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ABSTRACT 

In metastatic cancer, the role of heterogeneity at the tumor-immune microenvironment, 

its molecular underpinnings and clinical relevance remain largely unexplored. To understand 

tumor-immune dynamics at baseline and upon chemotherapy treatment, we performed 

unbiased pathway and cell type-specific immunogenomics analysis of treatment-naive (38 5 

samples from 8 patients) and paired chemotherapy treated (80 paired samples from 40 patients) 

high-grade serous ovarian cancer (HGSOC) samples. Whole transcriptome analysis and image-

based quantification of T cells from treatment-naive tumors revealed ubiquitous variability in 

immune signaling and distinct immune microenvironments co-existing within the same 

individuals and within tumor deposits at diagnosis. To systematically explore cell type 10 

composition of the tumor microenvironment using bulk mRNA, we derived consensus immune 

and stromal cell gene signatures by intersecting state-of-the-art deconvolution methods, 

providing improved accuracy and sensitivity when compared to HGSOC immunostaining and 

leukocyte methylation data sets. Cell-type deconvolution and pathway analyses revealed that 

Myc and Wnt signaling associate with immune cell exclusion in untreated HGSOC. To evaluate 15 

the effect of chemotherapy on the intrinsic tumor-immune heterogeneity, we compared site-

matched and site-unmatched tumors before and after neoadjuvant chemotherapy. 

Transcriptomic and T-cell receptor sequencing analyses showed that site-matched samples had 

increased cytotoxic immune activation and oligoclonal expansion of T cells after chemotherapy, 

which was not seen in site-unmatched samples where heterogeneity could not be accounted 20 

for. These results demonstrate that the tumor-immune interface in advanced HGSOC is 

intrinsically heterogeneous, and thus requires site-specific analysis to reliably unmask the 

impact of therapy on the tumor-immune microenvironment.  
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INTRODUCTION 25 

It is unclear how the complex interplay between tumor cells and the tumor 

microenvironment (TME) and their interactions affect treatment outcome in metastatic cancer 

(Kitamura, Qian, and Pollard 2015; Janssen et al. 2017; Robinson et al. 2017). Investigating this 

interplay in an advanced disease setting is complicated by the difficulty of obtaining multiple-site 

tumor samples and the finding that different tumors within the same individual can harbor 30 

distinct immune microenvironments (Sridharan et al. 2016; Jiménez-Sánchez et al. 2017a; 

Reuben et al. 2017; A. W. Zhang et al. 2018). Moreover, interactions between different cell 

populations of the TME are plastic and can change dependent on extrinsic perturbations such 

as therapy (Wang et al. 2016). In systems biology, perturbations are often used to infer how 

individual components of the system are interconnected by analyzing their dynamic behaviour in 35 

response to the external stimuli (Aldridge et al. 2006; Geva-Zatorsky et al. 2010; Molinelli et al. 

2013). By analogy, immuno-oncology research needs to systematically characterize how 

oncogenic signaling activity affects the TME and immune infiltration, as well as to explore the 

variability and plasticity observed across clinical settings such as disease stage, anatomic sites 

and effect of treatment. 40 

 

Heterogeneity in cancer spans multiple dimensions: at the molecular level with the presence of 

genetic intra-tumor heterogeneity (ITH) (Shah et al. 2009; Campbell et al. 2010; Gerlinger et al. 

2012), the cellular level with variability observed in infiltration and recruitment of non-tumor cell 

populations in the TME (Natrajan et al. 2016), and the spatial and population levels where 45 

variability is observed both within tumors of the same individual with disseminated disease 

(Jiménez-Sánchez et al. 2017) and between tumors of different patients (McPherson et al. 

2016; Patch et al. 2015). Thus, unbiased and systematic analysis of ITH and TME heterogeneity 

poses significant challenges. While the study of ITH has been facilitated by computational 
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approaches to estimate the distribution and co-existence of different tumor clones from large-50 

scale somatic mutation data, bioinformatics analysis of TME heterogeneity poses considerable 

technical difficulties due to the diversity of cell types present in the TME, in particular when 

distinguishing tumor from non-tumor cell populations based on bulk tumor analysis. Recent 

genomic approaches to characterize the TME include the  development of immune cell 

deconvolution methods that aim to decompose a mixture of immune cell gene transcripts from 55 

bulk expression data (Finotello and Trajanoski 2018). However, no objective side-by-side 

comparisons of these methods have been implemented (Zheng 2017), and the accuracy and 

utility of immune cell deconvolution methods for determining TME heterogeneity in clinical 

settings is uncertain. 

 60 

High grade serous ovarian cancer (HGSOC) is ideally suited to the study of TME heterogeneity 

owing to its clinical presentation with multisite abdominal disease and standardized treatment 

with either optimal surgical debulking at diagnosis or delayed primary surgery after neoadjuvant 

chemotherapy (NACT) (Bowtell et al. 2015). Thus, in HGSOC there is a unique opportunity to 

study the characteristics of the TME at multiple sites and to observe variation at baseline 65 

(diagnosis) and following perturbation with platinum-based chemotherapy, with the underlying 

hypothesis that the role of the TME may be exposed by its dynamic response to extrinsic 

perturbations (e.g. chemotherapy). Furthermore, since HGSOC is typically diagnosed when 

dissemination has already taken place in the peritoneal cavity, this malignancy provides the 

basis for evaluating the ubiquitousness of intra-patient TME heterogeneity in an advanced, 70 

metastatic disease setting. In HGSOC, the low somatic point mutation load, high aneuploidy 

levels and high copy number alterations have been associated with lack of immunogenicity 

(Bowtell et al. 2015; A. W. Zhang et al. 2018). Despite the low intrinsic immunogenicity, T cell 

infiltration plays a major role in predicting HGSOC survival in a primary disease setting (L. 

Zhang et al. 2003; Ovarian Tumor Tissue Analysis (OTTA) Consortium et al. 2017), and recent 75 
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studies have started to shed light on the interplay between ITH and T cell interactions (A. W. 

Zhang et al. 2018), as well as the potential effect of chemotherapy on T cell infiltration in 

HGSOC (Böhm et al. 2016). However, the extent of TME heterogeneity has not been 

systematically characterized in metastatic disease, including advanced HGSOC, and its 

underlying mechanisms and role in therapeutic response remain unknown. 80 

  

To characterize heterogeneity at the level of the TME and to begin to identify the molecular and 

cellular underpinnings of immune infiltration variability at diagnosis and after perturbation by 

chemotherapy, we performed a systematic analysis of >100 HGSOC samples from treatment-

naive and NACT patient cohorts. Our findings confirm that HGSOC is a disease characterized 85 

by pervasive TME heterogeneity with distinct immune microenvironments co-existing in different 

tumor nests within the same individuals at diagnosis. We leverage our rich data sets to create 

an ensemble computational approach that integrates and improves upon existing immune and 

stromal cell deconvolution methods, thus enabling us to systematically characterize the TME of 

HSGOC before and after treatment. We identify oncogenic signaling pathways such as Myc and 90 

Wnt that associate with immune cell exclusion when comparing tumors with high cancer cell 

fraction (high purity) vs low cancer cell fraction (low purity). We find that NACT induces immune 

activation and specific T cell clonal expansions in local TMEs, however, intra-patient TME 

immune heterogeneity can mask such effects. Consequently, systemic immunomodulatory 

therapies may be ineffective in a subset of tumor sites, thus preventing overall patient benefit. 95 

Together, these results show that intra-patient TME heterogeneity is ubiquituos in HGSOC, 

which could confound clinical outcomes. 
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RESULTS 100 

Intrapatient Transcriptomic Heterogeneity is Largely Explained by Immune 

Signaling 

To investigate the tumor microenvironment (TME) of HGSOC in a treatment-naive 

context, we analyzed the transcriptome of 38 primary and metastatic tumor samples from 8 

treatment-naive patients collected prospectively (Figure 1A, Supplementary Table 1A and B). 105 

Primary tumor masses and peritoneal metastases were resected and placed on patient-specific 

3D moulds created based on tumor segmentation using high resolution T2-weighted magnetic 

resonance (MR) images [REF:Weigelt B, Vargas AH, Selenica P, Geyer FC, Mazaheri Y, 

Blecua P, Conlon N, Hoang LN, Jungbluth AA, Snyder A, Ng CKY, Papanastasiou AD, Sosa 

RE, Soslow RA, Chi DS, Gardner GJ, Shen R, Reis-Filho JS, Sala E. Radiogenomics analysis 110 

of intra-tumor heterogeneity in high-grade serous ovarian cancer. BJC (under review)]. Each 

specimen was placed in the custom-made 3D mould in the operating theatre and was further 

dissected into sub-specimens according to three multi-parametric imaging-based phenotypically 

distinct clusters, hereafter referred to as “habitats”. Habitats were obtained from MR and 18F-

FDG-PET imaging and were defined based on quantitative imaging features that measure water 115 

diffusion, micro-capillary perfusion, permeability and metabolic activity (see Methods). We first 

performed an unbiased clustering analysis of the whole transcriptome. We observed that overall 

gene expression of tumor samples was highly patient specific, irrespective of anatomical site 

using t-distributed stochastic neighbor embedding (t-SNE) which accounts for nonlinear 

relationships (Figure 1B). To focus on well-defined biological processes and signaling pathways, 120 

we performed ssGSEA (Hänzelmann, Castelo, and Guinney 2013) using the hallmark gene sets 

(Arthur Liberzon et al. 2015), stromal and immune gene signatures, and tumor cell fraction 
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(purity) using the ESTIMATE algorithm (Yoshihara et al. 2013). We categorized the gene sets 

into five classes: oncogenic, cellular stress, immune, stromal, and other. Principal component 

analysis (PCA) showed that most of the gene set expression variation between samples (60% 125 

of variation) could be explained by oncogenic, immune, and stroma-associated gene sets 

(Figure 1C, S1A). In contrast to the full transcriptome analysis, the patient specific clustering 

was less evident, indicating that tumors from different patients share common patterns of 

pathway activation and non-cancer cell infiltrates. To investigate which gene sets explained 

most of the observed variance, we computed the principal component feature loadings and 130 

displayed them in a variable factor map (Figure 1D). This analysis showed that PC1 (40% of 

variation) is largely explained by tumor purity, since immune and stromal vectors had an 

opposite direction to oncogenic vectors and tumor purity (immune vs oncogenic: p=3e-05; 

stromal vs oncogenic: p=1.3e-03), and PC2 (20% of variation) further showed a separation of 

immune, stromal, and cellular stress vectors (immune vs stromal: p=0.046; immune vs stress: 135 

p=0.041; Figure S1B). 

 

Since immune related pathways explained a significant amount of variation between the 

samples, we further investigated the extent of intra-patient immune heterogeneity by computing 

the ESTIMATE immune score for each sample. In addition, we included as a reference the 140 

immune scores of the samples from a HGSOC case study with >9 years of clinical history we 

previously analyzed (Jiménez-Sánchez et al. 2017) and the immune scores of ovarian cancer 

samples from The Cancer Genome Atlas (TCGA), which comprises 307 treatment-naive 

primary tumors (Cancer Genome Atlas Research Network 2011). Overall, the immune scores of 

our cohort fell within the range expected at the population level (Figure 1E). Some patients (01, 145 

04, 10, and the case study) showed an intra-patient variation comparable to the inter-patient 

variation observed at the population level by the TCGA ovarian cancer samples, which indicates 

that within a single individual, complete distinct immune microenvironments can co-exist at 
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diagnosis of HGSOC. Also, all patients in the cohort had at least one sample with similar or 

lower immune score than the progressing and immune excluded tumors of the case study, 150 

where distinct tumor-immune microenvironments led to different clinical outcomes (Jiménez-

Sánchez et al. 2017). Importantly, consistent with our prior report, we recapitulate the 

observation that tumors with high immune signaling and immunosuppressive Wnt signaling tend 

to be mutually exclusive (Figure 1D). 

 155 

 

 

 

 

 160 
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Figure 1: Immune signaling contributes to the majority of the transcriptional variance observed 

across multiple tumor samples from treatment-naive HGSOC patients. A) Flowchart of sample 

acquisition and analysis. Peritoneal metastases other than omentum were defined as “Other”. B) t-SNE 

analysis of overall transcription profiles of multiple HGSOC tumor samples per patient. C) PCA of 165 

ssGSEA-based analysis of hallmark gene sets. D) Principal component feature loadings (magnitude and 

direction) of C are shown in the variables factor map. Vectors are colored according to a major biological 

classification of hallmark gene sets. Variation across classes in PC1 (p=3.2e-16) and PC2 (p=0.02) after 

Kruskal-Wallis H-test (Figure S1). Directionality of ESTIMATE’s tumor purity is represented with the map 

compass. E) ESTIMATE immune score across patients and samples. The Case Study samples were 170 

taken from (Jiménez-Sánchez et al. 2017). The bottom and top edges of the box plots indicate the 25th 

and 75th percentiles. 
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Co-existence of distinct tumor-immune microenvironments in treatment-

naive HGSOC 

To further characterize the tumor microenvironment of HGSOC, we performed multicolor 175 

immunofluorescence (IF) staining and quantification of CD4, CD8, and regulatory T cells (CD4+ 

FOXP3+) in at least 10 tumor regions excluding stromal areas in each sample leading to a 

compendium of 440 imaged and digitally quantified tumor regions (Figures 2A-B, S2, and 

Supplementary Table 2A). This multi-region and multi-site IF analysis shows that treatment-

naive HGSOC patients present variation in T cell infiltration in tumor deposits, ranging from less 180 

than 1% (e.g. patient 6) to T cells accounting for more than 10% of total cells in some areas 

(e.g. patient 01 and 10). Furthermore, some patients’ tumor deposits demonstrated marked 

variation in T cell infiltration within the same tumor deposit across different habitats (e.g. patient 

01). We then performed a linear mixed effects model analysis (see Methods and Supplementary 

Table 2B) to statistically evaluate whether there is a difference of T cell infiltration between 185 

patients, between tumors of the same patients and between habitats within tumors. We found a 

remarkable difference in T cell infiltration across tumors within patients (Degrees of freedom=2, 

CD8 F-value=8758; CD4 F-value=58; Tregs F-value=657) and habitats within a tumor (Degrees 

of freedom=2, CD8 F-value=1184; CD4 F-value=2870; Tregs F-value=2216). Sites and habitats 

also showed an important level of interaction (Degrees of freedom=4, CD8 F-value=5915; CD4 190 

F-value=4466; Tregs F-value=142). This systematic T cell IF staining and computerized cell 

detection-counting confirm the variation in T cell infiltration across patients, across tumor 

samples within patients, within tumors and within habitats. Together with the transcriptome 

analysis, these data show that HGSOC is intrinsically characterized by the presence of 

heterogeneous immune TMEs within patients and within tumors. 195 
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Figure 2: T cell infiltrate variation across patients, within patients, and within tumors. A) Multi-

tumor sampling from 8 HGSOC patients are shown with each dot representing the percentage of T cell 

subsets in a quantified area within a given tumor section stained with multicolor IF for CD8, CD4 and 200 

FOXP3. Stromal areas were excluded based on H&E stains. Patient cases are indicated by different 

colors. Anatomical sites of tumor deposits are indicated by different markers (circle, triangle and square). 

Habitats are defined by the greek letters α, β and γ. Habitats from the same tumor are indicated by 

connecting lines. Boxplots are sorted according to the median of CD8 T cell infiltration across patients, 

sites and habitats accordingly. B) Representative images of panel A. 205 
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Consensus tumor microenvironment gene sets improve cell deconvolution 

from bulk tumor mRNA 

To estimate the relative abundance of different cell types in an unbiased manner using 

bulk RNA data, various computational approaches have been developed during the last decade 

(Finotello and Trajanoski 2018). However, a comparison that objectively evaluates the 210 

performance of these approaches against one another has not been conducted and no publicly 

available data sets have been generated to serve as ground truths thus far (Zheng 2017). 

Therefore, to test the performance of deconvolution methods, we performed a preliminary 

benchmark using the T cell IF quantification of the 440 regions from the 38 treatment-naive 

HGSOC samples as the ground truth. We used ESTIMATE for total T cell infiltration (Yoshihara 215 

et al. 2013), and compared CIBERSORT (Newman et al. 2015), TIMER (B. Li et al. 2016), 

MCP-counter (Becht et al. 2016) and xCell (Aran, Hu, and Butte 2017) for cell type specific 

deconvolution. We also evaluated immune gene sets that were defined based on gene 

expression of sorted immune populations (Bindea et al. 2013), as well as immune gene sets 

based on the Immunological Genome Project database (Davoli et al. 2017; Heng, Painter, and 220 

Immunological Genome Project Consortium 2008). Using ssGSEA (Hänzelmann, Castelo, and 

Guinney 2013), the Bindea et al. and Davoli et al. gene sets were used to calculate normalized 

enrichment scores (NES) of the corresponding cell types. To be able to evaluate the 

performance of ESTIMATE, which calculates a total immune score but does not deconvolute 

immune cell types, total immune scores from the deconvolution tools were generated (see 225 

Methods). Total immune scores and deconvolution scores for CD4, CD8 and Tregs were 

correlated independently against the aggregated T cells and the corresponding cell type 

fractions (Figure 3A). Importantly, not all of the methods selected deconvolute CD4, CD8, and 

Tregs; however, for the methods that deconvolute all three cell types, none consistently 

outperformed the other methods in this independent benchmark analysis. In addition, none of 230 
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these methods was able to get a significant positive correlation with Tregs, which may indicate a 

lower-limit threshold of sensitivity of detection, since Tregs comprised, on average, less than 1% 

of cells in the tumor nests (Figure 2A, S2). 

 

Since the cell type deconvolution methods were developed independently of each other, we 235 

reasoned that generating Consensus gene sets by including the genes that fall in the 

intersection of different cell types across the different tools could improve the cell deconvolution 

performance. Since not all methods deconvolute the same cell types, we focused on cell types 

that at least two methods deconvolute. We selected genes that overlapped between the 

independent methods (intersection), and finally removed genes whose expression levels 240 

positively correlated with tumor purity using TCGA ovarian cancer samples as a reference (see 

Methods and Figure S3A). We correlated the ssGSEA NES of the Consensus TME cell gene 

sets against the fraction of T cells quantified, and observed that the Consensus gene sets 

consistently showed higher positive correlations than the individual methods. In addition, the 

consensus Tregs NES was the only score with a significant positive correlation with the fraction 245 

of Tregs, suggesting a greater level of sensitivity obtained with the Consensus approach (Figure 

3A, Spearman’s rho=0.26, q=6.2e-07). 

 

To further benchmark the methods and the consensus signatures, we employed TCGA ovarian 

cancer leukocyte methylation scores (Cancer Genome Atlas Research Network 2011), which is 250 

an independent and larger patient cohort. Leukocyte methylation measurements provide 

orthogonal means toward estimating immune infiltration in tumors, and have been shown to 

significantly correlate with histological purity estimates in primary HGSOC (Carter et al. 2012). 

Importantly, the leukocyte methylation signature was generated by comparing methylation 

patterns between HGSOC tumors, normal fallopian tube samples and buffy coat samples of 255 

female individuals, making this data set ideal for benchmarking the deconvolution methods 
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(Carter et al. 2012). We first performed a benchmark of all methods using the leukocyte 

methylation scores and the CD8 T cell deconvolution scores (Figure 3B), as i) this 

subpopulation is a major component of infiltrating leukocytes, ii) all deconvolution methods 

tested deconvolute CD8 T cells, and iii) overall the CD8 IF estimations were the best 260 

correlations (Figure 3A). Among the seven methods, the consensus CD8 gene signature 

correlated best with the CD8 T cell score (Figure 3C, Spearman’s rho=0.82 p=3.9e-16). 

However, as the leukocyte methylation score does not count CD8 T cells exclusively, we then 

compared the different methods in an unbiased manner by fitting a multiple linear regression 

model for each method using the leukocyte methylation score as a response variable and the 265 

different cellular scores as explanatory variables, followed by unsupervised nested variable 

selection (see Methods and Figure S3B). We compared the proportion of leukocyte methylation 

score variance that is explained by the unsupervised selected deconvoluted cells (adjusted R-

squared), as well as the relative quality of the models by considering goodness of fit and model 

simplicity (see Methods). The Consensus gene signatures provided the highest adjusted R-270 

squared with fewer cell types selected (Adj. R-squared=0.73, p<2.2e-16, Figure 3D left panel), 

as well as being selected as the simplest and most accurate model to explain leukocyte 

methylation (Figure 3D middle and right panels). Finally, the consensus gene signatures that the 

systematic unbiased analysis suggested best explained leukocyte methylation were cells 

expected to be present in leukocyte infiltrates, with CD8 and NK cells accounting for the vast 275 

majority of the variation explained (Supplementary Table 3, CD8 p=1.74e-07, and NK cells 

p=1.79e-11). In addition, we performed a sensitivity analysis of the leukocyte methylation 

benchmark, and the consensus was also the best method with the same cells explaining 

leukocyte methylation selected (Figure S3C and Supplementary Table 3). Together, these 

benchmarks show a consistent improvement of leukocyte cell deconvolution provided by the 280 

Consensus gene sets in ovarian cancer samples. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/441428doi: bioRxiv preprint 

https://doi.org/10.1101/441428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 

Figure 3: Consensus tumor microenvironment cell deconvolution method improves estimation of 

tumor infiltrating T cells and leukocytes. A) Spearman’s rank-order correlations between percentage 

of T cells (immunofluorescent staining) and the corresponding deconvolution scores for each method 285 

using the treatment-naive ovarian cancer samples. Correlation coefficients (ρ) and q-values are ordered 

from higher and more significant to lower and less significant. Deconvolution scores were standardized 

(z-score) to visually compare the different correlations in the same scale. IF immune score was calculated 

by adding up CD8, CD4, and Treg counts as an approximation, while deconvolution immune scores were 

calculated according to each deconvolution tool (see Methods). B, C) TCGA ovarian cancer Spearman’s 290 

rank-order correlations between CD8 T cell deconvolution scores and leukocyte methylation scores. D) 

Multiple linear regression analysis using leukocyte methylation score as response variable, and 
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deconvoluted cell types as explanatory variables (see Methods). Adjusted R2, Akaike information criterion 

(AIC), and Bayesian information criterion (BIC) values were calculated to compare goodness of fit and 

model simplicity. Arrowheads indicate best model for each method. Inset in the AIC panel shows a 295 

magnification of the best ranked models. 

Tumor microenvironment cell deconvolution and molecular comparison of 

high and low purity treatment-naive HGSOC 

Having generated our own robust method for immune cell deconvolution, the Consensus 

method, we applied the Consensus gene sets to the treatment-naive HGSOC transcript data to 300 

systematically assess if specific transcriptional programs were associated with variability in 

immune infiltration. We first visualized the variation across samples using the NES of 

deconvoluted Consensus gene sets of cells (Figure 4A, S4A). The gene sets explaining most of 

the variation were cytotoxic, NK cells and fibroblast being negatively correlated with tumor 

purity; while endothelial, monocytes and B cells positively correlated with tumor purity (Figure 305 

4B, S4B). The NES of deconvoluted cells of this cohort were comparable to the NES obtained in 

the TCGA ovarian cancer data set (Figure S5). Interestingly, the cells with highest NES in most 

samples were fibroblasts, highlighting the intrinsic low-immunogenic nature of HGSOC (Wang et 

al. 2016). 

 310 

To investigate genes associated with tumors with high cellularity (pure tumors), we used the 

median tumor purity of the cohort to classify high and low purity tumors (see Methods), and 

performed a differential expression analysis leveraging sample-patient dependency (i.e. 

considering that multiple tumors come from the same individual) to increase statistical power. 

As expected, genes related to immune activation were significantly highly expressed in low 315 

purity tumors, but only eleven genes were significantly highly expressed in the purer tumors 

compared to the lowly pure ones (Figure 4C). Gene ontology analysis (GO) showed that genes 
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with significant higher expression in low purity tumors are significantly enriched in leukocyte 

proliferation and activation GO biological processes (Figure 4D), whereas no significant GO 

enrichment was found with the genes significantly highly expressed in pure tumors. The genes 320 

with significantly higher expression in pure tumors have been implicated in transcription [CPSF6 

(Rüegsegger, Blank, and Keller 1998), FOXJ3 (Landgren and Carlsson 2004)], cellular growth 

[HOMER2 (Tu et al. 1998; Xiao et al. 1998), REPS1 (Cantor, Urano, and Feig 1995; Hu and 

Mivechi 2003)], glucose transport [MFSD4B (Horiba et al. 2003)], mitocondrial generation 

[PTCD3 (Davies et al. 2009)], aberrant proliferation [YBX1 (Frye et al. 2009; Weidensdorfer et 325 

al. 2009)], ovarian cancer initiation and progression [ACP6 (Hiroyama and Takenawa 1999; 

Fang et al. 2002), PARP2 (Amé et al. 1999; Gunderson and Moore 2015)] and TGF-beta 

signaling downregulation [FAM60A (Muñoz et al. 2012; Smith et al. 2012)], which consequently 

can directly and indirectly promote tumorigenesis through TME immunosuppression (Colak and 

ten Dijke 2017; Tauriello et al. 2018; Mariathasan et al. 2018). 330 
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Figure 4: Unbiased analysis of tumor microenvironment heterogeneity in treatment-naive HGSOC 

tumors. A) PCA of ssGSEA-based analysis using the consensus deconvoluted cell gene sets. B) 

Principal component feature loadings (magnitude and direction) of A. Vectors are colored according to 

cell types, for example monocytes and macrophages M0, M1, M2 (orange), B cells and plasma cells (light 335 

blue), and CD8 and cytotoxic cells (yellow). C) Differential expression analysis of high purity and low 

purity classified tumors using the median purity score of the cohort as a cutoff (see Methods). Vertical red 

lines indicate +/- 1 fold change of gene expression, and the horizontal line indicates the corresponding 

0.05 q-value on the y-axis. D) Gene ontology analysis of significantly highly expressed genes on low 

purity tumors. Significantly highly expressed genes in pure tumors are not significantly over represented 340 

in any gene ontology biological process. E, F) ssGSEA analysis of differentially expressed genes using 

hallmarks and consensus deconvoluted cell gene sets, respectively (see Methods). Gene sets on the x-

axes were ranked according to their normalized enrichment score (Supplementary Tables 4A-B). Higher 
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normalized enrichment score are indicative of higher purity scores. Dashed red lines indicate median and 

+ / - 1.96 median absolute deviations (modified z-score) to define outliers. Marginal density plots of 345 

observed and values fitted to a normal distribution are shown. 

 

To further investigate which molecular signaling pathways are more highly enriched in pure 

tumors, we performed ssGSEA using the adjusted p-values and changed the sign, positive or 

negative, according to the differential expression direction (see Methods). As expected, immune 350 

and stromal signatures were highly enriched in low purity tumors, in addition to  IFN-gamma 

response. In contrast, Myc and Wnt signaling appeared to be highly enriched in pure tumors, 

both of which have been previously associated with immune exclusion in pre-clinical models of 

lung cancer (Kortlever et al. 2017) and melanoma (Spranger, Bao, and Gajewski 2015; 

Spranger et al. 2016; Spranger, Bao, and Gajewski 2014), respectively (Figure 4E). Not 355 

surprisingly, the proliferation related hallmark G2M was highly enriched in pure tumors. Of note, 

little or no overlapping between the G2M, Myc and Wnt hallmark gene sets was observed 

(Figure S4C and Supplementary Table 4A; 6 out of 258 genes overlapped between G2M and 

Myc, and 2 out of 242 genes overlapped between G2M and Wnt signaling gene sets). 

Considering the TME, cytotoxic and NK deconvoluted cells were preferentially enriched in low 360 

purity tumors, whereas endothelial cells were highly prevalent in pure tumors (Figure 4F). Since 

all genes in the cytotoxic gene set are included in the CD8 and NK cell gene set, this suggests 

that a particular activation of NK cells is more prominent in low purity tumors (Figure S4C), 

whereas pure tumors only showed enrichment of endothelial cells (Supplementary Table 4B). 

These observations suggest that Myc and Wnt signaling gene set enrichments in pure tumors 365 

could be considered at least partially independent of tumor proliferation, and may also 

contribute to immune cell exclusion as suggested by other studies (Spranger and Gajewski 

2018).  
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Chemotherapy induces immune activation in HGSOC 

To investigate the effect of chemotherapy on the TME and evaluate if there is a 370 

confounding effect of the intra-patient TME heterogeneity described above, we studied the 

transcriptome of site-matched (n=18) and site-unmatched (n=38) primary and disseminated 

tumors before and after treatment with neoadjuvant platinum and taxane chemotherapy in 28 

HGSOC patients (Figure 5A, Supplementary Table 5A-B). Using t-SNE dimensionality reduction 

on the whole transcriptomes, we found that treated and untreated samples cluster separately 375 

(Figure 5B), in contrast to the treatment-naive samples that cluster in a patient-specific manner 

(Figure 1B). Using the ssGSEA NES of the hallmark gene sets of site-matched and site-

unmatched samples, we observed that treated and untreated sample groups were separated by 

the two first principal components with 63% and 50% of variation in site-matched and site-

unmatched groups, respectively (Figures 5C and S6A-B). Both site-matched and site-380 

unmatched groups showed that oncogenic and immune/stromal hallmarks contributed 

significantly to the variation explained by the first principal components (Figure S6C-D). 

However, only site-matched PC1 reached statistical significance after paired comparison 

between pre- and post-NACT samples (Figure S6E-F), while also explaining more than 50% of 

the variation in the site-matched samples (Figure S6A-B). Interestingly, cellular stress related 385 

pathways were more enriched in site-unmatched post-NACT than site-matched samples, 

potentially reflecting the cellular stress generated by therapy, whereas in site-matched samples, 

immune related pathways dominate the variation signal (Figures 5C, S6C-D). In addition, Wnt 

and Myc signaling showed a clear negative association to immune related gene sets in the site-

matched samples, whereas no clear clustering contribution of Wnt and Myc gene sets is 390 

discernible in the site-unmatched samples (Figure 5C). 
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Figure 5: Unbiased signaling pathway and tumor microenvironment cell decomposition analysis 395 

of chemotherapy treated HGSOC site-matched and unmatched tumor samples. A) Flowchart of 

sample acquisition, clinical study design, and analysis. TME: Tumor microenvironment. B) t-SNE analysis 

of overall transcription profiles of multiple HGSOC tumor samples per patient. C, D) PCA and principal 

component feature projections (magnitude and direction) of ssGSEA-based analysis of hallmark gene 

sets and consensus tumor microenvironment (TME) cells respectively. Arrows in the principal component 400 

space indicate pre- to post-NACT directionality. Hallmark gene set vectors are colored according to a 

major biological classification. Angiog: Angiogenesis, Myog: Myogenesis. Consensus TME vectors are 

colored according to cell types. Neut: Neutrophils. 
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We then deconvoluted the TME cellular mixtures to investigate which cells were differentially 405 

present in the pre- and post-treatment tumors. Pre- and post-treatment samples also clustered 

separately both in site-matched and site-unmatched samples, with the first principal 

components accounting for 64% and 43% of variation explained, respectively (Figures 5D, S7A-

B). Eosinophils and cytotoxic cells showed a negative association with tumor purity in site-

matched samples, in contrast to fibroblasts, B cells and macrophages (Figures 5D, S7C). 410 

Interestingly, the only principal components that were significantly different between pre- and 

post-NACT samples were the first two principal components of the site-matched tumors (Figure 

S7E-F). 

Tumor-immune microenvironment intra-patient heterogeneity masks 

chemotherapy induced immune activation effect 415 

To directly evaluate differences between pre- and post-treatment samples, we 

performed an exploratory data analysis leveraging the possibility of performing paired 

comparisons using the hallmark and consensus TME gene set NES independently for site-

matched and site-unmatched samples (Figure 6A). Site-matched samples showed a clear 

increase of immune pathways and consensus TME gene sets in post-treatment samples, while 420 

site-unmatched samples showed an increase of cellular stress pathways reflecting cellular and 

metabolic stress after cytotoxic drug exposure, but no difference of consensus TME gene sets 

was detected in the site-unmatched cohort. Since we observed that cytotoxic and NK cell 

Consensus gene sets were mainly enriched in treatment-naive low purity tumors (Figure 4F), 

and it is known that CD8 T cells play a crucial role in ovarian cancer recurrence and overall 425 

survival (L. Zhang et al. 2003), we performed a multivariate Student’s t-statistic hypothesis test 

using cytotoxic, NK and CD8 T cell Consensus gene sets. We compared the difference between 

these 3 Consensus gene sets in pre- and post-NACT site-matched and site-unmatched samples 
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(Figure 6B), and observed a significant increase of these immune cell types upon chemotherapy 

in the site-matched samples (p=0.0034), but no difference in the site-unmatched samples 430 

(p=0.92). To further evaluate T cell infiltration and activation between pre- and post-NACT 

samples, we performed in situ TCR sequencing. Since T cell activation leads to clonal 

expansion of particular T cell clonotypes, TCR clonality measures can be used as a surrogate 

for T cell activation upon specific (neo)antigen recognition (Pielou 1966; Kirsch, Vignali, and 

Robins 2015; Jiménez-Sánchez et al. 2017a). TCR clonal expansion was significantly higher in 435 

post-NACT site-matched samples (Figure 6C, p=0.001), but no significant difference was 

observed in site-unmatched samples (p=0.2). T cell fraction was also significantly higher in post-

NACT site-matched samples (p=0.03), while a slightly lower T cell fraction was observed in site-

unmatched post-NACT tumors, potentially as a result of the variability of immune infiltration 

between omentum metastases (pre-NACT biopsies) and primary tumors (post-NACT debulking 440 

surgery). To test whether the biopsy intervention could be a confounder and lead to an immune 

activation per se, we compared post-NACT site-matched and post-NACT site-unmatched TCR 

clonal expansions, since the post-NACT site-unmatched tumors were not originally biopsied. No 

significant difference was observed in TCR clonal expansion (p=0.67), suggesting that T cell 

clonal expansion was independent of biopsy treatment and likely induced by NACT. However, a 445 

significant increase of T cell density was observed in site-matched compared to site-unmatched 

post-NACT tumors (p=3.59e-05), potentially suggesting that wound healing after the biopsy 

procedure could increase the influx of T cells. Together, these results provide evidence that 

neoadjuvant chemotherapy induces an immune activation in the local TME of HGSOC, and that 

intra-patient inter-site TME heterogeneity can obscure this clinically relevant observation among 450 

tumor deposits within patients. 
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Figure 6: Immune activation induced by neoadjuvant chemotherapy is evident in site-matched but 

not site-unmatched sample analysis. A) Exploratory pre/post NACT paired comparisons of hallmark 455 

gene sets and consensus TME deconvoluted cells (see Methods). B) Multivariate T2 tests comparing pre 

and post-NACT CD8 T cells, NK cells, and cytotoxic NES together. C) Comparisons of TCR productive 

clonality (top), and percentage of productive T cells  (bottom) between pre and post-NACT site-matched 

and site-unmatched samples. Paired and unpaired tests were used accordingly. TCR clonality is 

expressed as 1-entropy with values near 1 representing samples with one or a few predominant TCR 460 

rearrangements, while values near 0 represent more polyclonal samples D) Least absolute shrinkage and 

selection operator (LASSO) regression analysis using the pre-NACT matched (n=8 samples) hallmark 
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and consensus TME cell NES as explanatory variables, and the log2 of the TCR clonality ratio of post/pre-

NACT as response variable (see Methods). DF: Degrees of freedom. The variables selected by the 

LASSO regression are indicated with an asterisk. E) Spearman’s rank correlation of pre-NACT cytotoxic 465 

NES and log2 of the post/pre-NACT TCR clonality ratio. 

 

Finally, we investigated whether hallmark pathways or consensus TME gene signatures 

calculated from the pre-treatment samples could explain the increase of TCR clonality upon 

neoadjuvant chemotherapy in site-matched samples (n=8, only 8 pre-treated samples with both 470 

gene expression and TCRseq data were available, see Figure 5A, Supplementary Table 5B). To 

perform the analysis in an unbiased manner, we employed least absolute shrinkage and 

selection operator (LASSO) regression analysis with the change of TCR clonality before and 

after NACT as a response variable (see Methods). The hallmark pathways that potentially have 

predictive value with positive association were the hallmarks G2M checkpoint, Myc and Wnt 475 

signaling and UV response, while apoptosis and PI3K-AKT-MTOR showed a negative 

association with TCR clonality increase (Figure 6D). We then performed the same analysis 

using the consensus TME gene signatures, where B cells, M1 macrophages and endothelial 

cells showed a positive association with TCR clonal expansion, while cytotoxic, CD4 and 

plasma cells showed a negative association. In addition, the LASSO analysis selected the 480 

consensus cytotoxic signature as relevant for explaining T cell clonal expansion upon NACT, 

and a correlation analysis supported this association (Figure 6E).  Post-selection inference, 

taking into account for the uncertainty of the model selection and multiplicity, corroborated that 

the pre-NACT NES of the Consensus cytotoxic gene set is a promising variable to explain T cell 

clonal expansion upon NACT in these eight samples (p=0.096, see Methods). Overall, these 485 

results show that chemotherapy induces a T cell activation in HGSOC in site-matched samples 

but not in site-unmatched samples, further suggesting that different local immune-

microenvironments play a role in the response to chemotherapy treatment. Also, pre-treatment 
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samples with low T cell infiltration have a significant increase of TCR clonality upon 

chemotherapy, while tumors with higher infiltration levels do not have such a high clonal 490 

expansion, an observation that could not be addressed in unmatched tumor samples, due to the 

intra-patient tumor-immune heterogeneity. This highlights the potential confounding effects that 

intra-patient tumor-immune heterogeneity imposes on comparing tumors not only from different 

patients but also from different sites within the same patient. 

DISCUSSION 495 

Despite advances in surgical approaches, chemotherapy and targeted therapies, the prognosis 

for patients with high grade serous ovarian cancer remains poor, with the near-inevitable 

development of resistance to systemic therapy. Genetic and molecular analyses of 

asynchronous and disseminated tumors within patients have recently started to shed light on 

tumor clonal dynamics and evolutionary properties of different tumor types (Johnson et al. 2014; 500 

Yates et al. 2015; McPherson et al. 2016); however, the extent of TME heterogeneity in 

advanced HGSOC has only begun to be revealed (Jiménez-Sánchez et al. 2017; A. W. Zhang 

et al. 2018). We explored the main sources of variation in the transcriptomic space among 

treatment-naive samples and detected that transcriptomic pathway heterogeneity is mainly 

explained by presence or absence of immune and stromal cells. Importantly, the degree of 505 

immune signature variation within patients was similar to the extent we observed in a case study 

of metastatic HGSOC, where different tumor immune microenvironments were associated with 

clinical outcome. In the index case, tumors with high immune related pathways regressed and 

presented evidence of T cell activation, while immune excluded tumors progressed (Jiménez-

Sánchez et al. 2017). In the present study, all patients presented at least one tumor with low 510 

immune infiltration, suggesting that HGSOC is characterized by microenvironmental niches, 

which could underlie primary and acquired resistance to therapies (Wang et al. 2016; Sharma et 
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al. 2017; Hirata et al. 2015). Through tissue image analysis, we captured immune signature 

differences and variation of T cell infiltration within tumors which was confirmed by 

immunofluorescence staining of T cells. Taken together, the transcriptional, imaged-based and 515 

immunofluorescence analyses show that TME heterogeneity is an intrinsic feature of HGSOC, 

which spans across patients, tumors within patients and within tumors. Furthermore, we found 

that intra-patient TME heterogeneity can mask the immune activation generated by treatment 

with cytotoxic chemotherapy. These analyses provide firm evidence that the TME affects the 

extent of immune activation generated upon treatment with chemotherapy. 520 

 

Since the TME can constrain or foster tumor progression, targeting the TME represents a 

promising alternative to complement therapeutic strategies (Hansen, Coleman, and Sood 2016). 

However, the degree to which TME heterogeneity is driven by stochastic, cellular or molecular 

processes is not well understood, and little is known on the potential mechanisms behind TME 525 

spatial heterogeneity in HGSOC. Previous unbiased immune deconvolution studies have 

estimated relative abundances of immune cells in ovarian cancer tumors (Newman et al. 2015), 

and calculated survival associations (B. Li et al. 2016); however, no objective benchmarking has 

been performed to date, and discordant results make it difficult to judge these observations (B. 

Li, Liu, and Liu 2017; Newman et al. 2017; Zheng 2017b). We integrated data from different 530 

deconvolution methods and generated a consensus approach which consistently improved the 

predictions on our data sets and in TCGA ovarian cancer leukocyte methylation data. This 

showed that cytotoxic and NK cells are the major populations present in low purity tumors, while 

endothelial cells are the main TME cell type in high purity tumors. A previous pan-cancer 

analysis showed negative correlations between somatic copy number alterations (SCNA) and 535 

deconvoluted immune infiltrates, and that NK cells and CD8 T cell receptor pathway were the 

most differentially abundant immune factors between tumor samples with high versus low SCNA 

(Davoli et al. 2017). Despite these associations, the molecular mechanisms underlying this 
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negative correlation between immune infiltrate and SCNA in HGSOC were not elucidated. 

Interestingly, NK cell infiltration appeared to be significantly higher in tumors with low compared 540 

to high SCNAs in HGSOC (Davoli et al. 2017), and our results also showed that NK cells were 

more enriched than CD8 and CD4 T cell infiltration in low purity tumors. Together, these results 

indicate that NK cells could be a potential TME cellular target in HGSOC, and further 

investigations would be required to validate this. 

 545 

Transcriptional signatures can be highly informative as diagnostic/prognostic resources, as well 

as provide insights on mechanistic underpinnings (Burel and Peters 2018). In this study we took 

advantage of the availability of having multiple tumors from the same patients and performed  

differential expression analysis between high and low purity tumors. Pathway analysis of the 

differentially expressed genes showed that Wnt and Myc signaling pathways were more 550 

prevalent in purer tumors, consistent with emerging data in HGSOC and other tumors and 

models (Gounari et al. 2002; Damsky et al. 2011; Spranger, Bao, and Gajewski 2015; Spranger 

et al. 2016; Sridharan et al. 2016; Spranger et al. 2017). In addition, different studies have 

observed association between loss of p53 function and decrease of NK cell infiltration in mouse 

models (Xue et al. 2007) and T cell infiltration human breast cancers (Iannello et al. 2013) In 555 

fact, missense or nonsense mutations in p53 are the earliest and almost ubiquitous (96%) 

alterations in HGSOC (Ahmed et al. 2010; Cancer Genome Atlas Research Network 2011). 

Overall, these different lines of evidence help to clarify why HGSOC is intrinsically non-

immunogenic: beyond the low somatic missense mutation load and the high SCNAs, the 

intrinsic oncogenic signaling of HGSOC seem to shape the TME and hinder immune infiltration 560 

of T cells and NK cells. 

    

There are significant potential clinical implications from understanding the effect of 

chemotherapy on the TME and the molecular drivers of the heterogeneity observed, as novel 
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combination therapies or changes in timing of treatments have the potential to improve 565 

outcomes (Patel and Minn 2018). A previous study investigated the effect of NACT on the 

activation of CD8, CD4 and Tregs in HGSOC, as well as systemic levels of cytokines (Böhm et 

al. 2016). This study found that patients who had good responses to NACT had a decrease of 

Tregs after treatment compared to poor responders. In general, there was also a trend towards 

higher cytolytic activity in tumors after NACT despite failing to detect significant changes on 570 

CD8 T cell counts (Böhm et al. 2016). Using our unbiased approach and using the consensus 

deconvolution method, we observed an increase of cytotoxic immunogenic activity after NACT 

in matched tumor samples but not in site-unmatched samples from the same patient. Similarly, 

employing TCRseq, we found a significant increase in T cells and TCR clonality in matched 

samples, but no significant difference was detected in unmatched pairs. Comparing post-NACT 575 

site-matched and post-NACT site-unmatched samples indicated that the observed change in 

TCR clonal expansions was driven by chemotherapy and not by the biopsy itself, although we 

cannot formally exclude potential immunogenic effects that the biopsy procedure may have in a 

neoadjuvant setting. Together, these results show a clear, confounding effect that spatial TME 

heterogeneity can cause.  580 

 

Having unmasked the immune activation generated by NACT, we used the matched samples to 

investigate the factors in pre-treated samples that influence TCR clonal expansion induction 

upon NACT. Interestingly, cytotoxic cells showed a significant negative association with TCR 

clonal expansion, and the PI3K-AKT-MTOR pathway, which is part of the TCR signaling 585 

cascade, also showed a strong negative association. Conversely, Wnt and Myc signaling 

appeared as positively associated with TCR clonal expansion. Together, these results suggest 

that tumors with low levels of infiltration have a higher potential for T cell activation upon NACT 

than tumors with a previous immune presence. We hypothesize that this could be due to an 

already exhausted immune TME generated as a consequence of chronic immune and tumor 590 
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interaction, while immune excluded tumors present a fresh environment where T cells can 

become active and expand. Importantly, our results point towards NK cells being similar or more 

activated after NACT, suggesting another potential therapeutic cellular target for combination 

therapy. Finally, this conclusion could only be drawn only when intrapatient spatial TME 

heterogeneity was controlled for, again highlighting the necessity to take TME heterogeneity into 595 

consideration in translational studies and in clinical applications. 

 

Here we have presented how TME heterogeneity is a common feature of HGSOC and how that 

can affect the interpretation of translational studies. We have sought to uncover molecular and 

cellular mechanisms behind intra-patient and intra-tumor TME heterogeneity. However, there 600 

are critical limitations to consider. Disentangling the actual mechanisms using human tumor 

samples represents a formidable challenge since tissue samples are limited, inter-patient 

variability is prominent and mechanistic experimental validation is prohibitive. Given these 

constraints, this study is descriptive in nature and relies heavily on observations derived by 

independent studies using murine tumor models to propose suitable explanations. Despite this 605 

main limitation, our unbiased analysis of human tumors not only complements experimental 

studies, but also provides new hypotheses to further explore in a pre-clinical and clinical 

settings. Another major limitation is the small number of samples available compared to the 

large parameter space to investigate in an unbiased systematic study, which poses a challenge 

not only for achieving statistically meaningful results but also for the findings to be influenced by 610 

confounding variables. However,  the implementation of orthogonal methods in combination with 

the independence of the two cohort of patients provide solid evidence of TME heterogeneity at 

multiple dimensions in addition to reasonable putative mechanisms behind it. Ultimately, we 

hope that the increasing scientific evidence would lead to better designed clinical trials where 

TME heterogeneity is further evaluated, data driven combination therapies or novel therapies 615 
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are tested and tissue sections are systematically analyzed and stored for future integrative 

unbiased analyses. 

 

This study shows that the TME of HGSOC is intrinsically heterogeneous within patients and 

within tumors, posing an important barrier for the successful application of therapies that target 620 

the TME, like checkpoint blockade immunotherapy. By controlling patient dependency and 

accounting for intra-patient TME heterogeneity, insights into potential mechanisms driving TME 

heterogeneity were obtained, putting forward new therapeutic strategies to be explored in future 

studies. Furthermore, the induced immunogenicity upon NACT treatment was only unmasked 

after taking into account the TME heterogeneity, which otherwise acts as a confounding 625 

variable. Despite high rates of response to initial treatment, HGSOC has a high recurrence rate 

and has yet to show significant response to available immunotherapeutic agents. Exploring new 

combination therapies and novel therapeutic targets based on a greater understanding of the 

TME has the potential to change the current paradigm of treatment, and hopefully improve 

clinical outcomes in this disease. 630 

 

 

 

 

 635 
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METHODS 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Martin L. Miller (martin.miller@cruk.cam.ac.uk). 

Experimental Model and Subject Details 640 

Patients 

All patients had stage IIIC or IV high grade serous ovarian cancer as assessed by a pathologist 

specialized in gynecologic malignancies. Patients signed written consent to Institutional Review 

Board (IRB)-approved bio-specimen protocols. 

Treatment-naive cohort 645 

For the treatment-naive cohort, 25 patients were consented to the study between August 2014 

and March 2016. Out of these patients, 17 were excluded as they either a) withdrew from the 

study (n=3); b) the final pathology was not HGSOC (n=5); c) the patients had disease 

progression upon review of study imaging and underwent neoadjuvant chemotherapy instead of 

primary cytoreductive surgery (n=5); d) inadequate image-guided tissue sampling due to friable 650 

tissue (n=2); e) research imaging studies not performed due to patient cancellation (n=2). The 

final treatment-naive study population consisted of 8 patients with histopathologically-confirmed 

diagnosis of HGSOC (Supplementary Table 1A-B). Each patient underwent multi-parametric 

MRI (mpMRI) of the abdomen and pelvis and 18F-FDG PET/CT within 7 days immediately 

preceding the primary cytoreductive surgery. Volumetric regions of interest (VOI) were outlined 655 
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on both axial T2-weighted MR images and PET images, covering both the primary and 

metastatic lesions, using ImageJ (U.S. National Institutes of Health) by a board certified 

radiologist with special expertise in ovarian cancer imaging. The tumor regions outlined on MRI 

were co-registered with those outlined on PET. 

Neoadjuvant chemotherapy cohort 660 

For the neoadjuvant chemotherapy cohort a previously established institutional database 

identified 152 patients with HGSOC who underwent neoadjuvant chemotherapy between 2008 

and 2013. Of these patients, 149 went on to interval debulking surgery. 48 of these patients had 

adequate pre and post treatment formalin fixed paraffin embedded tissue samples available. All 

pretreatment specimens were obtained either through core biopsy or laparoscopic biopsy, and 665 

all post treatment specimens were obtained at the time of laparotomy for interval debulking 

surgery. Choice of chemotherapy was at the clinician’s discretion, but all patients in the cohort 

received a platinum and taxane based regimen (Supplementary Table 5A). 40 of these paired 

samples yielded data for analysis, 17 of these pairs were site-matched, meaning that pre-

treatment and post-treatment specimens were taken from the same anatomic site, while 23 670 

were site-unmatched. Gene expression and TCRseq data were generated for 28 and 37 pairs 

respectively (Supplementary Table 5B). Samples with very low TCR sequences (n=5 samples, 

10 pairs) were not included in the downstream analyses as the confidence of TCR clonality is 

low. 

 675 
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Method Details 

Image acquisition and analysis 

The quantitative diffusion parameters D (diffusion coefficient) and f (the volume fraction of the 

blood flowing through the microvessels) derived from the intravoxel incoherent motion (IVIM) 

MRI (Le Bihan et al. 1988) and dynamic contrast-enhanced (DCE) MRI (Tofts 1997) parameter 680 

Ktrans (volume transfer constant between the blood plasma and the extravascular extracellular 

space) were generated voxel-wise using a dedicated in-house software written in Matlab 

(Mathworks Inc., Natick, MA, USA). The Standardized Uptake Values (SUV) of the voxels 

contained within each lesion on PET were also calculated (Kinahan et al. 2009). k-means 

clustering algorithm (Carano et al. 2004) of the D, f, Ktrans and SUV voxels, with the number of 685 

clusters (k) being fixed to k=3 was used to identify imaging clusters/habitats. The mean and 

standard deviation (mean±std. dev.) of these parameters for each cluster were calculated. To 

establish coherence across patients (i.e. to label each cluster with the α, β, γ greek letters, such 

that across patients clusters would have similar imaging features), the intra-cluster distance was 

calculated for each cluster. The greek letter of the clusters for each patient was assigned based 690 

on the relative value of the intra-cluster distance. Specifically, for each patient, β was assigned 

to the cluster which had the highest intra-cluster distance for that patient; γ was assigned to the 

cluster with intermediate intra-cluster distance, and α to the cluster with the lowest intra-cluster 

distance. 

Custom made 3D Tumor Moulds  695 

For each patient, custom made 3 dimensional (3D) moulds [REF:Weigelt B, Vargas AH, 

Selenica P, Geyer FC, Mazaheri Y, Blecua P, Conlon N, Hoang LN, Jungbluth AA, Snyder A, 

Ng CKY, Papanastasiou AD, Sosa RE, Soslow RA, Chi DS, Gardner GJ, Shen R, Reis-Filho 
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JS, Sala E. Radiogenomics analysis of intra-tumor heterogeneity in high-grade serous ovarian 

cancer. BJC (under review).] were printed based on manual segmentation of the ovarian mass 700 

and metastatic implants on axial T2-weighted MR images. The lesions were outlined on every 

axial slice and automatically converted into 3D models using open source software (MIPAV, 

National Institutes for Health, Center for Information Technology). The final 3D models of each 

lesion were imported into OpenSCAD (OpenSCAD, The OpenSCAD Developers), a 3D CAD 

modeling software, which was used to create an internal cavity that exactly shaped each lesion 705 

according to the MRI shape and contour. The custom-made 3D tumor moulds were printed 

using a 3D printer (MakerBot Replicator 2, MakerBot, Brooklyn, NY).The slits for slicing each 

lesion were placed and labelled into the molds at 10mm intervals corresponding to the slice 

thickness and locations of the axial T2W-weighted MR images. The mould was also labeled with 

left, right, anterior, posterior, superior and inferior markers to allow for proper orientation when 710 

collecting samples in the operating room. 

Cluster guided specimen sampling  

All 3D moulds containing the specimens were taken to the histopathology department where 

each lesion was sampled by a pathology fellow. Each tumor was sectioned through the mould 

and samples were taken according to the imaging habitats/clusters defined above. Half of the 715 

sample was sent for histopathology and the other one for immunogenomic analysis. 

Immunofluorescent Staining 

The immunofluorescent staining was performed at Molecular Cytology Core Facility of Memorial 

Sloan Kettering Cancer Center using Discovery XT processor (Ventana Medical Systems). The 

tissue sections were deparaffinized with EZPrep buffer (Ventana Medical Systems), antigen 720 

retrieval was performed with CC1 buffer (Ventana Medical Systems). Sections were blocked for 
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30 minutes with Background Buster solution (Innovex), followed by avidin-biotin blocking for 8 

minutes (Ventana Medical Systems).  

 

Multiplex immunofluorescence stainings were performed as previously described (Yarilin et al. 725 

2015). Slides were incubated with anti-FoxP3 (Abcam, cat#ab20034, 5 ug/ml) for 4 hours, 

followed by 60 minutes incubation with biotinylated horse anti-mouse IgG (Vector Labs, cat# 

MKB-22258) at 1:200 dilution. The detection was performed with Streptavidin-HRP D (part of 

DABMap kit, Ventana Medical Systems), followed by incubation with Tyramide Alexa Fluor 488 

(Invitrogen, cat# T20922) prepared according to manufacturer instruction with predetermined 730 

dilutions. Next, sections were incubated with anti-CD4 (Ventana, cat#790-4423, 0.5ug/ml) for 5 

hours, followed by 60 minutes incubation with biotinylated goat anti- rabbit IgG (Vector, cat # 

PK6101) at 1:200 dilution. The detection was performed with Streptavidin-HRP D (part of 

DABMap kit, Ventana Medical Systems), followed by incubation with Tyramide Alexa 568 

(Invitrogen, cat# T20914) prepared according to manufacturer instruction with predetermined 735 

dilutions. Finally, sections were incubated with anti-CD8 (Ventana, cat#790-4460, 0.07ug/ml) for 

5 hours, followed by 60 minutes incubation with biotinylated goat anti- rabbit IgG (Vector, cat # 

PK6101) at 1:200 dilution. The detection was performed with Streptavidin-HRP D (part of 

DABMap kit, Ventana Medical Systems), followed by incubation with Tyramide Alexa 647 

(Invitrogen, cat# T20936) prepared according to manufacturer instruction with predetermined 740 

dilutions. After staining slides were counterstained with DAPI (Sigma Aldrich, cat# D9542, 5 

ug/ml) for 10 min and coverslipped with Mowiol. 

  

Stained slides were digitized using Pannoramic Flash 250 (3DHistech, Hungary) using 

20x/0.8NA objective. Regions of interest were drawn on the scanned images using Pannoramic 745 

Viewer (3DHistech, Hungary) and exported into tiff images. ImageJ/FIJI was used to segment 

DAPI-stained nuclei and count the cells with positive signal. 
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Nucleic Acid Isolation and Quantification 

DNA  and RNA were extracted from tumor areas delineated as tumor nests on H&E slides 

reviewed by a pathologist specialized in gynecologic malignancies using the DNeasy® and 750 

RNeasy ® (Qiagen) assays, respectively. RNA expression was assessed using the human 

Affymetrix Clariom D Pico assay (Thermo Fisher Scientific). 

T-Cell Receptor Sequencing 

High-throughput in-situ sequencing of the T cell receptors present in the samples and blood of 

the patient was performed using the immunoSEQ assay platform (Adaptive Biotechnologies). 755 

 

Quantification and Statistical Analysis 

Gene expression analysis 

RNA expression was assessed using the human Affymetrix Clariom D Pico assay. Arrays were 

analyzed using the SST-RMA algorithm in the Affymetrix Expression Console Software. 760 

Expression was determined by using the Affymetrix Transcriptome Analysis Console. Locally 

weighted scatterplot smoothing (LOESS) normalization across samples was implemented 

(Gautier et al. 2004) using: 

# R 3.5.0 

library(affy) # version 1.58.0 765 

data_norm<-normalize.loess(data, family.loess='gaussian') 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/441428doi: bioRxiv preprint 

https://doi.org/10.1101/441428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

Single-sample gene set enrichment analysis 

Single-sample gene set enrichment analysis (Barbie et al. 2009), a modification of standard 

GSEA (Subramanian et al. 2005), was performed on RNA measurements for each sample using 

the GSVA package version 1.28.0 (Hänzelmann, Castelo, and Guinney 2013) in R version 3.5.0 770 

with parameters: method = 'ssgsea', and tau = 0.25. Normalized enrichment scores 

were generated for the hallmark gene sets (Arthur Liberzon et al. 2015), immune and stromal 

signatures (Yoshihara et al. 2013), TME cell gene sets obtained from previous publications 

(Bindea et al. 2013; Davoli et al. 2017), as well as the consensus TME gene sets (Figure S3A). 

Hallmark gene sets were obtained from MSigDB database version 6.1 (A. Liberzon et al. 2011). 775 

Tumor purity and immune cell gene-expression score 

Tumor purity and total immune component in the tumor samples were analyzed using the 

ESTIMATE algorithm method version 1.0.13 (Yoshihara et al. 2013) on the gene expression 

data using the option: platform = 'affymetrix' for the cohort samples and platform = 

'illumina' for TCGA OV samples, in R version 3.5.0. 780 

Dimensionality reduction 

The t-distributed Stochastic Neighbor Embedding (t-SNE) and principal component analysis 

dimensionality reduction methods were implemented in python version 3.6.5 using the 

sklearn.manifold.TSNE and sklearn.decomposition.PCA functions from the sklearn 

version 0.19.1 package (Pedregosa et al. 2011). PCA  was computed after sample wise 785 

standardization. Functions were used as follows: 

X_tsne=tsne.TSNE(learning_rate=100,n_iter=5000,perplexity=5).fit_trans

form(loess_normalized_expression.values) 
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X_pca=PCA(n_components=7).fit_transform(nes_standarized) 790 

Analysis of T cell infiltration between cases, sites, and habitats 

A linear mixed effects model analysis was performed to evaluate if there were significant 

differences in T cell infiltration subsets between patients, sites within patients, and habitats 

within tumors, and to assess whether the differences were other than random. Due to data 

nested dependency we employed a linear mixed effects model under the lme4 R package 795 

(Bates et al. 2015). Cases were considered a random factor, while sites and habitats were 

considered fixed factors as follows: 

 

# R 3.5.0 

library(lme4) # version 1.1-17 800 

glmer.fit1a <- glmer(cbind(cd8_counts, total_cells - cd8_counts) ~  

site*habitats+(1|case), family = binomial, data = data) 

TME cell deconvolution methods 

Cell deconvolution methods were used to estimate levels of non-cancerous cells in the TME. 

The methods employed were CIBERSORT (Newman et al. 2015), MCP-counter (Becht et al. 805 

2016), TIMER (B. Li et al. 2016), xCELL (Aran, Hu, and Butte 2017), as well as gene sets 

collected from two previous publications (Bindea et al. 2013; Davoli et al. 2017). 

 

CIBERSORT analysis was performed using the CIBERSORT R script as follows: 

 810 

# R 3.5.0 

source('CIBERSORT.R') # version 1.04 
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cibersort <- CIBERSORT('LM22.txt','expression_data.txt', perm=1000, 

QN=TRUE, absolute=FALSE) 

 815 

MCP-counter analysis was performed as follows: 

 

# R 3.5.0 

library(MCPcounter) # version 1.1.0 

exp_data = read.table(expression_data.txt, header=T, sep='\t', 820 

row.names='Hugo_Symbol') 

mcp = MCPcounter.estimate(exp_data,                      

featuresType=c("affy133P2_probesets","HUGO_symbols","ENTREZ_ID")[2],                              

probesets=read.table(curl("http://raw.githubusercontent.com/ebecht/MCPcounter

/master/Signatures/probesets.txt"),sep="\t",stringsAsFactors=FALSE,colClasses825 

="character"),                     

genes=read.table(curl("http://raw.githubusercontent.com/ebecht/MCPcounter/mas

ter/Signatures/genes.txt"),sep="\t",stringsAsFactors=FALSE,header=TRUE,colCla

sses="character",check.names=FALSE)) 

The TIMER web server (https://cistrome.shinyapps.io/timer/) was used for deconvolution of TME 830 

cells (T. Li et al. 2017). 

 

The xCELL web server version 1.1 (http://xcell.ucsf.edu/) was used for deconvolution of TME 

cells. 

 835 

For the Bindea et al. and Davoli et al. gene sets, standard ssGSEA analysis was performed as 

previously described. 
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Consensus TME cell gene sets 

To generate the consensus TME gene sets we identified cell types that were deconvoluted by at 

least 2 different methods, leading to 18 different cell types. We then intersected the gene sets 840 

that the different methods considered for the deconvolution of such cell types. To intersect 

genes used in CIBERSORT, we first filtered out genes whose weight was below 1.96 standard 

deviations of the mean for each of CIBERSORT cell types. In addition we combined activated 

states into the corresponding cell type. The only activated stated included was cytotoxic cells, 

which would include CD8 and/or NK cells in their activated stated. The intersected genes were 845 

used to represent each cell type, and genes with a higher Pearson’s correlation coefficient than 

-0.2 and a p-value ≤ 0.05 with tumor purity as defined by TIMER were filtered out from the gene 

sets (B. Li et al. 2016). Finally, ssGSEA was employed to calculate NES for each cell type as 

described above (Figure S3A). 

TME cell deconvolution benchmarks 850 

T cell subsets immunofluorescent staining benchmark 

We correlated the CD8, CD4, Tregs infiltration counts with the deconvolution scores generated 

by ESTIMATE, CIBERSORT, MCP-counter, Bindea et al., Davoli et al., TIMER, xCELL, and the 

consensus TME scores. For the immune score comparison, all the genes used for the 

deconvolution for each method were aggregated together into one single gene set per method 855 

except for CIBERSORT. CIBERSORT deconvolution -log10(p-values) were used as a metric for 

immune score comparison. CD8, CD4, and Treg counts from IF data were summed and used 

for the comparison. Because the methods have different scoring systems and ranges we 

standardized (z-score) the scores to be able to compare the results across methods together. 

For each tumor, multiple IF-stained sections were quantified for TILs, and we correlated all the 860 
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regions quantified with the deconvolution scores of each tumor, explaining the vertical patterns 

observed in figure 3A. Spearman’s rank correlation was performed for each comparison and 

FDR p-value correction was applied. 

TCGA OV leukocyte methylation benchmark 

As an independent benchmark we used leukocyte methylation scores of TCGA ovarian cancer 865 

samples (Cancer Genome Atlas Research Network 2011). TCGA ovarian cancer RNAseq data 

was retrieved from the cBioPortal (Cerami et al. 2012; Gao et al. 2013) web server version 1.6.2 

(http://www.cbioportal.org/). 

 

First, deconvolution of cell types was performed using the different methods listed above. 870 

Spearman’s rank correlations were calculated between CD8 T cell scores and the leukocyte 

methylation score of TCGA ovarian cancer samples, and FDR p-value correction was applied. 

 

We further fitted multiple linear regression models to each method deconvoluted cell types 

(Figure S3B). We compared the proportion of leukocyte methylation score variance that is 875 

explained by the unsupervised selected immune cells (adjusted R-squared), as well as the 

relative quality of the models by considering goodness of fit and model simplicity after BoxCox 

transformation of the leukocyte methylation scores to meet the normality of residuals 

assumption. As a sensitivity analysis we log transformed the leukocyte methylation scores 

before performing the linear regression models. In both analyses (BoxCox and log-transform), 880 

stepwise Akaike information criterion variable selection was performed once normality and 

heteroscedasticity assumptions were checked. Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) were employed independently to compare the fitted models for each 

method. Both AIC and BIC quantify information loss and penalize the number of variables. 

Thus, the trade-off between goodness of fit and model simplicity across methods was 885 
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evaluated, allowing us to quantify and minimize information loss. The R version and packages 

used for this analysis were R version 3.5.0, gamlss_5.0-8 (Stasinopoulos, Mikis 

Stasinopoulos, and Rigby 2007), leaps_3.0, car_3.0-0 (Fox and Weisberg 

2011), and MASS_7.3-50 (Venables and Ripley 2002). 

Differential expression analysis 890 

Tumor samples from the treatment-naive cohort were divided into high and low purity classes 

taking as a cutoff the median of tumor purity calculated for the tumor samples using ESTIMATE 

(Yoshihara et al. 2013). Then a differential expression analysis was performed using the R 

packages limma_3.36.1 (Ritchie et al. 2015) and Biobase_2.40.0 (Huber et al. 

2015). Patient dependency was taken into account as follows: 895 

 

# R 3.5.0 

library(limma) # version limma_3.36.1 

library(Biobase) # version Biobase_2.40.0 

data<-900 

read.table('expression_data.txt',sep='\t',header=T,row.names='Hugo_Symbol') 

eset<-new("ExpressionSet", exprs=as.matrix(data)) 

estimate<-

read.table('estimate_purity_scores',sep='\t',header=T,row.names='NAME') 

med_purity<-median(estimate$TumorPurity) 905 

purity<-as.data.frame(ifelse(estimate$TumorPurity > med_purity, 

'high_purity', 'low_purity')) 
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row.names(purity)<-row.names(estimate) 

colnames(purity)[1]<-'purity' 

patient_data<-910 

read.table('patient_data.txt',sep='\t',header=T,row.names='NAME') 

clinical<-merge(patient_data,purity,by='row.names') 

row.names(clinical)<-row.names(purity) 

clinical$Row.names<-NULL 

colnames(clinical)[6]<-'purity' 915 

# merge factors 

clinical<-factor(clinical$purity) 

# Make design matrix 

design <- model.matrix(~0+clinical) 

colnames(design) <- levels(clinical) 920 

# estimate correlation between measurements on same subjects 

corfit <- duplicateCorrelation(eset,design,block=patient_data$case) 

# inter-subject correlation is input into the linear model fit 

fit <- 

lmFit(eset,design,block=patient_data$case,correlation=corfit$consensus) 925 
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cm <- makeContrasts(HighPurityvsLowPurity = high_purity-low_purity, 

levels=design) 

fit2 <- contrasts.fit(fit, cm) 

fit2 <- eBayes(fit2) 

results <- decideTests(fit2, adjust.method="fdr") 930 

volcanoplot(fit2) 

Gene ontology analysis 

Gene ontology analysis of significantly up or down-regulated genes was performed using the 

Gene Ontology Consortium (Ashburner et al. 2000; The Gene Ontology Consortium 2017) web 

server (http://www.geneontology.org/). P-value FDR corrections were calculated for this 935 

analysis.  

ssGSEA of differential expression analysis 

Further, p-values for each gene were retrieved and multiplied by -1 if the the log2 change was 

negative. The list of genes with their associated p-value was used to calculate hallmark and 

consensus TME normalized enrichment scores (NES) through ssGSEA. Hallmark gene sets’ 940 

NES were normalized by taking the exponential function. Consensus TME gene sets’ NES 

approached normality by taking the natural logarithm. Modified z-score was employed to detect 

outliers in the hallmarks and consensus TME NES independently, as the modified z-score uses 

the median and the median absolute deviation (MAD) to robustly measure central tendency and 

dispersion in small data sets (Iglewicz and Hoaglin 1993). 945 

 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑	𝑧 − 𝑠𝑐𝑜𝑟𝑒	 = (0.6745	 ∗ 	(𝑦	 − 𝑚𝑒𝑑𝑖𝑎𝑛))	/	𝑀𝐴𝐷	 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/441428doi: bioRxiv preprint 

https://doi.org/10.1101/441428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

Paired gene set comparisons 

Volcano plots 

For each of the 52 hallmark and 18 consensus TME gene sets paired comparisons before and 950 

after NACT were performed. Equality of variance (Bartlett’s test) and normality (Shapiro test, 

Kolmogorov-Smirnov test, and D-Agostino-Pearson’s test) assumptions were checked to select 

the corresponding paired test (Paired T-test, Welch’s T-test, or Wilcoxon signed-rank test). The 

analysis was performed under python 3.6.5 and scipy 1.1.0 (http://www.scipy.org/) 

ecosystem (Oliphant 2007). 955 

Hotelling’s T2 distribution test 

Multivariate Hotelling’s T2 test was performed to compare difference of CD8, NK, and cytotoxic 

consensus TME gene sets NES between pre- and post-NACT tumors as follows: 

 

# R 3.5.0 960 

 

library(Hotelling) # version Hotelling_1.0-4 

 

data<-read.table('consensusTME_NES.txt',sep='\t',header=T,row.names='NAME') 

 965 

matched<-data[which(data$related=='matched'),] 

matched<-subset(matched, select = -c(case_number,Site,related)) 

unmatched<-data[which(data$related==unmatched),] 

unmatched<-subset(paired, select = -c(case_number,Site,related)) 

 970 

fit_matched = hotelling.test(nk*cd8*cytotoxic~NACT, data=matched, perm=T) 

fit_unmatched = hotelling.test(nk*cd8*cytotoxic~NACT, data=unmatched, perm=T) 
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plot(fit_matched) 

plot(fit_unmatched) 975 

 

fit_matched$pval 

fit_unmatched$pval 

TCR sequencing analysis 

Analysis of the sequences was performed on the immunoSEQ ANALYZER 3.0 (Adaptive 980 

biotechnologies). T cell counts and TCR clonality were retrieved for statistical comparisons. T 

cell counts are derived from quantitative immunoSequencing of the TCRB loci, in which the 

internal controls allow precise quantitation of sequence counts based on reads.  Nucleated cell 

counts are determined by sequencing housekeeping genes. The fraction of T cells is 

determined by dividing the T cell count by the nucleated cell counts. Values for TCR productive 985 

clonality range from 0 to 1. Values near 1 represent samples with one or a few predominant 

rearrangements (monoclonal or oligoclonal samples) dominating the observed repertoire. TCR 

productive clonality values near 0 represent more polyclonal samples. TCR productive clonality 

is calculated by normalizing productive entropy using the total number of unique productive 

rearrangements and subtracting the result from 1. 990 

LASSO regression and post-selection inference 

Least absolute shrinkage and selection operator (LASSO) regression analysis was performed 

using the glmnet R package (Friedman, Hastie, and Tibshirani 2010). Hallmark and consensus 

TME cell type NES of pre-NACT samples were used independently as explanatory variables, 

and the log2 of the ratio post/pre NACT TCR clonality as response variable. 995 
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# R 3.5.0 

 

library(glmnet) # version glmnet_2.0-16 

dataH<-1000 

read.table('Hallmarks_TCRdiff.txt',sep='\t',header=T,row.names='ID') 

dataC<-

read.table('ConsensusTME_TCRdiff.txt',sep='\t',header=T,row.names='ID') 

 

h<-as.matrix(subset(dataH, select = -c(clon_dif))) 1005 

c<-as.matrix(subset(dataC, select = -c(clon_dif))) 

y<-as.matrix(dataH$clon_dif) 

 

hallmark_fit<-glmnet(h,y,family='gaussian',alpha=1,standardize=T) 

tmecells_fit<-glmnet(c,y,family='gaussian',alpha=1,standardize=T) 1010 

 

# VARIABLE SELECTION 

hallmark_cvfit=cv.glmnet(h,y,family="gaussian",type.measure="mse",alpha=1,

nfold=10) 

tmecells_cvfit=cv.glmnet(c,y,family="gaussian",type.measure="mse",alpha=1,1015 

nfold=10)  

coef(hallmark_cvfit, s = "lambda.min") 

coef(tmecells_cvfit, s = "lambda.min") 

 

# POST-SELECTION INFERENCE 1020 

library("selectiveInference") # version selectiveInference_1.2.4 
 
postselinf_h = fixedLassoInf(h,y,beta_hat[-1],lambda,family="gaussian") 
 
postselinf_c = fixedLassoInf(c,y,beta_hat[-1],lambda,family="gaussian") 1025 
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Data and Software Availability 

Requests for additional data and custom code should be directed to the corresponding authors. 

Immunofluorescence staining images 

The immunofluorescence images discussed in this study will be provided upon request to the 1030 

Lead Contact in the Data and Software Availability section. 

Microarray data 

Microarray data is currently under submission to the GEO database. 

TCR sequencing data 

The TCR sequencing data discussed in this study will be provided upon request to the Lead 1035 

Contact in the Data and Software Availability section. 
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