comparisons showed that significant differences in 

frequency of cortical lesions to other types of lesions, with cortical lesions performing 

best (p<0.0001).  

 Between the automated approaches, we did not find significant differences in 

frequency of high versus low performing cases for any category of stroke territory 

(p>0.3).  

3.4.2 Analyses of Cases by Lesion Size 

 For ALI, fisher’s exact test showed a significant difference in segmentation 

accuracy among the different lesion sizes (p <0.0001). Between low performing and high 

performing cases, significant differences were found between frequency of small and 

mid-sized lesions, small and large lesions, and mid-sized and large lesions (p<0.0002), 

where overall, low performance cases had more small lesions, and high performing cases 

had more large lesions.  

For lesion_gnb, we also found a significant difference in segmentation accuracy 

among the lesion sizes (p<0.0001). Again, between low and high performing cases, 
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significant differences were found between frequency of small and mid-sized lesions, 

small and large lesions, and medium and large lesions (p<0.02), where low performance 

cases had more small lesions and high performing cases had more large lesions.  

Similarly for LINDA, we found a difference in segmentation accuracy among the 

different lesion sizes (p<0.0001). Again, between low and high performing cases, 

significant differences were found between frequency of small and mid-sized lesions, 

small and large lesions, and medium and large lesions (p<0.004), where low performance 

cases had more small lesions and high performing cases had more large lesions. 

Between automated approaches, we did not find any significant differences in 

frequency of high performing cases for lesion size categories (p>0.7). 

 

3.5 Misclassified Cases 

 Finally, we analyzed the cases in which the automated algorithms detected 

lesions, but did not correctly identify any voxels overlapping with the expert 

segmentation—in other words, there was an automated lesion mask was created, but the 

dice coefficient yielded 0. As noted earlier, this occurred in 28 cases for ALI, 39 cases for 

lesion_gnb, and 45 cases in LINDA. For each of these cases, we quantified the minimum 

distance (dmin) between the edge of the expert segmentation with the edge of the 

automated segmentation with the following equation:  

���	��, �� � � min
x�X

�min
y�Y

���, ���� 

where x and y are points of lesion segmentations X and Y respectively, and d(x,y) is a 

3D-matrix consisting of all Euclidean distances between these points. Minimum distance 

is measured in millimeters and a smaller value indicates higher accuracy. We examined 
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this minimum distance measure to better understand, when lesion masks missed the 

lesion completely, if they were at least close to the actual lesioned territory, or far off. 

 Average dmin are as follows: ALI: 36.10 ± 21.72 mm (range: 2.24 - 93.25 mm); 

lesion_gnb: 19.31 ± 13.73 mm (range: 1.41 – 42.91 mm); and LINDA: 29.67 ± 19.82 mm 

(range: 1.00 – 83.36 mm). A density plot of minimum distances to the manual 

segmentation is shown in Fig 4. As the plot shows, masks from lesion_gnb were closest 

to the lesion, followed by ALI and then LINDA. However, due to the low precision of 

lesion_gnb (i.e., high false positive rate), it is likely that lesion_gnb creates multiple false 

positive labels, some of which may have been in closer proximity to the true lesion.  

 

4. DISCUSSION 

In the present paper, we systematically evaluated the performance of existing 

stroke lesion segmentation approaches for chronic T1w MRI on a large common dataset. 

We tested the accuracy of automated lesion segmentations against a ground-truth expert 

segmentation by employing a number of image evaluation metrics, including the dice 

similarity coefficient, Hausdorff’s distance, and average symmetric surface distance. 

Additionally, we computed precision and recall, measured computational time, calculated 

the Pearson’s correlation between lesion volumes of expert to automated approaches, and 

investigated lesion characteristics of highest- and lowest- performing cases. Finally, we 

analyzed the distance between expert segmentations and automated segmentations that 

did not yield any voxels that overlapped with the expert segmentation. Overall, we found 

that LINDA performed the best out of the fully automated lesion segmentation methods. 

In addition, all methods performed the worst on small lesions, as well as lesions in the 
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brainstem and cerebellum. These finds provide implications for how to improve existing 

lesion segmentation algorithms for T1-weighted MRIs. 

4.1 Fully Automated Software 

Our findings showed that each of the fully automated approaches resulted in 

different patterns in the various evaluation metrics used in the current study, indicating 

that each approach had its own benefits and drawbacks. Specifically, we found that 

lesion_gnb yielded the least number of cases (in fact, 0) in which no lesion mask was 

detected, compared to both LINDA and ALI. However, LINDA consistently performed 

the best out of the evaluation metrics (dice coefficient, Hausdorff’s distance, average 

symmetric surface distance).  

A closer look at precision and recall provides insight to the results obtained from 

the DC and distance metrics: LINDA resulted in higher precision (positive predictive 

value) rates than both ALI and lesion_gnb, while recall values were highest in lesion_gnb 

and similar in ALI and LINDA. Moreover, LINDA had roughly equivalent median 

precision and recall values (0.60 and 0.59, respectively), whereas both ALI and 

lesion_gnb had relatively better recall compared to precision (ALI precision: 0.31, recall: 

0.61; lesion_gnb precision: 0.29, recall: 0.80). This suggests that both the lesion_gnb and 

ALI approaches tended to over-segment lesions (high false positives). These findings 

were confirmed by our visual evaluation.  

Our findings suggest that LINDA was the approach that consistently performed 

best across all metrics—but only when it successfully identified a lesion. However, 

LINDA was also the most computationally expensive approach: the average time to 

process a single image on LINDA took roughly sixteen times as long as lesion_gnb, and 
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six times as long as ALI. Additionally, in cases in which automated segmentations were 

misclassified, the misclassified lesion was in closer proximity to the expert segmentation 

for lesion_gnb and ALI as compared to LINDA. It is also important to note that both ALI 

and lesion_gnb have adjustable parameters that may have potentially improved 

performance when they are adapted to the current test data. As mentioned above, in order 

to systematically evaluate performance without bias from expert feedback, however, we 

implemented the approaches with their default settings. Hence, we recommend that the 

user use his or her discretion to weigh the benefits and drawbacks of each approach as we 

have presented here, and tailor the settings to his or her specific dataset.  

4.2 Lesion Detection Algorithms and Methodology 

 The three fully automated segmentation approaches evaluated here implemented 

distinct methodologies in their approach to lesion segmentation. ALI used an 

unsupervised approach with fuzzy means clustering to detect outliers in gray and white 

matter segmentations, lesion_gnb used a supervised naïve Bayesian classification 

algorithm to estimate the probability of a lesion class, and LINDA used a supervised 

random forest approach with a multi-resolution framework to classify voxels and their 

neighbors as lesional tissue. We expected that the supervised learning algorithms would 

have higher performance than an unsupervised approach, given that supervised 

approaches are trained with ground-truth lesions. Indeed, we found that both LINDA and 

lesion_gnb had higher values than ALI on the dice coefficient. Yet this was not 

consistently the case for the distance metrics (ASSD and HD). However, these 

approaches implemented different image processing tools (e.g., ANTs, SPM) that include 

various preprocessing steps, such as brain extraction, registration and tissue 
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classification. It is likely that performance variability in these preprocessing steps may 

have had downstream effects on lesion segmentation accuracy. Manual quality control 

and inspection of preprocessing steps could enhance the lesion segmentation process, and 

would ideally be a part of any neuroimaging analysis pipeline. 

Previously reported results from the developers of each automated algorithm 

provide a useful tool for comparison and evaluation of the results we obtained from the 

current study. Our DC values were approximately 0.20 - 0.24 lower than those reported 

by the developers in their original papers (ALI: original = 0.64, ATLAS = 0.40; 

lesion_gnb: 0.66, 0.42; LINDA: 0.70, 0.50; Griffis, Allendorfer, & Szaflarski, 2016; 

Pustina et al., 2016; Seghier et al., 2008). There are several likely explanations for this. 

First, each of these automated algorithms was originally tested on single site, single 

scanner-acquired data. This makes these algorithms vulnerable to over-fitting to their 

own data. In particular, the supervised methods (LINDA, lesion_gnb) were dependent on 

machine learning classifiers that were pre-trained using data acquired from a single 

scanner from the original study. Here, we implemented a large data evaluation and tested 

each pre-trained algorithm on multi-site data. Not surprisingly, we found a significant 

drop in segmentation accuracy, as variability in machine characteristics was likely not 

addressed using the initial training-set. Second, to provide an equal comparison across 

toolboxes, we implemented the fully automated approaches as they were, without 

modifications to the parameters selected using the original training dataset. We also kept 

built-in preprocessing steps prior to lesion detection. While performance of the 

approaches may have been improved by fine-tuning the default parameters to our dataset, 

the current results obtained without modifications provide valuable baseline information 
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to researchers and clinicians who may be interested in using any of the tested algorithms 

and wish to bypass the time- and computationally-intensive training procedure.   

4.3 Small Subcortical, Brainstem, or Cerebellar Lesions Perform Worst 

We also assessed whether automated lesion segmentation performance was 

related to specific lesion characteristics. Overall, we found that the fully automated 

approaches were less likely to detect small lesions, with half of all total small lesion cases 

(30/60) failing to be detected by all three fully automated approaches. This is consistent 

with the literature, which has shown that automated and semi-automated approaches for 

T1w lesion segmentation to be biased for detection of large lesions (Wilke et al., 2011; 

Griffis et al., 2016). Users of these algorithms should thus manually inspect lesion 

segmentation quality, and pay specific attention to small lesions. However, as these are 

typically the fastest to manually segment, they should also be the fastest to correct. Using 

an automated segmentation algorithm may therefore still save considerable time, even 

with manual inspection and corrections for smaller lesions.  

Regarding lesion location, fully automated approaches displayed significantly 

higher segmentation accuracy on cortical lesions than subcortical, brainstem, and 

cerebellar lesions. As brainstem and cerebellar strokes occur less frequently, brainstem 

and cerebellar lesions were likely not included in the original training set for the 

automated algorithms (Chua & Kong, 1996; Datar & Rabinstein, 2014; Kase, Norrving, 

Levine, & Babikian, 1993; Teasell, Foley, Doherty, & Finestone, 2002). Moreover, 

features implemented in the algorithms to classify lesions (e.g., hemispheric asymmetry) 

may not be sensitive to brainstem or cerebellar strokes. Finally, subcortical, brainstem, 

and cerebellar lesions are often smaller than cortical lesions, suggesting a potential 
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additive effect on accuracy. Users with datasets containing multiple brainstem or 

cerebellar strokes may need to re-train the algorithm with a training dataset that contains 

more of these types of lesions to increase algorithm sensitivity. 

4.4 Dropped Cases 

In our evaluation, we found that there was a fairly sizeable number of cases in 

which lesions were not detected for the ALI and LINDA algorithms. One potential 

explanation for this is that the thresholds that were used to classify lesioned versus non-

lesioned voxels was too high. We had opted to use default values in implementing the 

algorithms, since we wanted to be systematic in our evaluation, and because ALI had 

user-adjustable parameters but LINDA did not. However, this meant that the thresholds 

that were used might not have been optimally tuned for this dataset. Although here the 

focus was to fairly evaluate the various algorithms using a common set of parameters, an 

actual user who is trying to generate lesion masks for his or her data could try to better 

optimize a specific method for a specific dataset.  

 Additionally, we found that there were a number of cases in which lesions were 

misclassified. That is, cases where the automated algorithm generated a lesion mask that 

did not overlap at all with the lesion identified from the manual segmentations. Of 

misclassified cases, lesion_gnb produced lesion masks that were closest to the true, 

expert segmentation. However, we note that this may in fact be due to the increased false 

positive rate of the lesion_gnb algorithm. Notably, across all of the segmentation 

algorithms, most of these cases were small and brainstem/cerebellar lesions, which may 

not be reflective of the cases that were used in the training datasets of the algorithms (for 

a comparison of lesion volumes in our test cases and those used in training datasets, see 
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Supplementary Table 2). Finally, the number of cases with sub-optimal segmentations 

may also have been inflated in due to our use of secondary, combined multi-site data, 

which would also increase the variability in lesion characteristics, and cause it to deviate 

from those used in training datasets. 

4.5 Semi-Automated Software 

 We tested one semi-automated software, the Clusterize toolbox, for lesion 

segmentation. Notably, this toolbox was designed for use with manual input and 

corrections. We only performed the initial manual step of cluster selection (identifying 

the lesioned region), but did not perform the subsequent manual correction. The 

automated preprocessing plus manual cluster selection resulted in a relatively low DC 

value (M=0.18, IQR: 0.06, 0.37), but a fairly high recall value (sensitivity; M=0.89, IQR: 

0.71, 0.96). The high recall was likely driven by the manual selection of clusters: due to 

expert feedback, a cluster corresponding to the true lesion was accurately selected for 

most cases. However, Clusterize tended to overestimate the lesioned region, which led to 

lower precision in the lesion segmentation. In particular, we found that the cluster 

corresponding to the true lesion often additionally included the ventricle as part of the 

lesion when the lesion was adjacent to the ventricle. These lower precision values may 

also have been partly driven by the fact that Clusterize was originally designed for the 

detection of a different type of the brain lesion (i.e., metachromatic leukodystrophy) on 

T2-weighted images, suggesting a need for additional feature modeling or parameter 

optimization. The creation of a mask for the ventricles and exclusion of any voxels within 

that mask could also enhance this method. 
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5. CONCLUSION 

Our systematic evaluation facilitates and informs future use and development of 

automated approaches. Notably, we found that the supervised algorithms performed best, 

but there was a high failure rate across all approaches. We also found systematic 

differences in segmentation accuracy depending on stroke territory and size. Based on 

these findings, we recommend two primary areas for improvement in the future 

development of automated lesion detection algorithms: (1) that algorithms be trained on 

larger and more diverse datasets, allowing for inter-scanner variability from multi-site, 

multi-scanner data, and (2) that prior knowledge about lesion size and territory be 

integrated into algorithms to increase segmentation performance. For clinicians and 

researchers who wish to use currently available lesion detection approaches, we suggest 

that they carefully select an automated lesion detection approach most suitable for their 

purposes and perform a thorough visual inspection of the automated segmentations to 

ensure the accuracy of each mask. We strongly recommend manual quality control 

following any of these approaches. By facilitating and informing the use and 

development of automated segmentation approaches, we hope that this systematic review 

will advance the discovery of clinically meaningful findings about stroke recovery. 
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Figure Captions 

Figure 1. Example of quality control page. Prior to quantitatively evaluating each 

lesion segmentation performance, we visually assessed the lesion mask for each case. We 

created a script that automatically output a quality control page 

(https://github.com/npnl/PALS; Ito et al., 2018) with each automated lesion mask 

overlaid (red, yellow, green) on the expert segmentation (white). Subject IDs shown in 

this figure are kept in the same convention as in the ATLAS database.  

 

Figure 2. Distribution of Dice Similarity Coefficient values for automated 

approaches. Histograms of all dice similarity coefficient values (N=132) for each 

automated lesion detection approach; left hemisphere stroke (LHS) in orange; right 

hemisphere stroke (RHS) in turquoise. 

 

Figure 3. Boxplots of evaluation metrics for automated approaches. For Dice 

Coefficient, Precision, and Recall, range is from 0-1, where 0=worst and 1=best; 

Hausdorff’s Distance and Average Symmetric Surface Distance are measured in 

millimeters, and smaller values indicate better performance. 

 

Figure 4. Density plot of minimum distances to manual segmentations for lesions 

with no overlap. As the plot shows, lesion masks from lesion_gnb were closest to the 

lesion, followed by ALI, and then LINDA. However, due to the low precision of 

lesion_gnb (median = 0.29), it is likely that lesion_gnb creates multiple false positive 

clusters, some of which end up being closer to the manual segmentation. 
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Table 1. Literature meeting selection criteria. Articles on lesion segmentation approaches for chronic stroke lesions that support a 

single T1-weighted image segmentation. Two approaches (Shen et al., Guo et al.) were currently unsupported or unavailable and thus 

excluded from the current evaluations.  

 

Article Method Name Chronic vs. 
Acute Modalities Fully-

Automated Sample Size Healthy Data 
Required 

Algorithm 
Implemented 

Seghier et al. 
(2008) 

Automatic Lesion 
Identification Toolbox 
(“ALI”) 

Chronic T1 Y 10 simulated, 8 
stroke T1w MRI 

Yes Fuzzy means 
clustering 

Shen et al. 
(2010) 

N/A Chronic T1 Y 
36 simulated, 29 
stroke T1w MRI 

No 
Fuzzy c-means 
clustering 

Guo et al. 
(2015) 

Automated Lesion 
Detection Toolbox 

Chronic T1 Y 60 No 
Support vector 
machine 

de Haan et al. 
(2015)  

Clusterize 
Acute (also 
tested on 
chronic) 

CT, DWI, 
T2 FLAIR, 
T1 (any 
one) 

N (semi-
automated) 

44 
CT/DWI/FLAIR, 
11 T1w MRI 

No 

Iterative region 
growing (clustering) 
based on local 
intensity maxima 

Griffis et al. 
(2016) 

Gaussian naïve Bayes 
lesion detection 
(“lesion_gnb”) 

Chronic T1 Y 30 No 
Gaussian naïve 
Bayes classification 

Pustina et al. 
(2016) 

Lesion Identification 
with Neighborhood Data 
Analysis (“LINDA”) 

Chronic T1 Y 60 No Random Forest 

.
C

C
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Y
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Automated Lesion 
Identification (ALI) 

Voxel-based Gaussian 
Naïve Bayes 
Classification 
(lesion_gnb) 

Lesion Identification with 
Neighborhood Data 
Analysis (LINDA) 

Compatible 
Operating Systems 

Windows, Linux, 
Mac 

Windows, Linux, Mac Windows 10+, Linux, Mac 

Platform 
Dependencies 

MATLAB, SPM5+ 
MATLAB 2014b+ (Requires 
Statistics and Machine 
Learning Toolbox), SPM12+ 

R v.3.0+, ANTsR package 

Year Developed 2007 2015 2016 

Open Source No Yes Yes 

Learning Type Unsupervised Supervised Supervised 

Training Dataset 
Requires user to 
provide segmented 
healthy training dataset 

Provided (trained on 30 left 
hemisphere stroke subjects) 

Provided (trained on 60 left 
hemisphere stroke subjects) 

Amenable to left or 
right hemisphere 
lesions 

Yes 
Yes, provided that the user 
indicates which hemisphere 
first 

No, right hemisphere lesions 
must be flipped 

Batch Mode Yes Yes (script provided) 
Yes (user can write a 
wrapper script) 

Template Brain 
Space 

ICBM152 ICBM152 Colin 27 template 

User Defined 
Parameters 

sensitivity (tuning 
factor), fuzziness index 
in fuzzy means 
clustering algorithm, 
threshold probability 
and size for the extra 
class prior 

optional smoothing, 
smoothing kernel, minimum 
cluster size, implicit masking 
while smoothing 

None 

Optional Post-
Processing Steps 

None 
Re-segmentation with a 
tissue prior 

None 

 

Table 2. Processing features of fully automated toolboxes. 
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 No lesion identified Lesion misclassified Total cases  

ALI 24 28 52 
lesion_gnb 0 39 39 
LINDA 23 45 68 
    
 8 overlapping cases 

(ALI + linda only) 
10 overlapping cases 
across 3 approaches 

32 overlapping cases 
across 3 approaches 

 
Table 3. Cases with no lesion mask identified, or lesions misclassified. Cases with no 
lesion mask identified yielded an empty file (containing only 0 values), and cases in 
which the lesion was misclassified contained lesioned voxels, but had no voxels 
overlapping with the expert segmentation. For comparisons between algorithms, we 
removed cases with no lesions identified (24 ALI + 23 LINDA – 8 overlapping = 39), 
and removed the 10 cases in which all three algorithms misclassified the lesion. 
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Clusterize ALI lesion_gnb LINDA 

Image Metrics 
mean ± SD N=152 N=132 N=132 N=132 

Dice 0.23 ± 0.19 0.36 ± 0.25 0.39 ± 0.23 0.45 ± 0.31 

 HD (mm) 75.00 ± 22.88 61.55 ± 28.84 58.00 ± 19.73 42.07 ± 24.38 

ASSD (mm) 13.59 ± 5.85 14.38 ± 13.53 10.49 ± 6.25 12.68 ± 16.49 

Precision 0.16 ± 0.15 0.31 ± 0.25 0.30 ± 0.20 0.50 ± 0.34 

Recall 0.79 ± 0.23 0.55 ± 0.31 0.69 ± 0.29 0.52 ± 0.34 

Average 
Processing Time 

106.43 seconds for 
automated clustering 
+ 251.75 seconds for 
manual identification 

396.99 + 247.83 
seconds per healthy 
brain 

246.12 seconds 3843.66 seconds 

 

Table 4. Descriptive statistics for each approach. Performance rates for each approach; 

mean ± standard deviation: Dice Coefficient (Dice), Hausdorff’s distance (HD), average 

symmetric surface distance (ASSD), precision, and recall.  
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Approach DC HD ASSD Precision Recall Average Rank 
ALI 3 2 2  2 2  2.3 
Lesion_gnb 2 2 1  2 1  1.7 
LINDA 1 1 1  1 2  1 
 

Table 5. Ranks of segmentation performance on each evaluation metric. Performance 

ranked by median values for each approach (if the approach significant performed better 

than the others); dice coefficient (DC), Hausdorff’s distance (HD), average symmetric 

surface distance (ASSD). Average rank only takes the mean of DC, HD, and ASSD as 

precision and recall are reflected in the dice coefficient. 
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DC Cut-Off 
Lesion 
Hemisphere Stroke Territory Lesion Size 

Worst Performance Cases (Cases with DC <= Q1) 

ALI  Q1= 0.00 
LHS: 33 
RHS: 19 

Cortical: 1/53 
Subcortical: 33/107  
Brainstem: 9/9  
Cerebellar: 9/12 

2% 
31% 

100% 
75% 

Small: 44/60 
Medium: 8/61 
Large: 0/60 

73% 
13% 

0% 

lesion_gnb  Q1=0.03 
LHS: 30 
RHS: 15 

Cortical: 2/53  
Subcortical: 23/107  
Brainstem: 9/9 
Cerebellar: 11/12 

4% 
21% 

100% 
92% 

Small: 40/60 
Medium: 4/61 
Large: 1/60 

67% 
7% 
2% 

LINDA  Q1=0.00  
LHS: 44 
RHS: 24 

Cortical: 2/53 
Subcortical: 46/107 
Brainstem: 9/9 
Cerebellar: 11/12 

4% 
43% 

100% 
92% 

Small: 52/60 
Medium: 16/61 
Large: 0/60 

87% 
26% 

0% 

Best Performance Cases (Cases with DC >= Q3) 

ALI  Q3= 0.50 
LHS: 21 
RHS: 25 

Cortical: 34/53 
Subcortical:  11/107 
Brainstem: 0/9 
Cerebellar: 1/12 

64% 
10% 

0% 
8% 

Small: 0/60 
Medium: 8/61  
Large: 38/60 

0% 
13% 
63% 

lesion_gnb  Q3=0.53 
LHS: 19 
RHS: 27 

Cortical: 39/53 
Subcortical: 7/107 
Brainstem: 0/9 
Cerebellar: 0/12 

74% 
7% 
0% 
0% 

Small: 0/60 
Medium: 5/61  
Large: 41/60 

0% 
8% 

68% 

LINDA  Q3=0.67 
LHS: 22 
RHS: 24 

Cortical: 32/53 
Subcortical: 14/107 
Brainstem: 0/9 
Cerebellar: 0/12 

60% 
13% 

0% 
0% 

Small: 0/60 
Medium: 6/61 
Large: 40/60 

0% 
9% 

67% 

 

Table 6. Lesion characteristics based on Dice Coefficient value. Lesion characteristics 

of best and worst performing cases based on DC values (top and bottom 25%). All 181 

cases are included. 
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